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Abstract. Several large scale datasets, coupled with advances in deep
neural network architectures have been greatly successful in pushing
the boundaries of performance in semantic segmentation in recent years.
However, the scale and magnitude of such datasets prohibits ubiquitous
use and widespread adoption of such models, especially in settings with
serious hardware and software resource constraints. Through this work,
we propose two simple variants of the recently proposed IDD dataset,
namely IDD-mini and IDD-lite, for scene understanding in unstructured
environments. Our main objective is to enable research and benchmark-
ing in training segmentation models. We believe that this will enable
quick prototyping useful in applications like optimum parameter and
architecture search, and encourage deployment on low resource hardware
such as Raspberry Pi. We show qualitatively and quantitatively that with
only 1 hour of training on 4GB GPU memory, we can achieve satisfactory
semantic segmentation performance on the proposed datasets.
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1 Introduction and Related Work

Semantic segmentation is the task of assigning pixel level semantic labels to
images, with potential applications in fields such as autonomous driving [5,16]
and scene understanding. Many approaches have been proposed to tackle this task
based on modern deep neural networks [18,12,4,14]. Majority of the proposed
approaches use encoder-decoder networks that aggregate spatial information
across various resolutions for pixel level labeling of images. For example, [12]
proposes an end-to-end trainable network for semantic segmentation by replacing
the fully connected layers of pretrained AlexNet [8] with fully convolutional
layers. Segmentation architectures based on dilated convolutions [17] for real
time performance have also been proposed in [18,14]. However most of these
approaches come with huge overhead in training time and inference time since it
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requires multi-GPU training with very high GPU memory requirements. This
poses multiple challenges for widespread use of semantic segmentation datasets
and architectures, resulting in huge roadblocks for research and development
of such real time systems, especially in developing regions of the world with
resource constraints. We believe that there are multiple challenges posed by
these current approaches. Firstly, compared to image classification tasks on

Fig. 1: Sample images with ground truth from IDD-lite, IDD-mini with second and
third column representing 7 and 16 labels (Best viewed when zoomed).

datasets like MNIST [9] or CIFAR [8], semantic segmentation is limited in its
scope for ubiquitous adoption which essentially rules out the introduction of any
such project as part of a curriculum. Although large scale datasets for training
the semantic segmentation models such as KITTI [6], CamVid [1] or recently
introduced Cityscapes [5] and India Driving Dataset [16](IDD) which provide
finely annotated images to train semantic segmentation models with a focus
on autonomous navigation exist, the scale and the size of these datasets limit
their widespread use, particularly in scenarios where computation resources are
limited.

Secondly, navigating through the hyperparameter space for coming up with
the most optimum configuration and architecture for semantic segmentation is a
demanding task due to huge training costs involved with deep neural networks.
In the context of classification, previous works [11] perform architectural search
on CIFAR dataset to show that the best performance also applies on larger
scale datasets like ImageNet. Several works also use reinforcement learning [2,20],
evolutionary algorithm [11] etc. for this purpose. However, there have been fewer
works [10,3] to conduct architectural search on dense segmentation task due to
resource intensiveness of the task. Hence smaller datasets that enables quick
prototyping for hyper parameter search, and help in replicating the results on
larger datasets is essential. This would bring down the cost of training, and would
aid in improving the overall performance.

Finally, there is a need to drive the research in vision community towards
achieving state of the art results for various tasks using only limited labeled
data. Such a research direction would have huge impact, more so on semantic
segmentation tasks that requires huge annotation of pixel level semantic labels. To
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Dataset
Average

Resolution
#Annotated
Pixels[106]

#Train
Images

#Val
Images

Disk Space
(in GB)

Label
Size

IDD [16] 968×1678 11811 6993 981 18 26
Cityscapes [5] 1024×2048 9430 2975 500 12 20
IDD-mini 512×720 535 1794 253 4 16
IDD-lite 227×320 39.75 673 110 <1.5 7

Table 1: Comparison of state of the art datasets against proposed IDD-mini
and IDD-lite.

address these challenges, we come up with two variants of the recently proposed
India Driving Dataset (IDD) [16], namely IDD-mini and IDD-lite, as shown in
Figure 1, which are aimed at improving the state of semantic segmentation for
autonomous driving in developing regions. We believe that having these datasets
would help alleviate the challenges discussed above in resource constrained settings.
Resource constraint can mean lack of availability of high end GPUs, limited time
access to GPU resources or lack of infrastructure to store large scale datasets.
The scenes and labels presented in our dataset are very different from those
available in semantic segmentation datasets such as Cityscapes [5], KITTI [6]
or CamVid [1]. Moreover, by developing such standardized small scale datasets,
we wish to coalesce the efforts of the research community towards developing
algorithms that need only few labels to match state of the art performance.

