
DGAZE: Driver Gaze Mapping on Road

Isha Dua, Thrupthi Ann John, Riya Gupta and C.V.Jawahar

Abstract— Driver gaze mapping is crucial to estimate driver
attention and determine which objects the driver is focusing on
while driving. We introduce DGAZE, the first large-scale driver
gaze mapping dataset. Unlike previous works, our dataset does
not require expensive wearable eye-gaze trackers and instead
relies on mobile phone cameras for data collection. The data
was collected in a lab setting designed to mimic real driving
conditions and has point and object-level annotation. It consists
of 227,178 road-driver image pairs collected from 20 drivers and
contains 103 unique objects on the road belonging to 7 classes:
cars, pedestrians, traffic signals, motorbikes, auto-rickshaws,
buses and signboards.

We also present I-DGAZE, a fused convolutional neural
network for predicting driver gaze on the road, which was
trained on the DGAZE dataset. Our architecture combines
facial features such as face location and head pose along with
the image of the left eye to get optimum results. Our model
achieves an error of 186.89 pixels on the road view of resolution
1920×1080 pixels. We compare our model with state-of-the-art
eye gaze works and present extensive ablation results.

I. INTRODUCTION

Accurate eye gaze prediction is important in advanced
driver assistance systems for ensuring the safety of the driver
by determining the attention and fatigue levels of the driver.
Studies have shown that the saccade patterns of a driver
may be used to identify if the driver is fatigued [1]. Driver
inattention is one of the leading causes of road accidents in
the world [2]. According to National Highway Traffic Safety
Administration (NHTSA), 15% of crashes in the U.S. in
2015 were due to driver inattention [3]. A 100-car naturalistic
driving study shows that 80% of all crashes and 65% of near-
crashes involved driver inattention due to distraction, fatigue
or just looking away [4].

Previous approaches to eye gaze tracking rely on expensive
eye tracking devices such as SMI Eye Tracking Glass,
Tobii Pro(eye glass), Eye Link 1000 Plus and Tobii Eye
Tracker(non-eye glass tracker). These devices are costly and
cumbersome, hence they are not suited for monitoring driver
gaze in day-to-day scenarios, as they require wearing of
these devices during test time. In this work, we mitigate
these problems by providing DGAZE, a driver eye gaze
dataset which does not require any expensive hardware
during deployment of models trained with it. Our dataset
consists of image pairs showing the view inside the car and
outside, which can be collected by a dashboard-mounted
mobile phone. Our dataset is collected in a lab setting that
matches real driving conditions. The outside-car scenes are
captured from cars driving in the city and contain a good
variation of lighting and driving conditions. Our dataset has
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Fig. 1: In this work, we develop DGAZE the driver gaze
mapping dataset that includes both driver and road view to
capture driver gaze on the road using low-cost mobile phone
cameras. Using DGAZE, we train I-DGAZE for prediction
of gaze point on road.

more than 100,000 image pairs, each one annotated with the
point and object the driver is looking at. We collect data
using 20 drivers and annotate 103 unique objects on the
road belonging to 7 different classes such as car, pedestrian,
signboard, traffic signal, etc. To counter the lack of eye gaze
trackers, we project the road video in front of the subject (the
’driver’) and ask them to look at a point that is annotated on
the projected video. We collect the dataset in the lab setting
as it is not feasible or safe to ask drivers to look at specific
points while driving on real roads.

Our dataset may be used in two ways: as point or object
prediction of driver eye gaze. In the first task, the exact point
where the driver is looking is predicted. This is useful for
accurate and fine-grained eye gaze determination. Through
this task, we may infer the saccade patterns of the driver
on which further analysis such as the tiredness, attention
or drowsiness of the driver may be inferred. In the second
task, the object on which the driver looks is predicted. This
is beneficial for an advanced driver assistance system by
answering questions such as whether a sign is observed or
whether the driver notices a pedestrian.

