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Figure 1. NeRF-Feast: Our method can be used to create a single composed representation. Here, we show a feast prepared on the table
from the garden scene from MipNeRF360 [3]. Since we have a single fused representation, the scene is rendered at the cost of a single RF
representation while also occupying a memory footprint of a single RF. Scene components are picked from [1]

Abstract

Radiance Fields (RFs) have shown great potential to rep-
resent scenes from casually captured discrete views. Com-
positing parts or whole of multiple captured scenes could
greatly interest several XR applications. Prior works can
generate new views of such scenes by tracing each scene in
parallel. This increases the render times and memory re-
quirements with the number of components. In this work,
we provide a method to create a single, compact, fused RF
representation for a scene composited using multiple RFs.
The fused RF has the same render times and memory utiliza-
tions as a single RF. Our method distills information from
multiple teacher RFs into a single student RF while also fa-
cilitating further manipulations like addition and deletion
into the fused representation.

1. Introduction
The use of Radiance Fields (RF) to represent scenes has

been of great interest lately. Given a discrete set of posed
images of the scene, NeRF [22] utilizes simple MLPs to

encode the scene allowing the synthesis of novel views.
While MLPs encoded the scene faithfully, the training time
to learn the representation was high, in the range of 8-10
hours. Subsequent efforts like Plenoxels, DVGO [30,31,42]
exploited explicit 3D lattice structure to represent the scene
and reduced the scene learning times to ∼10 minutes. Later
extensions like TensoRF [6] compressed the volumetric lat-
tice representation while maintaining low learning times.

As the efficiency of scene representation improved, ef-
forts were made towards editing the geometric content of
the RFs. While efforts like [23, 36] aimed at removing
the existing content and inpaint the missing regions, works
like [8, 15, 16, 20, 21, 28, 33, 39, 43, 45] aimed at deforming
the RF using cage-based and topological deformations.

Unlike these, we are interested in compositional edit-
ing, in which objects and parts from multiple RFs are
combined into a single, compact, fused RF representa-
tion. Compositing for view generation via parallel trac-
ing rays into multiple RF scenes has been attempted be-
fore [2, 10, 18, 35, 37, 38, 40, 41]. As multiple component
RFs that make up the scene need to be kept simultaneously,
the memory footprint and rendering time increase in this
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method. Most prior works use the compact neural repre-
sentation of RFs as a result. On the other hand, Control-
NeRF [18] uses full volumetric lattice representation with
a common rendering network for all component RFs. This
approach demands higher memory, specifically when more
than two scenes are to be composited. Additionally, the ren-
der times are proportional to the number of RFs that make
up the scene due to the need to shoot a large number of rays
into each RF.

High memory requirements and rendering times are un-
desirable for use cases of using the captured RF content
in virtual environments, creating extended (XR) and aug-
mented reality (AR) applications. This use requires lower
memory and fast rendering of the final composited scene.
One way to achieve this goal is to create a single represen-
tation by training an RF from scratch using a large number
of rendered RGB views. The resulting radiance field will
be a single, compact, composited RF with similar memory
footprints and render times as a single RF. This approach is,
however, inefficient as it involves complete view generation
and retraining which could be expensive and slow. Given
that all parts in the composited scene already use RF rep-
resentation, is there a way to fuse them directly into an RF
representation without expensive RGB retraining?

In this paper, we propose a method to fuse multiple RFs
into a single one using distillation on their RF [11]. Our dis-
tillation is similar to the step used by PVD to translate one
type of RF to another [11]. We iteratively fuse the source
RFs (with affine composition) into a single, fused RF. Dis-
tillation can be performed directly on the σ and color val-
ues stored in the RF quickly in a supervised manner for ac-
ceptable results. The quality can be improved using a few
additional iterations of RGB-based training at the end. The
fused RF representation has the same memory requirements
and rendering speed as a single RF. Tab. 1 presents the fea-
tures of our system relative to others that can also do view
generation of composited scenes using parallel ray tracing.

2. Related Work
Due to space constraints, we restrict this section to the

following relevant works.
Editing Radiance Fields: Several works have been pro-
posed to edit Radiance Fields. The works like [4, 5, 26, 29,
44] aim to edit the appearance by manipulating the light
transport equation, works like [7,14,27] utilize image-based
priors for the stylization of radiance fields. On the other
hand works like [8, 15, 20, 39] work on the deformation of
radiance fields, and few works concentrate on compositing
and creating a novel scene from multiple individually cap-
tured scenes [18, 35, 38, 40, 41]. We aim to create novel
scenes by compositing captured scenes that have applica-
tions in XR.
Segmentation of Scene Content: Often composition of

