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Abstract. Multi-object tracking has seen a lot of progress recently, al-
beit with substantial annotation costs for developing better and larger
labeled datasets. In this work, we remove the need for annotated datasets
by proposing an unsupervised re-identification network, thus sidestep-
ping the labeling costs entirely, required for training. Given unlabeled
videos, our proposed method (SimpleReID) first generates tracking labels
using SORT [3] and trains a ReID network to predict the generated la-
bels using crossentropy loss. We demonstrate that SimpleReID performs
substantially better than simpler alternatives, and we recover the full per-
formance of its supervised counterpart consistently across diverse tracking
frameworks. The observations are unusual because unsupervised ReID
is not expected to excel in crowded scenarios with occlusions, and dras-
tic viewpoint changes. By incorporating our unsupervised SimpleReID
with CenterTrack trained on augmented still images, we establish a new
state-of-the-art performance on popular datasets like MOT16/17 without
using tracking supervision, beating current best (CenterTrack) by 0.2-0.3
MOTA and 4.4-4.8 IDF1 scores. We further provide evidence for limited
scope for improvement in IDF1 scores beyond our unsupervised ReID in
the studied settings. Our investigation suggests reconsideration towards
more sophisticated, supervised, end-to-end trackers [56,5] by showing
promise in simpler unsupervised alternatives.

Keywords: Multi-Object Tracking, Re-Identification, Unsupervised Learn-
ing

1 Introduction

Understanding human interactions and behaviour over videos has been a fun-
damental problem in computer vision with applications in action recognition,
sports video analytics, and assistive tech and requires tracking multiple people
over time. Multi-object trackers broadly consist of two key components: (i) A
spatio-temporal association model which associates boxes in nearby frames to
create clusters of tracklets, and (ii) A re-identification model which associates
tracklets over larger windows to deal with complexities in tracking such as occlu-
sions and target interactions. Re-identification is a major challenge in tracking,
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with sophisticated supervised approaches requiring expensive annotations to
assign trajectories across frames to every single person in a video. Availability of
labeled datasets[36,37] has alleviated the problem. For instance IDF1 (MOTA)
scores have improved from 51.3(48.8) [49] to 59.9 (55.9) [5] on the MOT16 [37]
benchmark in the past 3 years.

There has been a growing need to annotate larger tracking datasets with the
aim of improving re-identification (ReID) models. However, annotating tracking
datasets require hefty labeling costs and scale poorly with dataset size. To
illustrate the effort and cost required, annotating 6 minutes worth of video of the
MOT15 benchmark [27] using the standard annotation procedures would take at
least 22 hours of annotation time [36]. Annotating just twenty-six hours of video
data (VIRAT dataset [39]) with state-of-the-art protocols in place [39,50] costs
tens of thousands of dollars. We propose to learn our model in an unsupervised
manner in the free-labels paradigm (Section 6.3.2 in [21]) in a two-step manner.
We first generate tracking labels given unlabeled videos and the corresponding
set of detections. Then, we learn a ReID network to predict the generated label
given an input image. To the best of our knowledge, ours is the first work to
propose unsupervised ReID models for multi-object tracking and completely do
away with the tremendous annotation costs for tracking datasets. Throughout
the paper, we consider supervision only in the context of sidestepping trajectory-
level annotations. Using off-the-shelf detectors [41,40,7] trained on COCO is not
viewed as supervision in our context. The proposed ReID network complements
the unsupervised spatio-temporal association models [53,1] proposed in the prior
art, leading to a more complete unsupervised tracking framework.

We go one step further and aim to test the limits of our unsupervised tracking
paradigm. We empirically test for two desiderata w.r.t IDF1 scores: (i) Our
unsupervised ReID should perform significantly better than naive ReID methods
when incorporated into any tracker; (ii) Our unsupervised ReID should achieve
performance equivalent to the original supervised counterpart. We demonstrate
that we are able to achieve these desiderata consistently across datasets, detectors,
and diverse trackers. The resultant unsupervised tracker, when combined with
CenterTrack [69] trained on single images, achieves state-of-the-art performance
on the MOT16/17 test challenge server. We beat the latest supervised trackers
by large margins, outperforming CenterTrack by 0.3 MOTA, and 4.8 IDF1 scores.
We then demonstrate that there is limited scope for further improvement beyond
our proposed unsupervised ReID by demonstrating that the Oracle counterpart
of our ReID model makes only minor gains.

