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Abstract

In this paper, we investigate a constrained formulation
of neural networks where the output is a convex function of
the input. We show that the convexity constraints can be
enforced on both fully connected and convolutional layers,
making them applicable to most architectures. The con-
vexity constraints include restricting the weights (for all
but the first layer) to be non-negative and using a non-
decreasing convex activation function. Albeit simple, these
constraints have profound implications on the generaliza-
tion abilities of the network. We draw three valuable in-
sights: (a) Input Output Convex Neural Networks (IOC-
NNs) self regularize and reduce the problem of overfitting,
(b) Although heavily constrained, they outperform the base
multi layer perceptrons and achieve similar performance as
compared to base convolutional architectures and (c) I0C-
NNs show robustness to noise in train labels. We demon-
strate the efficacy of the proposed idea using thorough ex-
periments and ablation studies on standard image classi-
fication datasets with three different neural network archi-
tectures. The code for this project is publicly available at:
https://github.com/sarathspl729/Convex—
Networks.

1. Introduction

Deep Neural Networks use multiple layers to extract
higher-level features from the raw input progressively. The
ability to automatically learn features at multiple levels of
abstractions makes them a powerful machine learning sys-
tem that can learn complex relationships between input and
output. Seminal work by Zhang et al. [35] investigates the
expressive power of neural networks on finite sample sizes
(in contrast to population-level characterization [9, 24]).
They show that even when trained on completely random
labeling of the true data, neural networks achieve zero train-
ing error, increasing training time and effort by only a con-
stant factor. Such potential of brute force memorization
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makes it challenging to explain the generalization ability of
deep neural networks. They further illustrate that the phe-
nomena of neural network fitting on even random labeling
of training data is largely unaffected by explicit regulariza-
tion (such as weight decay, dropout, and data augmenta-
tion). They suggest that explicit regularization may improve
generalization performance but is neither necessary nor by
itself sufficient for controlling generalization error. More-
over, recent works show that generalization (and test) error
in neural networks reduce as we increase the number of pa-
rameters [27, 26], which contradicts the traditional wisdom
that overparameterization leads to overfitting. This obser-
vation has given rise to a branch of research that focuses on
explaining the neural network’s generalization error rather
than just looking at their test performance [28].

We propose a principled and reliable alternative that tries
to affirmatively resolve the concerns raised in [35]. More
specifically, we investigate a novel constrained family of
neural networks called Input Output Convex Neural Net-
works (IOC-NNs), which learn a convex function between
input and output. Convexity in machine learning typically
refers to convexity in terms of the parameters w.r.t to the
loss [3], which is not the case in our work. We use an
IOC prefix to indicate the Input Output Convexity explic-
itly. Amos et al. [1] have experimented with Partially In-
put Convex Neural Networks (PICNNs), where the output
is convex w.r.t some of the inputs. We take the next obvi-
ous step and explore a fully constrained alternative (outputs
are convex w.r.t to all the inputs). We investigate [IOC-NNs
on standard multi-class classification benchmarks and argue
that its underlying properties make it a preferred alternative
over the non-convex base architectures. Each class in multi-
class classification is represented as a convex function, and
the resulting decision boundaries are formed as an argmax
of convex functions. Furthermore, our experiments suggest
that IOC-NNs avoid fitting over the noisy part of the data in
contrast to the typical neural network behavior. This sug-
gests that [IOC-NNs have a desirable property that it leads
to the hypothesis with more margin between the classes as
opposed to the smaller margins in case of regular neural
networks. This property is significant in understanding the
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Training of AllConv and IOC-AllConv on CIFAR-10 dataset. (a) Loss curve while training with true labels. AllConv starts

overfitting after few epochs. IOC-AllConv does not exhibit overfitting, and the test loss nicely follows the training loss. (b) Accuracy plots
while training with randomized labels (labels were randomized for all the training images). If sufficiently trained, even a simple network
like MLP achieves 100% training accuracy and gives around 10% test accuracy. IOC-MLP resists any learning on the randomized data
and gives 0% generalization gap. (c) and (d) Loss and accuracy plots on CIFAR-10 data when trained with 50% labels randomized in the

training set.

complexity of the trained neural network models [27]. Pre-
vious work shows that [2] neural networks tend to learn
simpler hypotheses first. Our experiments show that IOC-
NNs tend to hold on to the simpler hypothesis even in the
presence of noise, without overfitting in most settings.

A motivating example is illustrated in Figure 1, where
we train an AllConvolutional network (AllConv) [33] and
its convex counterpart IOC-AllConv on the CIFAR-10
dataset. AllConv starts overfitting the train data after a few
epochs (Figure 1(a)). In contrast, IOC-AllConv shows no
signs of overfitting and flattens at the end (the test loss val-
ues pleasantly follow the training curve). Such an observa-
tion is consistent across all our experiments on IOC-NNs
across different datasets and architectures, suggesting that
IOC-NNs have lesser reliance on explicit regularization like
early stopping. Figure 1(b) presents the accuracy plots for
the randomized test where we train Multi-Layer Perceptron
(MLP) and IOC-MLP on a copy of the data where the true
labels were replaced by random labels. MLP achieves 100%
accuracy on the train set and gives a random chance perfor-
mance on the test set (observations are coherent with [35]).
IOC-MLP resists any learning and gives random chance
performance (10% accuracy) on both train and test sets. As
MLP achieves zero training error, the test error is the same
as generalization error, i.e., 90% (the performance of ran-
dom guessing on CIFAR10). In contrast, the IOC-MLP has
a 0% generalization error. We further present experiment
with 50% noisy labels Figure 1(c). The neural network
training profile concurs with the observation of Krueger et
al. [19], where the network learns a simpler hypothesis first
and then starts memorizing. On the other hand, IOC-NN
gives a smooth training profile, showing strong resistance
to fit the noise in the labels.