We also present I-DGAZE, a model for point prediction
of driver eye-gaze, which is trained on the DGAZE dataset.
Our architecture is a late-fusion convolutional neural network
that uses the left eye image and facial features to predict
the point location of eye gaze on the road video. Our
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algorithm gives an error of 186.29 pixels on the road view
of resolution 1920× 1080 pixels. We show how we use
calibration for each driver to reduce the pixel error down. Our
calibration images are provided with the dataset. We compare
our algorithm with state-of-the-art eye gaze algorithms and
present extensive ablation results.

Our contributions are twofold:
1) We introduce a novel large-scale dataset for predicting

driver eye gaze on the road. Our dataset provides both
the driver and road camera views and is annotated with
point and object-level ground truth.

We propose I-DGaze, a baseline method for point prediction
of driver eye-gaze on the road. We demonstrate how we use
calibration to improve the results of our model.

II. RELATED WORK

Eye Gaze Datasets Several eye gaze tracking datasets are
available for training appearance-based gaze estimators. It
can be categorized as either real-world or synthetic based
on the image generation process, and as either eye-only
or full-face based on image content. Real-world datasets
contain images of real people taken as they gaze at different
points in the environment. ColumbiaGaze contains images
of 56 subjects with a discrete set of head poses and gaze
targets [5]. EYEDIAP contains videos of 16 subjects gazing
at targets on a screen or floating in 3D [6]. MPIIGaze
contains images of 15 subjects when using their laptops [7].
GazeCapture contains images of 1,474 subjects taken while
they were using tablets [8]. RT-GENE contains images of
15 subjects behaving naturally [9]. Commercial eye tracking
glasses were used to provide ground truth gaze direction, and
a GAN was used to remove the eye tracking glasses from
the images. These real datasets are collected by looking at
different points in the environment and costly trackers and
sensors are used to collect it. Otherwise the real dataset is
collected by gazing at tablets or phones. In contrast, our
dataset collection does not require eye gaze trackers and
our dataset provides both the road view and driver view.
Other synthetic eye gaze datasets include UT-multiview [10],
UnityEyes [11] datasets etc to render eye-only images at
arbitrary head poses and gaze directions.

Gaze Estimation Past approaches to appearance-based
gaze estimation have included Random Forests [10], k-
Nearest Neighbors [10], and Support Vector Regression [12].
More recently, the use of deep CNNs to appearance-based
gaze estimation has received increasing attention. Zhang et
al. proposed the first deep CNN for gaze estimation in the
wild [7], which gave a significant improvement in accuracy.
Considering regions of the face outside the eyes has further
improved accuracy. For example, Krafka et al. proposed a
CNN with multi-region input, including an image of the
face, images of both eyes and a face grid [8]. Parekh et
al. proposed a similar multi-region network for eye contact
detection [13]. Zhang et al. proposed a network that takes
the full face image as input and adopts a spatial weighting
method to emphasize features from particular regions of
the face [14]. Other work has focused on how to extract

better information from eye images. Cheng et al. developed
a multistream network to address the asymmetry in gaze
estimation between left and right eyes [15]. Yu et al. pro-
posed to estimate the locations of eye landmark and gaze
directions jointly [16]. Park et al. proposed to learn an
intermediate pictorial representation of the eyes [17]. Lian
et al. proposed to use images from multiple cameras [18].
Xiong et al.proposed mixed effects neural networks to tackle
the problem caused by the non i.i.d. nature of eye tracking
datasets [19]. A Palazzi et al. [20] proposes multi-branch
deep architecture that integrates three sources of information:
raw video, motion and scene semantics(Semantic Segmenta-
tion). The architecture is expensive and requires quite lot of
time to train and test the model.

Driver Gaze Prediction Previous works in driver gaze
prediction approached the problem in two ways. Works such
as [21], [22], [23], [24], [25] focused on the interior of the
car. They divide the inside of the car into separate zones
and predicted which zone the driver was looking at. The
head pose and gaze of the driver were collected using a
video camera installed on the steering wheel column of
the car. The system computes the gaze using the track
landmark and a 3-D model [26]. Another work in this
class is Deep Learning-Based Gaze Detection System for
Automobile Drivers Using a NIR Camera Sensor [27]. The
paper proposes a deep learning-based gaze detection method
using a near-infrared (NIR) camera sensor considering driver
head and eye movement that does not require any initial user
calibration.

