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Abstract. Inspired by the success of the CNN-RNN framework in the
image captioning task, several works have explored this in multi-label
image annotation with the hope that the RNN followed by a CNN would
encode inter-label dependencies better than using a CNN alone. To do
so, for each training sample, the earlier methods converted the ground-
truth label-set into a sequence of labels based on their frequencies (e.g.,
rare-to-frequent) for training the RNN. However, since the ground-truth
is an unordered set of labels, imposing a fixed and predefined sequence
on them does not naturally align with this task. To address this, some
of the recent papers have proposed techniques that are capable to train
the RNN without feeding the ground-truth labels in a particular se-
quence/order. However, most of these techniques leave it to the RNN to
implicitly choose one sequence for the ground-truth labels corresponding
to each sample at the time of training, thus making it inherently biased.
In this paper, we address this limitation and propose a novel approach
in which the RNN is explicitly forced to learn multiple relevant inter-
label dependencies, without the need of feeding the ground-truth in any
particular order. Using thorough empirical comparisons, we demonstrate
that our approach outperforms several state-of-the-art techniques on two
popular datasets (MS-COCO and NUS-WIDE). Additionally, it provides
a new perspecitve of looking at an unordered set of labels as equivalent
to a collection of different permutations (sequences) of those labels, thus
naturally aligning with the image annotation task. Our code is available
at: https://github.com/ayushidutta/multi-order-rnn

Keywords: Image annotation; Multi-label learning; CNN-RNN frame-
work; Inter-label dependencies; Order-free training

1 Introduction

Multi-label image annotation is a fundamental problem in computer vision and
machine learning, with applications in image retrieval [7, 37, 53], scene recogni-
tion [1], object recognition [47], image captioning [8], etc. In the last few years,
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deep Convolution Neural Networks (CNNs) such as [22, 39, 40, 15] have been
shown to achieve great success in the single-label image classification task [38],
which aims at assigning one label (or category) to an image from a fixed vocabu-
lary. However, in the multi-label image annotation task, each image is associated
with an unordered subset of labels from a vocabulary that corresponds to differ-
ent visual concepts present in that image, such as objects (e.g., shirt), attributes
(e.g., green), scene (e.g., outdoor), and other visual entities (e.g., pavement, sky,
etc.). Further, these labels share rich semantic relationships among them (e.g.,
forest is related to green, ferrari is related to car, etc.), thus making it much
more challenging than single-label classification.

To model inter-label dependencies, existing works have used a variety of
techniques, such as nearest-neighbours based models [33, 12, 45], ranking-based
models [14, 2] probabilistic graphical models [27, 28], structured inference mod-
els [47, 23, 17, 48], and models comprising of a Recurrent Neural Network (RNN)
following a CNN [48, 18, 48, 31, 4] (also referred to as CNN-RNN framework).
Among these, CNN-RNN based models have received increasing attention in the
recent years [17, 48, 18, 4, 5, 26, 50], particularly due to the capability of an RNN
to capture higher-order inter-label relationships while keeping the computational
complexity tractable. The earlier models in this direction were motivated by the
success of the CNN-RNN framework in the image captioning task [46, 21]. Anal-
ogous to the sequence/order of words in a caption, these models proposed to
train the RNN for the image annotation task by imposing a fixed and predefined
order on the labels based on their frequencies in the training data (e.g., frequent-
to-rare or rare-to-frequent). In [18], Jin and Nakayama showed that the order of
labels in the training phase had an impact on the annotation performance, and
found that rare-to-frequent order worked the best, which was further validated
in the subsequent papers such as [48, 31]. However, such an ordering introduces
a hard constraint on the RNN model. E.g., if we impose rare-to-frequent label
order, the model would be forced to learn to identify the rare labels first, which
is difficult since these labels have very few training examples. Further, in RNN,
since the future labels are predicted based on the previously predicted ones,
any error in the initial predictions would increase the likelihood of errors in the
subsequent predictions. Similarly, if we impose frequent-to-rare label order, the
model would get biased towards frequent labels and would have to make several
correct predictions before predicting the correct rare label(s). In general, any
frequency-based predefined label order does not reflect the true inter-label de-
pendencies since when an image has multiple labels, each label is related to many
other labels with respect to the global context of that image, though spatially
a label may relate more strongly to only a few of them. Additionally, defining
such an order makes the model biased towards the dataset-specific statistics.

