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Figure 1: We propose a novel approach for multi-speaker lip-to-speech synthesis in the wild. Prior works try to learn a language
model directly from raw speech, which only provides weak supervision due to the presence of other acoustic variations such as
voice, accents, and prosody. We solve this problem by relying on recent advancements in lip-to-text generation. We condition
on the noisy text outputs and lip video to generate natural speech with clearly pronounced words.

ABSTRACT
In this paper, we introduce a novel approach to address the task of
synthesizing speech from silent videos of any in-the-wild speaker
solely based on lip movements. The traditional approach of directly
generating speech from lip videos faces the challenge of not being
able to learn a robust language model from speech alone, resulting
in unsatisfactory outcomes. To overcome this issue, we propose
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incorporating noisy text supervision using a state-of-the-art lip-
to-text network that instills language information into our model.
The noisy text is generated using a pre-trained lip-to-text model,
enabling our approach to work without text annotations during
inference. We design a visual text-to-speech network that utilizes
the visual stream to generate accurate speech, which is in-sync
with the silent input video. We perform extensive experiments and
ablation studies, demonstrating our approach’s superiority over the
current state-of-the-art methods on various benchmark datasets.
Further, we demonstrate an essential practical application of our
method in assistive technology by generating speech for an ALS
patient who has lost the voice but can make mouth movements.
Our demo video, code, and additional details can be found at http:
//cvit.iiit.ac.in/research/projects/cvit-projects/ms-l2s-itw.
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1 INTRODUCTION
As multi-sensory beings, humans have the ability to experience
the world through various senses, adapting to make the most of
what we perceive. When one sense is diminished, like hearing, the
brain compensates by relying more on other senses, like vision, to
maintain independence and navigate the environment. One of the
most prevalent ways for deaf individuals to comprehend speech
is through lip reading - the process of understanding spoken con-
tent purely from silent lip movements. Therefore, lip reading has
numerous applications, ranging from searching through old silent
films to being used as an assistive technology for people who are
unable to speak. For example, people with Amyotrophic Lateral
Sclerosis (ALS) often lose their ability to speak due to issues with
their vocal cords but can mouth words. Therefore, developing au-
tomated lip reading technologies can improve the communication
abilities of people with ALS. In the past few years, previous works
have shown that it is far easier for deep learning models to perform
lip reading than it is for humans [7]. There has been a growing
interest in the research community [2, 3, 7, 8] to solve the task of
transcribing silent lip movements into text. While giant strides are
being made to solve lip-to-text generation, only a handful of works
go a step further to generate speech from silent lip movements. The
widening gap between these two closely related tasks is becom-
ing increasingly evident. In other words, while lip-to-text models
are reaching word error rates as low as 17% WER [32], there are
no practically usable lip-to-speech systems that generate natural,
meaningful speech for in-the-wild identities.

Applications for lip-to-speech synthesis. Lip-to-Speech generation
is not only more exciting and challenging but also has more far-
reaching applications. For instance, having a live video call with a
person who has lost their voice is more engaging than reading the
text transcription of their silent lip movements. Speech can convey
more: it is possible to express emotions through silent lip move-
ments if it is converted to speech rather than text. Speech is also
more instantaneous for the listener: it is easier and faster to hear
than to read text. The immersive user experience is a significant
impetus for developing algorithms that translates lip movements
directly to speech. Lip-to-Speech can also be applied in forensic
investigations, where silent footage can be analyzed to determine
what was being said or generate speech from archival film footage.
Our work showcases the practical impact of lip-to-speech genera-
tion by generating speech for the silent lip movements of an ALS
patient, a feat not previously demonstrated by other models in
this field. We also show results on reading mouth movements of
people suffering from hearing loss to demonstrate the effectiveness

of accurate lip-to-speech synthesis further. More details about the
applications can be found in Section 4.3.

The challenges in lip-to-speech synthesis. However, synthesizing
speech from silent talking-face videos is far more challenging than
lip-to-text generation. Not only does the model first needs to distill
the content from the lipmovements, but it also needs to generate the
final speech by accuratelymodeling the speaker attributes like voice,
accent, and style. Owing to these difficulties, until recently, most
of the existing works [12, 27, 36] focused on building either single-
speaker models or constrained multi-speaker models with limited
corpus size as well as limited vocabulary. While more recent efforts
like [27] have extended lip-to-speech to “in-the-wild" environments,
most of these models are speaker-specific in nature, i.e., they only
work on speakers they are trained on. The speaker-independent
models [17, 20, 21, 23] suffer from numerous weaknesses and fail to
accurately learn language and speech attributes like voice, prosody,
etc. Due to the sheer difficulty of the task, they turn out to be well
below expectations for an end-user application.