The other approach focuses solely on the regions out-
side the car. DR(eye)VE [20] predicts the driver’s focus
of attention on the road. The goal is to estimate what a
person would pay attention to while driving, and which
part of the scene around the vehicle is more critical for
the task.They introduce large dataset of 500,000 frames
consisting of driving scenes and corresponding eye-tracking
annotations. The driving scenes are made by matching ego-
centric views (from glasses worn by drivers) and car-centric
views (from roof-mounted camera), further enriched by other
sensors measurements. In contrast to these approaches, our
dataset is unique in providing both inside car view and
outside car view.

III. DGAZE: DRIVER GAZE MAPPING DATASET

A. Data Collection Set-up

In this section, we present DGAZE, a new dataset for
mapping the driver’s gaze onto the road. This is an important
task as its output can be further processed to determine where
the driver is focusing, whether the driver is inattentive (when
the driver looks off the road for example) and to determine
the fatigue level of the driver by observing their eye move-
ments [1]. Currently, driver gaze datasets are collected using
eye-tracking hardware which are expensive and cumbersome,
and thus unsuited for use during testing. Thus, our dataset
is designed so that no costly equipment is required during
test time. Models trained using our dataset requires only a
dashboard-mounted mobile phone during deployment, as our
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Fig. 2: DGAZE Collection Setup: Dataset is collected in lab
setting which matches closely with real driving setting. A
mobile phone camera is attached to tripod stand at a similar
height and distance as a mobile phone camera mounted on
the wind shield of a car. The phone uses its front and back
cameras to collect both the driver view and projected road
view at the same frame rate.

data is collected using mobile phones. We collect the data in
a lab setting with a video of a road projected in front of the
driver. We overcome the limitation of not using eye trackers
by annotating points on the road video and asking the drivers
to look at them.

The task of driver eye-gaze can be solved as point-wise
prediction or object-wise prediction. We provide annotation
so that our dataset can be used for point-wise as well as
object-wise prediction. Both types of eye-gaze prediction
are useful. Predicting the object which the driver is looking
at is useful for higher-level ADAS systems. This may be
done by getting object candidates using an object detection
algorithm and using the eye gaze to predict which object is
being observed. Object prediction can be used to determine
whether a driver is focusing on a pedestrian or if they noticed
a signboard for example. Point-wise prediction is much more
fine-grained and are more useful for nearby objects, as they
show which part of the object is being focused on. They can
be used to determine the saccade patterns of the eyes or to
create a heatmap of the attention of a driver. They may even
be converted into object-wise prediction. Our dataset allows
both types of analyses to be conducted. We discuss the set-
up used for collecting our dataset and the dataset statistics
below.

The DGAZE dataset is collected in a lab which is set up to
mimic real driving conditions. The layout of the lab is shown
in Figure 2. A participant (henceforth referred to as ’driver’)
sits in front of a backdrop of the interior of a car. A video of
a road having resolution 1920×1080 is projected in front of
the driver. The video is collected using dash-board mounted
cameras of cars driving on roads at different times of the day
and differing traffic conditions. We mount a mobile phone on
a tripod in front of the driver at a height and distance from
the driver similar to that of a dash-board mounted phone. We
use the front and rear cameras to simultaneously collect the
videos of the driver and the projected video using the same
frame-rate. The application used for recording is the HAMS

application, previously used in [28], [29] for data collection.
At every step, care is taken to make the set-up as realistic
as possible. (See Figure 7 for examples of the driver-side
videos.) In place of using expensive eye-gaze trackers that
are cumbersome, we annotated a single object on each frame
of the projected video with a bounding box and marked the
center of it. (See Figure 3 for example frames). We asked the
driver to look at the center of each object. Thus, the dataset
can be used for gaze prediction at a point or object level.

The projected video has special calibration frames at the
start and end, which serves to synchronise the projected
video with the videos taken by the mobile phone. We align
the videos by carefully dropping frames of the longer video.
The following equation is used to compute the frame drop:

f d =
max( f c(Vr), f c(Vd))

| f c(Vr)− f c(Vd)|
(1)

where f d denotes the number of frames after which a frame
is dropped., f c denotes the frame count, Vr is the road video,
and Vd denotes the driver video.