Input Output Convexity shows a promising paradigm, as
any feed-forward network can be re-worked into its con-
vex counterpart by choosing a non-decreasing (and convex)
activation function and restricting its weights to be non-
negative (for all but the first layer). Our experiments suggest

that activation functions that allow negative outputs (like
leaky ReLU or ELU) are more suited for the task as they
help retain negative values flowing to subsequent layers in
the network. Amos et al. [1] notes that input convex neu-
ral networks (ICNN) cannot learn identity mapping. Our
work overcomes this issue, and the proposed IOC-NNs can
almost recover the performance of the base network on the
task of multi-class image classification, suggesting that suf-
ficiently complex decision boundaries can be learned using
an argmax over a set of convex functions (where each class
is represented by a single convex function). More formally,
our work makes the following contributions:

* We bring to light the little known idea of Input Output
Convexity in neural networks. We propose a revised
formulation to efficiently train IOC-NNs, retaining ad-
equate capacity (like using ELU, increasing nodes in
the first layer, whitening transform at the input, etc.).

* Through a set of intuitive experiments, we detail its in-
ternal functioning, especially in terms of its self reg-
ularization properties and decision boundaries. We
further propose a framework to learn the ensemble of
IOC-NNs.

* With a comprehensive set of quantitative and qualita-
tive experiments, we demonstrate IOC-NN’s outstand-
ing generalization abilities, opening up a promising av-
enue for more in-depth explorations.

* We explore the robustness of IOC-NNs to label noise.
We believe that proposing a neural network framework
that does not fit the random labels as efficiently as true
labels (pattern in data) opens a new avenue to explore
tighter generalization bounds for neural networks.

2. Related Work

Simple Convex models: Our work relates to parameter
estimation on models that are guaranteed to be convex by



its construction. For regression problems, Magnani and
Boyd [21] study the problem of fitting a convex piecewise
linear function to a given set of data points. For classifi-
cation problems, this traditionally translates to polyhedral
classifiers. A polyhedral classifier can be described as an
intersection of a finite number of hyperplanes. There have
been several attempts to address the problem of learning
polyhedral classifiers [22, 16]. However, these algorithms
require the number of hyperplanes as an input, which is a
major constraint. Furthermore, these classifiers do not give
completely smooth boundaries (at the intersection of hy-
perplanes). As another major limitation, these classifiers
cannot model the boundaries in which each class is dis-
tributed over the union of non-intersecting convex regions
(e.g., XOR problem). The proposed IOC-NN (even with a
single hidden layer) supersedes this direction of work.

Convex Neural Networks: The idea of Input Convex
Neural Networks has been explored by Amos et al. [1].
However, the focus of their work is to achieve structured
predictions in the network (using convexity w.r.t to some of
the inputs) and how convexity can be exploited at the infer-
ence time. Fundamental limitations, like the use of ReLLU,
extremely hinder the scope of their fully convex architec-
ture. Hence, their experiments limit to PICNNs. The work
by Kent et al. [17] analyze the links between polynomial
functions and input convex neural networks to understand
the trade-offs between model expressiveness and ease of
optimization. Chen et al. [7, 8] explore the use of input
convex neural network in a variety of control applications
like voltage regulation. The literature on fully input convex
neural networks has been limited to niche tailored scenar-
ios. Two key highlights of our work are: (a) to use activa-
tions that allow the flow of negative values (like ELU, leaky
ReLU, etc.), which enables a richer representation (retain-
ing fundamental properties like identity mapping which are
not achievable using ReLU) and (b) to bring a more in-depth
perspective on the functioning of convex networks and the
resulting decision boundaries. Consequently, we present
IOC-NNs as a preferred option over the base architectures,
especially in terms of generalization abilities, using experi-
ments on standard image classification benchmarks.

Generalization in Deep Neural Nets: The success of
learning depends on the computational complexity of fit-
ting a “simple” predictor to the training data and not just
minimizing test and validation error [29]. Conventional
machine learning wisdom says that overparameterization
leads to poor generalization performance owing to over-
fitting. Counter-intuitively, empirical evidence shows that
neural networks give better generalization with an increased
number of parameters even without any explicit regulariza-
tion [35]. This suggests that the underlying optimization

algorithm imposes regularization making neural networks
prioritize learning simple patterns first [2]. However, Na-
garajan et al. [26] prove that, for neural networks trained by
gradient descent (GD), we cannot “explain generalization”
even if we take into account the implicit bias of gradient de-
scent to the fullest extent possible. From the experiments
on fitting random labels, Zhang et al. note that the regular-
ization techniques like dropout can improve generalization
without reducing the model capacity to learn, but by them-
selves are not sufficient to curb overfitting.