In summary, our contributions can be stated as follows.

– We provide IDD-mini and IDD-lite, which are subsampled version of IDD
with very similar label statistics and smaller number of labels (See section 2).

– We show that models trained only for an hour on a single 4GB GPU still
achieve reasonable prediction accuracies, making it possible to include them
as part of short courses, workshops and labs in universities and other training
centers (See section 4).

– We establish that the accuracy of various models trained on our datasets
correlates well with the accuracy on large scale datasets especially in cross-
domain setting. This allows for fast prototyping and architectural search for
semantic segmentation algorithms (See section 4).

– We deploy models trained using our datasets on Raspberry Pi and report the
accuracy and runtime, giving a standardized measurement of the performance
characteristics on the device (See section 4).

2 Dataset

We designed the two variants of the datasets with an aim to reduce the overall
hardware footprint for storing and processing, keeping intact the diversity and
variety from the original IDD dataset. In this section, we present the procedure
used to come up with the train-val splits for IDD-mini and IDD-lite. We also
provide statistical properties of the proposed datasets, and compare it with
the original IDD dataset, along with another state of the art driving dataset,
Cityscapes [5].
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Fig. 2: Proportion of labels in to-
tal dataset for IDD, IDD-mini
and IDD-lite (Best viewed when
zoomed).

Fig. 3: Absolute value of annotated
pixels (in powers of 10) for cate-
gories in IDD, IDD-mini and IDD-
lite (Best viewed when zoomed).

Dataset Specifications

IDD-mini The motivation behind designing IDD-mini is to have a small scale
segmentation dataset that is useful for training image segmentation models on
low resource hardware. The full IDD dataset5 consists of 7974 high-resolution
images in the train-val set with 26 labels at the L3 label hierarchy, taken from 182
different drive sequences. To create IDD-mini out of this dataset, we resize the
images such that the largest dimension is downsampled to 720 while preserving
the aspect ratio, and use the 16 labels from the L2 hierarchy of the original
dataset. We subsample the number of images from the dataset by a factor of 4,
uniformly across the drive sequences in such a way that the resultant split gives
us the same proportion of labels as the full version of the dataset. The train set
contains 1794 training images and 253 validation images.

IDD-lite The major aim of having IDD-lite, in addition to IDD-mini, is to enable
very quick prototyping of semantic segmentation models which, we believe, is
very essential for demonstration or teaching purposes in settings with resource
limitations. Following a similar technique as explained above, we subsample the
dataset by a factor of 10, which gives us 673 training and 110 test images. We
rescale the largest dimension to 320 while preserving the aspect ratio of the image
while using the L1 hierarchy with 7 coarse labels. This also reduces the required
disk space to store the dataset from 18GB for IDD to <1.5GB for IDD-lite,
which helps in optimizing the storage footprint.

While we provide training and validation splits along with the IDD-mini and
IDD-lite datasets, we do not propose a separate test set different from the IDD
test set which consist of 2029 images at the original resolution. We believe that
this provides the models trained on different datasets with a common platform
for bench marking. We hope that this will encourage the research community
to come up with innovative architectures or algorithms for structure learning or

5 https://idd.insaan.iiit.ac.in/
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semi supervised learning to train models on such standard smaller scale labeled
datasets, but still match the performance obtained by training on bigger datasets.

Label Statistics From Figure 2, it is shown that the mini and lite versions of
IDD follow the same distribution as the original dataset, following the technique
we used to subsample the dataset. The proportion of pixels corresponding to
categories like Road and Building occupy a large fraction of the total annotated
pixels, while there is also sufficient representation for smaller classes like vehicle
and traffic signs. The total absolute number of annotated pixels (in log scale) is
given in Figure 3, to show that the number of pixels in IDD-mini, IDD-lite are
an order less than that of the original dataset.

Comparison with other Datasets Comparison to another large scale and
widely used dataset, Citycapes [5], is also presented in Figure 2. Cityscapes
consists of 2975 training images and 500 validation images at a uniform resolution
of 1024×2048, with images taken from various cities and weather conditions.
However, one major advantage that our datasets offer compared to cityscapes is
that IDD-mini and IDD-lite contain scenes from more unstructured environments,
with images captured from complex traffic and driving situations. Furthermore,
the comparison from Figure 2 shows that on most categories, the smaller datasets
match Cityscapes on the proportion of the pixels.
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Fig. 4: To the left is Conv-module skeleton. From there to the right are the ERFNet
modified models with Conv-module Cell structures named as A*, B*, C*, D* (Best
visualized when zoomed).