1.1 Our Contributions
First, we would like to clearly state that our goal is to be able to
generate speech for a silent lip video of any speaker in the wild
and in any desired target voice. The fundamental premise of this
paper is that current models trying to solve this task struggle to
learn language and speech attributes because they try to learn
both of these solely from speech supervision. They inadvertently
disregard the advancements that have been made in the sibling task
of the lip-to-text generation. We argue that learning lip-to-speech
without any understanding/supervision of text is very challenging
to achieve, which can be observed in all the current models, where
they fail to produce clear and intelligible outputs in unconstrained
settings. Our key idea is to use the fact that lip-to-text models
already have learned the task of extracting content from lips, as
they are trained with text supervision.We show that we can achieve
accurate, natural, and high-quality speech outputs by using the
silent video input and the noisy text transcriptions from a pre-
trained lip-to-text model. We train a visual text-to-speech model to
synthesize speech that syncs with the input video. Our approach
outperforms the existing multi-speaker lip-to-speech models by
a significant margin in terms of both qualitative and quantitative
evaluations. We highlight our key contributions below.

(1) Lip-to-Speech generation is challenging with only speech
supervision, and current models struggle to learn language
and speech attributes. To address this, we propose using a
pre-trained lip-to-text model’s output to aid in lip-to-speech
generation.

(2) Our approach involves training a visual text-to-speechmodel
to synthesize speech that syncs with the input video. Using
this approach, we outperform existing multi-speaker lip-to-
speech models in qualitative and quantitative evaluations.

(3) Our proposed approach enables accurate and natural speech
output for silent lip videos of any speaker in any desired
target voice.
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2 RELATEDWORKS
Lip-to-Speech. Generating speech directly from lip movements

has always been a challenge for researchers due to the ill-posed
nature of the task. While recognizing content from lip movements
itself is challenging due to the one-to-many relation present be-
tween visemes and phonemes, lip-to-speech synthesis also needs
to model speech-related variations like voice, accents, and prosody.
Therefore, it was initially attempted in laboratory setups [10] using
datasets with a minimal vocabulary. The initial works to [4, 11,
12, 36] used fully convolutional neural networks to learn a map-
ping between lip movements and speech. These models were also
trained on speaker-specific data and did not work for unseen speak-
ers. Moreover, such models were incapable of handling “in-the-
wild" settings. To mitigate this issue, a sequence-to-sequence model,
Lip2Wav [27], was proposed that was trained on large amounts
of speaker-specific data taken from in-the-wild YouTube videos.
Lip2Wav worked reasonably well on speakers seen during training
but did not extend to handling unseen speakers. Several more recent
studies [17, 20, 21, 23] have attempted to develop end-to-end lip-
to-speech synthesis models on large datasets containing data from
hundreds of speakers. For instance, in [17], authors proposed a vari-
ational approach that matches the distributions of lip movements
and speech segments to project them into a shared space, which
allows for handling the high variations of in-the-wild speakers to
some extent. Meanwhile, both [20, 23] utilized a transformer-based
approach to convert lip-to-speech synthesis into a sequence-to-
sequence problem, where a sequence of lip movements is translated
into a sequence of speech tokens. Additionally, [21] treated lip-
to-speech synthesis as a multi-tasking problem, where the model
predicts text transcripts in addition to speech forcing the model
to learn better content information. However, all of these models
produce sub-par outputs with words that are barely uttered and
often unintelligible with unnatural voice and prosody. We argue
that these works are limited because they do not use the recent
advancements in the sibling task, lip-to-text, which we discuss
below.

Lip-to-Text. Lip reading has become synonymouswith lip-to-text,
and several advancements have been made to achieve highly accu-
rate text transcriptions of silent lip videos. The very first works [5]
used datasets [10, 15] collected in a laboratory setup and trained
simple RNN-based architectures. One of the initial approaches [8]
handling the “in-the-wild" setup posed the problem in a word-level
classification setting and continued using RNN-based models. Sub-
sequent approaches [7] have attempted to tackle this task by posing
it as a sequence-to-sequence problem. The goal here is to trans-
late a sequence of lip movements into a sequence of characters.
Approaches like [2] compared multiple sequence-to-sequence ar-
chitectures, including transformers, to achieve favorable word error
rates (WER). A more recent work [26] uses a variant of transformer
and specific attention to the mouth region through visual trans-
former pooling and achieves state-of-the-art results in lip reading.
Other works such as AV-HuBERT [34] have also improved the state-
of-the-art for in-the-wild lip reading, paving the way for practical
applications. Our work demonstrates the importance of pre-trained
lip-to-text models in achieving precise lip-to-speech synthesis in
uncontrolled environments.