To address these limitations, some recent papers [4, 5, 26, 50] have proposed
techniques that do not require to feed the ground-truth labels to the RNN in
any particular sequence. However, these techniques allow the RNN to implicitly
choose one out of many possible sequences, which in turn makes it inherently
biased. In this paper, we address this limitation using a novel approach in which
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the RNN is explicitly forced to learn multiple relevant inter-label dependencies
in the form of multiple label orders instead of a fixed and predefined one. Specif-
ically, at any given time-step, we train the model to predict all the correct labels
except the one it has selected as the most probable one in the previous time-step.
During testing, we max-pool the prediction scores for each label across all the
time-steps, and then pick the labels with scores above a threshold. In this way,
the best prediction of a label is obtained from its individual prediction path. Ad-
ditionally, allowing the model to learn and predict from multiple label paths also
provides the advantage that in reality there may be more than one sequences that
reflect appropriate inter-label dependencies. As one could observe, the proposed
idea is closely related to the well-known Viterbi algorithm, and provides a new
perspecitve of looking at an unordered set of labels as equivalent to a collection
of different permutations of those labels, thus naturally aligning the inherent
capability of an RNN (i.e., sequence prediction) with the objective of the im-
age annotation task (i.e., unordered subset prediction). In our experiments on
two large-scale multi-label image annotation datasets, we demonstrate that the
proposed approach outperforms competing baselines and several state-of-the-art
image annotation techniques.

2 Related Work

Multi-label image annotation has been an active area of research from the last
two decades. The initial works such as [24, 9, 3, 33, 47, 12, 2, 43, 44] relied on hand-
crafted local [24, 9, 3] and global [33, 12, 2, 43, 44] features, and explored a vari-
ety of techniques such as joint [24, 9] and conditional [3] probabilistic models,
nearest-neighbours based models [33, 12, 43], structured inference models [23]
and ranking-based models [2, 44].

With the advent of the deep learning era, most of the initial attempts were
based on integrating the existing approaches with the powerful features made
available by pre-trained deep CNN models. In [11], the authors used a deep
CNN model pre-trained on the ImageNet dataset, and fine-tuned it for multi-
label image annotation datasets using different loss functions such as softmax,
pairwise ranking [19] and WARP [49]. Similarly, other works such as [42, 35, 45]
revisited some of the state-of-the-art methods from the pre-deep-learning era,
and re-evaluated them using the features extracted from the last fully-connected
hidden layer of a pre-trained deep CNN model. Moving further on the similar
ideas, Li et al. [29] introduced a smooth variant of the hinge-loss (called log-sum-
exp pairwise loss, or LSEP loss) especially useful for the multi-label prediction
task, and showed it to perform better than the previously known loss functions.

In parallel, there have also been attempts to explicitly model inter-label de-
pendencies prominent in this task using end-to-end deep learning based tech-
niques. One of the early attempts was by Andrea et al. [10] who proposed to learn
a joint embedding space for images and labels using a deep neural network, thus
allowing direct matching between visual (images) and textual (labels) samples
in the learned common space, similar to [49]. To capture the underlying relation-
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ships between labels in a deep CNN framework, Feng et al. [52] proposed a spatial
regularization network with learnable convolution filters and attention maps for
individual labels, by making use of spatial features from the last convolution
layer. On similar lines, several other works such as [32, 13] have also explored
the utility of local features and spatial attention. Apart from these, some of the
works have also explored techniques such as deep metric learning for multi-label
prediction [25], multi-modal learning [36] similar to [10], and Generative Ad-
versarial Networks [41]. It is worth noting that while these approaches remained
confined to the available training data, some of the works have demonstrated the
advantage of using contextual knowledge coming from external sources. In [20],
Johnson et al. used a non-parametric approach to find nearest neighbours of an
image based on textual meta-data, and then aggregated visual information of an
image and with its neighbours using a neural network to improve label predic-
tion. In [17], Hu et al. proposed a deep structured neural network that consisted
of multiple concept-layers based on the WordNet [34] hierarchy, and trained it
to capture inter-label relationships across those layers.