3 Architecture Search

In this section, we demonstrate how IDD-lite and IDD-mini datasets can be useful
for architecture search with limited resources. Neural Architecture Search [13]
(NAS) on tasks like dense semantic segmentation need thousands of iterations
GPU-days for convergence. Architecture search can be computationally very
intensive as each evaluation typically requires training a neural network. Therefore,
it is common to restrict the search space to reduce complexity and increase
efficiency of architecture search. More recent papers on architecture search have
shifted to searching the repeatable cell structure, while keeping the outer network
level structure fixed by hand. This strategy needs less number of GPU hours
and can conduct large experiments in constrained time. This would be a major
advantage in resource constrained environments. Currently, this strategy is limited
to tasks like image classification where small scale datasets are available but not
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for semantic segmentation due to lack of such small scale datasets. We propose
that IDD-mini, IDD-lite can be used to do architecture search in resource efficient
way for semantic segmentation task.

We consider a scenario where we need to come up with best architecture with
limited resource budget. We even explicitly consider a scenario where we can
only afford fixed set of parameters for the architecture. Now, we need to find
the best performing architecture among them. We conduct two experiments and
show that architecture search results conducted on IDD-lite with custom ERFNet
model actually translates to different domain like Cityscapes. Thus, we are also
exploring generalizability of architectural search through such experiments.

Identifying Optimal Cell Structure Our aim is to find best architecture
in custom designed architectural space using IDD-lite. Also, we show that the
results correlate to Cityscapes dataset. We use ERFNet [14] outer network
level structure as the basis for our model. Within this structure we replace
non-bottleneck layer proposed in original ERFNet with custom structure with
architecture skeleton(Conv-module) as shown in Figure 4.

Layer Type

1 Downsampler block
2 Downsampler block

3-5 3 x Conv-module
5-7 2 x Conv-module
8 Downsampler block

9-16 8 x Conv-module(dilated )
17 Deconvolution(upsampling)

18-19 2 x Conv-module
20 Deconvolution(upsamling)

21-22 2 x Conv-module
23 Deconvolution(upsampling)

Layer Type

1 Downsampler block
2 Downsampler block
3 1 x Conv-module
4 1 x Conv-module
5 Downsampler block
6 Conv-module(dilated 2)
7 Deconvolution(upsampling)
8 1 x Conv-module
9 Deconvolution(upsamling)
10 1 x Conv-module
11 Deconvolution(upsampling)

Table 2: Modified version(left) and Compressed version (right) of ERFNet architecture
that is used to run experiments on Cityscapes dataset and IDD-lite respectively.

Each of the block in this Conv-module(skeleton) is filled from a set of 1 atrous
3×3 layer, 3 separable 5×5 layers, 2 atrous 5×5 layers, 4 seperable 3×3 layers, to
ensure that we have same number of parameters overall. This forms the search
space for architecture search. We use architectures given in Table 2 to conduct
experiments on Cityscapes dataset and IDD-lite respectively.

4 Experiments and Results

Semantic Segmentation Performance Benchmarking In this section, we
benchmark the results of the proposed datasets on two state of the art architec-
tures used for semantic segmentation, DRNet [18] and ERFNet [14]. More details
regarding these networks are present in [16], which we do not present here again
in the interest of space. For DRNet, we use a ResNet-18 backbone(drn-d-22 ). We
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Dataset #L Val. mIoU mIoU
Res. ERFNet [14]DRN [18]

CS [14] 20 512×1024 71.50 68.00
IDD [16] 26 512×1024 55.40 52.24
IDD-mini 16 480×640 57.91 53.31
IDD-lite 7 128×256 66.14 55.03

(a)

Models IoU Params IoU
(CS) (IDD-lite)

ERFNet 70.45 2038448 53.975
D* 68.55 547120 52.01
DG2* 65.35 395568 50.71
DG4* 61.42 319792 48.88
DG8* 59.15 281904 46.40

(b)

Table 3: (a) Performance (in mIoU) of the proposed datasets on semantic segmentation
architectures ERFNet and DRN-d-22. Note that val. res. corresponds to the validation
resolution for each dataset, which is obtained by cropping and resizing the original
images from Table 1, #L is the number of trainable classes in that dataset. (b) Depthwise
Separable Convolution, Groups on ERFNet Architecture tested over IDD-lite dataset
using Compressed ERFNet from Table 2.