We would also like to highlight that while our work is conceptually simple, the
contributions made are significant. We expect our investigation to be of significant
interest to the MOT community by demonstrating that simple unsupervised ReID
is sufficient even in crowded scenarios with occlusions and person interactions.
Our investigation contrasts the current shift towards using more supervised,
end-to-end trackers for MOT Challenge datasets. We hope our work spurs
research in the unsupervised MOT paradigm, exploring extensions to other
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tracking scenarios (3D/vehicles/pose tracking) and do away with the labeling
effort wherever unnecessary.

2 Related Works

Monocular 2D multi-object tracking on videos is an extensively studied problem.
[13] offers a comprehensive review of works on MOT Challenge datasets. A
popular paradigm is to model the detections as a graph. Various approaches
have been proposed here including using network flows [62], graph cuts [49],
MCMC [60] and minimum cliques [61] if the entire video is provided beforehand
(batch processing). In scenarios where we get frame-by-frame input, Hungarian
matching [53,3], greedy matching [69] and Recurrent Neural Networks [15,43]
are popularly used models for sequential prediction (online processing). The
association metrics/cost functions used by these consist of (i) Spatio-temporal
relations (ii) Re-identification.

Spatiotemporal relations: There has been much investigation into appearance-
free methods for the spatio-temporal association. Basic methods proposed include
using Intersection-Over-Union (IoU) between detections [4] or incorporating a
velocity model using a Kalman filter [3]. The velocity model can also be learned
using Recurrent Neural Networks [15,43]. The complexity of assigning pairwise
costs can be further increased by incorporating additional cues from head/joint
detectors [6,19], segmentation [38], activity recognition [10], or keypoint trajec-
tories [9]. Recent approaches leverage appearance-reliant pre-trained bounding
box regressors from object detection [1] or single object tracking [56,11] pipelines
to regress the bounding box in the next frame. Since most of the above models
are unsupervised (requiring no tracking annotations), they complement our work
and can be incorporated with our proposed approach for creating efficacious
unsupervised trackers.

ReID across multiple cameras: Supervised training of CNNs [68] on large
labeled datasets [65,30] has given excellent results for ReID across multiple
cameras. In addition to this, there have been approaches to exploit the pose
information using off-the-shelf body pose detectors [47,48]. Attention mechanisms
have also been explored to capture the important regions in the foreground [45,46].
Generative models have been employed to augment the training data for improved
performance [66,31]. We recommend this excellent survey [58] for a complete
review. In contrast, we work on tracking with a single camera, with reasonable
frame-rates (no drastic appearance variations). Additionally, the objective is to
distinguish the target pedestrian among a small set of different looking pedestrians
in a given frame, with the aid of additional detection information. Hence, we
believe our simple, noisy unsupervised re-identification model might suffice.
Sophisticated unsupervised ReID networks [32,29] designed for multiple cameras
ReID may not be required for MOT.

ReID for monocular 2D tracking: Re-identification has been a major
challenge in tracking, with matching using similarity between CNN features
being the dominant approach [42]. Past works have proposed different methods
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to train the CNN ranging from using siamese networks [26] with triplet loss,
further augmented by hard negative mining [1] or other metric learning losses
like cosine loss [53]. Incorporating a combination of loss functions [34] or pose
information [49] as well as fine-tuning the ReID model on the test sequence [34].
All the above ReID networks are supervised and fairly complex to train. We
are the first work to demonstrate that simple unsupervised ReID networks are
sufficient for this context. It is important to note that in most MOT pipelines,
this is the only component that uses tracking annotations.

Evaluation metric for MOT: Multi-Object Tracking Accuracy (MOTA)
is not a good metric to illustrate ReID performance because it focuses on object
coverage and therefore is dominated by false negatives. An excellent detector can
achieve high MOTA scores despite being a poor tracker with a large number of
ID switches [69]. Identity-F1 (IDF1) has been shown to measure long consistent
tracks without switches and widely shown [35,13] to be a better metric for tracking
performance. We accordingly focus and emphasize on IDF1 scores.