Another class of algorithms that has become popular in the recent past is
based on the CNN-RNN framework, that is motivated by the ability of an RNN
to model complex inter-label relationships, and at the same time it offers a simple
and scalable solution. The earlier attempts were simple adaptations of the CNN-
RNN based encoder-decoder models proposed for the image captioning task [46].
These approaches treated multi-label prediction as a sequence prediction prob-
lem, where the RNN was trained to predict the labels for a given image in a
sequential manner, analogous to predicting a caption [18, 48, 31]. As discussed
above, such approaches required a predefined order among the labels at the time
of training, and thus constrained the model to predict the labels in that order.
Since this does not naturally align with the objective of the image annotation
task, some of the recent approaches have proposed order-free techniques that
do not require to feed the ground-truth labels to the RNN in any particular
order at the time of training. The Order-free RNN model proposed by Shang et
al. [4] was the first such model that used the concept of “candidate label pool”.
This pool initially contains all the true labels, and then at each time-step, the
most confident label from this pool is used for feedback to the RNN and at
the same time removed from this pool. Similar ideas have been proposed in the
subsequent works such as [5, 26, 50]. However, these approaches are prone to in-
ternally choosing one particular order of labels at the initial time-step, and then
iterating over the same sequence in the subsequent time-steps. To address this
limitation, we propose a novel approach that forces the RNN model to predict
all the correct labels at every time-step, except the one predicted in the previous
time-step. As we will show later in Section 3.3, this drives the RNN to learn
complex inter-label dependencies in the form of multiple sequences among the
labels arising from a given label-set, and thus we call it Multi-order RNN. The
utility of our approach is also demonstrated in the empirical analysis in which
it is shown to outperform all the existing CNN-RNN-based image annotation
techniques.
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Fig. 1. Overview of the proposed approach. The first component of our model is a
deep CNN that that is fine-tuned using the ground-truth (S) from a given dataset. The
second component is an LSTM model that uses the soft confidence vector (Ŝ) from
the CNN as its initial state. Given a sample, at every time-step, a cross-entropy loss
is computed considering all the true labels except the one from the previous time-step
as possible candidates for prediction at that time-step. Final predictions are obtained
by max-pooling individual label scores across all the time-steps

3 Approach

Our CNN-RNN framework consists of two components: (i) a deep CNN model
that provides a real-valued vectorial representation of an input image, and (ii)
an RNN that models image-label and label-label relationships. Let there be N
training images {I1, . . . , IN}, such that each image I is associated with a ground-
truth label vector y = (y1, y2, . . . , yC), where yc (∀c ∈ {1, 2, . . . , C}) is 1 if the
image I has the cth label in its ground-truth and 0 otherwise, with C being
the total number of labels. Also, let ŷ denote the vector containing the scores
predicted by the RNN corresponding to all the labels at some time-step.

During the training phase, for a given image I, the representation obtained
by the CNN is initially fed to the RNN. Based on this, the RNN predicts a
label score vector ŷt at each time-step t in a sequential manner, and generates a
prediction path π = (a1, a2, ..., aT ), where at denotes the label corresponding to
the maximum score from ŷt at time t, and T is the total number of time-steps.
During inference, we accumulate the scores for individual labels across all the
prediction paths using max-pooling, and obtain the final label scores (Figure 1).
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Below, first we describe the basic CNN-RNN framework, and then present the
proposed Multi-order RNN model.

3.1 Background: CNN-RNN framework

Given a CNN model pre-trained on the ImageNet dataset for the image classifica-
tion task, the first step is to fine-tune it for a given multi-label image annotation
dataset using the standard binary cross-entropy loss. Next, we use the soft con-
fidence (label probability) scores (ŝ ∈ RC×1

+ ) predicted by the CNN for an input
image, and use this as the interface between the CNN and the RNN. This allows
to decouple the learning of these two components, and thus helps in a more
efficient joint training [31, 4].

