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ABSTRACT

Fundus imaging with a Smartphone camera (SC) is a cost-
effective solution for the assessment of retina. However,
imaging at high magnification and low light levels, results in
loss of details, uneven illumination and noise especially in the
peripheral region. We address these problems by matching
the characteristics of images from SC to those from a regular
fundus camera (FC) with an architecture called ResCycle-
GAN. It is based on the CycleGAN with two significant
changes: A residual connection is introduced to aid learning
only the correction required; A structure similarity based
loss function is used to improve the clarity of anatomical
structures and pathologies. The proposed method can handle
variations seen in normal and pathological images, acquired
even without mydriasis, which is attractive in screening. The
method produces consistently balanced results, outperforms
CycleGAN both qualitatively and quantitatively, and has
more pleasing results.

Index Terms— Fundus image, Style mapping, Cycle-
GAN, Unsupervised learning.

1. INTRODUCTION

Fundus images are commonly used by ophthalmologists to
diagnose retinal diseases, with diabetic retinopathy being a
major example. A fundus camera (FC) is a digital camera ca-
pable of high level of zoom due to the complex optics of a
low power microscope at the front end. Thus, enabling high
quality and high-resolution imaging of the fundus (or retina).
It is therefore expensive and bulky. Recently, the smartphone
camera (SC) has been explored for retinal imaging with a rel-
atively low-cost lens attachment [1, 2]. This innovation has
two significant advantages: much lower cost and a high de-
gree of portability. However, even without a special lens, nat-
ural images captured by an SC and a standard DSLR cam-
era differ in colour, definition/detail, especially of small ob-
jects. Imaging of the retina is even more challenging: calls
for capturing a 45° field of view (FOV) of the retina (span-
ning 132.32 sq. mm [3]) with an SC with a special lens, under
illumination of a LED-based flash. This limits the ability to
capture fine details such as capillaries.

Challenges in SC images include (i) noise due to low light
conditions and CMOS sensors; (ii) uneven illumination, with

typically darker periphery due to the curved retinal structure;
(iii) dust/flash-induced artefacts; and (iv) variable image qual-
ity depending on camera specification of the mobile device.
Both (i) and (ii) are acute in non-mydriatic imaging condi-
tions.

Ophthalmic experts routinely see/read images in hospi-
tals/clinics acquired by an FC. Hence, reading images ac-
quired with an SC in screening scenarios will require some
adaptation, without which screening can become erroneous
with a slower throughput. Matching the standards/quality of
the images from SC and FC is a solution. Standard image
enhancement approaches proposed for FC images [4, 5] are
inappropriate for this task, given the complex sources of prob-
lems in SC images. Kohler et al. [6] offer a solution to im-
prove retinal image acquired with a custom-designed, low-
cost camera with an adaptive and incremental frame averag-
ing. Imperfect alignment of the frames blurs the image, and
hence registration is done before averaging which increases
the acquisition time.

In this paper, we propose a mapping solution to transform
the SC retinal images (henceforth just referred to as SC im-
ages) such that its characteristics are closer or similar to those
of FC images. The mapping will aim to preserve the integrity
of structural details and introduce no artefacts. Noise removal
is not within the scope of this work.

2. METHOD

The SC image requires illumination correction, structure en-
hancement (such as vessels, optic disk (OD), lesions) and
flash artefact suppression for better clinical and automatic di-
agnosis. Further, it is also desired to match its characteris-
tics to that of an FC image to facilitate experts who are used
to reading FC images. Solving all these problems at once is
very challenging and can be attempted by learning an appro-
priate mapping from SC to FC image. The problem at hand is
similar image-to-image translation [7] which relies on paired
image data. In the medical domain, acquisition of paired data
is very challenging. Hence, the need is to learn image-to-
image translation without paired data. Among the many solu-
tions proposed for unsupervised image-to-image translation
[8, 9, 10], the CycleGAN [11] has shown excellent results
and hence, is taken as a source of inspiration for the proposed
method.



Our aim is to learn mapping functions between SC and FC
images (more compactly referred to as S and F respectively)
in an unsupervised manner. The CycleGAN [11] learns to
map an image from a source to the target domain with the
two domains being quite different, for example, horse <+ ze-
bra, winter <> summer, etc. In our problem, the source and
target domain is same (retina), and the aim is to only change
the characteristics of an image without losing any structural
details. Thus, the CycleGAN is modified by introducing a
residual connection between the generator from input to the
output end. The proposed architecture is called as ResCy-
cleGAN (Fig. 1). It consists of two generators G and Gg,
which learn the mapping from S to F and F to S, respectively.
Besides, two discriminators Dg and D learn to distinguish
between real/fake S and F images, respectively. The ResCy-
cleGAN is trained to minimise an objective function made of
three terms: an adversarial loss [12], a cycle-consistency loss,
and an identity loss. These are described next.
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Fig. 1: Schematic of the proposed architecture