Text-to-speech. Our proposed approach uses text as an interme-
diate output and converts it into speech. Text-to-Speech has long
interested the speech community and has historically seen a lot of
progress. Modern deep learning architectures [25, 30, 33] enable
several industrial and multimedia applications. They are accurate in
terms of uttered content and have natural speaking styles, prosody,
and voice. The efforts slowly shifted towards multi-speaker sce-
nario, which is far more challenging due to the sheer variation in
prosody, voice, and other speaker-related attributes like pitch and
tone. Most of these methods are provided with a separate voice
token [19] containing identity information about the target speaker.
The voice tokens are generated from a short speech segment of a
target speaker and often only capture the voice information while
failing to capture the prosody. Thus, there has also been a push for
using additional information like lip movements [16, 18] to help
TTS models generate higher-quality outputs. Since lip-to-speech
synthesis requires us to generate accurate prosody and speaking
style, our approach is inspired by this line of work. We design a
visual text-to-speech model that works uses both text and visual
features from state-of-the-art lip reading network [27] to generate
natural, accurate speech. Our Visual TTS is integral to generating
speech that perfectly syncs with the input silent lip video.

3 LIP-TO-SPEECH SYNTHESIS IN THEWILD
We start the discussion by highlighting the key issues and chal-
lenges in the existing lip-to-speech works, leading to their poor
performance in unconstrained settings. We then present our frame-
work with a detailed description of the modules involved.

3.1 Issues and challenges in existing works
3.1.1 Learning language from speech. As discussed previously, all
the current lip-to-speech works directly generate speech from the
lips. It is known that learning a language model is crucial for read-
ing the lips accurately. However, the current multi-speaker lip-to-
speech models are sub-par because they try to learn a language
model in the speech modality, which contains a large diversity of
speaker identities, styles, accents, and prosody. Thus, we argue that
we need some other way of incorporating language knowledge.

3.1.2 The missing block of lip-to-speech: lip-to-text. Lip-to-Speech
synthesis models have two tasks: (i) inferring the content from
lips and (ii) inferring the style in which that content is spoken. If
we have the content that is being spoken, then our task is now
reduced to just generating the speech that matches the silent lip
video. This is the premise of our paper. But how do we get this
text information, especially when we only have a silent lip video
as input? We show that we can get this text information from pre-
trained lip-to-text models: a class of models closely related to our
task at hand but have been mainly ignored in previous works on
lip-to-speech synthesis. We design an approach that can build upon
the current works [2, 26] in lip reading, i.e., pre-trained lip-to-text
models, and generate far more accurate speech outputs.

3.1.3 Achieving accurate lip-sync. Now that we have the text, the
next step is to generate the “right" kind of speech output. That is,
the generated speech must match the input lip sequence. There are
many ways to utter the same sentence, but only one will match the
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Figure 2: Overview of our approach. We first extract the visual features and the text predictions from a pre-trained lip-to-text
network. Using a visual text-to-speech (TTS) model, we can generate speech outputs that sync with the silent video input.
The visual TTS encodes the visual and textual (in the form of phonemes) inputs and aligns them in time using the scaled
dot-product attention. For each query video time-step, we retrieve the phoneme to utter at that time using this attention
mechanism. After adding the speaker identity embedding, these are then upsampled and decoded into melspectrograms. The
melspectrograms are converted into natural waveforms using a pre-trained vocoder.

input lip video. Thus, it is worth noting that a trivial text-to-speech
will not serve our task. Instead, we need a text-to-speech model
that is also conditioned on video input.

3.2 Our Approach
The task of lip-to-speech synthesis is formulated as follows: given a
silent video frame sequence of a person talking 𝑆𝑣 = {𝐼1, 𝐼2, ..., 𝐼𝑝 },
the goal is to generate the corresponding speech melspectrogram
sequence, 𝑆𝑚 = {𝑀1, 𝑀2, ..., 𝑀𝑞}. An overview of our proposed
two-stage framework is depicted in Figure 2. We use a state-of-
the-art lip-to-text model [26] to obtain the lip features and noisy
text transcriptions for the given silent lip video 𝑆𝑣 . We design a
visual text-to-speech model conditioned on (i) the noisy text and
(ii) the lip features to produce high-quality speech outputs 𝑆𝑚 that
are in sync with the input silent lip video. This solves the task of
lip-to-speech synthesis.

3.2.1 Pre-trained Lip-to-Text. Lip-to-Text networks ingest the silent
talking face videos as input and transcribe what is being uttered.
The lip-to-text models [1–3, 7, 8, 26] are now capable of generating
text transcripts with word error rates as low as 20 − 30%. One such
recent work trained on public datasets is VTP [26]. Specifically, this
work stands out due to its two unique aspects: (i) it has been shown
to be data efficient, (ii) it contains a strong visual backbone that can
attend to and extract accurate lip features. These visual features
have been shown to work well in several other tasks such as vi-
sual keyword spotting [29] and even spotting mouth movements
in sign language [24]. The sub-word units considered to learn the
text representations help to model the ambiguities of the task sig-
nificantly better than using characters. Also, the sub-word tokens
are semantically meaningful and provide a language prior, thereby
resulting in a significant performance boost. In addition, the visual

representations learned using the backbone network track and ag-
gregate the spatio-temporal lip movement features, mainly due to
the strong attention-based pooling mechanism. We thus propose
to adopt this model as our first module to generate text and visual
features from silent lip videos.

