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Abstract

Humans involuntarily tend to infer parts of the conver-

sation from lip movements when the speech is absent or

corrupted by external noise. In this work, we explore the

task of lip to speech synthesis, i.e., learning to generate

natural speech given only the lip movements of a speaker.

Acknowledging the importance of contextual and speaker-

specific cues for accurate lip-reading, we take a different

path from existing works. We focus on learning accurate

lip sequences to speech mappings for individual speakers

in unconstrained, large vocabulary settings. To this end,

we collect and release a large-scale benchmark dataset, the

first of its kind, specifically to train and evaluate the single-

speaker lip to speech task in natural settings. We propose a

novel approach with key design choices to achieve accurate,

natural lip to speech synthesis in such unconstrained sce-

narios for the first time. Extensive evaluation using quanti-

tative, qualitative metrics and human evaluation shows that

our method is four times more intelligible than previous

works in this space.

1. Introduction

Babies actively observe the lip movements of people

when they start learning to speak [24]. As adults, we

pay high attention to lip movements to “visually hear” the

speech in highly noisy environments. Facial actions, specif-

ically the lip movements, thus reveal a useful amount of

speech information. This fact is also exploited by individ-

uals hard of hearing, who often learn to lip read their close

acquaintances over time [15] to engage in more fluid con-

versations. Naturally, the question arises as to whether a

model can learn to voice the lip movements of a speaker by

“observing” him/her speak for an extended period. Learn-

ing such a model would only require videos of people talk-

ing with no further manual annotation. It also has a variety

of practical applications such as (i) video conferencing in

silent environments, (ii) high-quality speech recovery from

∗Both authors have contributed equally to this work.

Figure 1. We propose “Lip2Wav”: a sequence-to-sequence archi-

tecture for accurate speech generation from silent lip videos in un-

constrained settings for the first time. The text in the bubble is

manually transcribed and is shown for presentation purposes.

background noise [1], (iii) long-range listening for surveil-

lance and (iv) generating a voice for people who cannot pro-

duce voiced sounds (aphonia). Another interesting appli-

cation would be “voice inpainting” [41], where the speech

generated from lip movements can be used in place of a cor-

rupted speech segment.

Inferring the speech solely from the lip movements,

however, is a notoriously difficult task. A major chal-

lenge [5, 10] is the presence of homophenes: multiple

sounds (phonemes) that are auditorily distinct being per-

ceptually very similar with almost identical lip shapes

(viseme). For instance, the lip shape when uttering the

phoneme /p/ (park) can be easily confused with /b/ (bark),

and /m/ (mark). As a matter of fact, only 25% to 30%

of the English language is discernible through lip-reading

alone [8,15,25,26]. This implies that professional lip read-

ers do not only lip-read but also piece together multiple

streams of information: the familiarity with their subjects,

the topic being spoken about, the facial expressions and

head gestures of the subject and also their linguistic knowl-

edge. In contrast to this fact, contemporary works in lip to

speech and lip to text take a drastically different approach.

Recent attempts in lip to text [2, 5] learn from uncon-

strained, large vocabulary datasets with thousands of speak-

ers. However, these datasets only contain about 2 minutes
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of data per speaker which is insufficient for models to learn

concrete speaker-specific contextual cues essential for lip-

reading. The efforts in lip to speech also suffer from a sim-

ilar issue, but for a different reason. These works are con-

strained to small datasets [7] with narrow vocabulary speech

in artificially constrained environments.

In this work, we explore the problem of lip to speech

synthesis from a unique perspective. We take inspiration

from the fact that deaf individuals or professional lip readers

find it easier to lip read people who they frequently interact

with. Thus, rather than attempting lip to speech on random

speakers in the wild, we focus on learning speech patterns of

a specific speaker by simply observing the person’s speech

for an extended period. We explore the following question

from a data-driven learning perspective: “How accurately

can we infer an individual’s speech style and content from

his/her lip movements?”.