NeRF [22] ✔ ✘ ✔ ✘

D2NeRF [38] ✔ ✘ ✔ ✘

PlenOxels [12] ✘ ✔ ✘ ✘

DVGO [30] ✘ ✔ ✘ ✘

InstantNGP [25] ✘ ✔✔ ✘ ✔✔

CNeRF [18] ✘ ✔ ✘ ✘

TensoRF [6] ✔ ✔ ✔ ✘

PVD [11] ✔ ✔ ✘ ✘

FusedRF (Ours) ✔ ✔ ✔ ✔

Works

Native Composition
Small

Memory
Footprint

Short
Training

Time

Small
Memory
Footprint

Short
Render
Times

Table 1. While works like NeRF and D2NeRF struggle in render
times, works like DVGO, Plenoxel, and ControlNeRF additionally
also demand high memory. Leading to the infeasibility of the com-
position of more than a few scenes. Our method efficiently fuses
the RFs and maintains memory, and renders times to a single RF

these scenes involves partial addition of semantically cor-
rect content captured in one scene to another. Obtaining
such semantically correct partial scene content is tackled in
recent works either by fusing semantic features [13, 17, 34]
into RFs or propagating multi-view 2D masks or labels into
the radiance field representations [24, 46]. For this task, we
choose [13], which is known to present the most accurate
segmentation (extraction) of radiance fields.

Fusion of multiple Radiance Fields: A simple compo-
sition using affine transformation has been attempted by
works like D2NeRF [38] where compact Neural-RFs were
employed to obtain the desired composition. The desired
composition increases memory footprints and renders times
in proportion to the number of scenes involved. In the case
of explicit volumetric lattice, though the partial content re-
trieval is more accurate, the memory requirement grows
rapidly, leading to infeasibility when more than a few scenes
are being composited. Hence, a fused representation of
composition is desired owing to memory footprints and ren-
der times as that of a single RF.

Efficient Fusion:Works like PVD [11] provide methodolo-
gies for faster distillation of one RF to another in a super-
vised setting. But the work is limited to a single RF repre-
sentation. We draw ideas from this work and build a Fuse-
dRF representation that is compact and easy to render.

3. Method

Fig. 2 shows an overview of our FusedRF method. The
following through Secs. 3.1 to 3.3 will detail the compo-
sitional, fusion, and convergence aspects of the proposed
methodology, respectively.



Figure 2. FusedRF: Method to fuse multiple RFs into single presentation. We shot the same ray into both teachers T1, T2 (left) created
using ISRF [13] to distill a combined Student S(right). For every sampled point on a ray of both RFs we prune out ones with lower densities
and apply supervised distillation losses to obtain faster convergence. Followed by a few iterations of Pixel Loss on alpha-composited RGB
for smoothening. By fusing multiple RFs into a single representation, we reduce rendering and memory overheads of composition. Both
scenes GARDEN and LEGO are picked from the real-world [3] dataset.

3.1. Composition of Radiance Fields

The composition of two distinct radiance fields can be
performed by altering the compositional aspect of the volu-
metric rendering equation [22, 30]. For simplicity, let’s as-
sume we have to composite only two radiance fields (RF 1

and RF 2). Every ray is shot and sampled similarly in
both RFs. For every sampled point along the ray, the ac-
tivated volumetric density (α : αI = 1 − e−σIδI ) is calcu-
lated, where I corresponds to the respective Radiance Field
(RF I ) [30]. The point with a higher α value is chosen for
a contribution towards the rendering of color and density.
The resultant RF is considered ground truth for scene com-
position. It can be observed that the tracing and sampling
of the same ray twice are redundant; subsequently, it causes
high render times and larger memory footprints. To address
these issues, we fuse the RFs into a single representation.

3.2. Fusing Radiance Fields

Rendering two or more radiance fields simultaneously
for composition is computationally expensive and cannot
be scaled as the memory and computation increase linearly
with the number of radiance fields involved in composition.
To this end, we propose a method that quickly distills from
multiple RFs to a single representation. The resulting rep-
resentation is as compact and efficient as a single RF. We
leverage the already learned 3D information to take losses
in 3D, which leads to faster learning (distillation).

Let the two radiance fields to be composed be T1 and T2

(teacher1 and teacher2), and the final fused radiance field be
S (student). For brevity, let us assume we do not apply any
rigid transformation on the radiance fields. We shoot a ray
through both T1 and T2 and sample points on the ray. The
points with low density [ ] are pruned out while the ones
with high density [ ] are utilized. The union of these se-
lected points from T1 and T2 acts as our training set for the
student S [ ]. We query the three radiance fields (T1, T2, S)
for their density, alpha and color (σ, α, c) at every training
sample point location. We apply a Supervised loss || − ||2
to the color and density values of the student (S) against
the corresponding teachers (T1, T2) at every training point
selected above. This supervised distillation will fuse the
composition into one single scene.