Overview of VTP [26]: The model inputs a sequence of 5 con-
secutive frames, 𝑆𝑣 ∈ R𝑇×𝐻×𝑊 ×3 (𝑇 = 5) and extracts low-level
features using a spatio-temporal residual CNN block. These in-
dividual frame-wise features are then processed using the visual
transformer pooling block, which consists of a series of transformer
layers. The output from this block, 𝑧𝑡 is a self-attended feature map,
which is used along with a learnable query vector, 𝑄𝑎𝑡𝑡 to obtain
the spatially weighted average of 𝑧𝑡 . These compact per-frame vi-
sual representations are stacked along the temporal dimension to
obtain a temporal embedding sequence, 𝑔 ∈ R𝑇×𝑓 𝑑 , where 𝑓 𝑑 is
the transformer feature dimension. Finally, the learned visual repre-
sentations are passed to the transformer encoder-decoder network
to predict the text outputs in the form of sub-word tokens in an
auto-regressive fashion. The model uses beam search decoding [13]
and language model rescoring [6] strategies to obtain the final sen-
tence outputs 𝑆𝑡 . We refer the reader to [26] for more details on the
architecture and training strategies.

Adopting VTP for our task: For our task at hand, we use the
pre-trained VTP network to obtain: (i) text predictions - the final
decoded output of the model 𝑆𝑡 , and (ii) per-frame visual represen-
tations - 𝑔. The text predictions directly act as input to our speech
generation module. The visual representations serve as a condition
for speech generation, which is crucial to obtain speech that is
in-sync with the silent input video.

3.2.2 Visual Text-to-Speech. Once we have the accurate text pre-
dictions, the next step is to generate the corresponding speech
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sequence 𝑆𝑚 , which is in-sync with the input video clip 𝑆𝑣 . As ex-
plained in Section 3.1.3, directly using state-of-the-art TTS models
to synthesize speech from text inputs will generate out-of-sync
speech that does not match the input video. We thus design a TTS
network by conditioning the model on the input video features.
Our visual TTS network majorly comprises five components: (i)
Text Encoder, (ii) Visual Encoder, (iii) Visual-Text Attention, (iv)
Speaker Embedding, and (v) Spectrogram Decoder. We delve into
each of these components below.

Text Encoder: As followed in most of the TTS networks [30], we
extract phoneme representations from text input, which is then
given as input to the Transformer encoder layers. Our text encoder
block is similar to the one used in FastSpeech2 [30], which consists
of a positional encoding layer and Feed-Forward Transformer (FFT)
layers. The phonemes are transformed to encode the semantic
representation and output the text embedding vectors, 𝐸𝑡𝑒𝑥𝑡 of
dimension: 𝑁 × 𝑑 , where 𝑑 is the transformer feature dimension.

Visual Encoder: The input to our visual encoder is the visual
feature sequence 𝑔 obtained from the lip-to-text network. We high-
light that these visual features, which capture the lip shape and
motion, play a crucial role in generating speech that syncs with the
input video. Since these representations were also learned using
text supervision, they are likely to reflect accurate content informa-
tion. This starkly contrasts previous works that directly learn visual
representations from speech supervision only, which can lead to
sub-par visual representations that might contain other unneces-
sary information, such as the input face identity. The superiority of
these representations is one of the critical reasons for our overall
network’s performance. The extracted 𝑁 × 𝑇 × 𝑓 𝑑 dimensional
representations are given as input to the Transformer encoder lay-
ers as shown in Figure 2. Similar to the text encoder network, the
visual encoder consists of a positional encoding followed by a se-
ries of FFT blocks. The encoder network outputs the learned visual
embeddings, 𝐸𝑣𝑖𝑠 of dimension: 𝑁 ×𝑇 × 𝑑 .

Visual-Text Attention: Once we obtain the text and the visual
embeddings, the next and the most important step is to find the
alignment between these embeddings in time: which phonememust
be uttered when? The generated speech must take the content from
the text embeddings and simultaneously, it should also temporally
align (sync) it with the video frames. In order to achieve this, we
employ a scaled-dot product attention [35] mechanism to learn the
correspondence between text and video frames. Specifically, the
visual embeddings 𝐸𝑣𝑖𝑠 act as query, and the text embeddings 𝐸𝑡𝑒𝑥𝑡
act as keys and values.