To this end, we collect and publicly release a 120-hour

video dataset of 5 speakers uttering natural speech in uncon-

strained settings. Our Lip2Wav dataset contains 800× more

data per speaker than the current multi-speaker datasets [2]

to facilitate accurate modeling of speaker-specific audio-

visual cues. The natural speech is spread across a diverse

vocabulary1 that is about 100× larger than the current sin-

gle speaker lip to speech datasets [7, 13]. To the best

of our knowledge, our dataset is the only publicly avail-

able large-scale benchmark to evaluate single-speaker lip to

speech synthesis in unconstrained settings. With the help of

this dataset, we develop Lip2Wav, a sequence-to-sequence

model to generate accurate, natural speech that matches the

lip movements of a given speaker. We support our results

through extensive quantitative and qualitative evaluations

and ablation studies. Our key contributions are as follows:

• We investigate the problem of silent lip videos to

speech generation in large vocabulary, unconstrained

settings for the first time.

• We release a novel 120-hour person-specific Lip2Wav

dataset specifically for learning accurate lip to speech

models of individual speakers. Each speaker contains

80× more data with 100× larger vocabulary than its

counterparts. The speech is uttered in natural settings

with no restriction to head pose or sentence lengths.

• Our sequence-to-sequence modeling approach pro-

duces speech that is almost 4× more intelligible in

unconstrained environments compared to the previous

works. Human evaluation studies also show that our

generated speech is more natural with rich prosody.

We release the data, code, trained models publicly for

1only words with frequency > 4 are considered

future research along with a demonstration video here2. The

rest of the paper is organized as follows: In Section 2, we

survey the recent developments in this space. Following

this, we describe our novel Lip2Wav dataset in Section 3.

Our approach and training details are explained in Sections

4 and 5. We evaluate and compare our model with previous

works in Section 6. We perform various ablation studies in

Section 7 and conclude our work in Section 8.

2. Related Work

2.1. Lip to Speech Generation

While initial approaches [20, 23] to this problem ex-

tracted the visual features from sensors or active appearance

models, the recent works employ end-to-end approaches.

Vid2Speech [10] and Lipper [22] generate low-dimensional

LPC (Linear Predictive Coding) features given a short se-

quence of K frames (K < 15). The facial frames are

concatenated channel-wise and a 2D-CNN is used to gen-

erate the LPC features. We show that this architecture is

very inadequate to model real-world talking face videos that

contain significant head motion, silences and large vocabu-

laries. Further, the low dimensional LPC features used in

these works do not contain a significant amount of speech

information leading to robotic, artificial sounding speech.

A follow-up work [9] of Vid2Speech does away with

LPC features and uses high-dimensional melspectrograms

along with optical flows to force the network to explicitly

condition on lip motion. While this can be effective for

the GRID corpus that has no head movements, optical flow

could be a detrimental feature in unconstrained settings due

to large head pose changes. Another work [36] strives for

improved speech quality by generating raw waveforms us-

ing GANs. However, both these works do not make use of

the well-studied sequence-to-sequence paradigm [31] that is

used for text-to-speech generation [30]; thus leaving a large

room for improvement in speech quality and correctness.

Finally, all the above works show results primarily on

the GRID corpus [7] which has a very narrow vocabulary

of 56 tokens and very minimal head motion. We are the

first to study this problem in a large vocabulary setting with

thousands of words and sentences. Our datasets are col-

lected from YouTube video clips and hence contain a signif-

icant amount of natural speech variations and head move-

ments. This makes our results directly relevant to several

real-world applications.

2.2. Lip to Text Generation

In this space as well, several works [6, 28, 37, 38] are

limited to narrow vocabularies and small datasets, however,

unlike lip to speech, there have been multiple works [2, 5]

2cvit.iiit.ac.in/research/projects/

cvit-projects/speaking-by-observing-lip-movements
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Figure 2. Our Lip2Wav dataset contains talking face videos of 5 speakers from chess analysis and lecture videos. Each speaker has about

20 hours of YouTube video content spanning a rich vocabulary of 5000+ words.

that specifically tackle open vocabulary lip to text in-the-

wild. They employ transformer sequence-to-sequence [35]

models to generate sentences given a silent lip movement

sequence. These works also highlight multiple issues in the

space of lip-reading, particularly the inherent ambiguity and

hence the importance of using a language model. Our task

at hand is arguably harder, as we not only have to infer the

linguistic content, but also generate with rich prosody in the

voice of the target speaker. Thus, we focus on extensively

analyzing the problem in a single-speaker unconstrained

setting, and learning precise individual speaking styles.