Taking ŝ as the input, the RNN decoder generates a sequence of labels π =
(a1, a2, ..., anI

), where at is the label predicted at the tth time-step, and nI is the
total number of labels predicted. Analogous to the contemporary approaches, we
use the Long Short-Term Memory (LSTM) [16] network as the RNN decoder,
which controls message passing between time-steps with specialized gates. At
time step t, the model uses its last prediction at−1 as the input, and computes
a distribution over the possible outputs:

xt = E · at−1 (1)

ht = LSTM(xt, ht−1, ct−1) (2)

ŷt = W · ht + b (3)

where E is the label embedding matrix, W and b are the weight and bias of the
output layer, at−1 denotes the one-hot encoding of the last prediction, ct and ht
are the model’s cell and hidden states respectively at time t, and LSTM(·) is
a forward step of the unit. The output vector ŷt defines the output scores at t,
from which the next label at is sampled.

3.2 Multi-order RNN

As introduced earlier, let the ground-truth (binary) label vector of an image I be
denoted by y = (y1, y2, . . . , yC). Also, let yt denote the ground-truth label vector
at time t, and ŷt be the corresponding predicted label score vector. In practice,
since the ground-truth yt at time-step t is unknown, one could assume that yt at
each time-step is the original label vector y. This would force the model to assign
high scores to all the ground-truth labels instead of one particular ground-truth
label at each time-step. E.g., let us assume that an image has the labels {sky,
clouds, person} in its ground-truth, then the model would be forced to predict
(i.e., assign high prediction scores to) all the three labels {sky, clouds, person}
at each time-step based on the most confident label predicted in previous time-
step. However, this poses the problem that if the most confident label predicted
at time-step t is l, the model may end-up learning a dependency from l to l in
the next time-step along with the dependencies from l to other labels. In other
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words, there is a high chance that a label which is easiest to predict would be
the most confident prediction by RNN at every time-step, and thus the same
label would then be repeatedly chosen for feedback to the RNN. To address this,
we use a greedy approach that forces the model to explicitly learn to predict a
different label. Specifically, if l is the most confident prediction at time-step t,
we mask out l in the next time-step; i.e., in the next time-step, we treat l as a
negative label rather than positive and learn a dependency from l to all other
labels except itself. We explain this mathematically below.

Let lt be the most confident label with the highest prediction score for an
image I at time-step t:

lt = arg max
c∈{1,2,...,C}

ŷct (4)

Let at−1 be the one-hot encoding corresponding to lt−1. Then we define a label
mask ãt at time-step t as:

ãt = ¬at−1 (5)

In other words, this label mask is a negation of the one-hot encoding of the most
confident label from the previous time-step. The mask contains a 0 corresponding
to the previously selected label index, and 1 for the rest. Using this, we define a
modified ground-truth label vector at time-step t as:

yt = ãt � y (6)

where � represents element-wise multiplication. At time-step t = 0, ã0 will be a
vector with all ones. Using this modified ground-label vector and the predicted
label scores at a particular time-step t, we compute the sigmoid cross-entropy
loss at that time-step as:

Lt = yt · log(σ(ŷt)) + (1− yt) · log(1− σ(ŷt)) (7)

The above loss is aggregated over all the time-steps and summed over all the
training samples to obtain the total loss. This loss is then used to train our
model using a gradient descent approach.

Label Prediction Once the model is trained, for a given test image, first we
obtain the soft confidence (probability) scores from the CNN and initiate the
LSTM using them. Then, the LSTM network is iterated for T time-steps, result-
ing in T prediction score vectors (ŷ1, ŷ2, ..., ŷT ), where each ŷt = (ŷ1t , ŷ

2
t , . . . , ŷ

C
t )

denotes the scores for all the C labels at times-step t. We employ label-wise
max-pooling to integrate the scores across all the time-steps into the final result
ŷ = (ŷ1, ŷ2, ..., ŷC), where: ŷc = max(ŷc1, ŷ

c
2, ..., ŷ

c
T ), ∀c = 1, . . . , C. The final

predicted label probability distribution p̂ is obtained as p̂i = σ(ŷ). Since we use
the sigmoid function, finally we assign all those labels whose probability scores
are greater than 0.5. We carry out the LSTM iterations for a fixed number of
‘T ’ time-steps which is determined experimentally. Interestingly, unlike methods
that do a predefined label order based training and sequential label prediction,
our model does not require to predict an “end-of-sequence” (< EOS >) token.
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Fig. 2. An example of multiple inter-label dependencies that can be learned using the
proposed approach. Please see Section 3.3 for details.