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾,𝑉 ) = 𝑆𝑐𝑎𝑙𝑒𝑑 − 𝐷𝑜𝑡 𝑃𝑟𝑜𝑑𝑢𝑐𝑡

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐸𝑣𝑖𝑠 , 𝐸𝑡𝑒𝑥𝑡 , 𝐸𝑡𝑒𝑥𝑡 ) ∈ R𝑇×𝑑 (1)

Through this attention module, the network learns the video-text
temporal alignment, which synchronizes the generated speech with
the input video frames. Now between the video sequence and mel-
spectrograms, it is known that there exists a natural temporal align-
ment. The length of the melspectrograms is a constant 𝑛 times the
length of the video. Thus, the attention output 𝐴 is up-sampled 𝑛
times to directly obtain the melspectrogram duration. This elim-
inates the need to train a separate duration predictor as done in

FastSpeech2 [30]. In other words, the text-to-video alignment net-
work already determines the duration of each phoneme in the
speech output.

Speaker Embedding: Unlike single-speaker models, we want our
model to generate speech for any arbitrary speaker in the wild.
Thus, our model also needs the voice input of the target speaker to
generate the speech in his/her voice. We consider a random one-
second audio segment of the target speaker and extract the speaker
embedding vector 𝐸𝑣𝑜𝑖𝑐𝑒 using the pre-trained identity network1.

Spectrogram Decoder: The speaker embedding vector 𝐸𝑣𝑜𝑖𝑐𝑒 is
added to the upsampled attention output 𝐴 to obtain voice-aware
content representation. The spectrogram decoder, consisting of
transformer decoder layers, ingests this representation and gener-
ates the melspectrogram sequence 𝑆𝑚 . To further improve speech
quality, as done inmost of the TTS networks, we adopt a pre-trained
neural vocoder model BigVGAN [14], to synthesize the speech from
the melspectrogram output. Note that this step is only used during
inference to obtain high-quality speech outputs.

3.3 Datasets and Training Settings
3.3.1 Datasets. We evaluate both constrained and unconstrained
datasets to analyze the model’s performance. The first corpus we
experiment with is the TCD-TIMIT [15] lip speaker dataset, which
comprises lab-recorded videos of 3 speakers. Next, we consider
the word-level LRW [8] dataset, consisting of around 150 hours
of single-word utterances from hundreds of speakers. We then
move on to the more challenging large-scale datasets: LRS2 [7]
and LRS3 [3]. The LRS2 data comprises thousands of speakers
from BBC programs with a vocabulary of 59𝑘 and around 230
hours of video clips (both “train" and “pre-train" sets together). The
LRS3 dataset, on the other hand, is also a large-scale dataset with
a total of approximately 430 hours (“train" and “pre-train" sets) of
video data with 150𝑘 utterances. It consists of thousands of spoken
sentences from TED and TEDx talks in English. We train and test
the performance of our network using the official splits of LRW,
LRS2 and LRS3 datasets and use the train-test split proposed in
Lip2Wav [27] for TIMIT dataset [15].

3.3.2 Data pre-processing. We sample the video frames at 25 FPS
and follow the pre-processing procedure of VTP [26] to obtain
the face crops. For the speech segments, we compute STFT and
then melspectrograms of 80 mel-bands, with a hop length of 10𝑚𝑠
and a window length of 25ms, sampled at 16kHz. We use an open-
source grapheme-to-phoneme tool for text processing to obtain the
phoneme inputs for our Visual TTS model.

3.3.3 Model configuration and training. Our Visual TTS model
comprises 4 FFT blocks in the text and visual encoders and 6 FFT
blocks in the spectrogram decoder network. The visual embeddings
obtained from VTP are 512-dimensional embeddings for each frame.
In the video-text attention sub-network, the upsample factor, 𝑛 is
set to 4. For the speaker embedding, the identity network outputs a
256 dimensional vector for each speech sample. For the lip-to-text
network, we use the publicly released pre-trained model2 (trained

1github.com/CorentinJ/Real-Time-Voice-Cloning
2https://github.com/prajwalkr/vtp
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on LRS2 [7] and LRS3 [3]). Our visual TTS model is trained on a
single NVIDIA 2080 Ti GPU. We use the Adam optimizer [22] with
𝛽1 = 0.9, 𝛽2 = 0.98, and 𝜖 = 10−9 and follow the same learning
rate schedule as done in [26]. We set the batch size to be 16 for
all the datasets and train the model using 𝐿1 reconstruction loss
for approximately 900𝑘 steps (until convergence). We also train
BigVGAN vocoder [14] and use it during inference to generate the
speech from the output melspectrograms.

4 EXPERIMENTS
We present our approach’s quantitative results and comparisons
with the existing methods. As automatic speech metrics are imper-
fect, we also show MOS scores using human evaluation. Finally, we
demonstrate a real-world application of lip-to-speech for the first
time by voicing the silent lip movements of an ALS patient.