Adversarial loss: The adversarial loss generally serves to
match the distribution of the generated output with the refer-
ence image. Here, it is used match the characteristics of SC to
FC domain. This loss is applied to both the generator Gz and
G's. A least-squares function [13] is used for adversarial loss
for stable training and generating high-quality results. The
adversarial loss for the generator G and its corresponding
discriminator D is given as

Lcan(Gr,Drp) = Dp(Gp(Is))* + (1 — Dp(Ip))?

where Ig and Ir denote unpaired SC and FC images. In
the training phase, G tries to generate an image Gp([g)
close to real FC image, while D tries to distinguish between
the generated image G (Is) and real sample Ir. G aims
to minimize this loss against an adversary Dy that tries to
maximize it, i.e. ming,marp,Lcan(Gr, Dr). Similarly
an adversarial loss for generator Gg and its discriminator Dg
are also defined, i.e mingsmarp,Laan(Gs, Ds).

Cycle-Consistency Loss: This loss is used to measure the
reconstruction capability of the network. i.e. The recon-
structed images from Gg(Gr(Is)) and Gp(Gs(IF)) are
needs to be identical to their inputs Ig and Ip. The [y or
lo norm is a popular choice for the loss function in a recon-
struction problem, but they do not correlate well with the
human perception, which is critical in our application as the
end user can be a medical expert. The multi-scale, structure
similarity index (MS-SSIM) [14] based loss addresses this
issue while handling the variations in scale. Hence, we define
the cycle-consistent loss function as a combination of /; norm
and MS-SSIM and define it as follows

Leyele(Gr,Gs) =61 - Lus(Gs(Gr(Is)), Is)
+ (1 =01) - £1,(Gs(Gr(1s)),Is)
+ 02 - Lms(Gr(Gs(Ir)), Ir)
+(1—62) - L1, (Gr(Gs(IF)), IF)

where £;, and Ly are standard /; norm and MS-SSIM
metric. The weights are set to §; = d2 = 0.85 as per [15] and
MS-SSIM is computed over three scales.

Identity Loss: This loss generally helps preserve colour
composition between the input and generated images, whereas,
in the application at hand, the colour palette is camera-
dependent. The generator has to learn a mapping to either
SC or FC fundus images while preserving the integrity of
anatomical structures. Hence, a structure similarity function
(or MS-SSIM) is suitable for identity loss. This is defined as

Lss(Gr,Gs) = Lus(Gr(Is), Is) + Lus(Gs(IF), IF)
MS-SSIM is once again computed over three scales.

Overall training loss: The overall training loss for the net-
work is defined as a combination of the three losses as

L(Gr,Gs,Dp,Dg) = Lcan(Gr,Dr)+ Laan(Gs, Dg)

+ )\1 . [/cycle(GFa GS) + AQ : £SS(GF; GS)
(1)

where \; and )\, are weights for the loss terms.

3. IMPLEMENTATION

The architecture of our ResCycleGAN is adopted from Cy-
cleGAN [11]. The encoding layer in the generator had 4
blocks of 4 x 4 convolution (CONV) of stride 2 followed by
LeakyReLU activation and Instance Normalization [16]. The
decoding layer had blocks of 4 x 4 CONV of stride %, fol-
lowed by ReLU activation and Instance Normalization. Skip
connections were used from encoding to decoding layer for
blocks having the same size. The final layer combined the de-
coded feature map with a 4 x 4 CONV with ReLU. The input
and the final CONV layer are multiplied to derive the gener-
ator output as shown in Fig. 1. The final CONV layer learns
the correction required for SC image to match to FC image.



The discriminator network has layers similar to the encoding
layer, followed by a 4 x 4 CONV with ReLU.

The ResCycleGAN was trained to minimize the objective
function £ (Eq. 1) by alternatively updating G/ 5 with fixed
Drpys and vice versa. The network was trained with patches
of size 256 x 256 after normalisation to a range of [0,1]. The
weights are set to Ay = 10 and Ao = 1. The optimisation
was with an Adam solver [17] with an initial learning rate
of 0.0002 and batch size of 1. The network was trained for
200000 iterations. The entire code was implemented in Keras
library using python and executed on NVIDIA GTX 1080
GPU with 12GB RAM on a core i7 processor. In the test-
ing phase, only the generator G is used. The SC image with
the original size is given to the generator G to produce a
mapped image (with characteristics similar to the FC images)
is derived as shown in Fig. 1.