End-to-end supervised MOT: Recent works circumvent the above paradigm
either partially or completely by learning the MOT solver using end-to-end su-
pervision. Early works [51,44] performed end-to-end learning in the min-cost flow
data association framework. Recently, approaches like [56] and [5] perform end-to-
end optimization by introducing differentiable forms of Hungarian matching and
clustering formulation, respectively. Parallel works [69,64,52] attempt to perform
simultaneous object detection, data association, and sometimes re-identification
in a single network. Most notable among these, CenterTrack [69] is capable of
training the detector using only augmentations of still images. These methods
involving joint detection and tracking deliver high performance at real-time infer-
ence speeds but require high annotation costs. Our work differs in principle by
removing and replacing supervised components yet outperforming these trackers,
without incurring the associated labelling cost.

3 Approach

Our goal is to leverage the abundance of unlabeled videos to learn ReID models
(without manual cost). Our unsupervised learning method can be categorized
as learning by generating labels (Ref. Section 6.3.2 of [21]). In a nutshell, given
unlabeled videos and corresponding bounding boxes, we first generate tracking
labels. We then learn a ReID network by predicting the generated label given a
detection.

3.1 Framework: Learning by generating tracking labels

Here, we describe the two parts of our proposed framework in detail: (i) Gen-
erating the labels, and (ii) Learning the network. Generating labels: Given
a set of videos, each video is passed independently through an object detector.
An unsupervised spatiotemporal association model from the list given in Table
1 (left) is then run through the detections to obtain short contiguous tracks or
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Model Ref

Kalman filter+Hungarian matching [3]
IoU based tracking [4]
Network Flow [62]
Linear Programming [28]
Conditional Random Fields(CRFs) [38]
Markov Decision Proceses(MDPs) [54]
Recurrent Neural Networks(RNNs) [43]
Bounding Box Regression [1]

Training Strategy Ref

Crossentropy [49]
Triplet+hard negative mining [1]
Contrastive [25]
SymTriplet [63]
Cosine Loss [53]
Joint Detections [49]
Verification+Classification Loss [34]

Table 1. Approaches use for Spatiotemporal data association (Left). Loss functions
and methods used to train CNNs for Appearance modeling (Right). We choose the
simplest approach for both these components.

tracklets (set of associated detections of the same person over time). Examples of
spatiotemporal models can range from tracking using a constant velocity assump-
tion with Kalman filtering [3] (bounding box information only) to incorporating
appearance features by using pre-trained bounding box regression from object
detection pipelines to regress the bounding box [1] in the next frame. Now to
cluster/associate detections, we can use online methods like greedy/Hungarian
matching or expensive offline methods like graph-cuts. Ultimately, the output
of this step is a set of noisy track labels for each video, resulting in a pool of
labeled video tracklets.

Training ReID models: Now, given noisy track labels per video, the task
is to learn a ReID model using any of the methods given in Table 1 (right). In
absence of trajectory level supervision, the challenge here is to explore ways to
harness the given regularities in data (in form of tracklets). There are two simple
assumptions which can help the cause: (i) The videos are independent of each
other (i.e., no common tracks between any two videos), and (ii) the tracklets
within a video are independent of each other (i.e., each tracklet belongs to a
different person). If both the assumptions are followed then each tracklet can
be considered as an independent class. The simplest option which follows is to
train at network to predict a label given an image, optimized with cross-entropy
loss (with number of classes equalling to the number of tracklets). However,
assumption (ii) may break in cases like missed detections and occlutions and may
result into multiple tracklets for the same person in a video.

An alternate option (by relaxing assumption (ii)) could be to form positive
pairs from the same tracklet and negative pairs from across other videos or
simultaneous tracks from the same video. Such pairing can enable learning
Siamese networks to compare two images and predict whether they are the same
person or not. They can be trained with pairwise losses such as contrastive loss
[25] or triplet loss with hard-negative mining [1], or more complex ones like
symtriplet [63] or the group loss [14], resulting in a trained ReID network.
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Fig. 1. Overview of our approach: Given a video with detections, we use SORT [3] to
simulate noisy tracking labels. Then, we train the ReID network (ResNet50) to predict
the track label for each input image.

3.2 Our method

We use simple methods to both simulate labels and learn the ReID network, as
illustrated in Figure 1. In step (i), we only utilize the bounding boxes and use
Kalman filtering combined with Hungarian matching to simulate labels. Since
we use no appearance information, our tracking labels are noisy. In step (ii), we
proceed by making both the aforementioned assumptions that no two videos or
tracklets share common labels. We assign a unique label to each tracklet and
train a network with cross-entropy loss to predict this label given any image
from that tracklet. At inference time, we integrate our ReID model into existing
frameworks by simply replacing their models with ours, with no other changes.
In CenterTrack, we extract tracks using its unsupervised model and refine it
with our ReID network using a DeepSORT framework. Although we are aware
that some enhancements can be performed to our proposed process (e.g., using a
siamese framework), we show in subsequent sections that simpler choices alone
are sufficient to match the performance of supervised networks.