B. Dataset Collection

We collected road videos using mobile phones mounted
on the dash-boards of cars driven in the city. We combined
the road videos to create a single 18-minute video that had
a good mix of road, lighting and traffic conditions. The road
images have varied illumination as the images are captured
from morning to evening in the real cars on actual roads.
For each frame, we annotated a single object belonging to
one of the classes: car, bus, motorbike, pedestrian, auto-
rickshaw, traffic signal and sign board. We also marked the
center of each bounding box to serve as the groundtruth
for the point detection challenge. We annotated objects
that typically take up a driver’s attention such as relevant
signage, pedestrians and intercepting vehicles. See Figure 3
for examples of annotated objects belonging to each class. In
total, the collated video has 103 different objects annotated.
The objects in the video are annotated using the dlib [30]
correlation tracker implementation based on Accurate Scale
Estimation for Robust Visual Tracking [30]. The tracking
algorithm works in real-time by tracking the objects that
change in both translation and scaling throughout a video
sample.

We collected videos of 20 drivers in the 20-30 age group.
The drivers were both male and female and included some
people wearing eye glasses. Each driver was seated in front
of the car back drop and was asked to gaze at the marked
points of the 18-minute video. All drivers are given the
same sequence of videos in the same order. In addition, we
collected the videos of each driver looking at 9 calibration
points spread equally across the screen.

C. Dataset Statistics

We collected 18-minute videos for each of the 20 drivers in
our study. The frames were extracted to obtain approximately
100,000 dataset samples. Each sample consists of an image
of the road with an annotated object, and an image of the
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Fig. 3: Samples from DGAZE dataset corresponding to seven unique objects annotated on road. The samples are collected
such that there is significant variation in the size of the object, distance of the object from the driver and illuminance variation
on road.
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Fig. 4: Number of annotated objects in views corresponding
to each unique object on road

driver looking at the center of the annotated object. We also
provide samples corresponding to the 9 calibration points.
Table I shows the comparison of DGAZE dataset with other
existing datasets. Works such as [31], [32], [5], [6], [10],
[7], [33], [8] collect eye gaze data by displaying predefined
gaze points on a monitor display, mobile phone or tablet
screen with the aim of predicting user gaze on these device
screens. On the other hand, the proposed dataset can be used
for driver gaze mapping on the road.

We have annotated 103 unique objects belonging to 7
classes in the 18-minute road video. Figure 4 shows the
number of annotated objects in the views corresponding
to each class. We show a few examples in Figure 3. The
annotated objects are of various sizes on the screen. We have
annotated objects that are very near as well as objects that

(a) (b)

Fig. 5: Heatmaps depicting the spatial distribution of facial
features and annotated objects in the dataset. (a) The spatial
distribution of the left eye, right eye and mouth for the
entire dataset is shown as red, blue and green heatmaps
respectively. (b) The heatmap shows the distribution of
annotated objects and the blue dots depict the ground truth
point distribution.

are quite far on the road. Figure 5(b) shows a heat-map of the
position of objects on the road video, as well as the position
of points. As we can see, the objects cover a good portion of
the video, except the top part (as the sky realistically does
not contain many objects of interest.) The objects also move
and leave realistic trails, which means the dataset may be
used as a video dataset also.

Figure 5(a) shows how the position of the eyes and mouth
vary in the dataset samples, We observe that there is a good
variation of eye and mouth positions, but they remain within
realistic bounds for drivers.