Neyshabur et al. [27] study different complexity mea-
sures and capacity bounds based on the number of param-
eters, VC dimension, norms of learned weights, etc., and
conclude that these bounds fail to explain the generaliza-
tion behavior of neural networks on overparameterization.
Explaining how neural networks generalize despite being
overparameterized is an important question in deep learn-
ing [29, 26]. Neyshabur et al. [28] suggest a plausible ex-
planation that decomposing the complexity measure to that
of hidden units for restricting the hypothesis class gives a
generalization bound that decreases with an increase in the
number of parameters.

Restricting the hypothesis class has helped derive tighter
generalization bounds. This implies that a hypothetical neu-
ral network that can fit any hypothesis will have a worse
generalization than the practical neural networks which
span a restricted hypothesis class. Inspired by this idea, we
propose a principled way of restricting the hypothesis class
of neural networks (by constraining weights and choosing
only certain activations) that improves their generalization
ability in practice. In the previous efforts to train fully input
output convex networks, they were shown to have a limited
capacity compared to its neural network counterpart [1, 3],
making their generalization capabilities ineffective in prac-
tice. To our knowledge, we for the first time present a
method to formulate and efficiently train IOC-NNs opening
an avenue to explore their generalization ability.

3. Input Output Convex Networks

We first consider the case of an MLP with % hidden lay-
ers. The output of i*" neuron in the [*" hidden layer will

be denoted as hgl). For an input x = (x1,...,%q), hl(.l)
defined as:
Zw(l hl* (l))7 (1)

where, h;o) =xz;(j=1...d) and h§k+1) = y; (' out-
put). The first hidden layer represents an affine mapping
of input and preserves the convexity (i.e. each neuron in
h(1) is convex function of input). The subsequent layers
are a weighted sum of neurons from the previous layer fol-
lowed by an activation function. The final output y is con-
vex with respect to the input x by ensuring two conditions:



(a) w(?:k+1)

i > 0 and (b) ¢ is convex and a non-decreasing
function. The proof follows from the operator properties [5]
that the non-negative sum of convex functions is convex and
the composition f(g(z)) is convex if g is convex and f is
convex and non-decreasing.

A similar intuition follows for convolutional architec-
tures as well, where each neuron in the next layer is a
weighted sum of the previous layer. Convexity can be as-
sured by restricting filter weights to be non-negative and
using a convex and non-decreasing activation function. Fil-
ter weights in the first convolutional layer can take neg-
ative values, as they only represent an affine mapping of
the input. The maxpool operation also preserves convex-
ity since point-wise maximum of convex functions is con-
vex [5]. Also, the skip connection does not violate Input
Output Convexity, since the input to each layer is still a non-
negative weighted sum of convex functions.

We use an ELU activation to allow negative values; this
is a minor but a key change from the previous efforts that
rely on ReLU activation. For instance, with non-negativity
constraints on weights (wg:kﬂ) > 0), ReLU activations
restrict the allowable use of hidden units that mirror the
identity mapping. Previous works rely on passthrough/skip
connections to address [1] this concern. The use of ELU
enables identity mapping and allows us to use the convex
counterparts of existing networks without any architectural
changes.

3.1. Convexity as Self Regularizer

We define self regularization as the property in which
the network itself has some functional constraints. Induc-
ing convexity can be viewed as a self regularization tech-
nique. For example, consider a quadratic classifier in R? of
the form f(z1,72) = w123 + wer3 + w3179 + War1 +
wsx2 + wq. If we want the function f to be convex, then it
is required that the network imposes following constraints
on the parameters, w; > 0, ws > 0, —2/wiws < w3z <
2,/wiwz, which essentially means that we are restricting
the hypothesis space.

Similar inferences can be drawn by taking the example
of polyhedral classifiers. Polyhedral classifiers are a special
class of Mixture of Experts (MoE) network [14, 31]. VC-
dimension of a polyhedral classifier in d-dimension formed
by the intersection of m hyperplanes is upper bounded by
2(d+1)mlog(3m) [34]. On the other hand, VC-dimension
of a standard mixture of m binary experts in d-dimension
is O(m*d?) [15]. Thus, by imposing convexity, the VC-
dimension becomes linear with the data dimension d and
mlog(m) with the number of experts. This is a huge reduc-
tion in the overall representation capacity compared to the
standard mixture of binary experts.

Furthermore, adding non-negativity constraints alone
can lead to regularization. For example, the VC dimension
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Figure 2. Decision boundaries of different networks trained for
two class classification. (a) Original data: one class shown by blue
and the other orange. (b) Decision boundary learnt using MLP. (c)
Decision boundary learnt using [IOC-MLP with single node in the
output layer. (d) Decision boundary learnt using IOC-MLP with
two nodes in the output layer (ground truth as one hot vectors)
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Figure 3. (a) Using two simple 1-D functions we illustrate that
argmax of two convex functions can result into non-convex deci-
sion boundaries. (b) Two convex functions whose argmax results
into the decision boundaries shown in Figure 2(d). The same plot
is shown from two different viewpoints.
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of a sign constrained linear classifier in R? reduces from
d + 1 to d [0, 20]. The proposed IOC-NN uses a combi-
nation of sign constraints and restrictions on the family of
activation functions for inducing convexity. The represen-
tation capacity of the resulting network reduces, and there-
fore, regularization comes into effect. This effectively helps
in improving generalization and controlling overfitting, as
clearly observed in our empirical studies.