4.1 Quantitative Evaluations
Metrics: We measure the quality of the generated speech us-

ing the standard speech metrics: Perceptual Evaluation of Speech
Quality (PESQ), Short-Time Objective Intelligibility measure (STOI),
and its extended version (ESTOI). PESQ measures the clarity and
overall perceptual quality of speech and STOI and ESTOI measure
the intelligibility of speech. Further, as discussed previously, it is
very crucial to generate speech that is in sync with the input video.
We use the lip-sync metrics, Lip-Sync Error - Confidence (LSE-C)
and Lip-Sync Error - Distance (LSE-D) [9] to evaluate whether the
output speech matches the input lip movements. We use the public
implementations of all the above metrics for a fair comparison.

4.1.1 Speech Synthesis in Constrained Settings.
Comparisons: To evaluate lip-to-speech methods on the con-

strained single-speaker TCD-TIMIT dataset, we compare four ex-
isting approaches: (i) GAN-based [36], (ii) Lip2Wav [27], (iii) VAE-
GAN [17], and (iv) VCA-GAN [20]. We adopt the same settings
as Lip2Wav [27] and report the scores [27] and VCA-GAN [20].
We use the Wav2Lip [28] repository to compute the LSE-C and
LSE-D scores for each method. We have excluded the metrics for a
particular model that were not mentioned in the original papers or
for which no publicly available pre-trained checkpoint exists.

Results: Table 1 contains the results on the TCD-TIMIT dataset.
We observe that our approach achieves comparable results to pre-
vious methods in constrained settings with minimal data of only 3
speakers. However, the significant benefits of our approach can be
seen in unconstrained settings, which we describe below.

4.1.2 Speech Synthesis in Unconstrained Settings.
Comparisons: In order to assess the performance of lip-to-

speechmethods in unconstrained scenarios, we employ three datasets:
word-level LRW [8], sentence-level LRS2 [7], and LRS3 [3]. While
the authors of VAE-GAN [17] have re-trained the GAN-based [36]
and Lip2Wav [27] models in a multi-speaker context, we present the
scores from their original study for comparison. For VCA-GAN [20],
SVTS [23], and Multi-task Lip-to-Speech synthesis [21], we adopt
the speechmetric (PESQ, STOI and ESTOI) scores from [21]. Further,
we use publicly accessible pre-trained checkpoints for VCA-GAN3

3https://github.com/ms-dot-k/Visual-Context-Attentional-GAN

and Multitask-L2S4 to generate speech on LRS2 and LRS3 test sets
for the former, and LRS2, LRS3, and LRW test sets for the latter.
We utilize these generations to compute the LSE metrics for both
techniques, wherever applicable. Lastly, we include results for a
baseline approach that leverages lip-to-text conversion followed
by multi-speaker TTS without a visual stream in the TTS model.
Our evaluation does not include all metrics that were not originally
reported in the papers or for which no pre-trained model is publicly
available.

Results:We present the results on the challenging LRW, LRS2,
and LRS3 datasets in Table 1. Our model consistently outperforms
the existing methods by a significant margin on all these datasets.
Since GAN-based [36] model was proposed to work for constrained
laboratory recorded datasets, we can observe that extending this
model in unconstrained settings does not yield satisfactory results.
Lip2Wav [27] performs decently on the word-level LRW dataset;
however, it fails to learn the audio-visual alignment on the LRS2
dataset, thus leading to very poor performance. We discard this
model for further comparison on the LRS3 dataset. VAE-GAN [17],
VCA-GAN [20], SVTS [23] and Multitask-L2S [21] generate speech
that is in-sync with the input video; however, they fail to synthe-
size accurate content. The quality of the generated speech is often
non-intelligible and leads to lower scores in speech quality metrics.
The Lip-to-Text + TTS baseline model is on the opposite spectrum,
where the model generates the content well but fails to capture the
lip-sync, mainly because the model cannot infer the speed, prosody,
and accents of speakers just from the text input. Our model, on
the other hand, is capable of generating both the actual spoken
content as well as maintaining precise lip synchronization. As we
can see from the table, we outperform the previous methods in
all the speech quality metrics, indicating the robustness and su-
periority of our approach. In Figure 3, we depict how our model
temporally aligns video and text sequences in the process of gen-
erating speech. We encourage the reader to view our demo video
comprising multiple qualitative samples and comparisons.

Figure 3: We visualize the video-text alignment from the
scaled dot product attention step of our model. We observe
that the model learns a strong monotonic near-diagonal at-
tention, as expected.

4https://github.com/ms-dot-k/Lip-to-Speech-Synthesis-in-the-Wild
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Table 1: We compare against state-of-the-art methods on several standard multi-speaker benchmarks using standard metrics.
The generated outputs from our model are most natural (PESQ), most accurate (STOI, ESTOI) and in perfect sync with the video
input (LSE-C, LSE-D) in the in-the-wild videos of LRW [8], LRS2 [7] and LRS3 [3].