IV. I-DGAZE: GAZE PREDICTION ARCHITECTURE

We present I-DGAZE, a model for point prediction of
driver eye gaze trained on the DGAZE dataset. Accurate gaze
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Target Type #People Poses Targets Images
[31] Monitor display 20 1 16 videos
[32] Fixed Gaze Target 20 19 2-9 1,236
[5] Fixed Gaze Target 56 5 21 5,880
[6] Monitor display 16 cont. cont. videos

[10] Monitor display 50 8+synth. 160 64,000
[7] Laptop Screen 15 cont. cont. 213,659

[33] Mobile tablets 51 cont. 35 videos
[8] Mobile and Tablet 1474 cont. 13+cont. 2,445,504

DGAZE Projected Road View 20 cont. 9+cont. 100,000

TABLE I: Comparison of DGAZE with other eye gaze
mapping dataset

estimation requires the knowledge of the position and angle
of the head and the direction of gaze of the eye. Taking this
into consideration, we design our model as a two-branch late-
fusion network. The first branch takes as input facial features
such as face location and head pose. The second branch takes
in the left eye image as input. The output of the network is
the x, y location of the eye gaze on the road video. In Section
IV-A, we describe the facial features required for I-DGAZE
and the algorithms used to extract these features. In section
IV-B, we describe second branch of our network. Section
IV-C describes the I-DGAZE architecture.

A. Feature Branch

This branch of the network takes as input several facial
features so that the network may work out the position of the
head. The features are computed with dedicated deep models
trained for the corresponding tasks and fed as input to the
feature branch. The face of the driver is first detected using
DLIB [34] which gives the bounding box, as well as the
facial landmarks, including the pupil locations. We codify the
location using the coordinates of the face bounding box and
the nose. The distance of the head from the screen is another
important variable. Since we cannot measure it directly, we
use the area of the facial bounding box as an approximation,
with the assumption that the facial area does not vary much
between drivers. Thus a large facial area may be considered
to mean that the head is close to the camera and vice-versa
for a small facial area. We find the head pose using [35]. We
use the yaw, pitch and roll angles as input to indicate the
head pose. The location of the pupils of the eye is also used
as input to the feature branch, as it helps to determine the
gaze direction. The final input vector has 10 elements which
consist of the face area, roll, pitch and yaw of the head and
the x,y coordinates of both the pupils and the nose.

B. Eye Branch

This branch takes in the cropped image of the left eye as
input. The image is cropped and resized to size 36×60×3.
The eye region is obtained from the facial key landmarks
detected around the eyes using the algorithm explained
above. Here, the assumption is that the movement of the
pupils of both eyes is correlated, so we need to use only one
eye image.

Face Location

Head pose

X

Y

Left Eye Image

36 x 60 x 3 Flattened

Facial Features

D
ense Layer

Fully C
onnected Layer

Conv_1
Convolutional

Max-Pooling
Conv_2

Convolutional
Max-Pooling

Face Area
Feature fusion

Output gaze 
point

Output image

Predicted
Ground truth

Pedestrian

Fig. 6: I-DGAZE Architecture to predict driver gaze on road.
The network is a two-branch late fusion convolutional neural
network with input to one branch as eye image and input
to the other branch as facial features like head pose, face
location and distance of the driver’s face from the mobile
phone camera.

Left eye branch
Layer Kernel Output Shape
Conv2D 1 3×3 34×58×20
MaxPool2d 1 2×2 17×29×20
Dropout 17×29×20
Conv2D 2 3×3 15×27×50
MaxPool2d 2 2×2 7×13×20
Flatten 1 4550

Feature branch
Layer Kernel Output Shape
Dense 1 16

Fused branch
Layer Kernel Output Shape
Merge 1 4566
Dense 2 500
Dense 3 2

TABLE II: The table shows the architecture of the I-DGAZE
network, as shown in Figure 6.

C. Architecture and Training Details

The overall structure of the I-DGAZE model is given in
Figure 6 and table II. We have used a modified version of the
architecture proposed in MPIIGaze [7] The eye branch takes
as input the image of the left eye of size 36×60×3 which
is passed through LeNet style model used in [36] where the
image is first passed through a first convolutional layer with
20 channels followed by max-pooling and then passed to
another convolutional layer with 50 channels followed by
max-pooling and then the output from the max pool layer is
flattened to get 4550-dimensional feature vector. The feature
branch takes a 10-dimensional face feature vector as input
which then goes through one fully-connected layers of output
size 16. The feature branch and eye branch are merged into
the common branch resulting in 4566 dimensions. This is
then passed through one fully connected layers of output
dimensions 500. The final 2-dimensional output vector cor-
responds to the x,y coordinates of the driver’s eye gaze on
the road view.