3.2. IOC-NN Decision Boundaries

Consider a scenario of binary classification in 2D space
as presented in Figure 2(a). We train a three-layer MLP
with a single output and a sigmoid activation for the last
layer. The network comfortably learns to separate the two
classes. The learned boundaries by the MLP are shown in
Figure 2(b). We then train an IOC-MLP with the same ar-
chitecture. The learned boundary is shown in Figure 2(c).
IOC-MLP learns a single convex function as output w.r.t the
input and its contour at the value of 0.5 define the decision
boundary. The use of non-convex activation like sigmoid in
the last layer does not distort convexity of decision bound-
ary (Appendix A)

We further explore IOC-MLP with a variant architecture
where the ground truth is presented as a one-hot vector (al-
lowing two outputs). The network learns two convex func-
tions f and g representing each class, and their argmax de-
fines the decision boundary. Thus, if g(x) — f(x) > 0,
then x is assigned to class C'1 and C'2 otherwise. There-
fore, it can learn non-convex decision boundaries as shown
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Figure 4. (a) Original Data. (b) Output of the gating network, each
color represents picking a particular expert. (c) Decision bound-
aries of the individual IOC-MLPs. We mark the correspondences
between each expert and the segment for which it was selected.

Notice how the V-shape is partitioned and classified using two dif-
ferent IOC-MLPs.

in Figure 3. Please note that g — f is no more convex un-
less ¢ — f” > 0. In the considered problem of binary
classification in Figure 2, using one-hot output allows the
network to learn non-convex boundaries (Figure 2 (d)). The
corresponding two output functions (one for each class) are
illustrated in Figure 3 (b). We can observe that both the in-
dividual functions are convex; however, their arrangement
is such that the argmax leads to a reasonably complex de-
cision boundary.This happens due to the fact that the sets
S = {x | g(x)— f(x) > 0} and S5 = {x | g(x)  f(x) <
0} can both be non-convex (even though functions f(.) and
g(.) are convex).

3.3. Ensemble of IOC-NN

We further explore the ensemble of IOC-NN for multi-
class classification. We explore two different ways to learn
the ensembles:

1. Mixture of IOC-NN Experts: Training a mixture
of IOC-NNs and an additional gating network [14].
The gating network can be non-convex and outputs
a scalar weight for each expert. The gating network
and the multiple IOC-NN’s (experts) are trained in
an Expectation-Maximization (EM) framework, i.e.,
training the gating network and the experts iteratively.

2. Boosting + Gating: In this setup, each IOC-NN is
trained individually. The first model is trained on the
whole data, and the consecutive models are trained
with exaggerated data on the samples on which the
previous model performs poorly. For bootstrapping,
we use a simple re-weighting mechanism as in [11].
A gating network is then trained over the ensemble of
IOC-NNs. The weights of the individual networks are
frozen while training the gating network.

We detail the idea of ensembles using a representative
experiment for binary classification on the data presented in
Figure 4(a). We train a mixture of p [OC-MLP’s with a gat-
ing network using the EM algorithm. The gating network is
an MLP with a single hidden layer, the output of which is a
p dimensional vector. Each of the IOC-MLP is a three-layer

MLP with a single output. We keep a single output to ensure
that each IOC-MLP learns a convex decision boundary. The
output of the gating network is illustrated in Figure 4(b).
A particular IOC-MLP was selected for each partition and
led to five partitions. The decision boundaries of individual
IOC-MLPs are shown in Figure 4(c). It is interesting to note
that the MoE of binary IOC-MLPs fractures the input space
into sub-spaces where a convex boundary is sufficient for
classification.

4. Experiments

Dataset and Architectures: To show the significance of
enhanced performance of IOC-MLP over traditional NN,
we train them on six different datasets: MNIST, FMNIST,
STL-10, SVHN, CIFAR-10, and CIFAR-100. We use an
MLP with three hidden layers and 800 nodes in each layer.
We use batch normalization between every layer, and it’s
activation in all hidden layers. ReLU and ELU are used
as activations for NN and IOC respectively, and softmax is
used in the last layer. We use Adam optimizer with an initial
learning rate of 0.0001 and use validation accuracy for early
stopping.

We perform experiments that involve two additional ar-
chitectures to extend the comparative study between 10C
and NN on CIFAR-10 and CIFAR-100 datasets. We use a
fully convolutional [33], and a densely connected architec-
ture [13]. We choose DenseNet with 1.4M parameters for
our experiments. We term the convex counterparts as IOC-
MLP, IOC-AllConv, IOC-DenseNet, respectively, and com-
pare them with similar training results reported in the origi-
nal works [ 13, 33]. In all comparative studies, we follow the
same training and augmentation strategy to train [OC-NNgs,
as used by the aforementioned neural networks.