Dataset Method PESQ↑ STOI↑ ESTOI↑ LSE-C↑ LSE-D↓

TCD-TIMIT [15]

GAN-based [36] 1.22 0.51 0.32 - -
Lip2Wav [27] 1.35 0.56 0.36 6.610 7.815
VCA-GAN [20] 1.43 0.58 0.40 - -
VAE-GAN [17] 1.35 0.55 0.35 - -

Ours 1.34 0.61 0.42 6.623 6.901

LRW [8]

GAN-based [36] 0.72 0.10 0.02 1.983 9.426
Lip2Wav [27] 1.19 0.54 0.34 2.526 8.286
VAE-GAN [17] 0.78 0.15 0.03 2.538 8.173
VCA-GAN [20] 1.33 0.56 0.36 - -

SVTS [23] 1.49 0.64 0.48 - -
Multi-task L2S [21] 1.56 0.64 0.47 4.876 8.102

Lip-to-Text + TTS baseline 0.69 0.10 0.01 1.993 12.872
Ours 1.61 0.71 0.56 6.812 6.974

LRS2 [7]

Lip2Wav [27] 0.58 0.28 0.11 1.874 11.48
VAE-GAN [36] 0.60 0.34 0.17 2.507 8.155
VCA-GAN [20] 1.24 0.40 0.13 4.016 7.914

SVTS [23] 1.34 0.49 0.29 - -
Multi-task L2S [21] 1.36 0.52 0.34 4.001 8.192

Lip-to-Text + TTS baseline 0.53 0.19 0.02 2.013 15.891
Ours 1.47 0.65 0.47 8.083 6.586

LRS3 [3]

VAE-GAN [36] 0.51 0.30 0.15 2.063 8.256
VCA-GAN [20] 1.23 0.47 0.20 3.905 8.392

SVTS [23] 1.25 0.50 0.27 - -
Multi-task L2S [21] 1.31 0.48 0.26 3.876 8.677

Lip-to-Text + TTS baseline 0.42 0.16 0.01 1.771 17.882
Ours 1.39 0.58 0.37 7.886 6.850

4.2 Human Evaluations
To evaluate the applicability of our method in real-world scenarios,
we conduct subjective human evaluations. We ask 25 volunteers to
assess the quality of speech generations. The participant group has
an almost equal male-female ratio, spanning an age group of 20−45
years. We randomly select 10 long sentences (10 seconds or longer)
from the test set of LRS3 [3] and present the results from different
methods to the participants. We ask them to rate the samples on a
scale of 1−5 based on the following criteria: (A) Intelligibility (is the
speech meaningful?), (B) Content clarity (are the words clear?), (C)
Sync Accuracy, (D) Overall perceptual quality of the talking head
video + audio. We report the mean opinion scores in Table 2. On
par with the quantitative evaluations, our method is highly rated
over other approaches in all the criteria listed above. As expected,
the speech intelligibility is slightly rated higher for the Lip-to-Text
+ TTS baseline. However, the overall perceptual quality for this
baseline sharply falls due to the lack of sync between the spoken
content and the lip movements. Overall, Table 2 clearly signifies
that our network is able to generate speech with more clarity, which
sounds more natural and is of considerably higher quality.

4.3 Applications in Assistive Technology
Lip-to-Speech synthesis has a host of applications in a world that
is becoming increasingly digital. Simple applications such as per-
forming video calls in quiet environments, filling in the audio inter-
ruptions due to technical issues, eliminating unwanted background

Table 2: (A) Intelligibility, (B) Content clarity, (C) Sync Ac-
curacy, (D) Overall perceptual quality. Our model produces
natural and realistic speech outputs that is largely preferred
by the users in comparison to other approaches.

Method (A) (B) (C) (D)
GAN-based [36] 2.05 1.87 1.99 2.12
Lip2Wav [27] 1.01 1.03 1.34 1.01
VAE-GAN [17] 1.07 1.33 2.18 2.57
VCA-GAN [20] 2.18 1.88 2.97 2.54
Multi-task L2S [21] 2.19 1.85 3.01 2.64
Lip-to-Text + TTS baseline 3.61 2.87 1.01 2.96
Ours 3.49 3.52 3.82 3.31

chatter, etc., can be made possible with accurate lip-to-speech. We
believe the most significant application of lip-to-speech can be in
assistive technologies. It can revolutionize the current assistive sys-
tems used to improve the communication ability of people suffering
from various disorders affecting their speech. Patients suffering
from vocal cord disabilities can mouth words to communicate nat-
urally with the world around them. The synthesized speech can be
personalized and also be in sync with the speaker’s lip movements.