As a final stage, we render the RGB values for the rays
by accumulating the individual color values weighted by
the activated volumetric density using Volumetric Render-
ing Equation [32] and take an alpha-composited RGB pixel
loss || − ||2 for a few iterations. This helps smooth the
result around the boundaries of the inserted object.

3.3. Fast convergence

To obtain a single representation of a composed radi-
ance field, one could use the traditional RGB loss against
the rays from composed RFs or rendered views extracted
from the composition. But this would essentially be re-
training and would amount to the same time as training an
RF from scratch. However, since we have 3D information
from already-trained RFs, we can leverage the supervised



losses employed at every sampled point, which achieves
faster convergences. The augmented convergence is due to
3D distillation. Pruning of low-density points suggested in
Sec. 3.2 further speeds up the process.

Additionally, it is often the case that during the compo-
sition of radiance fields, one of the scenes is in the major-
ity (dubbed as a background scene). Initializing the student
with the background scene significantly speeds up the distil-
lation process. Hence, we initialize the student representa-
tion S with the weights of the background scene (one of the
dominant teachers Ti). The reduction in time in the case of
our distillation-based fusion against total retraining is 3×.

Time: 4s, Memory: 50MB
(a) Naive Composited

Time: 2s, Memory: 25MB
(b) Ours FusedRF

Time: 8s, Memory: 100MB
(c) Naive Composited

Time: 2s, Memory: 25MB
(d) Ours FusedRF

Figure 3. The figure shows results of compositing multiple RF
into a single scene, (left column Figs. 3a and 3c) shows results of
composition (right column Figs. 3b and 3d) shows results of our
FusedRF. Respective memory footprints and rendering times are
mentioned in the insets. Figs. 3a and 3b are two scenes picked
from [3] and Figs. 3c and 3d is combination of [3] and synthetics
scenes.

4. Results
Performance: To validate the performance of our
method, we provide Render times and Memory demands
against other means of composition, namely 1) Neural-RF,
2) Explicit lattice structures 3) Fused Representation. We
tabularize these results in the Tab. 2. It can be observed
that the render times and memory footprints increase lin-
early in the case of Neural-RFs [22] and Explicit lattice
representations [6, 12, 30, 31] with the increase in the num-
ber of scenes used for composition. While it is possible to
composite multiple scenes when leveraging Neural-RF, ren-
dering times are a strong limitation, specifically when em-
ployed in the case of XR applications. On the other hand,
Explicit Lattice representations demand a large amount of
memory, leading to infeasibility. On the other hand, our
FusedRF representation alleviates the issues by fusing the

compositions iteratively, constraining memory, and render-
ing budgets to that of a single RF.

Quantitive Results: Along with maintaining tighter
memory and rendering budgets, our proposed FusedRF rep-
resentation also retains the quality of composited scenes. To
validate this, we provide quantitive metrics of our FusedRF
representation against the naive composition(Refer Tab. 3).
This validates the representative capacity of our FusedRF
representation.

Qualitative Results: The Qualitative results of our
method are presented in the Figs. 1 and 3.

# Neural Based Voxel Based

NeRF DVGO TensoRF Ours

1 10 M / 20s 800 M / 2.01s 25 M / 2.05s 25 M / 2.04s
2 20 M / 40s 1.6 G / 4.11s 50 M / 4.25s 25 M / 2.05s
4 40 M / 80s 3.2 G / 8.58s 100 M / 8.7s 25 M / 2.04s
8 80 M / 160s OOM 200 M / 17.2s 25 M / 2.04s

Table 2. Rendering composition of RFs is slow and memory inten-
sive as the number of scenes increases. Our proposed FusedRF
performs fusion once, maintaining the memory and computing
constant even when the number of composed scenes increases. (M:
MB, G: GB, s: seconds). Experimented on RTX 3060 Ti (8GB).

Scene Ours (w/o RGB) Ours (Full)

Figure 1 36.71 39.89
Figure 3b 37.20 40.32
Figure 3d 35.18 38.78

Table 3. This table shows the PSNR of the images from some
scenes in the paper. Please note that the PSNR reported is of the
FusedNeRF images against composed NeRF images.

5. Conclusion
We present FusedRF, a method to create a single RF rep-

resentation for a scene composed of multiple RFs. This re-
duces the memory and rendering overheads without degra-
dation of quality. We showed our method over TensoRF
[6] representation here. However, our method can be ex-
tended to any RF representation that uses explicit 3D lat-
tices like InstantNGP, DVGO, Plenoxels, etc. [12, 25, 30].
As our method provides tighter memory and rendering bud-
gets, using our FusedRF in XR applications like [9, 19] can
facilitate the composition of multiple RFs while maintain-
ing real-time results. The supplementary video provides an
overview of our method, the multiview visualization, and
the iterative addition of scenes in our results.
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