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Abstract—Graphical elements: particularly tables and fig-
ures contain a visual summary of the most valuable infor-
mation contained in a document. Therefore, localization of
such graphical objects in the document images is the initial
step to understand the content of such graphical objects or
document images. In this paper, we present a novel end-to-end
trainable deep learning based framework to localize graphical
objects in the document images called as Graphical Object
Detection (GOD). Our framework is data-driven and does not
require any heuristics or meta-data to locate graphical objects
in the document images. The GOD explores the concept of
transfer learning and domain adaptation to handle scarcity of
labeled training images for graphical object detection task in
the document images. Performance analysis carried out on the
various public benchmark data sets: ICDAR-2013, ICDAR-POD
2017 and UNLV shows that our model yields promising results
as compared to state-of-the-art techniques.

Keywords-Graphical object localization; deep neural net-
work; transfer learning; data-driven.

I. INTRODUCTION

With the rapidly increasing number of digital documents,
the manual extraction and retrieval of information from them
has become an in-feasible option - Automated methods are
coming to the rescue. There are many tools and methods
available to convert the digital documents into process-able
texts. The graphical page elements, such as tables, figures,
equations play a very important role in understanding and
extracting the information from the documents. Therefore,
the detection of those objects from the documents has at-
tracted a lot of attention in the research community. Because
of no common dimensions and diversity of layouts of the
tables and figures in the documents, detection of them is
considered to be a challenging problem.

In this paper, our objective is to detect graphical objects
like tables, figures, equations from varied types of digitally
generated documents. This problem is conceptually similar
to object detection in natural scene images. The diverse
layouts and structure of equations, tables and figures make
the detection difficult for the rule based systems [1]–[4].
Tables have different structures such as cell separated table,
table with no separation lines between the rows and columns
or alternating colours to separate the cells. All these make
the table detection itself very challenging. Sometimes, tables
and figures have a high degree of inter-class similarity
between themselves and also among other graphical objects,

Figure 1: Visual illustration of various graphical object
detection results of the public benchmark data sets by the
GOD framework. First Row: detection of various forms
of tables in various documents. Second Row: detection of
multiple graphical objects: tables, equations and figures with
various forms and multiple numbers in a single page. Blue,
Green and Red colors represent the bounding boxes of table,
figure and equation, respectively.

e.g. some charts and plots with several intersections of
horizontal and vertical lines will resemble the structure of the
tables. Traditional rule based methods have had difficulties
to detect them with high precision [5]–[8].

In this paper, we present a novel end-to-end trainable
deep learning based framework, called as Graphical Object
Detection (GOD), for detecting graphical objects particularly
tables, figures and equations in the document images. Our
presented framework based on the recent object detection
algorithms in computer vision [9]–[11] is data-driven and
independent of any heuristic rules for detecting graphical
objects in the document images. Usually, deep learning
based approaches require a large amount of labelled training
data which is not available in our task. To solve the scarcity
of labelled training data, the GOD explores the concept
of transfer learning and domain adaptation for graphical
object detection task in the document images. Experiments
on the various public benchmark data sets conclude that
the GOD is superior than state-of-the-art techniques for
localizing various graphical objects in the document images.



Figure 1 visually illustrates the success of GOD technique for
localizing various graphical objects present in the document
images. In particular, the contributions of this work are as
follows:
• We present an end-to-end trainable deep learning based

approach to localize graphical object in the document
images inspired by the concept of recent object detec-
tion algorithms in computer vision [9], [11].

• We perform transfer learning to fine-tune a pre-trained
model for our graphical object detection task in the
document images.

• Our GOD framework obtains the superior results on
public benchmark ICDAR-POD2017 (please see Ta-
ble III), ICDAR-2013 (please see Table IV) and UNLV
(please see Table V) than state-of-the-arts.

II. RELATED WORK

Automatic information extraction from the digital docu-
ments requires the detection and understanding of graphical
objects such as tables, figures, equations, etc. A good
number of researchers have contributed to localize various
page objects and layout analysis on the different types of
documents.

