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Fig. 1: Left: Scenes with real and inpainted traffic signs (chevron-left). Middle: Intermediary GradCam visualizations of the cue classifier (encoder) with
and without CueCAn. Right: Segmentation model with CueCAn-based encoder detects missing signs (green masks overlayed over the scene on the right
for CueCAn and yellow mask by the baseline) on the scene without signs (follow pink arrows) by effectively attending to the context cues, compared to
weak attention without CueCAn. Segementation GradCams are obtained from the centroid of the predicted sign (red dot).

Abstract— Unconstrained Asian streets often involve poor
infrastructure, affecting overall road safety. Missing traffic signs
are a regular part of such streets. Missing or non-existing
object detection has been studied for locating missing curbs
and estimating reasonable regions for pedestrians on road scene
images. Such methods involve analyzing task-specific single
object cues. In this paper, we present the first and most
challenging video dataset for missing objects, with multiple
types of traffic signs for which the cues are visible without the
signs in the scenes. We refer to it as the Missing Traffic Signs
Video Dataset (MTSVD). MTSVD is challenging compared to
the previous works in two aspects: i) The traffic signs are
generally not present in the vicinity of their cues, ii) The traffic
signs’ cues are diverse and unique. Also, MTSVD is the first
publicly available missing object dataset. To train the models
for identifying missing signs, we complement our dataset with
10K traffic sign tracks, with 40% of the traffic signs having cues
visible in the scenes. To solve the problem of identifying missing
traffic signs, we propose novel Cue-driven Contextual Attention
units (CueCAn), which we incorporate into our model’s encoder.
We first train the encoder to classify the presence or absence of
traffic sign cues and then train the entire segmentation model
end-to-end to localize missing traffic signs. Quantitative and
qualitative analysis shows that CueCAn significantly improves
the performance of base models. Code, data, and models will be
released. Refer GitHub link and supplementary for the demo.
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I. INTRODUCTION
Road accidents affect millions of lives due to increas-

ing population and vehicle density. Incorporating Advanced
Driving Assistant Systems (ADAS) in commercial vehicles
is gaining momentum. However, these systems still have a
long way to go in terms of offering absolute road-safety [1].
In a recent road safety report, it is observed that 12.6%
of accidents caused by the driver errors are due to traffic
sign violations, which establishes the importance and need of
traffic signs in a regulated manner [2]. Autonomous Vehicles
(AV) require a consistent and well-maintained infrastructure
to explore their full potential and to deliver the safety they
promise to offer. Traffic signs are an important aspect of road
infrastructure, as they contain essential information about
what is coming ahead, which ADAS systems like Mobileye
use as supplementary information for scene understanding.
Failure to robustly perceive and process the road scene
has led to multiple fatal crashes involving commercially
deployed AVs as well [3]. Missing traffic signs are frequent
on the unconstrained roads of many Asian countries; few
samples of such frames from our Missing Traffic Signs Video
Dataset (MTSVD), containing context cues but no signs are
present in Fig. 2. Identifying regions with missing traffic
signs in a manual manner requires significant effort. Prior
missing object datasets either had the cue in their immediate
vicinity or had a consistent relationship between the missing
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Fig. 2: Sample scenes from MTSVD exhibiting missing traffic signs (with cues). Top (left to right): side-road-left, cross-roads, go-slow and bus-bay.
Bottom (left to right): right-hand curve, gap-in-median and left-hand curve.

TABLE I: Overview of Missing Object Datasets.

Dataset Frames with Public Context
Missing Objects Access Variety

Tohme [5], [6] 1086 × ×

Pedestrians Dataset [4] <475 × ×

Missing Barricades [7] 853 × ×

MTSVD (ours) 135K (2K Videos) ✓ ✓

object and the corresponding cue [4], [5]. However, the
MTSVD contains multiple cue contexts and complementary
cue-object relationships, making MTSVD the most challeng-
ing and diverse, publicly accessible missing objects dataset.
Based on the observation that context clues add a certain
discontinuity in the scene, we also propose CueCAn to
exploit the nature of context cues. The CueCAn works on the
intuition of identifying traffic sign cues by erasing/inpainting
them (or filling the cue regions with context) in feature space
and then taking the difference between inpainted and the
original features, which helps in highlighting the discon-
tinuous cue patterns. The proposed pipeline, as illustrated
in Fig. 1, highlights the efficacy of CueCAn in making
the model attend to context features for both encoding and
decoding tasks of classifying the absence/presence of cues
and localizing missing signs, which are lacking in the vanilla
approach, without CueCAn. Our contributions are as follows:

• We introduce the first publicly accessible video dataset
for missing objects, the Missing Traffic Sign Video
Dataset (MTSVD), spread across 10K video tracks for
101 traffic signs categories, with 2K missing sign video
clips containing 20 types of traffic sign cues.