4 Experiments

In a nutshell, in this section we incorporate our developed unsupervised ReID
model (SimpleReID) into various trackers and show compelling evidence for three
results: (i) our unsupervised tracker obtains state-of-the-art tracking performance
on MOT16/17, outperforming recent works (ii) naive unsupervised trackers can
replace their supervised counterparts consistently (iii) there is limited scope for
improvement beyond our unsupervised ReID complemented with better detectors
in settings we tested.

4.1 Experimental Setup

Datasets: We evaluate our performance on the standard multi-object tracking
benchmark– MOT Challenge – which consists of several challenging pedestrian
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tracking sequences with frequent occlusions, crowded scenes with sequences
varying in their angle of view, size of objects, camera motion, and frame rate. It
contains two challenging tracking benchmarks, namely MOT16 and MOT17 [37].
They both share the same training and testing sequences, but MOT16 provides
only DPM [16] detections, whereas MOT17 provides two additional sets of public
detections (namely Faster R-CNN [41] and SDP [57]) and has more accurate
ground truth. The primary metrics used for measuring performance are MOTA [2]
and IDF1, which are a combination of simpler metrics like False Positives, False
Negatives, and ID Switches.
Implementation details: We obtain our SimpleReID model by training a
ResNet50 [17] backbone popularly used by trackers for a fair comparison. We
train the model with tracklets generated by SORT [3] on the PathTrack [36]
dataset to test generalization to unseen MOT16/17 data. We perform analysis
studies on the entire training dataset and report results on MOT Challenge
hidden test set 3. Our model was implemented using PyTorch and Torchreid [67]
and trained on a GTX1080Ti GPU. For any tracker used [53,1], we utilize
the implementations provided by the authors, leaving all the hyperparameters
unchanged and simply replacing their supervised ReID model with SimpleReID.
We use the CenterTrack model trained with single images w.r.t augmentations
and incorporate the SimpleReID model using the DeepSORT framework. Our
code and pretrained models will be released upon acceptance of the paper.

4.2 MOT Challenge Benchmark Evaluation

We submit our best performing unsupervised tracker to the MOT Challenge
Benchmark. The submitted tracker consists of our proposed SimpleReID model
incorporated with CenterTrack [69] for bounding box regression using public
detections. We compare the performance on the MOT Challenge test set with
state-of-the-art supervised trackers and provide results in Table 2. Surprisingly,
we observe that our developed unsupervised tracker outperforms all supervised
trackers on MOT16/17 setting a new state-of-the-art in terms of MOTA and
IDF1 scores among all trackers on public detections.

We beat the previous best tracker (CenterTrack) by 0.2/0.3 MOTA and
4.4/4.8 IDF1 scores on MOT16/MOT17, respectively. The significant increase in
IDF1 score can be entirely attributed to the efficacy of our SimpleReID model,
because while CenterTrack is a good detector, it cannot maintain long tracks
which is compensated by using our appearance features for Re-identification. We
reduce ID switches made by CenterTrack by nearly 3x, achieving the lowest ID
switches compared to other online trackers.

4.3 Analysis

Past literature [49,34] indicates that unsupervised ReID is unlikely to excel in
crowded scenarios due to the complexities of tracking in such scenes. In this

3 The MOT Challenge web page: https://motchallenge.net.

https://motchallenge.net
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Detector Method Published Unsup MOTA↑ IDF1↑ IDSw↓ FP↓ FN↓

MOT16

Batch

GCRA [33] ICME18 × 48.2 48.6 821 5104 88586
HCC [34] ACCV18 × 49.3 50.7 391 5333 86795
LMP [49] CVPR17 × 48.8 51.3 481 6654 86245
MPN [5] CVPR20 × 55.9 59.9 431 7086 72902

