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Abstract. Semantic segmentation of medical images is an essential first
step in computer-aided diagnosis systems for many applications. How-
ever, given many disparate imaging modalities and inherent variations
in the patient data, it is difficult to consistently achieve high accuracy
using modern deep neural networks (DNNs). This has led researchers
to propose interactive image segmentation techniques where a medical
expert can interactively correct the output of a DNN to the desired ac-
curacy. However, these techniques often need separate training data with
the associated human interactions, and do not generalize to various dis-
eases, and types of medical images. In this paper, we suggest a novel
conditional inference technique for DNNs which takes the intervention
by a medical expert as test time constraints and performs inference con-
ditioned upon these constraints. Our technique is generic can be used for
medical images from any modality. Unlike other methods, our approach
can correct multiple structures simultaneously and add structures missed
at initial segmentation. We report an improvement of 13.3, 12.5, 17.8,
10.2, and 12.4 times in user annotation time than full human annotation
for the nucleus, multiple cells, liver and tumor, organ, and brain segmen-
tation respectively. We report a time saving of 2.8, 3.0, 1.9, 4.4, and 8.6
fold compared to other interactive segmentation techniques. Our method
can be useful to clinicians for diagnosis and post-surgical follow-up with
minimal intervention from the medical expert. The source-code and the
detailed results are available here [1].

Keywords: Machine Learning · Segmentation · Human-in-the-Loop

1 Introduction

Motivation: Image segmentation is a vital imaging processing technique to
extract the region of interest (ROI) for medical diagnosis, modeling, and inter-
vention tasks. It is especially important for tasks such as the volumetric esti-
mation of structures such as tumors which is important both for diagnosis and
post-surgical follow-up. A major challenge in medical image segmentation is the
high variability in capturing protocols and modalities like X-ray, CT, MRI, mi-
croscopy, PET, SPECT, Endoscopy and OCT. Even within a single modality, the
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Table 1: Comparative strengths of various interactive segmentation techniques.

Capability Description [11] [28] [19] [10] Ours

Feedback
mode

Point 3 3 7 3 3

Box 7 7 3 7 3

Scribble 7 7 7 7 3

Training
Requirement

Pre-training with user interaction 3 3 3 3 7

Can work with any pre-trained DNN 3 3 7 7 3

Correction
Modes

Correct multiple labels 7 7 7 7 3

Insert missing labels 7 7 7 7 3

Generalization
Adapt: Distribution mismatch 7 7 7 7 3

Segment new organs than trained for 7 7 7 7 3

human anatomy itself has significant variation modes leading to vast observed
differences in the corresponding images. Hence, fully automated state-of-the-art
methods have not been able to consistently demonstrated desired robustness and
accuracy for segmentation in clinical use. This has led researchers to develop
techniques for interactive segmentation which can correct the mispredictions
during clinical evaluation and make-up for the shortfall.

Current Solutions: Though it is helpful to leverage user interactions to improve
the quality of segmentation at test time, this often increases the burden on the
user. A good interactive segmentation method should improve the segmentation
of the image with the minimum number of user interactions. Various popular
interactive segmentation techniques for medical imaging have been proposed in
the literature [25, 32, 33]. The primary limitation is that it can segment only
one structure at a time. This leads to a significant increase in user interactions
when a large number of segments are involved. Recent DNN based techniques
[11, 19, 28] improve this aspect by reducing user interactions. It exploits pre-
learnt patterns and correlations for correcting the other unannotated errors as
well. However, they require vast user interaction data for training the DNN
model, which increases cost and restricts generalization to other problems.