Training on duplicate free data: The test sets of CIFAR-
10 and CIFAR-100 datasets have 3.25% and 10% duplicate
images, respectively [4]. Neural networks show higher per-
formance on these datasets due to the bias created by this
duplicate data (neural networks have been shown to mem-
orize the data). CIFAIR-10 and CIFAIR-100 datasets are
variants of CIFAR-10 and CIFAR-100 respectively, where
all the duplicate images in the test data are replaced with
new images. Barz et al. [4] observed that the performance
of most neural architectures drops when trained and tested
on bias-free CIFAIR data. We train IOC-NN and their neu-
ral network counterparts on CIFAIR-10 data with three dif-
ferent architectures: a fully connected network (MLP), a
fully convolutional network (AllConv) [33] and a densely
connected network (Densenet) [13].

Training IOC architectures: We exponentiate negative
weights after every update to enforce the IOC constraint.



CIFAR-10 CIFAR-100
NN IOC-NN NN IOC-NN
train test | gen. gap | train test | gen. gap | train test | gen. gap | train test | gen. gap
MLP 99.17 | 63.83 35.34 | 73.27 | 69.89 33 84.6 | 32.68 51.9 469 | 41.08 5.8
AllConv | 99.31 | 92.8 6.5 93.2 | 90.6 2.6 97.87 | 69.5 28.4 67.07 | 65.08 1.9
DenseNet | 99.46 | 94.06 54 9422 | 91.12 31 98.42 | 75.36 23.06 749 | 68.53 6.3
Table 1. Train accuracy, test accuracy and generalization gap of three neural architectures and their IOC counterparts
Hence a neural network with convex and non-decreasing ac- NN TOC-NN
tivation can be trained with IOC constraints by adding this train | test | gen. gap | train | test | gen. gap
one additional step to traditional optimization algorithms MNIST 19934 |99.16| 0.19 | 9877 | 9925 | -0.48
(Appendix B). We can also constrain the gamma scaler in FMNIST | 94.8 | 90.61 381 9041 | 90.58 | -0.02
the batch-normalization layer with exponentiation. IOC- STL-10 81 [5232] 2868 | 623 [54.55| 7.75
NN gives all their desired properties even without gamma SVHN 91.76 | 86.19 | 5.57 | 81.18 8637 | -5.19
constraint. We make certain modifications to the architec- CIFAR-10 | 97.99 | 63.83 | 34.16 | 73.27 | 69.89 | 3.38
ture of IOC-NNs other than the constraints necessary to im- CIFAR-100 | 84.6 |32.68 | 5192 | 469 |41.08| 5.82

pose convexity. We observed that these changes facilitate
the training of the IOC-NNs: however, they do not affect
the performance of base neural networks. We use ELU as
an activation function instead of ReLU in IOC-NNs. We
apply the whitening transformation to the input so that it
is zero-centered, decorrelated, and spans over positive and
negative values equally. We also increase the number of
nodes in the first layer (the only layer where parameters can
take negative values). We use a slower schedule for learn-
ing rate decay than the base counterparts. The IOC-NNs
have a softmax layer at the last layer and are trained with
cross-entropy loss (same as neural networks).

Training ensembles of binary experts: We divide
CIFAR-10 dataset into 2 classes, namely: ‘Animal’
(CIFAR-10 labels: ‘Bird’, ‘Cat’, ‘Deer’, ‘Dog’, ‘Frog’ and
‘Horse’) and ‘Not Animal’. We train an ensemble of IOC-
MLP, where each expert is a three-layer MLP with one out-
put (with sigmoid activation at the output node). The gat-
ing network in the EM approach is a one layer MLP which
takes an image as input and predicts the weights by which
the individual expert predictions get averaged. We report
test results of ensembles with each additional expert. This
experiment resembles the study shown in Figure 4.

Training Boosted ensembles: The lower training accu-
racy of IOC-NNs makes them suitable for boosting (while
the training accuracy saturates in non-convex counterparts).
For bootstrapping, we use a simple re-weighting mecha-
nism as in [1 1]. We train three experts for each experiment.
The gating network is a regular neural network, which is a
shallow version of the actual experts. We train an MLP with
only one hidden layer, a four-layer fully convolutional net-
work, and a DenseNet with two dense-blocks as the gate for
the three respective architectures. We report the accuracy

Table 2. Table shows train accuracy, test accuracy and generaliza-
tion gap for MLP and IOC-MLP on six different datasets.

of the ensemble trained in this fashion as well as the accu-
racy if we would have used an oracle instead of the gating
network.

IOC-NNs are better calibrated compared to the tradi-
tional neural networks. (further investigation presented
in Appendix C). Therefore, we also use a hierarchical
confidence-based approach to ensemble IOC-NNs. After
training three models as described above, we take the pre-
diction from the first expert if it’s confidence in prediction
is greater than a threshold. If not, we check for the con-
fidence of the second model, and so on. The threshold on
confidence is determined by grid search for optimal values
against performance on the train data.