2.3. Text to Speech Generation

Over the recent years, neural text-to-speech models [27,

30] have paved the way to generate high-quality natural

speech conditioned on any given text. Using sequence-

to-sequence learning [31] with attention mechanisms, they

generate melspectrograms in an auto-regressive manner. In

our work, we propose Lip2Wav, a modified version of

Tacotron 2 [30] that conditions on face sequences instead

of text.

3. Speaker-specific Lip2Wav Dataset

The current datasets for lip to speech (or) text are at the

two opposite ends of the spectrum: (i) small, constrained

narrow vocabulary like GRID [7], TCD-TIMIT [13] or

(ii) unconstrained, open vocabulary multi-speaker like

LRS2 [2], LRW [6] and LRS3 [3]. The latter class of

datasets contains only about 2 - 5 minutes of data per

speaker, making it significantly harder for models to learn

speaker-specific visual cues that are essential for inferring

accurate speech from lip movements. Further, the results

would also be directly affected by the existing challenges

of multi-speaker speech synthesis [11, 19]. In the other

extreme, the single-speaker lip to speech datasets [7, 13],

do not emulate the natural settings as they are constrained

to narrow vocabularies and artificial environments. Thus,

both of these extreme cases do not test the limits of uncon-

strained single-speaker lip to speech synthesis.

We introduce a new benchmark dataset for unconstrained

lip to speech synthesis that is tailored towards exploring the

following line of thought: How accurately can we infer an

individual’s speech style and content from his/her lip move-

ments? To create the Lip2Wav dataset, we collect a total

of about 120 hours of talking face videos across 5 speak-

ers. The speakers are from various online lecture series and

chess analysis videos. We choose English as the sole lan-

guage of the dataset. With about 20 hours of natural speech

per speaker and vocabulary sizes over 5000 words3 for each

of them, our dataset is significantly more unconstrained and

realistic than GRID [7] or TIMIT [13] datasets. It is thus

ideal for learning and evaluating accurate person-specific

models for the lip to speech task. Table 1 compares the

features of our Lip2Wav dataset with other standard single-

speaker lip-reading datasets. Note that a word is included in

the vocabulary calculation for Table 1 only if its frequency

in the dataset is at least five.

Dataset

Num.

speak-

ers

Total

#hours

#hours

per

speaker

Vocab

per

speaker

Natural

set-

ting?

GRID [7] 34 28 0.8 56 ×

TIMIT [13] 3 1.5 0.5 82 ×

Lip2Wav (Ours) 5 120 ≈ 20 ≈ 5K X

Table 1. The Lip2Wav dataset is the first large-scale dataset tai-

lored towards acting as a reliable benchmark for single-speaker lip

to speech synthesis.

4. Lip to Speech Synthesis in the Wild

Given a sequence of face images I = (I1, I2, . . . , IT )
with lip motion, our goal is to generate the corresponding

speech segment S = (S1, S2, . . . , ST
′ ). To obtain nat-

ural speech in unconstrained settings, we make numerous

key design choices in our Lip2Wav architecture. Below, we

highlight and discuss how they are different from previous

methods for lip to speech synthesis.

4.1. Problem Formulation

Prior works in lip to speech regard their speech represen-

tation as a 2D-image [10,36] in the case of melspectrograms

or as a single feature vector [10] in the case of LPC features.

3approximate; texts obtained using Google ASR API
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In both these cases, they use a 2D-CNN to decode these

speech representations. By doing so, they violate the order-

ing in which they model the sequential speech data, i.e. the

future time steps influence the prediction of the current time

step. In contrast, we formulate this problem in the standard

sequence-to-sequence learning paradigm [31]. Concretely,

each output speech time-step Sk is modelled as a condi-

tional distribution of the previous speech time-steps S<k

and the input face image sequence I = (I1, I2, . . . , IT ).
The probability distribution of each output speech time-step

is given by:

P (S|I) = Πk(Sk|S<k, I) (1)

Lip2Wav, as shown in Figure 3 consists of two modules:

(i) Spatio-temporal face encoder (ii) Attention-based speech

decoder. The modules are trained jointly in an end-to-end

fashion. The sequence-to-sequence approach enables the

model to learn an implicit speech-level language model that

helps it to disambiguate homophenes.