Our Contribution: We introduce an interactive segmentation technique using a
pre-trained semantic segmentation network, without any additional architectural
modifications to accurately segment 2D and 3D medical images with help from
a medical expert. Our formulation models user interactions as the additional
test time constraints to be met by the predictions of a DNN. The Lagrangian
formulation of the optimization problem is solved by the proposed alternate
maximization and minimization strategy, implemented through the stochastic
gradient descent. This is very similar to the standard back-propagation based
training for the DNNs and can readily be implemented. The proposed technique
has several advantages: (1) exhibits the capability to correct multiple structures
at the same time leading to a significant reduction in the user time. (2) exploits
the learnt correlations in a pre-trained deep learning semantic segmentation net-
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work so that a little feedback from the expert can correct large mispredictions.
(3) requires no joint training with the user inputs to obtain a better segmenta-
tion, which is a severe limitation in other methods [11,28]. (4) add missing labels
while segmenting a structure if it was missed in the first iteration or wrongly
labeled as some other structure. The multiple types of corrections allow us to
correct major mispredictions in relatively fewer iterations. (5) handle distribu-
tion mismatches between the training and test sets. This can arise even for the
same disease and image modality due to the different machine and image cap-
turing protocols and demographies. (6) for the same image modality, using this
technique one can even segment new organs using a DNN trained on some other
organ type. Table 1 summarizes the comparative advantages of our approach.

2 Related Work

Conventional Techniques: Interactive segmentation is a well-explored area in
computer vision and some notable techniques are based on Graph Cuts [25, 29,
32], Edge or Active Contours [12,30], Label propagation using Random Walk or
other similar style [7,33], and region-based methods [9,26]. In these techniques,
it is not possible to correct multiple labels together without the user providing
the initial seeds and also not possible to insert a missing label.

DNN based Techniques: DNN based techniques use inputs such as clicks
[11, 28], scribbles [18], and bounding boxes [19] provided by a user. Other no-
table techniques include [2, 17, 19, 28, 36]. These methods require special pre-
training with user-interactions and associated images. This increases the cost of
deployment and ties a solution to pre-decided specific problem and architecture.

Interactive Segmentation for Medical Images: Interactive Segmentation
based methods, especially for medical image data, have been proposed in [3,10,
15, 34, 35]. The methods either need the user inputs to be provided as an addi-
tional channel with the image [3] or need an additional network to process the
user input [35]. BIFSeg [34] uses the user inputs at test time with a DNN for
interactive segmentation of medical images. However, our method is significantly
different in the following manner: (a) DNN - use their own custom neural net-
works [34]. However, our method can use pre-existing segmentation networks.
This allows our method to use newer architectures which may be proposed in
the future as well. (b) Optimization - use CRF-based regularization for label
correction [34]. We propose a novel restricted Lagrangian-based formulation.
This enables us to do a sample specific fine-tuning of the network, and allows
our method to do multiple label corrections in a single iteration which is novel.
(c) User Inputs - use scribbles and bounding boxes as user inputs [34]. We can
correct labels irrespective of the type of user input provided.

3 Proposed Framework

The goal is to design an approximate optimization algorithm that can encode
the constraints arising from user-provided inputs in the form of scribbles. A
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Fig. 1: The figure shows the working of our algorithm. Note that depending upon
the application, our framework can use different pre-trained network architec-
tures. Hence we do not give the detailed architecture of any particular model.
The first step in our framework is to obtain an initial segmentation using the
pre-trained deep learning network. The user then examines the segmentation
and adds scribbles where the desired correction is required. This is then used to
refine the weights of the network and the improved segmentation is obtained.

simple gradient descent strategy similar in spirit to the Lagrangian relaxation
proposed by [16] is optimized. The strategy allows us to use existing libraries
and infrastructure built for any image modality optimizing the loss for the DNNs
using the standard back-propagation procedure.

Problem Definition: A neural network with N layers is parameterized by
weights W from input to output. We represent this as a function Ψ(x, y,W )→
R+ to measure the likelihood of a predicted output y given an input x and
parameters/weights W . We also want to enforce that the output values belong to
a set of scribbles Sx provided by the user to correct the segmentation dependent
on x. Here, Sx encodes both the location in the image where correction is required
and the desired segmentation class label.