Online

AMIR [43] ICCV17 × 47.2 46.3 774 2681 92856
KCF [11] WACV19 × 48.8 47.2 906 5875 86567
RAR16 [15] WACV18 × 45.9 48.8 648 6871 91173
MOTDT [8] ICME18 × 47.6 50.9 792 9253 85431
STRN [55] ICCV19 × 48.5 53.9 747 9038 84178
DeepMOT [56] CVPR20 × 54.8 53.4 645 2955 78765
CenterTrack [69] Arxiv20* X 62.2 54.1 1677 5433 61767
DMAN [70] ECCV18 × 46.1 54.8 532 7909 89874
Tracktor++v2 [1] ICCV19 × 56.2 54.9 617 2394 76844
MIFT Arxiv20* × 60.1 56.9 739 6964 65044
Ours - X 62.4 58.5 588 5909 61981

MOT17

Batch

MHT [23] CVPR15 × 50.7 47.2 6543 46638 224955
FWT [18] CVPRW18 × 51.3 47.6 2648 24101 247921
MHT-bLSTM [24] ECCV18 × 47.5 51.9 2069 25981 268042
jCC [22] TPAMI18 × 51.2 54.5 1802 25937 247822
MPN [5] CVPR20 × 55.7 59.1 1433 25013 223531

Online

FAMNet [12] ICCV19 × 52.0 48.7 3072 14138 253616
DeepMOT [56] CVPR20 × 56.7 52.1 2351 8895 233206
MOTDT [8] ICME18 × 50.9 52.7 2474 24069 250768
CenterTrack [69] Arxiv20* X 61.4 53.3 5326 15520 196886
Tracktor++v2 [1] ICCV19 × 56.3 55.1 1987 8666 235449
DMAN [70] ECCV18 × 48.2 55.7 2194 26218 263608
MIFT [20] Arxiv20* × 60.1 56.4 2556 14966 206619
STRN [55] ICCV19 × 50.9 56.5 2397 25295 249365
Ours - X 61.7 58.1 1864 16872 197632

Table 2. Results on the MOT Challenge test set benchmark using public detections.
Unsup indicates approach does not need supervision (no tracking labels required). *
are recent parallel works. Up/down arrows indicate higher/lower is better.

subsection, we provide two sets of evidence to demonstrate that SimpleReID
indeed performs well across diverse scenarios: (i) We show that the test perfor-
mance of SimpleReID (on unseen videos) is equivalent to that of a supervised
ReID model, on its training set itself (ii) We show that SimpleReID achieves the
above desiderata even with simple trackers which are highly reliant on the ReID
component.

Limits of unsupervised ReID: We test the limits of SimpleReID by com-
paring the performance of our model with supervised models. We perform ex-
periments across various weaker scenarios such as having no ReID, or using
pretrained-ImageNet as-is, and show that these perform significantly worse than
SimpleReID - proving that SimpleReID is important to match supervised perfor-
mance. We first train another recent supervised tracker, Tracktor++v2[1], which



Simple Unsupervised Multi-Object Tracking 9

ReID MOTA↑ IDF1↑ ReID MOTA↑ IDF1↑

MOT16

DPM POI
None 57.6 62.0 None 68.3 67.6
ImageNet 57.6 62.0 ImageNet 68.3 67.7
Ours 57.6 62.6 Ours 68.5 69.5
Supervised 57.6 62.5 Supervised 68.5 69.4

MOT17

FRCNN POI
None 61.6 64.6 None 68.5 67.6
ImageNet 61.6 64.7 ImageNet 68.5 67.6
Ours 61.7 65.2 Ours 68.6 69.4
Supervised 61.7 65.2 Supervised 68.6 69.3

Table 3. Ablation study comparing the performance of different ReID models within
the Tracktor [1] framework. We observe that our unsupervised SimpleReID achieves
the same performance (IDF1 scores) as supervised ReID. DPM, FRCNN and POI
correspond to different detectors.

uses bounding box regression along with a supervised ReID model to predict the
position of an object in the next frame. We train the supervised ReID model on
the training data for MOT16/ MOT17 and then benchmark the performance on
the same training set. In contrast, this data is new to our SimpleReID models,
i.e., have not seen these videos previously. Our experiment results are tabulated
in Table 3. We observe that using ImageNet-pretrained ReID somewhat improves
IDF1 scores compared to using no ReID network at all, but fails to achieve the
upper bound by a considerable margin. Our SimpleReID approach successfully
recovers the remaining performance gap. This is achieved consistently across
different variations.