• We propose the Cue driven Context Attention Unit,
CueCAn, a cue-driven approach for detecting missing
traffic signs on unconstrained and traffic-dense roads.

II. RELATED WORK

Missing Object Localization and Datasets: In the last
decade, deep learning has driven computer vision approaches
to be reasonably accurate for the tasks such as object detec-
tion and image segmentation. However, the task of locating
missing objects is currently studied in very few works, but

the existing ones highlight its potential. [4], [5], [7]. Humans
consider multiple aspects to determine missing objects, the
most prominent of which is cue understanding [8]–[10]. Sun
et al. [5] aim to improve city accessibility for people with
mobility disabilities by detecting regions with missing curbs.
For this, a Siamese Fully Connected network (SFC) learns
the contextual cue classifier for curbs from the image and
object-masked image pairs, along with a curb localizer. The
model identifies the region as a missing curb if an image
contains curb context (cue) but no curb. Chian et al. [7]
with an attempt to mitigate fall-from-height injuries, annotate
the missing barricade regions, and perform object detection.
Chien et al. [4] predict the regions where pedestrians could
be placed in street scenes using the Fully Convolutional
Network (FCN) based on the VGG encoder. Grabner et
al. [11] processed context in video tracking tasks using
supporters, which help estimate the target object locations
using the Hough Transform.

An overview of existing missing object datasets is given
in Table I. Given the lack of a large-scale and complex
dataset specifically created for missing objects, prior missing
object detection works either using existing datasets (gener-
ally curated for segmentation and object detection tasks) or
collecting and sampling their own datasets lacking in scale
and variety. Sun et al. [5] employ the TOHME dataset, a
collection of 1086 street ramp images sourced partly from
Google Street View and crowdsourcing [6]. Chien et al. [4]
use the CityScapes dataset [12]. However, more than 84%
of the CityScapes images contain fewer than 5% pedestrian
pixels, making most frames unsuitable for the task [4]. Chian
et al. [7] collect 853 images of barricades captured from
high-rise construction sites using a crane-mounted camera
at varying elevations. The datasets mentioned above do not
involve diversity in the object cues. However, in the case
of traffic signs, multiple cues exist, i.e., the cue for left-
hand-curve is different from that of right-hand-curve, and
the cue for bus-bay is much different from that of pedestrian-
crossing, etc.

Traffic Sign Datasets: Several traffic sign datasets exist
captured in different regions over the globe [13]–[16], [18].
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TABLE II: Overview of Various Traffic Sign Datasets. Tracks refer to the
video tracks with signs in a sequence, and Missing signs refer to intervals
where cue-context exist, but the traffic sign does not. ‡ created using video
data. † 52K signs fully annotated and 48K partially annotated [13]

.
Dataset Capture Resolution Frames Night Missing

(Tracks) +All-weather Signs

DITS‡ [14] 1280×720 478 × ×

TT100K [15] 2048×2048 26K × ×

GTSDS‡ [16] 1360×800 1206 × ×

BTSD [17] 1280×720 8851 × ×

MTSD [13] 2048×1152 100K† ✓ ×

MTSVD‡ 2560×1440 400K ✓ ✓
(ours) (10K)

Type: Bus-bay
Track ID: 18
Tilted

Type: Speed-limit
Track ID: 3

Type: 
Pedestrian-crossing
Track ID: 11
Tilted

Type: U-turn-right
Track ID: 13

Type: Pedestrian-crossing
Track ID: 17
Tilted
Occluded

Type: Roundabout
Track ID: 21

Type: go-slow
Track ID: 5
Non-standard

Type: Signboard
Track ID: 16
Non-standard

Fig. 3: Annotated frames from MTSVD exhibiting frames having signs
with their relevant cues. Top (left to right): a roundabout with pedestrian-
crossing, bus-bay with speed-limit. Bottom (left to right): u-turn-right with
pedestrian-crossing (night scene), go-slow and Signboard (rainy weather).