Partially randomized labeling: Here, we investigate
IOC-NN’s behavior in the presence of partial label noise.
We do a comparative study between I0OC and neural net-
works using All-Conv architecture, similar to the experi-
ment performed by [35]. We use CIFAR-10 dataset and
make them noisy by systematically randomizing the labels
of a selected percentage of training data. We report the per-
formance of All-Conv, and it’s IOC counterpart on 20, 40,
60, 80 and 100 percent noise in the train data. We report
train and test scores at peak performance (performance if
we had used early stopping) and at convergence (if loss goes
below 0.001 or at 2000 epochs).

4.1. Results

Improving test performance with resistance to overfit-
ting: MLP is one of the most widely used neural archi-
tectures. We compare the train and test scores of MLP and



NN IOC-NN
peak convergence peak convergence
train test train test | gen. gap | train test train test | gen. gap
100 | 98.63 | 10.53 | 97.80 | 10.1 87.7 9.98 | 10.62 | 10.21 | 9.94 0.27
80 | 22.40 | 60.24 | 97.83 | 27.75 70.08 21.93 | 61.48 | 23.80 | 56.20 -324
60 | 38.52 | 75.80 | 97.80 | 46.71 51.09 | 3790 | 7591 | 39.31 | 71.75 | -32.44
40 | 56.48 | 80.47 | 97.96 | 61.83 36.13 55.01 | 81.58 | 54.63 | 81.01 | -26.38
20 | 72.8 | 85.72 | 98.73 | 76.31 2242 | 69.92 | 85.85 | 70.22 | 83.61 | -13.39

Table 3. Results for systematically randomized labels at peak and at convergence for both IOC-NN and NN

IOC-MLP in Table 2. With a sufficient number of parame-
ters, MLP (a basic NN architecture) perfectly fits the train-
ing data. However, it fails to generalize well on the test data
owing to brute force memorization. The results in Table 2
indicate that IOC-MLP gives a smaller generalization gap
(the difference between train and test accuracies) compared
to MLP. The generalization gap even goes to negative val-
ues when test performance is sufficiently good. MLP (be-
ing poorly optimized for parameter utilization) is one of the
architectures prone to overfitting the most, and IOC con-
straints help retain test performance resisting the tendency
to overfit.

Furthermore, Table 2 shows that having the IOC con-
straints significantly boost the test accuracy on datasets
where neural network gives a high generalization gap. This
trend is clearly visible in Figure 5 (b). In regions where
the generalization gap is high, IOC-NN is a preferred al-
ternative. For the CIFAR-10 dataset, the traditional neural
network gives 34.16% generalization gap, while IOC-NN
brings down the generalization gap by more than ten folds
and boosts the test performance by about 6%. Even in sce-
narios where neural networks give a smaller generalization
gap (like MNIST and SVHN), IOC-NN marginally outper-
forms regular NN and gives an advantage in generalization.

Better generalization: We investigate the generalization
capability of IOC-NN on other architectures. The results
of the base architectures and their convex counterparts on
CIFAR-10 and CIFAR-100 datasets are presented in Ta-
ble 1. IOC-NN outperforms base NN on MLP architec-
ture and gives comparable test accuracies for convolutional
architectures. The train accuracies are saturated in the
base networks (reaching above 99% in most experiments).
This is often observed in the models with complex decision
boundaries. The lower train accuracy in IOC-NNs suggests
that there might still be room for improvement, possibly
through better design choices tailored for [IOC-NNs. In Ta-
ble 1, the difference in train and test accuracy across all the
architectures (generalization gap) clearly demonstrates the
better generalization ability of IOC-NNs. The generaliza-
tion gap of base architectures is at least twofold more than
IOC-NNs on CIFAR-100 dataset. For instance, the general-

single expert | gate | conf. MoE | oracle

MLP 69.89 71.8 71.6 85.47
All-Conv 90.6 92.83 91.29 96.3
DenseNet 91.12 93.25 92.21 97.19

Table 4. Result for single expert, gated MoE, confidence-based
MOoE and with oracle on CIFAR-10 for three architectures

ization error of IOC-AllConv on CIFAR-100 is only 1.99%,
in contrast to 28.4% in AllConv. The generalization abil-
ity of IOC-NN’s is further qualitatively reflected using the
training and validation loss profiles (e.g., Figurel(a)). We
present a table showing the confidence intervals of predic-
tion across all three architectures with repeated runs in Ap-
pendix D.

Table 5 shows the train and test performance of the three
architectures on CIFAR-10 dataset and the drop incurred
when trained on CIFAIR-10. The drop in test performance
of IOC-NNs is smaller than the typical neural network. This
further strengthens the claim that IOC-NNs are not memo-
rizing the training data but learning a generic hypothesis.

Leverage I0C properties to train ensembles: We train
binary MoE on the modified two-class setting of CIFAR-10
as described in the experiment section. The result is shown
in Figure 5 (a). Traditional neural network gives a test ac-
curacy of 89.63% with a generalization gap of 10%. Gated
MoE of NNs does not improve the test performance as we
increase the number of experts. On the other hand, the per-
formance of ensemble of IOC-NNs goes up with the addi-
tion of each expert until it almost matches the performance
of neural network. It is interesting to note that even in the
higher dimensional space (like CIFAR-10 images), the in-
tuitions derived from Figure 4 holds. We also note that gate
fractures the space into p partitions (where p is the number
of experts). We discuss this further in Appendix E. More-
over, for a single expert, the generalization gap is almost
zero. This can be attributed to the convex hull like smooth
decision boundary that the network predicts.