A. Rule based Methods

Before deep learning era, most of the developed ap-
proaches [1]–[4] for table detection were based on the
assumption of table structures and exploiting a prior knowl-
edge on object properties by analyzing tokens extracted
from the documents. Tupaj et al. [2] developed an optical
character recognition (OCR) based table recognition system
which initially identifies the potential table region through
the combination of white space and keyword analysis. Key-
word analysis determines the header which is regarded as
the starting line of the table. The vertical and horizontal
passes through the document page identify the white spaces
between the cells of the table region. This rule based
method is highly dependent on the set of keywords used
for analyzing the headers and the inherent assumption about
the structure of the tables. Fang et al. [3] analyzed the page
layout and detected the table from PDF documents based on
separator mining which identifies the visual separators of the
cells. This method assumes that the table cells are separated
either by ruling lines or by white spaces. The disadvantage
of such rule based methods is that they heavily rely upon
the type and structure of tables under consideration, hence
fail to detect the tables whose layout structures are different.

B. Deep Learning based Methods

Deep Convolutional Neural Networks (DCNNs) have
proved to be useful in highly complex computer vision
tasks to identify visually distinguished features of images.
The effectiveness of DCNNs are also being explored in
recent years in document object analysis by various research

groups [5]–[8]. Hao et al. [5] applied deep learning for
detection of tables in PDF documents. They considered
heuristic rules to propose regions with table-like structures
in the document and then classified them into table or
non-table regions using a CNN. However, the shortcomings
of using rule to identify table-like structures are not yet
overcome completely by this method. Schreiber et al. [6]
proposed a deep learning based solution for table detection
and structure identification, which does not require any
assumption about the structure of the tables. They fine-tuned
Faster R-CNN [9] with two different backbone architectures:
ZFNet [12] and VGG-16 [13] for the table detection task.
Gilani et al. [7] also used the same approach. However,
they applied image transformation by stacking three different
distance transformed layers before passing them through
Faster R-CNN. This model can deal with only identifying
table regions in the documents.

Several algorithms [14]–[18] have been developed to iden-
tify text and non-text or graphical regions from document
images. As per [19], the classification techniques can be
broadly classified into three approaches (i) region or block
based, (ii) pixel based and (iii) connected component based
classification methods. However, none of these methods
classify the graphical regions in the document images, which
is a complex task as the structures of the graphical regions
donot follow any general rule. Kavasidis et al. [8] proposed
a saliency based CNN architecture for document layout
analysis which used semantic segmentation to classify each
pixel into different classes. This model at first extracted
saliency features corresponding to the text, table and figure
regions. The extracted segmentation maps by the saliency
detector are passed through binary classifiers to classify
them. This model used a binary classifier for each of the
classes, which are trained separately. This model is able to
detect four different kinds of page objects: table, bar chart,
pie chart and line chart. Xiaohan Yi et al. [20] proposed
a dynamic programming based region proposal method for
page object detection.

III. GRAPHICAL OBJECT DETECTION

This section presents the details about the proposed GOD
algorithm inspired by the recent object detection algorithms
in computer vision [9], [11]. Detection of graphical objects
like tables, figures, equations, etc. is basically localization
of these objects within a document image. The problem is
conceptually similar to the detection of objects in natural
scene images. Natural scene objects have visually identifi-
able characteristics, those features can be extracted by using
CNN. Similarly graphical objects can also be identified by
the specific characteristics of them, which CNN is capable of.
The compelling performances of Faster R-CNN and Mask R-
CNN on PASCAL VOC [21] and COCO [22] data sets makes us
adapting the framework into our graphical object detection
work. Training of deep networks requires a large amount



Figure 2: GOD framework. The model takes an image as input and generates the feature map. RPN proposes the region based
on the feature map. Detection network uses the proposed regions and feature map to detect various graphical objects.

of data, which we lack in the document object detection
domain. Hence, we consider domain adaptation and transfer
learning in our work. We test the abilities of Faster R-
CNN and Mask R-CNN, originally built for the natural scene
images, to cope with detecting graphical objects in the
document images. The performances of ImageNet [23] pre-
trained models as the backbone of GOD model inspired by
faster R-CNN is listed in Table I.

Figure 2 displays the overview of the GOD method. Dotted
region in Figure 2 is the Faster R-CNN block. As described
by [9], Faster-RCNN is comprised of two modules. The
first module is Region Proposal Network (RPN), responsible
for proposing regions which might contain objects. The
second module, Fast-RCNN detector [24], detects the objects
using the proposed regions. RPN attracts the attention of
the Fast-RCNN as to look into the proposed regions. The
whole system works a single, unified network for the object
detection task. Similar to Faster R-CNN, Mask R-CNN [11]
adopts the same two stage procedure (i) Region Proposal
Network (RPN) for proposing regions and (ii) prediction
of the class label and bounding box regression along with
binary mask of each region of interests.