4.2. Speech Representation

There are multiple output representations from which we

can recover intelligible speech, but each of them have their

trade-offs. The LPC features are low-dimensional and eas-

ier to generate, however, they result in robotic, artificial

sounding speech. At the other extreme [36], one can gener-

ate raw waveforms but the high dimensionality of the out-

put (16000 samples per second) makes the network train-

ing process computationally inefficient. We take inspiration

from previous text-to-speech works [27, 30] and generate

melspectrograms conditioned on lip movements. We sam-

ple the raw audio at 16kHz. The window-size, hop-size and

mel dimension are 800, 200, and 80 respectively.

4.3. Spatio­temporal Face Encoder

Our visual input is a short video sequence of face im-

ages. The model must learn to extract and process the fine-

grained sequence of lip movements. 3D convolutional neu-

ral networks have been shown to be effective [18, 33, 36] in

multiple tasks involving spatio-temporal video data. In this

work, we try to encode the spatio-temporal information of

the lip movements using a stack of 3D convolutions (Fig-

ure 3). The input to our network is a sequence of facial

images of the dimension T × H × W × 3, where T is the

number of time-steps (frames) in the input video sequence,

H,W correspond to the spatial dimensions of the face im-

age. We gradually down-sample the spatial extent of the

feature maps and preserve the temporal dimension T . We

also employ residual skip connections [14] and batch nor-

malization [16] throughout the network. The encoder out-

puts a single D-dimensional vector for each of the T input

facial images to get a set of spatio-temporal features T ×D

to be passed to the speech decoder. Each time-step of the

Figure 3. Lip2Wav model for lip to speech synthesis. The spatio-

temporal encoder is a stack of 3D convolutions to extract the se-

quence of lip movements. This is followed by a decoder adapted

from [30] for high-quality speech generation. The decoder is con-

ditioned on the face image features from the encoder and generates

the melspectrogram in an auto-regressive fashion.

embedding generated from the encoder also contains infor-

mation about the future lip movements and hence helps in

the subsequent generation.

4.4. Attention­based Speech Decoder

To achieve high-quality speech generation, we exploit

the recent breakthroughs [27, 30] in text-to-speech genera-

tion. We adapt the Tacotron 2 [30] decoder which has been

used to generate melspectrograms conditioned on text in-

puts. For our work, we condition the decoder on the en-

coded face embeddings from the previous module. We re-

fer the reader to the Tacotron 2 [30] paper for more details

about the decoder. The encoder and decoder are trained

end-to-end by minimizing the L1 reconstruction loss be-

tween the generated and the ground-truth melspectrogram.

4.5. Gradual Teacher Forcing Decay

In the initial stages of training, up to ≈ 30K iterations,

we employ teacher forcing similar to the text-to-speech

counterpart. We hypothesize that this enables the decoder to
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learn an implicit speech-level language model to help in dis-

ambiguating homophenes. Similar observations are made

in lip to text works [2] which employ a transformer-based

sequence-to-sequence model. Over the course of the train-

ing, we gradually decay the teacher forcing to enforce the

model to attend to the lip region and to prevent the implicit

language model from over-fitting to the train set vocabulary.

We examine the effect of this decay in sub-section 7.3.

4.6. Context Window Size

The size of the visual context window for inferring the

current speech time-step helps the model to disambiguate

homophenes [10]. We employ about 6× larger context size

than prior works and show in sub-section 7.1 that this design

choice results in significantly more accurate speech.

5. Benchmark Datasets and Training Details

5.1. Datasets

The primary focus of our work is on single-speaker lip

to speech synthesis in unconstrained, large vocabulary set-

tings. For the sake of comparison with previous works, we

also train the Lip2Wav model on the GRID corpus [7] and

the TCD-TIMIT lip speaker corpus [13]. Next, we train

on all five speakers of our newly collected speaker-specific

Lip2Wav dataset. Unless specified, all the datasets are di-

vided into 90-5-5% train, validation and unseen test splits.