Traffic signs spread across different countries though sharing
a similar context and purpose, have variations in appearance,
promoting the compilation of regional datasets. Table II
briefly summarize different traffic sign datasets. Existing
datasets focus on classification and segmentation tasks and
leave out the missing signs data, resulting in the absence
of a holistic approach toward road safety in unconstrained
environments. The incentive behind collecting the MTSVD is
further promoting road safety on unconstrained roads. Road
safety depends on complex parameters such as the quality
of existing road infrastructure, violation of traffic rules by
other vulnerable road users (VRUs), including pedestrians
(e.g., jaywalkers), and the driving behavior of road agents.

Context in Computer Vision: Elaborate studies indicate
how humans effectively perceive their surroundings via con-
textual clues [8]–[10]. Santosh et al. [19] elaborate on the
role of context in human-scene perception, classify context
into multiple categories, and use context information to
improve object detection. Multiple vision approaches inte-
grate context and object features, like Conditional Random
Fields, to improve object categorization and the Deformable
Parts Model with surrounding context information to improve
detection and segmentation tasks [10], [20]. However, given
the close dependency between object features and their
corresponding context, these approaches are unsuitable for
identifying missing traffic signs, where the object remains
absent from the scene.

A. Deep Neural Networks and Attention Mechanism

Deep neural networks have gained immense popularity
in multiple computer vision tasks covering classification,
semantic segmentation, and object detection. Fully Convolu-
tional Neural (FCN) networks use skip connections between
the up and the downsampling path, i.e., layers bypassing at
least one intermediate layer in the network to effectively cap-
ture contextual and spatial information from the features [21].
FCN has been utilised for identifying missing pedestrians by
Chien et al. [4], and the same has been used in this study
for the segmentation task as well. For the segmentation tasks,
the output matching the input size is generated with pixel-
level class mappings. As we provide a plethora of data to
neural networks, attention modules make the networks attend
to specific input parts to improve the model’s performance.
Initially, Bahdanau et al. [22] introduced attention modules,
which find applications in many AI applications, including
Computer Vision, Natural Language Processing, Speech pro-
cessing, etc. Liu et al. [23] propose a contextual attention unit
considering global and local object features for obtaining
the saliency maps. However, local information in the spatial
vicinity of the signs is irrelevant for identifying missing
traffic signs, as they are predominantly at a location away
from their cue. Further, global information is not essential
for our task as the cues for each traffic sign are at specific
locations in the scene. Han et al. [24] provide a solution for
detecting water puddles using the Reflection Attention Unit
(RAU) on the basis of puddle surfaces containing reflection
from the regions away from them (e.g., sky), which is similar
to our situation (traffic signs away from their cue). However,
RAU models search for similar corresponding patches in
the continuous image space. In contrast, our task requires
modeling traffic sign cues as a discontinuity in the image
space, e.g., speed breakers (see Fig. 4).

III. MISSING TRAFFIC SIGN VIDEO DATASET

In this paper, we present a novel dataset, MTSVD. What
differentiates the MTSVD from other traffic sign datasets is
the inclusion of 2K missing sign clips having traffic sign
cues (refer Table I). Further, it is the first publicly accessible
data for missing objects. The dataset contains 135K frames
of missing traffic sign intervals spread across 2K video clips
covering 20 traffic sign classes for identifying, classifying,
and detecting missing objects in images and video clips. The
data is collected in Asia, covering a wide variety of terrain,
weather, lighting conditions, and nighttime scenes. MTSVD
is captured with the DDPAI X2S Pro camera, recording the
driving at 25 fps, with a resolution of 2560 × 1440. The
MTSVD contains 10K unique traffic sign tracks, annotated
with multiple attributes like occlusion, tilt, damage, and trun-
cation. It also involves labels identifying non-standard traffic
signs, like background-foreground color, shape, category, etc.
Sample annotated images are shown in Fig 3, along with
distinctive attributes in red. MTSVD is spread across 101
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Fig. 4: Illustration of CueCAn. Input feature map, F is downsampled using average pooling. Features are then inpainted using kernel sizes of 3 and 5, with
different learnable units (gray: non-learnable, orange: learnable), in a row and column-wise fashion, and upsampled. Features are then subtracted from the
original feature map and concatenated with the original feature. Finally, a Conv operation merges the features to obtain the original feature size.

categories of traffic signs.1 Note that for safety purposes,
sometimes the traffic signs appear before the cues in a video
sequence (e.g., u-turn). So, we also label the exact intervals
when the traffic sign cues are in the camera’s field of view.