4. RESULTS

4.1. Dataset and Evaluation
265 FC images acquired (with mydriasis) with a Zeiss FF450
Plus camera were obtained from the authors of a Diabetic
Retinopathy study [1]. A total of 540 SC images, the ma-
jority without mydriasis, were obtained from the Fundus on
Phone (a product of Remidio Innovative Solutions Pvt. Ltd.)
at 45° FOV using iPhone 6. Both SC and FC images included
pathological cases and were of varying quality. A 50% split
was done to form the training and testing datasets for SC im-
ages. All FC images were used for training the network.
Both qualitative and quantitative evaluation of the pro-
posed ResCycleGAN was done. A quantitative assessment
was done using two metrics: @, score [18] and the Bhat-
tacharyya distance Dy, for comparing the characteristics (his-
tograms) of mapped and FC image.

4.2. Performance analysis

Sample original SC images (first column) and their mapped
results (last column) are shown in Fig. 2 along with magnified
views of two sub-regions per image (middle two columns).
The ResCycleGAN results (whole as well as sub-regions) in
Row 1 indicate an improvement in contrast of structures such
as OD and vessels as well as a reduction in bluish LED noise
in the periphery. The horizontally oriented very thin vessels
within OD and thin, dull vessels are distinguishable from the
background in the magnified results. Similarly, the mapping
is seen to improve the lesion (hard exudate in top and microa-
neurysm in the bottom sub-image) contrast in Row 2, which
can be seen in the magnified image. Overall, the mapping
is seen to change the colour profile and produce a balanced
illumination and contrast.

In order to assess the effectiveness of the modification
done to a CycleGAN, two mappings were generated: one
with CycleGAN (trained with the same setting as ResCycle-
GAN) and the other with proposed ResCycleGAN. Two sam-

Magnified image ResCycleGAN

Fig. 2: Sample results for ResCycleGAN for images without
(top) and with pathologies (bottom).

SC image

ple results are shown in Fig. 3. The images shown are cases
of imaging with/without (top/bottom) mydriasis. The tissue
background in CycleGAN results look more synthetic (Row
1) with heavy smoothing of the background erasing vessel,
vessel reflections; the OD is also saturated. In the second ex-
ample in Row 2, the CycleGAN produces a completely un-
common palette with optic cup disappearing, which is un-
acceptable. The result of ResCycleGAN on the other hand
has structural details with a balanced illumination and con-
trast. The CycleGAN was trained for 400000 iteration which
is twice the number of iterations for the ResCycleGAN. The
shorter training for the latter is due to the residual connection
which helps in learning.

SC image
Fig. 3: Comparison of ResCycleGAN with CycleGAN out-
puts.

ResCycleGAN CycleGAN

A quantitative assessment is challenging when no refer-
ence image is available. To make a meaningful evaluation
of the mapped results, we use a metric to assess the vessel
quality (Q, score [18]) and a metric to assess the similarity
(Dy, Bhattacharyya distance) between the mapped results (de-



noted as O) and FC images. Higher (), values indicate bet-
ter quality in terms of noise and blur. This score was com-
puted for 270 test images and is presented in Table 1. The
similarity is assessed by computing D}, between colour (HSI
space) histograms. Average histograms were computed over
270 SC images, their mapped outputs and 265 FC images.
Dy(FC,X); X = SC or O, is computed for the average his-
togram pairs and reported separately for the chromatic (C: H
and S) and achromatic (AC: I) components in Table 1.

Table 1: Quantitative comparison of performance using ),
and Dj on SC images.

Q. score Dy (C/AC)
SC images 0.0189 4+ 0.0104 0.1656 / 0.0883
CycleGAN [11] 0.0263 4 0.0143 0.0058 / 0.0288
ResCycleGAN 0.0334 4+ 0.0175 0.0014 / 0.0166

The results indicate that ResCycleGAN outperforms Cy-
cleGAN in both @, (the difference is statistically significant
as p < 0.05) and D, values. This implies the mapping im-
proves vessel contrast while attaining a good match with FC
characteristics. Further, the match in characteristics is supe-
rior for both AC and C components.

Fig. 4: Comparison of standard retinal image enhancement
with the proposed mapping. Left to right: SC image, results
of our method and enhancement [5].

Finally, we present a comparison with a recently reported
unsupervised enhancement method for retinal images [5].
Sample images (without mydriasis) along with the processed
results are shown in Fig. 4. Since [5] essentially stretches
luminosity and contrast, it leads to a heightened contrast and
luminosity (last column) in the results without a colour shift.
However, an unwanted bluish peripheral artefact is seen in
the results. In contrast, our results (middle column) exhibit
an overall balanced improvement.

5. CONCLUSION
A ResCycleGAN solution was proposed to match the charac-
teristics of SC images to mydriatic FC images successfully.
To the best of our knowledge, this is the first attempt to do

such a mapping. The key strengths of our method are: it
preserves the integrity of structures with a balanced illumi-
nation correction between the peripheral and centre region
with no introduction of artefacts; the results are consistently
good for images with/without pathologies as well as images
acquired with/without mydriasis. Hence, our solution can aid
ophthalmic experts; fast processing requiring 5.2 sec/image.
One can also explore the method’s use a preprocessing stage
for adapting CAD systems developed for FC images.
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