In the Lip2Wav dataset, we create these splits using differ-

ent videos ensuring that no part of the same video is used

for both training and testing. The train and test splits are

also released for fair comparison in future works.

5.2. Training Methodology and Hyper­parameters

We prepare a training input example by randomly sam-

pling a contiguous sequence of 3 seconds which corre-

sponds to T = 75 or T = 90 depending on the frame

rate (FPS) of the video. The effect of various context win-

dow sizes is studied in Section 7.1. We detect and crop

the face from the video frames using the S3FD face detec-

tor [40]. The face crops are resized to 48×48. The melspec-

trogram representation of the audio corresponding to the

chosen short video segment is used as the desired ground-

truth for training. For training on small datasets like GRID

and TIMIT, we halve the hidden dimension to prevent over-

fitting. We set the training batch size to 32 and train until

the mel reconstruction loss plateaus for at least 30K itera-

tions. In our experiments for unconstrained single-speaker,

convergence was achieved in about 200K iterations. The

optimizer used is Adam [21] with an initial learning rate of

10−3. The model with the best performance on the valida-

tion set is chosen for testing and evaluation. More details,

specifically a few minor speaker-specific hyper-parameter

changes can be found in the publicly released code2.

5.3. Speech Generation at Test Time

During inference, we provide only the sequence of lip

movements and generate the speech in an auto-regressive

fashion. Note that we can generate speech for any length

of lip sequences. We simply take consecutive T second

windows and generate the speech for each of them inde-

pendently and concatenate them together. We also main-

tain a small overlap across the sliding windows to adjust

for boundary effects. We obtain the waveform from the

generated melspectrogram using the standard Griffin-Lim

algorithm [12]. We observed that neural vocoders [34] per-

form poorly in our case as our generated melspectrograms

are significantly less accurate than state-of-the-art TTS sys-

tems. Finally, the ability to generate speech for lip se-

quences of any length is worth highlighting as the perfor-

mance of the current lip-to-text works trained at sentence-

level deteriorates sharply for long sentences that barely last

over just 4 - 5 seconds [2].

6. Experiments and Results

We obtain results from our Lip2Wav model on all the test

splits as described above. For comparing related work, we

use the open-source implementations provided by the au-

thors if available or re-implement a version ourselves. We

compare our models with the previous lip to speech works

using three standard speech quality metrics: Short-Time

Objective Intelligibility (STOI) [32] and Extended Short-

Time Objective Intelligibility (ESTOI) [17] for estimat-

ing the intelligibility and Perceptual Evaluation of Speech

Quality (PESQ) [29] to measure the quality. Using an out-

of-the-box ASR system4, we obtain textual transcripts for

our generated speech and evaluate our speech results using

word error rates (WER) for the GRID [7] and TCD-TIMIT

lip speaker corpus [13]. We, however do not compute WER

for the proposed Lip2Wav corpus due to the lack of text

transcripts. We also perform human evaluation and report

the mean opinion scores (MOS) for the proposed Lip2Wav

model and the competing methods. Next, we also perform

extensive ablation studies for our approach and report our

observations. Finally, as we achieve superior results com-

pared to previous works in single-speaker settings, we end

the experimental section by also reporting baseline results

for word-level multi-speaker lip to speech generation using

the LRW [6] dataset and highlight its challenges as well.

6.1. Lip to Speech in Constrained Settings

We start by evaluating our approach against previous

lip to speech works in constrained datasets, namely the

GRID [7] corpus and TCD-TIMIT lip speaker corpus [13].

For the GRID dataset, we report the mean test scores for

4 speakers which are also reported in the previous works.

4Google Speech-to-Text API
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Tables 2 and 3 summarize the results for GRID and TIMIT

datasets respectively.

Method STOI ESTOI PESQ WER

Vid2Speech [10] 0.491 0.335 1.734 44.92%

Lip2AudSpec [4] 0.513 0.352 1.673 32.51%

GAN-based [36] 0.564 0.361 1.684 26.64%

Ephrat et al. [9] 0.659 0.376 1.825 27.83%

Lip2Wav (ours) 0.731 0.535 1.772 14.08%

Table 2. Objective speech quality, intelligibility and WER scores

for the GRID dataset unseen test split.