IV. METHODOLOGY

Similar to previous work on non-existent pedestrians [4],
we employ VGG-19 [25] encoder followed by the FCN-8
decoder [21] to segment the missing traffic sign regions. We
augment VGG-19 layers with novel Cue-driven Contextual
Attention (CueCAn) units and train the encoder to classify
the presence or absence of traffic signs’ cues. We then
train the entire network with the enriched encoder features
end-to-end for the segmentation task. We now discuss the
components of our system in detail.

A. Introducing CueCAn

We model the context space of traffic sign cues as regions
with discontinuities. E.g., in the case of speed breakers, or
go-slow stripes on the road, this discontinuity is in the form
of horizontal ridges. At the same time, the cues for gap-in-
median or side-roads (see Fig 2) are complex discontinuities.
We model such complexities by a composition of horizontal
and vertical discontinuities in feature space. We propose
highlighting these aberrations to focus on traffic signs’ cues
using CueCAn. The CueCAn learns to fill the rows and
columns of the image features with their context and finds
the difference from the original feature vector. Non-filled
regions with cues in the original features have a larger
difference than their filled counterparts. The difference helps
highlight the cues. Context cues without a linear geometry,
like in the case of curves, benefit from the composition of
horizontal and vertical filling. The implementation of the

1The only other traffic sign dataset to include such dense attributes (6)
and categories (313) for each annotation is the MTSD [13] but does not
enable missing object-related tasks.

CueCAn is illustrated in Fig. 4. First, the input feature map
F with shape [H,W,C] is fed to an average pooling layer,
condensing the feature to the shape of [N,W/2, C]. Here,
H , W , and C are the input feature’s height, width, and
channel dimensions, and N is fixed to 8, similar to Han
et al. [24]. The features are then filled with the context
in a row-wise fashion with a learnable 3 × 3 convolution
operation with the central row fixed to zero (or depending
on the encoder’s layer: 5× 5 convolution with central three
rows fixed to zero), resulting in Fhoriz of shape [N,W/2, C].
A similar process is applied in a column-wise manner to fill
the feature columns with context using convolutional filters
with central columns fixed to zero, resulting in Fvert of
shape [N,W/2, C]. Fhoriz and Fvert are upsampled (using
bilinear interpolation) to the dimensions of original features,
i.e. [H,W,C], denoted by F

′

horiz and F
′

vert, respectively.
Finally, the upsampled features, now containing the context
encoding, are individually subtracted from the input feature
F , and are further concatenated with F , resulting in Fconcat

of shape [H,W, 3C]. The Fconcat is matched to the input
feature [H,W,C] using a Conv+ReLU operation. When
filled with their context, regions such as the sky and road
do not introduce a significant change. However, cue regions
change more with the context filling operation, maximizing
the difference between the original and the context-encoded
feature, which provides supplementary information to the
original feature vector by highlighting the traffic signs’ cues.

B. Training Data Creation

To train the encoder for cue classification, we randomly
sample 12500 unique frames from MTSVD using the anno-
tated intervals and tracks to create four balanced sub-sets.
The sub-sets include i) frames containing traffic signs with
cues, ii) frames with traffic sign cues and inpainted traffic
signs, using a state-of-the-art inpainting technique [26], iii)
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frames without any cue but with traffic signs (from categories
having no cues in the same frame generally, e.g., school
ahead), and iv) frames without any cue or traffic sign. Thus
we balance the dataset to avoid any bias toward the traffic
signs or cues. The traffic sign cue is a central part of identify-
ing missing traffic signs, so we only use the inpainted images
and corresponding inpainting masks2 as input-output pairs
for the localization task, similar to previous works citesee-
ingwhatnotthere,missingpedestrians. It is important to note
that despite using inpainted images, locating missing traffic
signs is more challenging than previous works because i)
MTSVD contains 20 complex traffic sign cues, ii) locating
traffic signs is challenging even after attending to the cue
regions due to the variety in possible sign placements.

C. Model Training

To identify missing signs, the model must attend to the
traffic sign cues in the environment. Similar to Han et
al. [24], we add CueCAn at the end of the third, fourth,
and fifth blocks of the VGG-19 [25] encoder to highlight
and classify the cues. The next task is to localize where the
sign could be placed, using segmentation model with the
pre-trained VGG-19 encoder and FCN-8 [21] decoder. For
localization, optimal results and GradCAM visualizations are
observed when the entire network is fine-tuned end-to-end.
We use binary cross-entropy loss for classification and focal
loss [27] to handle class-imbalance in the localization task.