We can express the constraint, y ∈ Sx, as an equality constraint, using a
function g(y,Sx) → R+. This function measures the compatibility between the
output y and scribbles Sx such that g(y,Sx) = 0 if and only if there are no errors
in y with respect to Sx. In our case, g(y,Sx) is the cross-entropy loss between the
predicted labels y and the segmentation class label encoded in Sx. This allows
us to solve the optimization problem by minimizing the following Lagrangian:

min
λ

max
y

Ψ(x, y,W ) + λ g(y,Sx). (1)

Note that the compatibility constraints in g(y,Sx) factorize over the pixels
and one trivial solution of the optimization problem as described above is to
simply change the output variables to the class labels provided by the scribbles.
However, this does not allow us to exploit the neighborhood information inherent
in the images, and the correlations learnt by a DNN due to prior training over
a large dataset.

We note that the network’s weights can also control the compatibility of the
output configurations with the scribble input. Since the weights are typically
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Algorithm 1: Scribble aware inference for neural networks

Input : test instance x, input specific scribbles Sx, max epochs M ,
pre-trained weights W , η learning rate, α regularization factor
Wλ ←W // reset to have instance-specific weights

Output : Refined segmentation
while g(y, Sx) > 0 and iteration < M do

y ← f(x;Wλ) // perform infererence using weights Wλ

∇ ← g(y, Sx) ∂
∂Wλl

Ψ(x, y,Wλl) + α
Wl−Wλl
||Wl−Wλl ||2

// constraint loss

Wλl ←Wλl − η∇ // update instance-specific weights with SGD

end
return y, the refined segmentation

tied across space, the weights are likely to generalize across related outputs in
the neighborhood. This fixes the incompatibilities not even pointed-to by the
limited scribbles given by the user. Hence, we propose to utilize the constraint
violation as a part of the objective function to adjust the model parameters to
search for an output satisfying the constraints efficiently.

We propose to optimize a “dual” set of model parameters Wλ over the con-
straint function while regularizing Wλ to stay close to the original weights W .
The network is divided into a final set of layers l and an initial set of layers N−l.
We propose to optimize only the weights corresponding to the final set of layers
Wλl . The optimization function is given as:

min
Wλl

Ψ(x, ŷ,Wλl) g(ŷ,Sx) + α||Wl −Wλl ||, (2)

where ŷ = arg max
y

Ψ(x, y,Wλl). This function is reasonable by definition of the

constraint loss g(·), though it deviates from the original optimization problem,
and the global minima should correspond to the outputs satisfying the con-
straints. If we initialize Wλ = W , we also expect to find the high-probability
optima. If there is a constraint violation in ŷ, then g(·) > 0, and the following
gradient descent procedure makes such ŷ less likely, else g(·) = 0 and the gradient
of the energy is zero leaving ŷ unchanged.

The proposed algorithm (see Algorithm 1) alternates between maximization
to find ŷ and minimization w.r.t. Wλl to optimize the objective. The maximiza-
tion step can be achieved by employing the neural network’s inference proce-
dure to find the ŷ, whereas minimizing the objective w.r.t. Wλl can be achieved
by performing stochastic gradient descent (SGD) given a fixed ŷ. We use the
above-outlined procedure in an iterative manner (multiple forward, and back-
propagation iterations) to align the outcome of the segmentation network with
the scribble input provided by the user.

Fig. 1 gives a visual description of our framework. It explains the stochastic
gradient-based optimization strategy, executed in a manner similar to the stan-
dard back-propagation style of gradient descent. However, the difference is that
while the back-propagation updates the weights to minimize the training loss,
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the proposed stochastic gradient approach biases the network output towards
the constraints generated by the user provided scribbles at the test time.

Scribble Region Growing: The success of an interactive segmentation system
is determined by the amount of burden on a user. This burden can be eased by
allowing the user to provide fewer, shorter scribbles. However, providing shorter
scribbles can potentially entail a greater number of iterations to obtain the final
accurate segmentation. Hence, we propose using region growing to increase the
area covered by the scribbles. We grow the region to a new neighborhood pixel,
if the intensity of the new pixel differs from the current pixel by less than a
threshold T .