3.3 Discussion

Now we will discuss how the proposed approach learns multiple relevant inter-
label dependencies (and not all possible permutations, since many of them will
not be meaningful). Algorithmically, in the first time-step, the LSTM is trained
to predict all the true labels by the loss L1, analogous to a CNN that can be
trained to predict all the true labels by a single look at an image. As the LSTM
strives to predict all the labels, the most confident label predicted by it is given as
the feedback for the next time-step. In the second time-step, the model is trained
to predict all the true labels except the most confident label predicted by it in
the previous time-step, and this continues for a fixed number of time-steps.

Let us try to understand this through an example illustrated in Figure 2.
Let {sky, cloud, hill, dog, man} be the complete label-set (vocabulary), and let
{sky, cloud, man} be the ground-truth set of labels for a given image. During
training, at t = 1, the model is forced to predict all the positive labels correctly.
Suppose it selects sky as the most confident label. Then at t = 2, the model is
trained to learn dependencies from sky to both cloud and man, while keeping
sky as a negative label. Suppose the model now selects cloud as the label with
the highest confidence. Then at t = 3, the model will be trained to predict
both sky and man. In this way, the model explicitly learns multiple dependency
paths sky → cloud → sky and sky → cloud → man. In other words, it learns
not only to go back to sky from cloud, but also learns to predict man based on
the confidence that the image already has {sky, cloud}. In this way, the label
correlations that are hard to learn initially get learned at later time-steps based
on their dependencies on other labels in the ground-truth. During testing,
given an input image, the most confident label at each time-step is fed as input
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to the LSTM, and this is repeated for a fixed number of time-steps. At the end,
the prediction scores across all the time-steps are label-wise max-pooled, and
the labels above a threshold are assigned.

The proposed training approach is a greedy approach that is self-guided by
the training procedure. Let {l1, l2, l3, l4, l5} be the complete set of labels, and let
{l1, l3, l5} be the true labels for a given image. If the model is most confident
at predicting l1 at the first time-step, we train it to predict {l3, l5} in the next
time-step. If the model had predicted l3 first, the training at the next time-step
would have been for {l1, l5}. In case the model predicts an incorrect label, say l2,
as the most confident prediction, it will be given as the feedback to the LSTM for
the next time-step. However, since we penalize all the true negative labels (not
present in the ground-truth) at every time-step, the model learns not to predict
them. By self-learning multiple inter-label dependencies, the model inherently
tries to learn label correlations. E.g., if l3 is chosen immediately after l1 by the
model, there is a strong likelihood that {l1, l3} co-occur often in practice, and it
makes more sense to predict l3 when l1 is present. In contrast, in a predefined
order based training, the label dependencies are learned in some specified order,
which may not be an appropriate order in practice. Also, there may not be
a single specific order that reflects the label dependencies in an image. Since
the proposed approach can learn multiple inter-label dependencies paths, it can
mitigate both these issues.

As we can observe, there is a possibility that the sequence of the most con-
fident labels that the LSTM model predicts as it iterates over time-steps is
{l1, l5, l1, l5, . . .}. Algorithmically, this implies that l1 was the most confident la-
bel at t = 1, l5 at t = 2, l1 at t = 3, l5 at t = 4, and so on. Intuitively, this would
mean that at each time-step, while the previous most confident label guides the
LSTM model, the model is still forced to learn that labels dependencies with all
the remaining correct labels including the (current) most confident one. While
this particular behavior is probably not the best one, this would still facilitate
the model to encode multiple (even bidirectional) inter-label dependencies un-
like any existing CNN-RNN-based method. At this point, if we had maintained a
pool of all the true labels predicted until a certain time-step and forced the model
to predict a label only from the remaining ones, then this would have resulted
in forcing some improbable dependencies among the labels, which is not desir-
able. We would like to highlight that this is exactly what was proposed in [4],
and our algorithm elegantly relaxes this hard constraint imposed on LSTM. As
evident from the empirical analyses, this results in achieving significantly better
performance than [4].