V. EXPERIMENTS AND RESULTS

We use a batch size of 32 and train the cue classifier with
Adam optimizer with an initial learning rate of 1e−4. The
segmentation model is also trained with Adam optimizer and
an initial learning rate of 1e−3. All models are trained on
a single Nvidia RTX-2080Ti GPU for 400 training epochs,
with train:val:test split of 80:10:10.

We consider the Vanilla VGG-19 encoder to be the base-
line cue classifier. We also experiment with two different
versions of the CueCAn, i) by changing the convolutional
kernel size and ii) by changing the learnable parameters of
the convolution filter. We try convolutional kernel sizes of 3,
5, and 7, with two context-filling approaches for each kernel
size. We start with an implementation in which all kernel
parameters except the central row/column are learnable. We
refer to this configuration as CueCAnk where k is the kernel
size. In the next version, CueCAnke, only the boundary (or
edge) rows or columns are learnable. The intuition behind
the CueCAnke is that if only boundary features are used,
it leads to better context filling in the feature space. Using
only the edge parameters reduces the noise of nearby pixels
(or elements in feature space) containing cues due to the
receptive field. We verify the intuition mentioned above by
the comparative GradCAM [28] visualizations using different
configurations, with all other parameters kept constant.

Further, we implement arrangements of CueCAn at the
end of all the blocks of the VGG-19 encoder. However, the

2as the ground truth for missing traffic signs doesn’t exist.

TABLE III: Traffic Sign Cue Classification Results.

Model Precision Recall F-Score

VGG19 [25] 94.77 87.45 90.96

CueCAn333 94.87 93.96 94.41

CueCAn553 95.30 92.20 93.72

CueCAn753 92.48 90.99 91.73

CueCAn5e53 96.05 94.49 95.26

CueCAn5e5e3 97.96 93.22 95.53

training loss and accuracy curves indicated the ineffective-
ness of this approach. We, thus, implement the final set of
experiments with CueCAn in only the 3rd, 4th and the 5th

blocks of the network, similar to Han et al. [24]. We refer
to configurations with convolutional kernels of size k, k′,
and k′′ in blocks 3, 4, and 5 as CueCAnkk′k′′ . Similarly,
CueCAnkekek′ means that the configurations are similar to
CueCAnkkk′ , but the kernels in blocks 3 − 4 are edge-
filling convolutions. We first experiment with CueCAn333

as a baseline. Motivated by the increasing receptive field in
deeper layers, we experiment with CueCAn553, CueCAn753
to learn to fill more context in the cue regions. However,
we observe that due to the receptive field, the contextual
regions around the cues also have cue information, making
it complex for the non-edge kernels to fill the cues. Hence,
we also experiment with CueCAn5e53 and CueCAn5e5e3.
As we will see in the next section, using kernels above 5
degrades both precision and recall, we, therefore, avoided
using kernels of dimension 7 in the final configurations.

Classification Results: We present the traffic sign cue
classification results in Table III. It can be observed that
the baseline VGG19 has precision, recall, and F-score of
94.77, 87.45, and 90.96. Using VGG19 with CueCAn333
shows significant improvements of over 3.5% in Recall and
F-score. This is an impressive result since the model with
CueCAn learns to better classify multiple types of traffic
sign cues (20 categories as discussed in Sec. III) without
any cue-level supervision. The classifier only uses a binary
label (i.e., presence or absence of a cue) at the frame level.
Increasing the kernels’ size of context filling filter from 3 to
5 in CueCAN553 further improves the precision but reduces
the recall as shown in row 3 of Table III. The next row shows
that increasing the kernel size to 7 leads to the degradation
of all three scores. However, using edge-kernels instead of
kernels with only central row fixed to zero (see Sec. IV),
leads to further improvements in precision and F-scores as
the last two rows of Table III depict, though the recall
of CueCAN5e53 is better than CueCAN5e5e3. Nevertheless,
through qualitative analysis in Fig. 6, it can be observed that
CueCAN5e53, which is qualitatively also better than VGG-
19 and CueCAN333, fails to focus on the exact cue regions
for gap-in-the median (row two). Moreover, the last column
of Fig. 6 shows that CueCAN5e5e3 attends the correct traffic
sign cues with high precision compared to the other variants.
Thus, we use CueCAN5e5e3 for the segmentation task and
refer to it as CueCAN henceforth.