4 Results and Discussions

Dataset and Evaluation Methodology: To validate and demonstrate our
method, we have evaluated our approach on the following publicly available
datasets containing images captured in different modalities: (1) Microscopy:
2018 Data Science Bowl (2018 DSB) [5] (nucleus), MonuSeg [14] (nucleus), and
ConSeP [8] datasets (epithelial, inflammatory, spindle shaped and miscellaneous
cell nuclei) (2) CT: LiTS [6] (liver and tumor cells) and SegThor [22] (heart,
trachea, aorta, esophagus) challenges (3) MRI: BraTS’ 15 [20] (necrosis, edema,
non-enhancing tumor, enhancing tumor) and CHAOS [13] (liver, left kidney,
right kidney, spleen) datasets. All the experiments were conducted in a Linux
environment on a 20 GB GPU (NVIDIA 2018Tx) on a Core-i10 processor, 64 GB
RAM, and the scribbles were provided using the WACOM tablet. For microscopy
images, the segmented image was taken and scribbles were provided in areas
where correction was required using LabelMe [31]. For CT and MRI scans, the
scribbles were provided in the slices of the segmentation scan where correction
was desired using 3-D Slicer [23]. For validating on each of the input modalities,
and the corresponding dataset, we have taken a recent state-of-the-art approach
for which the DNN model is publicly available and converted it into an interactive
segmentation model. We used the same set of hyper-parameters that were used
for training the pre-trained model. The details of each model, and source code
to test them in our framework are available at [1]. To demonstrate the time
saved over manual mode, we have segmented the images/scans using LabelMe for
microscopy, and 3-D Slicer for CT/MRI, and report it as full human annotation
time (F). We took the help of two trained annotators, two general practitioners
and a radiologist for the annotation.

Ablation Studies: We also performed ablation studies to determine : (a) Opti-
mum number of iterations, (b) Layer number upto which we need to update the
weights, (c) Type of user input (point,box,scribble) and, (d) Effect of scribble
length on the user interaction time. Owing to space constraints, the result of
the ablation studies are provided on the project page [1]. We find scribble as the
most efficient way of the user input through our ablation study, and use them
in the rest of the paper.
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Table 2: User Interaction Time (UT) and Machine Time (MT) in minutes to
separate structures (F: Full Human Annotation, R: Our method - Region Grow-
ing, N: Our Method - No Region Growing. Methods [19, 21, 25, 28, 32, 33] were
applied till a dice coefficient of 0.95 was reached.

Dataset
User Interaction Time Machine Time

F R N [25] [28] [19] [21] [32] [33] R N [25] [28] [19] [21] [32] [33]

2018 DSB 66 5 7 13 12 12 - - - 6 10 11 12 13 - - -
CoNSeP 30 6 8 16 18 20 - - - 5 7 17 20 23 - - -
LiTS 120 7 8 - - - 11 12 13 10 12 - - - 11 13 11
CHAOS 136 13 15 - - - 58 66 83 25 30 - - - 50 66 83
BraTS’ 15 166 11 13 - - - 76 83 100 58 81 - - - 100 116 133

.

Multiple
Labels

Missing
Labels

Unseen 
Organs

(a) Input Image (c) Correction 1(b) Ground Truth (d) Correction 2 (e) Correction 3 (f) Correction 4 (g) Final Result

Scribble Liver Left Kidney Right Kidney Spleen

Scribble Liver Left Kidney Right Kidney

Scribble Heart

Fig. 2: (a) Correcting multiple labels (top row) (b) Inserting missing labels (mid-
dle row) (c) Interactive segmentation of organs the model was not trained for
(bottom row). Incremental improvement as scribbles are added shown. No other
state-of-the-art approach has these capabilities. More qualitative results are pro-
vided here [1].