Generating Speech for a Patient suffering from ALS:. A recent
work [31] proposed a lip reading technique for a patient suffering
from ALS. The patient has feeble vocal cord movements but can
mouth words silently. The authors of the paper collected limited
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amounts of data from the patient and trained a model to recognize
words and sentences from his lip movements. As a result of our sig-
nificant improvement in this task, we can now demonstrate the ben-
efit of using lip-to-speech as a future assistive technology. Through
the help of authors of [31], we evaluate our lip-to-speech system
on the patients’ data. Please note that the data was anonymized
and was used only for research purposes. We find that the lip-to-
text module generates fairly accurate text (WER of ≈ 37%), and
the visual TTS model generates clear speech in sync with the pa-
tient’s lip movements. This is the first demonstration of automatic
lip-to-speech synthesis for an unseen speaker in an entirely out-
of-domain real-world application. Further, we also test our model
on the other deaf speakers studied in [31] and observe accurate
performance.

Figure 4: We demonstrate our model on an ALS patient who
cannot voice words but can mouth them. We can generate
the speech corresponding to the silent lip movements. Lip-
to-Speech can thus be a cheap and non-invasive method to
assist someone who has lost their voice.

Ethical Considerations. We acknowledge that our work has the
potential to generate synthetic speech for videos, given that we only
require a 1−second voice sample from any target speaker. However,
since the video provides context and constrains the output speech,
the generated speech will likely follow the original content closely.
We recognize the importance of ethical considerations regarding
using such models and ensure that our models will only be shared
with users who consent to limit their usage to research-oriented
and ethically valid tasks.

5 ABLATION STUDIES
In this section, we perform several ablation studies to understand
the effect of different components of our model. All the ablation
experiments are performed on the LRS2 [7] test set.

Effect of different pre-trained lip-to-text models. Additional exper-
iments were conducted using other pre-trained lip-to-text models,
specifically DeepLR [2] and AV-HuBERT [34]. The former had a
WER of 51.3 on the LRS2 test set, while the latter had a WER of 46.6.
The input text to our pre-trained Visual TTS module was taken
from different Lip-to-Text models. Additionally, we also directly
provide the ground-truth text from the LRS2 test set. As shown in
Table 3, our approach recovered speech that was somewhat accu-
rate, despite the presence of noisy text transcripts from both models.
This can be attributed to two factors: (i) the correction of errors

made by the lip-to-text network by our pipeline to some extent
(demonstrated in the demo video); and (ii) the reduced difference
in scores between homonyms such as "ship and sheep" or "berth
and birth" in the audio domain.

Table 3: Comparison of using generated text from different
lip-to-text network in our pipeline. We also report the WER
of the lip reading model (L2T-WER) on the LRS2 test set as a
reference.
Method L2T-WER PESQ↑ STOI↑ ESTOI↑ LSE-C↑ LSE-D↓
Deep Lip Reading [2] 51.3 1.17 0.40 0.22 7.847 6.904
AV-HuBERT [34] 46.1 1.27 0.53 0.40 7.960 7.003
VTP (Ours) 22.6 1.47 0.65 0.47 8.083 6.586
GT text - 1.51 0.69 0.50 8.781 6.106

Effect of different visual representations. We train our proposed
Visual Text-to-Speech module with RGB face crops instead of the
VTP embeddings to generate speech conditioned on text and lip
movements. Based on our observations from Table 4, VTP em-
beddings are the most suitable for this task because they excel in
localizing and representing the shape of the speaker’s lips.
Table 4: We present the effect of using different visual repre-
sentations for training the Visual TTS module.

Method PESQ↑ STOI↑ ESTOI↑ LSE-C↑ LSE-D↓
Face crops 1.17 0.40 0.22 7.847 6.904
VTP (Ours) 1.47 0.65 0.47 8.083 6.586

6 LIMITATIONS
In our work, we address the problem of lip-to-speech networks
not being able to learn a language model directly from speech
supervision. We do so by using a pre-trained lip-to-text network.
While ourmodel does not require ground-truth text annotations, the
lip-to-text model which we build upon has been trained with text
supervision. However, recent efforts in self-supervised pre-training
have led to a sharp decrease in the number of text annotations
required for training accurate lip-to-text [34], making it easier to
extend such models to lip-to-speech using our approach. Currently,
we have only tested our model in English, and it remains to be
validated in other languages.

7 CONCLUSION
Our research presents an innovative approach to unconstrained
multi-speaker lip-to-speech synthesis that outperforms previous
methods by incorporating language and visual information from
a highly accurate lip-to-text model. We demonstrate significant
improvements in lip-to-speech synthesis, generating high-quality
outputs that seamlessly synchronize with silent lip video. Our study
can potentially open up exciting avenues for future research.We are
particularly encouraged by the success of our approach in assistive
technology, where we have shown that our method can generate ac-
curate speech from silent lip movements of individuals with speech
impairments. Overall, we are optimistic about the possibilities of
our approach to improve communication and enhance the quality
of life for people with speech impairments, and we look forward to
seeing our work drive further progress in this field.
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