Region Proposal Network (RPN) proposes rectangular
regions, each associated with objectness score [9] which
tells the detector whether the region contains an object or
the background. This module is capable of handling input
images of any size. RPN module is also translation-invariant.
Translation invariant means if an object in the image is
translated, the proposal should also be translated and the
same RPN module should predict the region proposal in
either of the location.

The input image is first passed through a convolutional
layer which generates a feature map. The Region of Interest
(RoI) pooling layer in case of Faster R-CNN performs max
pooling to convert the nonuniform size inputs to fixed-
size feature maps. The output feature vector is then passed

through fully connected layers: box-regression (reg) and
classification (cls) layer for predicting object bounding box
and class label. While in case of Mask R-CNN, RoIAlign
layer generates fixed sized feature by preserving the exact
spatial locations. Finally, the fixed sized features pass to two
different modules: multiple layer perceptron to predict object
bounding box and class label and mask module to predict
segmentation mask.

A. Implementation Details

The model is trained and tested on various data sets with
fixed image sizes, but the dimensions of the images from
a particular data set vary in a range. The images are then
resized to a fixed size of 600× 600 before passing through
the Faster-RCNN. The model is implemented using PyTorch
and trained and tested on Nvidia GeForce GTX 1080 Ti GPUs
with batch size of 4. We used Caffe pre-trained models of
VGG-16 [13] and ResNets [25], trained on ImageNet [23],
as the backbone of the Faster R-CNN. For VGG-16, the last
max pooling layer is not used in the model.

Since, the effective receptive field of the input image
is large, we use 3 × 3 sliding windows in the RPN. To
generate k=30 anchor boxes, we considered 6 different
anchor scales in powers of 2 from 8 to 512 and anchor
ratios of 1 through 5 so that the region proposals can
cover almost every part of the image irrespective of the
image size. We used stochastic gradient descent SGD as
an optimizer with initial learning rate = 0.001 and the
learning rate decays after every 5 epochs and it is equal to
0.1 times of the previous value. For further implementation
and architecture details, please refer to the source code at:
https://github.com/rnjtsh/graphical-object-detector.



IV. EXPERIMENTS

A. Evaluation Measures

We use mean average precision (mAP) [21], average
precision, recall and F1 measures [6], [8], [26] to evaluate
the performance of our algorithm for detecting graphical
objects in the document images.

B. Public Data Sets

ICDAR-POD2017 [27]: This data set consists of 2417
English document images selected from 1500 scientific pa-
pers of CiteSeer. It includes large variety in both layout and
object styles: single-column, double-column, multi-column
and various kinds of equations, tables and figures. This data
set is divided into training set consisting of 1600 and test
set consisting of 817 images.

ICDAR-2013 [28]: This data set contains 67 PDFs with
150 tables - 40 PDFs excerpt from the US Government and
27 PDFs from EU. We use converted images corresponding
to PDFs for our experiment. We use this data set only for
testing purpose due to limited to number of images.

Marmot table recognition data set1: It consists of
2000 document images with a great variety in page layout
and table styles. We use this data set only for training our
network.

UNLV data set [29]: It contains 2889 pages of scanned
document images from variety of sources (Magazines,
Newspapers, Business letters, Annual reports, etc). Among
them, only 427 images contain table zone. We consider 427
images for evaluation purpose.

C. Ablation Study

We conduct a number of ablation experiments in the
context of document object detection to quantify the im-
portance of each of the components of our algorithm and
to justify various design choices. Our GOD (Faster R-CNN)
uses ICDAR-POD2017 data set for this purpose.

Pre-trained Model: Researchers have already proven
that deeper neural networks are beneficial for large scale
image classification. To further analyze the GOD (Faster R-
CNN), we conduct an experiment with different depths of
pre-trained models. The details of detection scores of the
GOD (Faster R-CNN) with different pre-trained models with
same settings are listed in Table I. The table quantitatively
shows that with the same setting, the deeper network obtains
better detection accuracy.