Models IoU(CS) IoU(IDD-lite)

A* 64.54 58.15
B* 59.21 56.93
C* 55.96 55.46
D* 52.35 53.64

(a)

IDD-lite IDD-mini IDD

ERFNet 1.12 5.99 10.60
DRNet-18 56.61 78.47 95.94

(b)

Table 4: (a) Custom Cell architecture on compressed ERFNet tested over IDD-lite
dataset correlate with the same tests on Cityscapes Dataset with modified ERFNet
from Table 2. (b) Inference time (in sec.) of different semantic segmentation models on
various versions of IDD on Raspberry Pi 3B.

take mIoU (mean intersection over union) as the performance metric for all our
experiments.

The models ERFNet and DRNet-18 were trained using the resolution depicted
in Table 1 and validated using the resolution shown in Table 3(a). The models
achieve an mIoU of 57.91% and 53.31% on IDD-mini using ERFNet and DRNet-
18 respectively. Similarly, IDD-lite gives mIoU values of 66.14% on ERFNet and
55.03% on DRNet respectively.

From Figure 5, it is can be seen that IDD-lite dataset gives reasonably good
mIoU results with just 15-20 minutes of training within 4GB GPU memory
(Best visualized when zoomed). We also note that while models trained on such
datasets cannot directly be employed in state of the art semantic segmentation
applications, they will nevertheless be very useful in for teaching or workshop
purposes in cases with limited technical support and overall resource availability.

Results on architecture search Here, we present results on experiment to
identify optimal cell structure and experimental correlation of IDD-lite and
Cityscapes as mentioned in section 3.
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Fig. 5: Training time (x-axis) vs.
Validation mIoU (y-axis) plot for
IDD-lite. Note that with only 15
minutes of training on 1 GPU us-
ing only 4GB, the model obtains
>50% mIoU

Fig. 6: Runtime statistics per layer
for ERFNet model on all three
datasets (IDD, IDD-mini and IDD-
lite). Total run time for each
dataset is mentioned in the legend
(Best viewed when zoomed).

Implementation details The best cell structure identified using architecture
search gave 64.54% IoU (Model A) on Cityscapes dataset. We also take 3 models
(B, C, D) from the pool of possible Conv-modules and verify if the performance
on smaller dataset match with that on Cityscapes. The results are presented in
Table 4(a). It is to be noted that though the architecture search was conducted
on IDD-lite, we are able to get best performing architecture for a different domain
like Cityscapes.

Correlation to Efficient Segmentation Models There have been lots of in-
terest in efficient CNN module designs that have lower compute needs, while still
achieving good prediction accuracies [7,19]. [15] reports results with architecture
variations of ERFNet named as D*, D2*, D4*, D8* on Cityscapes. These corre-
spond to the usage of depthwise separable convolutions instead of the bottleneck
modules of ERFNet along with grouping parameter on the 1x1 convolution. We
conduct the same experiments on IDD-lite dataset with compressed ERFNet
architecture (Table 2) and show that our results correlate with [15]. The results
are presented in Table 3(b).

Models for Raspberry Pi In order to make deep learning models scalable
for real time application in resource constrained environments, factors such as
real time performance, feasible cost of the hardware and low power consumption
are essential. Hence, we provide the benchmarking values of segmentation on
Raspberry Pi. This device is widely available as a single board compute platform
which comes at an affordable cost, apart from being customizable and energy
efficient.

More specifically, we chose Raspberry Pi 3B as the deployment hardware
device for our semantic segmentation models. The device contains 1 GB RAM,
and has a 1.2GHz Quad-Core 4XARM Cortex-A53 CPU. We tested ERFNet
and DRNet-18 networks on Raspberry Pi to calculate the inference time on the
validation datasets at various resolutions. Table 4(b) shows the inference time of
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different semantic segmentation models at various resolutions on our validation
datasets.

Fig. 7: Qualitative examples of ERFNet model run on IDD-mini, IDD-lite dataset. From
top to bottom - image, prediction and ground truth. First two columns correspond
to results from IDD-mini and last two columns are for IDD-lite (Best viewed when
zoomed).

Figure 6 shows the run time information of each layer defined in the ERFNet
architecture. Although the IDD and the IDD-lite datasets have equal trends,
IDD-lite time is significantly lesser, in addition to being uniformly consistent
across layers. This further reinforces our proposition that such a dataset can add
more value to quick prototyping and help move towards real time deployment of
segmentation models.

5 Conclusion
We propose two small scale datasets, IDD-mini and IDD-lite, to address some
of the relevant issues in training semantic segmentation models on resource
constrained environments. We show that these carefully designed datasets give
decent qualitative and quantitative results enabling fast prototyping on low
resource hardware and hugely reducing the training and deployment costs. We also
demonstrate the usefulness of such small scale datasets in performing architecture
search by showing that the parameters obtained using smaller network on these
datasets actually translate to larger network with high resolution images.
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