ReID-reliant unsupervised tracking: Due to the low dependence of Track-
tor on its ReID model, one may argue that it might not be the best framework
for evaluation of ReID models in tracking. Hence, we also perform the same
experiments on a popular tracker DeepSORT [53] that is highly reliant on the
ReID model used, since the only visual features it receives is from the ReID
network. We replace the supervised ReID model used in DeepSORT with different
ReID methods and tabulate results in Table 4. First, we observe that replacing
supervised ReID with random features causes a severe drop in performance over
supervised counterpart, with MOTA score decreasing by 9.4% and IDF1 decreas-
ing by 31.3%, demonstrating the degree of reliance on ReID in the DeepSORT
framework. When substituted with features from an ImageNet-pretrained ResNet,
we get a similar result: a significant improvement over SORT, yet much lower
than supervised ReID performance. We further benchmark with a supervised
ReID model trained on Market1501 dataset [65] and observe lower performance
compared to the ImageNet-pretrained model, indicating that features learned for
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ReID MOTA↑ IDF1↑ ReID MOTA↑ IDF1↑
MOT16-POI MOT17-POI

No ReID 58.1 57.1 No ReID 57.9 56.9
Random 51 34.6 Random 50.7 34.3
ImageNet 60.3 62 ImageNet 59.9 61.6
Market1501 60.3 61.5 Market1501 59.9 61.1
Ours 60.5 65.9 Ours 60.1 65.5
Supervised 60.4 65.9 Supervised 60 65.5

Table 4. Ablation study comparing the performance of different ReID models within
the DeepSORT [53] framework. We observe that our unsupervised SimpleReID achieves
the same performance (IDF1 scores) as supervised ReID.

Detector SimpleReID Oracle ReID+Kill+MM

MOTA↑ IDF1↑ MOTA↑ IDF1↑ IDF1 Gain

YOLOv3 [40] 56.5 62.5 61.5 66.1 3.6
DPM [16] 58.5 62.9 62.4 66.3 3.4

Faster-RCNN [41] 61.7 65.2 65.5 68.5 3.3
HTC [7] 67.7 68.1 75.6 70.5 2.4
SDP [57] 67.7 68.1 73.0 70.6 2.5
POI [59] 68.6 69.4 73.5 71.4 2.0

Table 5. Ablation study comparing the difference between performance of SimpleReID
across detectors on MOT17. We observe that the difference decreases from 3.6 to 2.0
with improved detectors.

cross-camera person-ReID datasets without trajectory annotations do not transfer
to multi-object tracking. Lastly, we observe that our unsupervised SimpleReID
covers the remaining performance gap, as seen above.

Scope for improvement in ReID: We further explore the best performance
achievable by a ReID network using the Tracktor framework and explore the
scope for further improvement of our SimpleReID. To obtain the possible best
performance, we test Tracktor with an Oracle ReID [1] and observe that there is
a 3.3 IDF1 score gap between SimpleReID and the Oracle. We repeat the same
experiment with the latest off-the-shelf detectors and tabulate the results in Table
5. We observe that with modern detectors, the gap between SimpleReID and the
corresponding oracles is small enough to limit the scope for further improvement.

Overall, we conclude that unsupervised SimpleReID counterintuitively matches
the limiting performance of supervised counterparts in difficult MOT scenarios,
by leveraging only unlabeled videos. Since our model works in extreme cases such
as DeepSORT, where tracking is entirely reliant on the ReID model for encoding
appearance information, we expect that the efficacy of SimpleReID will generalize
to other trackers as well. We demonstrated the potential of unsupervised trackers
by outperforming all supervised MOT16/17 trackers, setting a new state-of-the-
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art in MOTA and IDF1 scores and performing close to the optimal ReID. If it is
indeed generalizable, we believe that this work has significant implications for
research in supervised ReID for tracking.

5 Conclusion

We propose the first step in the direction of developing unsupervised re-identification
for MOT and demonstrate that our simple approach performs at par with super-
vised counterparts across diverse setups. When combined with recent unsupervised
association models [56,1], we obtain accurate unsupervised trackers. The tracker
we submit ranks first in the MOT Challenge, beating all the latest supervised
approaches. Our investigation suggests reconsideration on whether the shift to-
wards more complex, supervised, end-to-end MOT models is necessary. We hope
our work is useful to sidestep high annotation costs otherwise thought to be a
requirement necessary to feed the data-hungry supervised trackers.
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