IoU Threshold: We conduct a study on the detection
performance of the GOD (Faster R-CNN) with varying IoU
threshold. Table II shows the detection statistics of the GOD
(Faster R-CNN) on varying IoU threshold. With the same
setting, increasing threshold value can reduce the detection
accuracy (i.e. values of mAP and Ave F1). This is because of
reduction in the number of true positive when increasing IoU

1http://www.icst.pku.edu.cn/cpdp/sjzy/index.htm

Models Test Performance: AP mAP
Equation Table Figure

VGG-16 0.807 0.934 0.857 0.866
ResNet-50 0.817 0.950 0.819 0.862
ResNet-101 0.894 0.959 0.857 0.899
ResNet-152 0.903 0.962 0.851 0.905

Table I: Performances of different backbone models on
ICDAR-POD2017 with IoU threshold 0.6. Deeper pre-
trained model obtains higher detection accuracy. AP: average
precision. Bold value indicates the best result.

threshold. From the Table II, we observed that we obtained
the best mAP and Ave F1 when the IoU threshold is set to
0.5.

IoU Test Performance: AP mAP Test Performance: F1 Ave F1
Eqn. Table Figure Eqn. Table Figure

0.5 0.922 0.980 0.881 0.928 0.922 0.977 0.851 0.917
0.6 0.903 0.962 0.851 0.905 0.889 0.959 0.878 0.909
0.7 0.810 0.937 0.815 0.854 0.832 0.952 0.833 0.872
0.8 0.742 0.916 0.786 0.814 0.772 0.927 0.833 0.844

Table II: Greater IoU threshold reduces the performance of
the GOD (Faster R-CNN) model on ICDAR-POD2017 due
to reduction in number of true positives.

D. Graphical Object Detection in Document Images

Comparison with the state-of-the-arts on ICDAR-
POD2017: We compare the GOD with state-of-the-art tech-
niques on ICDAR-POD2017 data set. Methods like NLPR-
PAL, HustVision, FastDetectors and Vislnt submitted to IC-
DAR 2017 POD competition [27] are considered as state-of-
the-art techniques. Table III highlights that our method GOD
(Mask R-CNN) is better than the state-of-the-art approaches
with respect to both these measures: mAP and Ave F1 when
IoU threshold is set to 0.8 and 0.6. From the Table, it is
observed that the performance of the existing techniques
except NLPR-PAL are drastically reduced by increasing IoU
threshold value. On the other hand, the performance of the
GOD (Mask R-CNN) and GOD (Faster R-CNN) are reasonable
stable while changing IoU threshold value from 0.6 to
0.8. This observation conclude that the GOD is robust with
respect to IoU threshold value.

Figure 3(a) displays the results of localization of vari-
ous graphical objects in the document images of ICDAR-
POD2017 data set using the GOD (Mask R-CNN). From
Figure, it can be observed that the GOD (Mask R-CNN)
is able to detect all graphical objects: table, equation and
figure with large variability present in a single page. It is
also observed that it is able to detect multiple tables, figures
and equations in a single page.

E. Table Detection in Document Images

Comparison with the state-of-the-arts on ICDAR-
2013: Due to limited number of images, we consider this



IoU= 0.8 IoU= 0.6
Methods Test Performance: AP mAP Test Performance: F1 Ave F1 Test Performance: AP mAP Test Performance: F1 Ave F1

Eqn. Table Figure Eqn. Table Figure Eqn. Table Figure Eqn. Table Figure
NLPR-PAL [27] 0.816 0.911 0.805 0.844 0.902 0.951 0.898 0.917 0.839 0.933 0.849 0.874 0.915 0.960 0.927 0.934
HustVision [27] 0.293 0.796 0.656 0.582 0.042 0.115 0.132 0.096 0.854 0.938 0.853 0.882 0.078 0.132 0.164 0.124
FastDetectors [27] 0.427 0.884 0.365 0.559 0.639 0.896 0.616 0.717 0.474 0.925 0.392 0.597 0.675 0.921 0.638 0.745
Vislnt [27] 0.117 0.795 0.565 0.492 0.241 0.826 0.643 0.570 0.524 0.914 0.781 0.740 0.605 0.921 0.824 0.783
GOD (Faster R-CNN) 0.742 0.916 0.786 0.814 0.772 0.927 0.833 0.844 0.903 0.962 0.851 0.905 0.889 0.959 0.878 0.909
GOD (Mask R-CNN) 0.869 0.974 0.818 0.887 0.919 0.968 0.912 0.933 0.921 0.989 0.860 0.921 0.924 0.971 0.918 0.938

Table III: Comparison with state-of-the-arts based on mAP and Ave F1 with IoU = 0.8 and 0.6, respectively on ICDAR-
POD2017 data set. Our GOD (Mask R-CNN) is better than state-of-the-arts while IoU = 0.8 and IoU = 0.6. Bold value
indicates the best result.