Localization Results: Table IV lists the recall rate for
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Vanilla Encoder GradCam CueCAn Encoder GradCam Vanilla FCN GradCam CueCAn GradCam Predicted Overlaid Heatmap

Fig. 5: Illustration for localization of missing traffic signs. Top: cue for gap-in-median is attended well by the CueCAn. Overlaid predicted missing sign
segmentation map (green mask) is placed rightfully at the gap’s neck. Mid: cue for a right-hand-curve. The CueCAn kernels and feature compositions
help attend to curves. The predicted segmentation map is rightly placed on the left side. Bottom: cue for gap-in-median, CueCAn places two signs, one
very close to the junction and the other a bit farther away. Previous works fail to localize any sign for all three samples.

CueCAn553 CueCAn5e5e3Vanilla VGG-19 CueCAn5e53
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0.540

0.993

0.993

0.011

0.271

0.982

0.765

0.000

0.000

0.902

0.006

0.006

0.993

1.000

0.968

Fig. 6: Top-to-Bottom: cues for height-limit, gap-in-median, pedestrian-
crossing, and a failure case. The baseline (vanilla VGG19 encoder) fails to
attend to context cues. CueCAn353 though do attend to cues much better
than the baseline, is observed to have low precision towards the important
road regions. Using the edge-kernels in the network leads to better results.

TABLE IV: Localization Results

SFC [5] FCN [21] FCN-D [4] CueCAn FCN-P CueCAn-P

Rec. 34.72 47.75 51.23 64.95 71.41 86.82

different methods, as proposed by Chien et al. [4] to localize
non-existing pedestrians. SFC achieves the lowest recall of
34.72 since it is designed to localize missing objects with
cues around them. Such phenomena occur only for obstacle-
delineator and bus-bay traffic signs in our data among 20
categories of missing signs. FCN and FCN-D proposed by
Chien et al. [4] achieve better recall rates of 47.75 and 51.23.
FCN, with the proposed CueCAN units, achieves the highest
recall of 64.95 compared to the previous approaches. We
also post-process the predictions from the two localization
models (FCN and CueCAN) by taking the tight rectangular
region around the predicted blobs. As the last two columns
of Table IV depict, the two models with post-processing,
i.e., FCN-P and CueCAN-P, significantly improve the recall
rates (note FCN-P is better than FCN-D), helping us achieve
the recall of 86.82. The result is impressive since GradCAM
visualizations of the point at the center of predicted green
rectangles in Fig. 6 show that CueCAN attends to the

TABLE V: Results for Missing Traffic Sign Video Recognition

Task Precision Recall F-Score
Region classification 59 60 59.49

Video Recognition 37.50 50 42.85

correct traffic sign cues while simultaneously localizing the
corresponding signs. We observe that the previous works fail
to predict any mask for all Fig. 6 samples (see yellow mask
in Fig. 1 (right)). The failure case for our approach is shown
in the third row of Fig. 6, which predicts two traffic signs
for a single cue, perhaps due to its distant location.

Results on Missing Traffic Sign Videos: We use the
CueCAn-P model for video recognition on 2K missing sign
intervals in MTSVD. We also add 2K video clips without
any missing sign cue to fairly test our model. We empirically
observed that traffic sign predictions near the frame’s central
column are confusing cases as they represent cues which
are far from the camera. Therefore, we use the predictions’
centre, height, width, distance from the image center and
aspect ratio, and train a Random Forest to classify predicted
regions into missing or non-missing (80:10:10 split). Finally,
we use majority voting from all CueCAn-P’s predictions in
an interval for video recognition. Table V results show that
missing traffic sign video recognition remains challenging.

VI. CONCLUSION AND FUTURE WORK

We presented the Missing Traffic Signs Video Dataset
(MTSVD), the first publicly accessible, most complex dataset
for missing objects. MTSVD also contains 10K traffic sign
tracks and 2K clips (135K frames) of missing traffic signs.
Further, we propose a solution to identify missing signs
by training a CueCAn-based VGG-19 cue classification
encoder coupled with the FCN-8 decoder to locate missing
traffic signs. CueCAn fills the rows and columns of features
with their context and subtracts the filled and the original
features to highlight the traffic-sign cues. CueCAn signifi-
cantly improves the results, qualitatively and quantitatively.
In the future, we would like to explore MTSVD for missing
object detection (with multiple categories) and tracking to
investigate further the problems related to missing objects.
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