Method STOI ESTOI PESQ WER

Vid2Speech [10] 0.451 0.298 1.136 75.52%

Lip2AudSpec [4] 0.450 0.316 1.254 61.86%

GAN-based [36] 0.511 0.321 1.218 49.13%

Ephrat et al. [9] 0.487 0.310 1.231 53.52%

Lip2Wav (ours) 0.558 0.365 1.350 31.26%

Table 3. Objective speech quality, intelligibility and WER scores

for the TCD-TIMIT dataset unseen test split.

As we can see, our approach outperforms competing

methods across all objective metrics by a significant mar-

gin. The difference is particularly visible in the TIMIT [13]

dataset, where the test set contains a lot of novel words un-

seen during training. This shows that our model learns to

capture correlations across short phoneme sequences and

pronounces new words better than previous methods.

6.2. Lip to Speech in Unconstrained Settings

We now move on to evaluating our approach in uncon-

strained datasets that contain a lot of head movements and

much broader vocabularies. They also contain a signifi-

cant amount of silences or pauses between words and sen-

tences. It is here that we see a more vivid difference in

our approach compared to previous approaches. We train

our model independently on all 5 speakers of our newly

collected Lip2Wav dataset. The training details are men-

tioned in the sub-section 5.2. For comparison with previous

works, we choose the best performing models [9,36] on the

TIMIT dataset based on STOI scores and report their per-

formance after training on our Lip2Wav dataset. We com-

pute the same metrics for speech intelligibility and quality

that are used in Table 3. The scores for all five speakers for

our method and the two competing methods across all three

metrics are reported in Table 4.

Our approach produces much more intelligible and nat-

ural speech across different speakers and vocabulary sizes.

Notably, our model has more accurate pronunciation, as can

be seen in the increased STOI and ESTOI scores compared

to the previous works.

Method Speaker STOI ESTOI PESQ

GAN-based [36]
Chemistry

Lectures

0.192 0.132 1.057

Ephrat et al. [9] 0.165 0.087 1.056

Lip2Wav (ours) 0.416 0.284 1.300

GAN-based [36]
Chess

Analysis

0.195 0.104 1.165

Ephrat et al. [9] 0.184 0.098 1.139

Lip2Wav (ours) 0.418 0.290 1.400

GAN-based [36]
Deep

Learning

0.144 0.070 1.121

Ephrat et al. [9] 0.112 0.043 1.095

Lip2Wav (ours) 0.282 0.183 1.671

GAN-based [36]
Hardware

Security

0.251 0.110 1.035

Ephrat et al. [9] 0.192 0.064 1.043

Lip2Wav (ours) 0.446 0.311 1.290

GAN-based [36]
Ethical

hacking

0.171 0.089 1.079

Ephrat et al. [9] 0.143 0.064 1.065

Lip2Wav (ours) 0.369 0.220 1.367

Table 4. In unconstrained single-speaker settings, our Lip2Wav

model achieves almost 4× more intelligible speech than the previ-

ous methods.

6.3. Human Evaluation

In addition to speech quality and intelligibility metrics,

it is important to manually evaluate the speech as these met-

rics are not perfect [9] measures.

6.3.1 Objective Human Evaluation

In this study, we ask the human participants to manually

identify and report (A) the percentage of mispronunciations,

(B) the percentage of word skips and (C) the percentage

of mispronunciations that are homophenes. Word skips de-

notes the number of words that are either completely un-

intelligible due to noise or slurry speech. We choose 10
predictions from the unseen test split of each speaker in our

Lip2Wav dataset to get a total of 50 files. We report the

mean numbers of (A), (B), and (C) in Table 5.

Model (A) (B) (C)

GAN-based [36] 36.6% 24.3% 63.8%

Ephrat et al [9] 43.3% 27.5% 60.7%

Lip2Wav (ours) 21.5% 8.6% 49.8%

Table 5. Objective Human evaluation results. The participants

manually identified the percentage of (A) Mispronunciations, (B)

Word skips and (C) Homophene-based errors in the test samples.