We use mean absolute error as our loss function. We train
the network using Adam [37] with a learning rate of 1e-3
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and weight decay of 1e-5. The network was trained for 60
epochs with a batch size of 32.

D. Calibration

The I-DGAZE model learns a relationship between the
driver view and the road view. However, the position of
the camera may change between sittings. Also the height
of the driver and the positions of the eyes also vary. Thus,
we perform an additional calibration step for each driver to
create driver-specific models. We use 9 additional calibration
points for each driver, which is included in the dataset. This
comes to about 1000 image pairs for each driver.

The procedure for calibration is as follows. We first train
a generic I-DGAZE model using the training procedure
described in Section IV-C.We then freeze the left eye branch
and the feature branch and finetune only the fused branch
using the calibration frames of the specific user. The fine-
tuning is performed using Adam optimizer with a learning
rate of 1e-4 and weight decay of 5e-4 per epoch. and run
for ten epochs to obtain the user-specific model. In Section
V, we show that calibration greatly reduces the error of the
model.

V. EXPERIMENTAL EVALUATION AND RESULTS

In this section, we thoroughly evaluate the performance
of I-DGAZE for point prediction task on the DGAZE
dataset. I-DGAZE outperforms other state-of-the-art models
in predicting driver gaze. The pixel error for driver gaze
prediction is 186.89 pixels on average without calibration
and is reduced to 182.67 pixels on calibration. We also
present the qualitative results for the I-DGAZE architecture
and an ablation study to evaluate the various components of
I-DGAZE.

We split the dataset into train, validation and test sets
as follows. Of the 20 drivers, 16 were used for training,
2 for validation and 2 were used for testing. The 18-minute
road video consists of 103 smaller video sequences, each
containing a single tracked object. Of these 60% sequences
were used for training, 20% for validation and 20% for
testing. Thus, our test data contains 2 unseen drivers and 20
unseen object tracks. In total, 98306 image pairs were used
for training, 4779 for validation, and 3761 were used for
testing. In addition, we used image-pairs from 9 sequences
corresponding to the calibration points for each driver to be
used in the calibration procedure.

A. Evaluation Metrics

We evaluate our results using mean absolute error between
the ground truth gaze point and the predicted gaze point as
used previously in [33], [8]. The error between the prediction
and ground truth is measured in pixels. Note that the overall
size of the road image is 1920× 1080 pixels and the error
should be interpreted relative to it. The mean absolute error
is first observed by training I-DGAZE model using 95,000
images. This error is further reduced by fine-tuning the model
using images corresponding to calibration points and creating
driver-specific models.

B. Qualitative and Quantitative Results

Table III shows the quantitative results obtained by train-
ing I-DGAZE model on the DGAZE dataset and its com-
parison with state-of-the-art eye gaze models. We compare
our results with methodologies proposed in TurkerGaze [38],
where they use pixel-level face features as input and use
Ridge Regression to estimate gaze point on the screen.
Specifically, they rescaled each eye image to size 6×10 and
then performed histogram normalization, resulting in a 120-
D appearance feature vector for both eyes. The vector is
then regressed to the gaze co-ordinates. We also compare
our results with MPIIGaze [7], which has state-of-the-art
results for eye gaze estimation in wild and Eye-tracking for
Everyone [8] which predicts user gaze on phone and tablet.
The implementation is adapted from the reference code
provided by the authors. We observe that the performance of
I-DGAZE is comparable to all the above approaches as it is a
fusion of high-resolution pixel-level eye image in one branch
and specific facial features relevant to the gaze prediction in
the other branch.

Figure 7 presents the qualitative results of the predicted
driver gaze fixation. From left to right: column 1 shows the
driver image, column 2 shows road image, column 3 shows
the annotated object as a green dot and the IDGAZE gaze
prediction as a red dot. In column 4, we show the result
of the I-DGAZE model on video sample and we observe
that there may be some error between the ground truth gaze
point and the prediction and results in avg error of 186.29
pixels on the road view of resolution 1920× 1080 pixels.
Column 5 shows the result of I-DGAZE after fine-tuning the
model using images corresponding to calibration points for
one driver. The error got reduced after calibration and hence
the eye gaze model gives fine gaze prediction on road. We
have provided additional gaze mapping results on short video
clips with and without calibration in the video summary of
this paper.