(a) (b)

Figure 3: (a) Results of graphical objects: table, figure and equation localization using the GOD (Mask R-CNN) on ICDAR-
POD2017 data set. Blue, Green and Red colors represent the predicted bounding boxes of table, figure and equation,
respectively. (b) Results of table localization using the GOD (Mask R-CNN) in the document images of ICDAR-2013 data
set. Blue color represents the predicted bounding box of the table.

data set only for testing purpose. We use Marmot data
set for training our model similar to DeepDeSRT [6]. The
GOD is compared to state-of-the-arts: Kavasidis et al. [8],
DeepDeSRT [6] and Tran et al. [26] on ICDAR-2013
table competition data set. Table IV shows the comparison

statistics. From the Table, it is observed that the GOD (Mask
R-CNN) and GOD (Faster R-CNN) both obtained reasonably
higher accuracy than the existing algorithms. Figure 3(b)
displays the visual results obtained using the GOD (Mask
R-CNN). It can be found that the GOD (Mask R-CNN)



(a) (b)

Figure 4: (a) Results of the table localization using GOD (Mask R-CNN) in the document images of UNLV data set. (b)
Results of table localization using the GOD (Mask R-CNN) in the document images of GO-IIIT-5K data set. Blue color
represents the predicted bounding box of the table.

accurately detects the various types of tables with respect
to style, content and size. This observation concludes that
the GOD is robust with respect to variability of tables present
in the document images.

Methods Test Performance
Recall Precision F1

Tran et al. [26] 0.964 0.952 0.958
DeepDeSRT [6] 0.962 0.974 0.968
Kavasidis et al. [8] 0.981 0.975 0.978
GOD(Faster R-CNN) 0.974 0.987 0.981
GOD(Mask R-CNN) 1.0 0.982 0.991

Table IV: Comparison with state-of-the-arts based on recall,
precision and F1 with IoU = 0.5 on ICDAR-2013 data set.
Bold value indicates the best result.

Comparison with the state-of-the-arts on UNLV: We
compare the performance of the GOD with the state-of-the-
arts: Tesseract [30], Abbyy2 and Gilani et al. [7] on UNLV
data set. Table V displays the comparison results. Figure 4(a)
displays the results of table localization in document images

2https://www. abbyy.com/en-eu/ocr-sdk/

on UNLV data set. Figure 4 highlights that the GOD (Mask
R-CNN) is able to localize multiple tables with varying style
in a single page.

Methods Test Performance
Recall Precision F1

Tesseract [30] 0.643 0.932 0.761
Abbyy 0.643 0.950 0.767
Gilani et al. [7] 0.907 0.823 0.863
GOD(Faster R-CNN) 0.867 0.929 0.897
GOD(Mask R-CNN) 0.910 0.946 0.928

Table V: Comparison with state-of-the-arts on UNLV data
set based on recall, precision and F1 with IoU = 0.5. Bold
value indicates the best result.

F. Results on GO-IIIT-5K data set

Though the GOD performs good on the public benchmark
data sets. To establish the adaptability of the GOD trained
model to localize tables in different types of documents,
we show the results of table detection in documents of
annual reports of various companies. For this purpose, we
create a data set named as GO-IIIT-5K by annotating 5K



Methods Test Performance
Recall Precision F1 AP

∗GOD (Faster R-CNN) 0.8198 0.8966 0.8562 0.8461
∗GOD (Faster R-CNN)† 0.8413 0.9035 0.8712 0.8637
∗GOD (Mask R-CNN) 0.8995 0.8562 0.8778 0.8734
∗GOD (Mask R-CNN)† 0.9659 0.9389 0.9524 0.9558
∗∗GOD (Faster R-CNN) 0.7538 0.8425 0.7936 0.7632
∗∗GOD (Faster R-CNN)† 0.7891 0.8610 0.8250 0.7926
∗∗GOD (Mask R-CNN) 0.8841 0.8510 0.8676 0.8567
∗∗GOD (Mask R-CNN)† 0.9218 0.9283 0.9250 0.9199

Table VI: Performance of the trained GOD model on GO-
IIIT-5K with IoU = 0.5. GOD: trained on public benchmark
ICDAR-2013, ICDAR-POD2017, UNLV and Marmot data
sets and tested on test images of GO-IIIT-5K data set. GOD†:
trained on the public benchmark ICDAR-2013, ICDAR-
POD2017, UNLV and Marmot data sets, then fine-tuned on
training images and tested on test images of GO-IIIT-5K
data set. ‘*’ indicates that data set is randomly divided into
training and test sets. ‘**’ indicates that data set is divided
into training and test sets based on company. Bold value
indicates the best result.