Our approach makes far fewer mispronunciations than

the current state-of-the-art method. It also skips words 3×
lesser, however, the key point to note is that the issue of

homophenes is still a dominant cause for errors in all cases

indicating there is still scope for improvement in this area.
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6.3.2 Subjective Human Evaluation

We ask 15 participants to rate the different approaches for

unconstrained lip to speech synthesis on a scale of 1 − 5
for each of the following criteria: (i) Intelligibility and (ii)

Naturalness of the generated speech. Using 10 samples

of generated speech for each of the 5 speakers from our

Lip2Wav dataset, we compare the following approaches:

(i) Our Lip2Wav model (ii) Current state-of-the-art lip to

speech models [9, 36] (iii) Manually transcribed text fol-

lowed by a multi-speaker TTS [19, 30] to show that even

with the most accurate text, lip to speech is not a concate-

nation of lip-to-text and text-to-speech. And finally, (iv)

Human speech is also added for reference. In all the cases,

we overlay the speech on the face video before showing it

to the rater. The mean scores are reported in Table 6.

Approach Intelligibility Naturalness

GAN-based [36] 1.56 1.71

Ephrat et al. [9] 1.34 1.67

Lip2Wav (ours) 3.04 3.63

MTT + TTS [30] 3.86 3.15

Actual Human Speech 4.82 4.95

Table 6. Mean human evaluation scores based on speech quality

and intelligibility for various approaches for lip to speech. MTT

denotes “manually-transcribed text”. The penultimate row simu-

lates the best possible case of automatic lip to text followed by

a state of the art text-to-speech system. The drop in naturalness

score in this case illustrates the loss in speech style and prosody.

In line with the previous evaluations, we can see that our

approach produces significantly higher quality and legible

speech compared to the previous state-of-the-art [36]. It is

also evident that generating the speech from the text that is

read from lip movements (lip to text), cannot achieve the

desired prosody and naturalness even if the text is fully ac-

curate. Further, this method will also cause the lips and

audio to be out of sync. Thus, our approach is currently the

best method to produce natural speech from lip movements.

6.4. Multi­speaker Word­level Lip to Speech

Given the superior performance of our Lip2Wav ap-

proach on single-speaker lip to speech, we also obtain base-

line results on the highly challenging problem of multi-

speaker lip to speech synthesis for random identities. Note

that the focus of the work is still primarily on single-speaker

lip to speech. We adapt the approach presented in [19] and

feed a speaker embedding as input to our model. We re-

port our baseline results on the LRW [6] dataset intended

for word-level lip-reading, i.e. it is used to measure the

performance of recognizing a single word in a given short

phrase of speech. We do not demonstrate on the LRS2

dataset [5] as its clean train set contains just 29 hours of

data, which is quite small for multi-speaker speech genera-

tion. For instance, multi-speaker text-to-speech generation

datasets [39] containing a similar number of speakers con-

tain several hundreds of hours of speech data.

In Table 7, we report the speech quality and intelligibility

metrics achieved by our multi-speaker Lip2Wav model on

the LRW test split. As none of the previous works in lip

to speech tackle the multi-speaker case, we do not make

any comparisons with them. We also report the WER by

getting the text using the Google ASR API. For comparison,

we also report the WER of the baseline lip to text work on

LRW [6]. Note that the speech metric scores shown in Table

7 for word-level lip to speech cannot be directly compared

with the single-speaker case which contains word sequences

of various lengths along with pauses and silences.

Method STOI ESTOI PESQ WER

Lip2Wav (Ours) 0.543 0.344 1.197 34.2%

Chung et al. [6] NA NA NA 38.8%

Table 7. Objective speech quality and intelligibility scores on the

LRW dataset. WER is also calculated after using an ASR on the

generated speech. Our model outperforms the baseline method

proposed in [6], without any text-level supervision. The speech

metrics are not applicable for [6] as it is a lip to text work.

We end our experimental section here. Apart from show-

ing significant increases in performance from previous lip to

speech works, we also achieve word-level multi-speaker lip

to speech synthesis. In the next section, we conduct ablation

studies on our model.