The results with the boosted ensembles of IOC-NNs are
presented in Table 4. The boosted ensemble improves the




NN IOC-NN
C-10 | CIFAIR | Gap | C-10 | CIFAIR | Gap
MLP 63.6 | 63.08 |0.52|69.89 | 69.51 | 0.38
AllConv | 92.8 | 91.14 | 0.66 | 90.6 | 90.47 | 0.13
DenseNet | 94.06 | 93.28 | 0.78 | 91.12 | 90.73 | 0.39

Table 5. Results on CIFAIR-10 dataset
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Figure 5. (a) shows the test accuracy of IOC-MLP with increasing
number of experts in the binary classification setting. Average per-
formance of normal MLP is shown in red since it does not change
with increase in number of experts. (b) Shows the generalization
gap of MLP plotted against the percentage of improvement gained
by the IOC-MLP for the six different datasets (represented by ev-
ery point on the plot).

test accuracies of IOC-NNs, matching or outperforming the
base architectures. However, this performance gain comes
at the cost of increased generalization error (still lower than
the base architectures). In the boosted ensemble, the per-
formance significantly improves if the gating network is re-
placed by an oracle. This observation suggests that there is
a scope of improvement in model selection ability, possi-
bly by using a better gating architecture. IOC-NN ensem-
bled using confidence in prediction outperforms single IOC
expert. This follows with the fact that IOC-NNs are well-
calibrated. Confidence-based ensemble of a poorly cali-
brated network can lead to a drop in performance.

Robustness to random label noise: Robustness of IOC-
NNs on partial and fully randomized labels (Figure 1 (b,
¢, and d)) is one of its key properties. We further investi-
gate this property by systematically randomizing increasing
portion of labels. We report the results of neural networks
and their convex counterparts with percentage of label noise
varying from 20% to 100% in Table 3. The train per-
formance of neural networks at convergence is near 100%
across all noise levels. It is interesting to note that IOC-NN
gives a large negative generalization gap, where the train ac-
curacy is almost equal to the percentage of true labels in the
data. This observation shows that IOC-NNs significantly re-
sist learning noise in labels as compared to neural networks.

Both neural network and it’s convex counterpart learns the
simple hypothesis first. While IOC-NN holds on to this, in
later epochs, the neural network starts brute force memo-
rization of noisy labels. The observations are coherent with
findings in [19, 32], demonstrating neural network’s heavy
reliance on early stopping. IOC-AllConv outperforms test
accuracy of AllConv + early stopping with a much-coveted
generalization behavior. It is clear from this experiment that
IOC-NN performs better in the presence of random label
noise in the data in terms of test accuracy both at peak and
convergence.

5. Conclusions

We present a subclass of neural networks, where the
output is a convex function of the input. We show that
with minimal constraints, existing neural networks can be
adopted to this subclass called Input Output Convex Neu-
ral Networks. With a set of carefully chosen experiments,
we unveil that IOC-NNs show outstanding generalization
ability and robustness to label noise while retaining ade-
quate capacity. We show that in scenarios where neural
network gives a large generalization gap, IOC-NN can give
better performance on test. An alternate interpretation of
our work can be in terms of self regularization (regulariza-
tion through functional constraints). IOC-NN puts to rest
the concerns around brute force memorization of deep neu-
ral networks and opens a promising horizon for the commu-
nity to explore. In future work, we plan to investigate the
use of IOC-NNs for recurrent architectures. Furthermore,
we plan to explore the interpretability aspects of IOC-NNs
and study the effect of convexity constraints on the general-
ization bounds.
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A. Using Non-Convex Activations to Facilitate
Training

In a multi-class classification setting, the softmax func-
tion is widely used to get a joint probability distribution over
the output classes. This facilitates training with categorical
cross-entropy loss. The softmax layer distorts input output
convexity, but the decision boundary remains unchanged
even after applying softmax in the last layer. The pre-
softmax output of IOC-NNs is convex with respect to the in-
puts. The classification decision is determined by the order
(rank) of these values, which remains unaffected with the
application of the softmax function. At inference time, we
compute argmax of convex functions (pre-softmax layer).

argmax(Y) = argmax(softmaz(Y)) )

10

A similar approach is taken for modelling independent
probabilities of labels in binary classification setting. Sig-
moid activation is widely used to model the probability
p(y = yn|x). For IOC-NN, at inference, the predicted value
isy = o(f(x)), where f(x) is convex. Hence, decision
boundary is:

o(f(z)) =

which is equivalent to

f@) = o7"(05)

0.5, (3)

“

where, f(x) is convex. Since 0~1(0.5) is a constant, the
decision boundary is convex.