Image Segmentation with Multiple Classes: Our first experiment is to
evaluate interactive segmentation in a multi-class setting. We use two trained
annotators for the experiment. We have used the validation sets of the 2018
Data Science Bowl (2018 DSB), CoNSeP, LiTS, CHAOS and the BraTS’ 15
challenge datasets for the evaluation. We have used the following backbone DNNs
to demonstrate our approach: [4, 5, 8, 24, 27]. The details of the networks are
provided on the project webpage due to a lack of space. For the microscopy
images we compare against Grabcut [25], Nuclick [10], DEXTR [19] and f-BRS
[28]. For the CT and MRI datasets, we have compared our method against 3-
D GrabCut [21], Geos [32] and SlicSeg [33]. Table 2 shows that our technique
gives an improvement in user annotation time of 13.3, 12.5, 17.8, 10.2 and 12.4
times compared to full human annotation time and 2.8, 3.0, 1.9, 4.4 and 8.6
times compared to other approaches for nucleus, multiple cells, liver and tumour,
multiple organs, and brain segmentation respectively. We also compared the
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Fig. 3: Improvement in segmentation accuracy per user interaction: Our models
(region and no-region growing) consistently achieve best accuracy, and in the
least number of user interactions.

Table 3: Left: Dice Coefficient improvement for tissues with each interaction by
medical expert. Right: User Interaction Time (UT) and Machine Time (MT)
for distribution mismatch scenario (in mins).

Tissue Type 1 2 3 4 5

Nucleus 0.54 0.62 0.76 0.81 0.86
Healthy 0.64 0.73 0.79 0.85 0.9
Necrosis 0.61 0.65 0.72 0.81 0.85
Edema 0.72 0.75 0.82 0.89 0.92
Enhancing tumor 0.62 0.65 0.74 0.85 0.89
Non-Enhancing tumor 0.71 0.75 0.83 0.87 0.92
Liver 0.73 0.75 0.81 0.89 0.92
Tumor 0.67 0.72 0.83 0.87 0.89

Method UT MT

Ours 8 7
Nuclick 13 10
DEXTR 20 11
f-BRS 23 12
GrabCut 25 13

segmentation accuracy per user interaction for every method. Fig. 3 shows that
our method with region growing outperforms all the methods both in terms of
accuracy achieved, and the number of iterations taken to achieve it.

Fig. 2 shows the visual results. The top row shows the segmentation obtained
by adding multiple labels in one interaction by our approach. We segment both
the tumors and the entire liver by using two scribbles at the same time. One of
the important capabilities of our network is to add a label missing from the initial
segmentation which is shown in the middle row. Note that our method does not
require any pre-training with a specific backbone for interactive segmentation.
This allows us to use the backbone networks that were trained for segmenting
a particular organ. This ability is especially useful in the data-scarce medical
setting when the DNN model for a particular organ is unavailable. This capability
is demonstrated in the bottom row of Fig. 2 where a model trained for segmenting
liver on LiTS challenge [6] is used to segment the heart from SegThor challenge
[22].

Distribution Mismatch: The current methods cannot handle distribution mis-
matches forcing pre-training on each specific dataset, requiring significant time,
effort, and cost. Our method does not need any pre-training. We demonstrate
the advantage on the MonuSeg dataset [14] using the model pre-trained on the
2018 Data Science Bowl [5]. Table 3 (Right) shows that our method requires
much less user interaction and machine time compared to other methods.
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Evaluation of our method by medical experts: Our approach was tested
by medical experts: two general practitioners and a radiologist. We select five
most challenging images/scans from the 2018 Data Science Bowl, LiTS, and
BraTS’ 15 datasets with the least dice score when segmented with the pre-trained
segmentation model. The LiTS and the BraTS’ 15 datasets were selected owing
to their clinical relevance for the diagnosis and volumetric estimation of tumors.
Table 3 (Left) gives the dice coefficient after each interaction. The improvement
in user interaction and machine time are provided in the supplementary material
on the project webpage.

5 Conclusion

Modern DNNs for image segmentation require a considerable amount of anno-
tated data for training. Our approach allows using an arbitrary DNN for seg-
mentation and converting it to an interactive segmentation. Our experiments
show that we did not require any prior training with the scribbles and yet out-
perform the state-of-the-art approaches, saving upto 17x (from 120 to 7 mins)
in correction time for a medical resource personnel.
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