pages of annual reports which are downloaded from ICAEW
website3. This data set is divided into training set consisting
of 3K and test set consisting of 2K images. This data
set is different from ICADAR-2013, ICDAR-POD2017 and
UNLV. The trained GOD model on ICDAR-2013, ICDAR-
POD2017, UNLV and Marmot data sets is tested on test
images of GO-IIIT-5K data set and obtain good accuracy.
While we fine-tuned this trained model on training images
of GO-IIIT-5K data set and tested on test images of this
data set, we obtain better table detection accuracy. It is
also noted that GOD (Mask R-CNN) performs better than
GOD (Faster R-CNN) for both the cases: with out fine-tuning
and with fine-tuning by training images of GO-IIIT-5K data
set. Table VI highlights the performance of the GOD on
GO-IIIT-5K data set. Figure 4(b) shows the visual results
obtained by GOD (Mask R-CNN). This experiment illustrates
the adaptability of the trained GOD (Mask R-CNN) model to
localize the graphical objects mostly table in the different
type of document images. The GOD method detects a wide
range of graphical objects present in the documents giving
very promising results. While the other existing methods
need to object wise separate classifiers, the same GOD model
works for the various categories of the graphical object.
Detecting tables in the scientific document such as ICDAR
and UNLV data sets is an easy task as the tables or cells
are well structured. The table detection task outperforms all
the state-of-the-art methods in every aspect. Tables without
well-defined boundaries of tables or cells are detected quite
accurately. Detection of tables in the annual reports of var-
ious companies seem to be a difficult task since the format

3https://www.icaew.com/library/company-research/
company-reports-and-profiles/annual-reports

(a) (b)

(c) (d)

(e) (f)

Figure 5: Examples where the GOD fails to accurately
localize the graphical objects. (a) figure is detected as table.
(b) table is partially detected (here, object of interest is
table). (c) some equations are not detected. (d) figure is
detected as both figure and table. (e) single figure is detected
as multiple figures. (f) paragraph is detected as table. Blue,
Green and Red colors represent the predicted bounding
boxes of table, figure and equation, respectively.

of the table varies a lot for different companies and some
tables are not exactly aligned as a structured one; some tables
are containing texts in between two cells, for which human
opinion about whether the whole table should be considered
as a table is also not uniform. Figures are generally easy
to identify but they can also sometimes be tricky as some
figures may contain some regions which are resembled to be
the tables. Another difficult object to detect is equations as
they are continued to the next few lines which sometimes
are unaligned. Sometimes, equations are embedded in the
text regions. When, the same types/categories of objects
are in very close proximity and the objects are small in
size such as equations as compared to the whole document,
the model fails to accurately detect the regions between
two such object regions to fall into any one of the object



regions hence resulting in low mAP with high IoU score.
But if the gap between two smaller sized objects is enough
then objects of all sizes are localized pretty accurately.
Our model outperforms the existing methods where objects
were detected based on their fixed general structures of the
objects.

Although, the GOD performs reasonably good to localize
graphical objects: tables, figures and equations in the docu-
ments. However, it sometime fails to localize those objects
having ambiguity in appearance. Figure 5 displays some
cases where the GOD fails to properly localize graphical
objects present in the document images. From Figure 5 (a),
it is observed that one graph with table type structure is
detected as table. Multiple tables close to each other in
the document, GOD detects them partially as a single table
(Figure 5 (b)). Among multiple equations in the document,
only few of them are detected by the GOD (Figure 5 (c)).
One graph plot with vertical lines is detected as both table
and figure (Figure 5 (d)). One figure in the document is
detected as two different graphs (Figure 5 (e)). A paragraph
is detected as table (Figure 5 (f)).

V. CONCLUSION

This paper presents a novel end-to-end trainable deep
learning based framework to localize graphical objects in
the document images, called as Graphical Object Detection
(GOD), inspired by recent object detection algorithms: Faster
R-CNN [9] and Mask R-CNN [11]. To handle scarcity of
labelled training samples, the GOD employs the concept to
transfer learning to localize graphical object in the document
images. Experiments on the various public benchmark data
sets conclude that our model yields promising results as
compared to state-of-art techniques. From the experiments,
it is also concluded that it is able to localize multiple tables,
equations and figures with large variability present in the
documents. The trained model is easily adapted to localize
tables in the different kinds of documents like annual reports
of various companies.
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