7. Ablation Studies

In this section, we probe different aspects of our

Lip2Wav approach. All results in this section are calculated

using the unseen test predictions on the “Hardware Secu-

rity” speaker of our Lip2Wav dataset.

7.1. Larger context window helps in disambiguation

As stated before, the lip to speech task is highly ambigu-

ous to be inferred solely from lip movements. One of the

ways to combat this, is to provide reasonably large context

information to the model to disambiguate a given viseme.

Previous works, however, use only about 0.3− 0.5 seconds

of context. In this work, we use close to 6× this number

and provide a context of 3 seconds. This helps the model to

disambiguate by learning co-occurrences of phonemes and

words and the resulting improvement is evident in Table 8.

7.2. Model is Highly Attentive to the Mouth

We plot the activations of the penultimate layer of the

spatio-temporal face encoder in Figure 4 to show that our

encoder is highly attentive towards the mouth region of the

speaker. The attention alignment curve in Figure 5 shows
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Context Window size STOI ESTOI PESQ

0.5 seconds 0.264 0.193 1.062

1.5 seconds 0.321 0.226 1.080

3 seconds 0.446 0.311 1.290

Table 8. Larger context information consistently results in more

accurate speech generation. We limit the window size to 3 seconds

due to memory constraints.

that the decoder conditions on the appropriate video frame’s

lips while generating the corresponding speech.

Figure 4. We plot the activations of the penultimate layer of the

face encoder and the attention alignment from the decoder. We see

that the face encoder is highly attentive towards the mouth region.

Figure 5. The decoder alignment curve illustrates that the model is

generating speech by strongly conditioning on the corresponding

lip movements.

7.3. Teacher Forcing vs Non­Teacher Forcing

To accelerate the training of a sequence-to-sequence ar-

chitecture, typically, the previous time step’s ground-truth

(instead of the generated output) is given as input to the

current time-step. While this is highly beneficial in the ini-

tial stages of training, we observed that gradually decaying

the teacher forcing from ≈ 30K iterations significantly im-

proves results and prevents over-fitting to the train vocabu-

lary. A similar improvement is also observed in lip to text

works [2]. In Table 9, we show the significant improvement

in test scores by gradually decaying teacher forcing.

Teacher-forcing STOI ESTOI PESQ

Always forced 0.221 0.162 1.141

Gradual decay 0.446 0.311 1.290

Table 9. Gradually decaying the teacher forcing enables the model

to generalize to unseen vocabulary by forcing it to look at the vi-

sual input and not just predict from the previously uttered speech.

7.4. Effect of Different Visual Encoders

While using a 3D-CNN worked best in our experiments

to capture both the spatial and temporal information in un-

constrained settings, we also report in Table 10 the effect of

using different kinds of encoders. We replace the encoder

module while keeping the speech decoder module intact.

We see that the best performance is obtained with a 3D-

CNN encoder.

Encoder STOI ESTOI PESQ

2D-CNN 0.291 0.211 1.112

2D-CNN + 1D-CNN 0.298 0.223 1.170

3D-CNN (ours) 0.446 0.311 1.290

Table 10. Our Lip2Wav model employs a 3D-CNN encoder to

capture the spatio-temporal visual information and is the superior

choice over the other alternatives.

8. Conclusion

In this work, we investigated the problem of synthesiz-

ing speech based on lip movements. We specifically solved

the problem by focusing on individual speakers. We did

this in a data-driven learning approach by creating a large-

scale benchmark dataset for unconstrained, large vocabu-

lary single-speaker lip to speech synthesis. We formulate

the task at hand as a sequence-to-sequence problem, and

show that by doing so, we achieve significantly more accu-

rate and natural speech than previous methods. We evaluate

our model with extensive quantitative metrics and human

studies. All the code and data for our work has been made

publicly available2. Our work opens up several new direc-

tions. One of them would be to examine related works in

this space such as lip to text generation from a speaker-

specific perspective. Similarly, explicitly addressing the

dominant issue of homophenes can yield more accurate

speech. Generalizing to vocabulary outside the typical do-

main of the speaker can be another fruitful venture. We be-

lieve that exploring some of the above problems in a data-

driven fashion could lead to further useful insights in this

space.
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