C. Ablation Study

We conduct ablation studies to understand the importance
of the various inputs to our model. Our results are shown in
Table IV. The first two rows use only the left and right eye
images without the facial features. The gaze prediction error
is higher for these models, indicating that the facial features
provide crucial information regarding the global position of
the face in the frame, which is required for gaze estimation.
Rows 3 and 4 takes the left eye along with facial features as
input. Our I-DGAZE model in the 4th row uses facial area
in addition to facial landmarks and head pose, which serve
to capture the distance between the driver’s head and the
camera. This gives a marginal improvement in results. Thus,
we can see that the combination of inputs for the I-DGAZE
model gives the best gaze prediction results.

We also experiment with using both left and right eye
images along with facial features. For this model, we take
three branches for the left eye, right eye and features which
are merged into one branch similar to the I-DGAZE model.
Our experiments show that adding both eyes do not improve
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Driver View Road View I-DGaze Prediction I-DGAZE for videos
(Before Calibration )

I-DGAZE for videos
(After Calibration)

Fig. 7: Qualitative assessment of the predicted driver gaze fixation. From left to right: driver image, road image, I-DGAZE
for gaze prediction in images, I-DGAZE for gaze prediction in multiple frames without calibration and I-DGAZE for gaze
prediction in multiple frames with 9-point calibration.

Without Calibration

Method Train
Error

Val
Error

Test
Error

Description

Turker Gaze [38] 171.300 176.37 190.717 Pixel features + Ridge Regression
MPII Gaze [7] 144.32 229.0 189.63 CNN + head pose
iTracker [8] 140.1 205.65 190.5 fc1 of iTracker [8] + SVR
I-DGAZE 133.34 204.77 186.89 CNN + Facial Features

TABLE III: Comparison of I-DGAZE with existing gaze
prediction methods. The facial features include location of
the face, nose and pupils, head pose, face area and image of
the left eye.

the gaze prediction. This is because the movement of both
eyes are correlated and the facial features include the position
of both pupils.

VI. CONCLUSION

In this work, we presented DGAZE, a large-scale dataset
for driver eye gaze prediction on the road. Our dataset
provides 227,178 image pairs of driver view and road view.
The road view is collected in a range of lighting and driving
conditions with the ground-truth gaze points covering a large
area of the road view. DGAZE may be used for point-level or
object-level gaze prediction. We also presented I-DGAZE, a
deep model trained on DGAZE for point prediction of driver
eye gaze. The architecture is a two-branch late fusion neural
network that takes as input the image of the left eye of the
driver as well as other facial features to give an accuracy of
186.89 pixels on the road view of resolution 1920× 1080

Without Calibration With Calibration

Method Train
Error

Val
Error

Test
Error

Val
Error

Test
Error

LEye 151.07 200.07 202.6 176.70 206.28
LEye + REye 166.36 162.77 226.48 160.33 196.88
LEye + HP+ FL 136.58 199.73 187.77 185.48 186.50
LEye + HP + FL + FA (I-DGAZE) 133.35 204.77 186.89 187.18 182.67
LEye + REye + HP + FL + FA 117.05 198.08 201.26 186 200.5

TABLE IV: Ablation study of I-DGAZE model. Here, LEye
= Left Eye, HP = Headpose, FL = Face Landmark Location
and FA = Face Area

pixels. We introduce a calibration procedure that allows us
to create driver-specific models.

Unlike previous driver gaze systems, our dataset and
model can be used to predict driver gaze without the use
of any specialized hardware, thus reducing the cost of de-
ployment and making the technology widely accessible. The
dataset also enables the study of driver behavior such as road
conditions that increase driver distraction, the way eye gaze
changes for far or near objects and salient areas of the road
which the driver pays attention to. We believe that our dataset
and models will encourage the creation of better ADAS
systems, thereby reducing the number of road accidents and
improving driver safety. The code, data, and models are
available at https://github.com/duaisha/DGAZE.git.
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