B. Optimization Algorithm for Training IOC-
NNs

The only architectural constraint in designing an I0C-
NN is the choice of a convex and non-decreasing activation
function. Furthermore, any feed-forward neural architec-
ture can be trained as IOC-NN by adding two steps to the
optimization algorithm. For example, the constrained ver-
sion of the vanilla stochastic gradient descent algorithm is
shown in Algorithm 1.

Algorithm 1: Algorithm to train a k layer [IOC-NN

Input: Training data S, Labels L, learning rate 7,
constant €, y = (woy}, boi")
Output: © = (w*, b*)
initialize: 6 = 6;
while stopping criteria not met do
for i in 1:len(S) / batch_size do
Sample(l'batcha ybatch) € (S, L);
L < Div(fo(@vatch), Ybatch)s
w4 w — n(%L);
b+ b— n(%L);
for layer € 2 : k do
if w < 0 then
| w e
end
end

end
check stopping criteria

end

€ is used to bring down the value of the updated weight
post exponentiation for negative values close to zero. Val-
ues near zero post exponentiation will be close to one, and
€ helps keep them close to zero. We use € = 5 across all
experiments. To summarize, the only two additional steps
required to train an IOC-NN are condition (to check the sign
of updated weights) and exponentiation. Therefore, we can
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Figure 6. These diagrams show expected sample accuracy as a function of confidence [10]. The blue bar shows the confidence of the bin
and the orange bar shows the percentage correctness of prediction in that bin. If the model is perfectly calibrated, the bars align to form
identity function. Any deviation from a perfect diagonal is a miscalibration.

develop IOC constrained versions for all optimization algo-
rithms that are used in training neural networks.

C. Confidence Calibration of IOC-NNs

In a classification setting, given an input, the neural net-
work predicts probability-like scores towards each class.
The class with the maximum score is considered the pre-
dicted output, and the corresponding score to be the confi-
dence. The confidence and accuracy being correlated is a
desirable property, especially in high-risk applications like
self-driving cars, medical diagnoses, etc. However, many
modern multi-class classification networks are poorly cali-
brated, i.e., the probability values that they associate with
the class labels they predict overestimate the likelihoods of
those class labels being correct in the real world [12]. Re-
cent work has suggested methods to improve the calibration
of neural networks [12, 36, 25].

We observe that IOC-NNs showcase this property even
without using specific methods to calibrate. We present the
reliability diagrams [10] (presenting accuracy as a function
of confidence) of three neural architectures and their con-
vex counterparts in Figure 6. Calibration is often visualised
using reliability diagrams [30, 25]. This plot shows the ac-
curacies of the confidence bins as a bar chart. For a per-
fectly calibrated model, the accuracy for each bin matches
the confidence. All bars lie on the diagonal to form an iden-
tity function. If most of the bars lie above the diagonal, the
model is under-confident, and if most of the bars lie below
the diagonal, it is over-confident. The difference between
the two bars is the calibration error.

We see that the IOC-NNs are better calibrated. In high
confidence bins, IOC-NNs have more accuracy, and in
lower confidence bins, lower accuracy. This sense of ac-
countability makes IOC-NN a desirable alternative in many
applications.
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Figure 7. The figure shows the mean image of ten clusters within
the class *Automobile’. Each cluster corresponds to the expert
picked by the gate. These partitions signify the difference in the

data points on which each of the binary convex models gained
expertise.

D. Discussion on Capacity of IOC-NNs

The decision boundaries of real-world classification
problems are often not convex. Outputs of IOC-NN are
convex with respect to the inputs by design. Melzer et al.
[23] and Kripfganz et al. [18] show that we can represent
any piecewise linear function as a difference of two piece-
wise linear convex functions. Using ReLLU as an activation
puts a constraint on the convex functions that IOC-NNs can
learn. For instance, we cannot learn identity mapping us-
ing ReLU [1]. A simple architectural change of using ELU
overcomes this issue, increasing the capacity of IOC-NNs,
as can be observed in the outcome of all our experiments.
Following this direction in future, we would like to explore
the universal approximation bounds for IOC-NNs.

E. Partition of Input Space by MoEs of 10C-
NNs

Real-world data often lies in a sparse, high-dimensional
space. Neural networks find complex boundaries, creat-
ing different partitions/subspaces, which are often not in-
terpretable. In section 3.2 of the main text, we demon-
strate on toy data, how an ensemble of binary IOC-NNss cre-
ates meaningful partitions. MoEs of IOC-NNs partition in-
put space into mutually exclusive and exhaustive subspaces.



The partition chosen by the gate for each expert is the por-
tion in which a convex boundary can make a reasonable pre-
diction. We train ten, three layered single output IOC-MLPs
using gated EM strategy on the two-class setting of CIFAR-
10 as explained in section 4: *Training ensembles of binary
experts’. Figure 7 shows the mean image of ten partitions
of class ’Automobile’. Each partition corresponds to one of
the ten experts chosen by the gate. Each of the IOC-NN has
expertise on clusters with aspects with real-world interpre-
tation and exclusive to other clusters. For instance, few ex-
perts are chosen by the gate to classify images showing the
front view of red cars while few others are picked to predict
cars of different color and orientation. In future, we would
like to explore this property of MoE of binary IOC-NNss to-
wards improving the interpretability of decisions made by
neural networks.
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