4 Experiments

4.1 Datasets

We experiment using two popular and large-scale image annotation datasets:
MS-COCO [30] and NUS-WIDE [6]. The MS-COCO dataset has been used for
various object recognition tasks in the context of natural scene understanding. It
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Table 1. Comparison of the proposed approach with a vanilla CNN using binary cross-
entropy loss, and CNN-RNN models trained with different label-ordering methods on
the MS-COCO dataset

Metric→ Per-label Per-image

Method↓ PL RL F1L PI RI F1I

CNN (Binary Cross-Entropy) 59.30 58.60 58.90 61.70 65.00 63.30
CNN-RNN (frequent-first) 70.27 56.49 62.63 72.15 64.53 68.13
CNN-RNN (rare-first) 65.68 61.32 63.43 70.82 64.73 67.64
CNN-RNN (lexicographic order) 70.98 55.86 62.52 74.14 62.35 67.74

Multi-order RNN (Proposed) 77.09 64.32 70.13 84.90 75.83 80.11

contains 82, 783 images in the training set, 40, 504 images in the validation set,
and a vocabulary of 80 labels with around 2.9 labels per image. Since the ground-
truth labels for the test set are not publicly available, we use the validation
set in our comparisons following the earlier papers. The NUS-WIDE dataset
contains 269, 648 images downloaded from Flickr. Its vocabulary contains 81
labels, with around 2.4 labels per image. Following earlier papers, we discard
the images without any label, that leaves us with 209, 347 images. For empirical
comparisons, we split into around 125, 449 images for training and 83, 898 for
testing by adopting the split originally provided along with this dataset.

4.2 Evaluation Metrics

For empirical analyses, we consider both per-label as well as per-image evaluation
metrics. In case of per-label metrics, for a given label, let a1 be the number of
images that contain that label in the ground-truth, a2 be the number of images
that are assigned that label during prediction, and a3 be the number of images
with correct predictions (a3 ≤ a2 and a3 ≤ a1). Then, for that label, precision
is given by a3

a2
, and recall by a3

a1
. These scores are computed for all the labels

and averaged to get mean per-label precision PL and mean per-label recall RL.
Finally, the mean per-label F1 score is computed as the harmonic mean of PL

and RL; i.e., F1L = 2×PL×RL

PL+RL
.

In case of per-image metrics, for a given (test) image, let b1 be the number
of labels present in its ground-truth, b2 be the number of labels assigned during
prediction, and b3 be the number of correctly predicted labels (b3 ≤ b2 and
b3 ≤ b1). Then, for that image, precision is given by b3

b2
, and recall by b3

b1
. These

scores are computed for all the test images and averaged to get mean per-image
precision PI and mean per-image recall RI. Finally, the mean per-image F1 score
is computed as the harmonic mean of PI and RI; i.e., F1I = 2×PI×RI

PI+RI
.

4.3 Implementation Details

We use ResNet-101 [15] pre-trained on the ILSVRC12 1000-class classification
dataset [38] as our CNN model, and it is fine-tuned for both NUS-WIDE and MS-
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Table 2. Comparison of the proposed approach with the state-of-the-art methods on
the MS-COCO dataset

Metric→ Per-label Per-image

Method↓ PL RL F1L PI RI F1I

C
N
N

b
a
se
d

TagProp [12] 63.11 58.29 60.61 58.17 71.07 63.98
2PKNN [45] 63.77 55.70 59.46 54.13 66.95 59.86

MS-CNN+LQP [36] 67.48 60.93 64.04 70.22 67.93 69.06
WARP [49, 11] 57.09 55.31 56.19 57.54 70.03 63.18

LSEP [29] 73.50 56.40 63.82 76.30 61.80 68.29
SRN [52] 85.20 58.80 67.40 87.40 62.50 72.90
S-Cls [32] − − 69.20 − − 74.00
ACfs [13] 77.40 68.30 72.20 79.80 73.10 76.30

WGAN-gp [41] 70.50 58.70 64.00 72.30 64.60 68.20
RETDM [25] 79.90 55.50 65.50 81.90 61.10 70.00

C
N
N
-R

N
N

b
a
se
d

SR-CNN-RNN [31] 67.40 59.83 63.39 76.63 68.73 72.47
Order-free RNN [4] 71.60 54.80 62.10 74.20 62.20 67.70

Recurrent-Attention RL [5] 78.80 57.20 66.20 84.00 61.60 71.10
Attentive RNN [26] 71.90 59.60 65.20 74.30 69.70 71.80

MLA [50] 68.37 60.39 64.13 72.16 66.71 69.33
PLA [50] 70.18 61.96 65.81 73.75 67.74 70.62

Multi-order RNN (Proposed) 77.09 64.32 70.13 84.90 75.83 80.11

COCO datasets separately. For our LSTM (RNN) model, we use 512 cells with
the tanh activation function and 256-dimensional label-embedding. We train
using a batch size of 32 with RMSProp Optimiser and learning-rate of 1e−4 for
50 epochs, and recurse the LSTM for T = 5 time-steps.

4.4 Results and Discussion

Comparison with baselines In Table 1, we compare the results of various
baselines with our approach, including a CNN model trained with the standard
binary-cross entropy loss, and three CNN-RNN style models trained using differ-
ent schemes for ordering labels at the time of training the RNN module. Here, we
observe that the CNN-RNN style models outperform the CNN model, indicating
the advantage of using an RNN. We also notice that among the three baseline
CNN-RNN models, CNN-RNN (frequent-first) outperforms others with the per-
image metrics, and CNN-RNN (rare-first) outperforms others with the per-label
metrics. This is expected since the rare-first order assigns more importance to
less frequent labels, thus forcing the model to learn to predict them first.

In general, the proposed Multi-order RNN technique consistently outper-
forms all the baselines by a large margin, providing an improvement of 10.6% in
terms of F1L and 17.6% in terms of F1I compared to the best performing base-
line, thus validating the need for automatically identifying and learning with
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Table 3. Comparison of the proposed approach with the state-of-the-art methods on
the NUS-WIDE dataset

Metric→ Per-label Per-image

Method↓ PL RL F1L PI RI F1I

C
N
N

b
a
se
d

TagProp [12] 49.45 59.13 53.86 52.37 74.21 61.41
2PKNN [45] 47.94 55.76 51.55 51.90 73.00 60.67
LSEP [29] 66.70 45.90 54.38 76.80 65.70 70.82

WARP [49, 11] 44.74 52.44 48.28 53.81 75.48 62.83
CMA [51] − − 55.50 − − 70.00

MS-CMA [51] − − 55.70 − − 69.50
WGAN-gp [41] 62.40 50.50 55.80 71.40 70.90 71.20

C
N
N
-R

N
N

b
a
se
d

SR-CNN-RNN [31] 55.65 50.17 52.77 70.57 71.35 70.96
Order-free RNN [4] 59.40 50.70 54.70 69.00 71.40 70.20
Attentive RNN [26] 44.20 49.30 46.60 53.90 68.70 60.40

PLA [50] 60.67 52.40 56.23 71.96 72.79 72.37

Multi-order RNN (Proposed) 60.85 54.43 57.46 76.50 73.06 74.74

multiple label orders as being done in the proposed approach, rather than using
a fixed and predefined one as in the baselines.

Comparison with the state-of-the-art In Table 2 and 3, we compare the
performance of the proposed Multi-order RNN with both CNN based as well
CNN-RNN based methods. In each column, we highlight the best result in red
and the second best result in blue. Among the CNN-RNN based methods, SR-
CNN-RNN [31] is the state-of-the-art method that uses rare-to-frequent order
of labels for training the RNN, and Order-free RNN [4], Recurrent-Attention
RL [5], Attentive RNN [26], MLA [50] and PLA [50] are the methods that do
not require to feed the ground-truth labels in any particular order. Among the
CNN based methods, TagProp [12] and 2PKNN [45] are state-of-the-art nearest-
neighbour based methods that are evaluated using the ResNet-101 features (ex-
tracted from the last fully-connected layer), and others are end-to-end trainable
models, with WARP [49, 11] and LSEP [29] being trained using a pairwise rank-
ing loss. From the results, we can make the following observations: (a) CNN based
methods achieve the maximum average precision in all the cases (SRN [52] on
the MS-COCO dataset and LSEP [29] on the NUS-WIDE dataset). However,
except ACfs [13], all other methods generally fail to manage the trade-off be-
tween precision and recall, thus resulting in low F1 scores. (b) On the MS-COCO
dataset, the CNN based approaches perform better than the existing CNN-RNN
based approaches. The proposed Multi-order RNN approach brings a big jump
in the performance of this class of methods, making it either comparable to or
better than the former one. (c) Compared to the existing CNN-RNN based ap-
proaches, Multi-order RNN not only achieves higher average precision and recall,
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Table 4. Comparison between SR-CNN-RNN [31] and the proposed Multi-order RNN
approach based on top-1 accuracy

NUS-WIDE MS-COCO

SR-CNN-RNN Multi-order RNN SR-CNN-RNN Multi-order RNN

68.06 84.05 81.44 93.49

but also manages the trade-off between the two better than others by achieving
an increase in both average precision as well recall, thus achieving the best F1
score in all the cases. (d) In terms of F1L, Multi-order RNN is inferior only to
ACfs [13] by 2.07% on the MS-COCO dataset, and outperforms all the methods
on the NUS-WIDE dataset with its score being 1.23% more than the second
best method. In terms of F1I, Multi-order RNN outperforms all the methods on
both the datasets, with its score being 3.81% (on MS-COCO) and 2.37% (on
NUS-WIDE) better than the second best methods.

Fig. 3. Comparison between the prediction of SR-CNN-RNN and Multi-order RNN
for an example image. For Multi-order RNN, we show the top five labels along with
their probabilities obtained at each time-step. * indicates the max pooled values

Additional analysis As discussed before, earlier CNN-RNN based image an-
notation approaches [18, 48, 31] had advocated the use of rare-to-frequent label
order at the time of training, and SR-CNN-RNN [31] is the state-of-the-art
method from this class of methods. Here, we further analyze the performance of
our model against SR-CNN-RNN and consider “top-1 accuracy” as the evalu-
ation metric that denotes the percentage of images with the correct top-1 pre-
dicted label. This label is obtained by doing one iteration of LSTM at the time
of inference for both the methods (note that the training process is unchanged
for both the methods, and both of them use ResNet-101 as their CNN model).
As we can see in Table 4, the top-1 accuracy of Multi-order RNN is much higher
compared to SR-CNN-RNN. This is so because in practice, many of the rare la-
bels correspond to specific concepts that are difficult to learn as well as predict.
In such a scenario, if the first predicted label is wrong, it increases the likelihood
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Ground-
truth

clouds, sky clouds, sky,
water, beach,
buildings

clouds, sky,
window

ocean, water,
waves

animal, dog

Multi-
order
RNN

clouds, house,
sky

clouds, sky,
water

clouds, sky,
vehicle, win-
dow

animal, ocean,
water, waves

animal, dog,
sky

Fig. 4. Annotations for example images from the NUS-WIDE dataset. The labels in
blue are the ones that match with the ground-truth, and the labels in red are the ones
that are depicted in the corresponding images but missing in their ground-truth

of the subsequent ones also being wrong. However, our model explicitly learns
to choose a salient label based on which it can predict other labels, and thus
achieves a higher top-1 accuracy. We further illustrate this in Figure 3 where
for a given image, the SR-CNN-RNN approach predicts only one (incorrect)
label temple. Interestingly, while Multi-order RNN also predicts temple as the
most confident label at t = 1, it predicts a correct label person at t = 2 with
probability > 0.5, showing its correlation with temple learned by the model.

Finally, we present some qualitative results in Figure 4. From these results,
we can observe that our model correctly predicts most of the ground-truth labels.
Moreover, the additional labels that are predicted but missing in the ground-
truth are actually depicted in their corresponding images. These results further
validate the capability of our model to learn complex inter-label relationships.

5 Summary and Conclusion

While recent CNN-RNN based multi-label image annotation techniques have
been successful in training RNN without the need of feeding the ground-truth
labels in any particular order, they implicitly leave it to RNN to choose one order
for those labels and then force it to learn to predict them in that sequence. To
overcome this constraint, we have presented a new approach called Multi-order
RNN that provides RNN the flexibility to explore and learn multiple relevant
inter-label dependencies on its own. Experiments demonstrate that Multi-order
RNN consistently outperforms the existing CNN-RNN based approaches, and
also provides an intuitive way of adapting a sequence prediction framework for
the image annotation (subset prediction) task.
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