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Abstract

In this book chapter we address the problem of 3D shape registration and we propose a novel technique
based on spectral graph theory and probabilistic matching. Recent advancement in shape acquisition tech-
nology has led to the capture of large amounts of 3D data. Existing real-time multi-camera 3D acquisition
methods provide a frame-wise reliable visual-hull or mesh representations for real 3D animation sequences
The task of 3D shape analysis involves tracking, recognition, registration, etc. Analyzing 3D data in a single
framework is still a challenging task considering the large variability of the data gathered with different ac-
quisition devices. 3D shape registration is one such challenging shape analysis task. The main contribution
of this chapter is to extend the spectral graph matching methods to very large graphs by combining spectral
graph matching with Laplacian embedding. Since the embedded representation of a graph is obtained by
dimensionality reduction we claim that the existing spectral-based methods are not easily applicable. We
discuss solutions for the exact and inexact graph isomorphism problems and recall the main spectral proper-
ties of the combinatorial graph Laplacian; We provide a novel analysis of the commute-time embedding that
allows us to interpret the latter in terms of the PCA of a graph, and to select the appropriate dimension of
the associated embedded metric space; We derive a unit hyper-sphere normalization for the commute-time
embedding that allows us to register two shapes with different samplings; We propose a novel method to nd
the eigenvalue-eigenvector ordering and the eigenvector sign using the eigensignature (histogram) which is
invariant to the isometric shape deformations and ts well in the spectral graph matching framework, and
we present a probabilistic shape matching formulation using an expectation maximization point registration

algorithm which alternates between aligning the eigenbases and nding a vertex-to-vertex assignment.

1.1 Introduction

In this chapter we discuss the problem of 3D shape registration. Recent advancement in shape acquisition
technology has led to the capture of large amounts of 3D data. Existing real-time multi-camera 3D ac-
quisition methods provide a frame-wise reliable visual-hull or mesh representations for real 3D animation
sequences| 1,12/ 8] 4] B, 6]. The task of 3D shape analysis involves tracking, recognition, registration,
etc. Analyzing 3D data in a single framework is still a challenging task considering the large variability of
the data gathered with different acquisition devices. 3D shape registration is one such challenging shape
analysis task. The major dif culties in shape registration arise due to: 1) variation in the shape acquisi-
tion techniques, 2) local deformations in non-rigid shapes, 3) large acquisition raisé6les, topology

change, surface acquisition noise), 4) local scale change, etc.

Most of the previous attempts of shape matching can be broadly categorieattiasic or intrinsic
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approaches depending on how they analyze the properties of the underlying manifold. Extrinsic approaches
mainly focus on nding a global or local rigid transformation between two 3D shapes. There is large set

of approaches based on variation of Iterative Closest Point (ICP) algorithm [7] that falls in the category of
extrinsic approaches. However, the majority of these approaches compute rigid transformations for shape
registration and are not directly applicable to non-rigid shapes. Intrinsic approaches are a natural choice
for nding dense correspondences between articulated shapes, as they embed the shape in some canonical
domain which preserves some important properties of the maniald,geodesics and angles. Intrinsic
approaches are preferable over extrinsic as they provide a global representation which is invariant to non-

rigid deformations that are common in the real-world 3D shapes.

Interestingly, mesh representation also enables the adaptation of well established graph matching algo-
rithms that use eigenvalues and eigenvectors of graph matrices, and are theoretically well investigated in the
framework ofSpectral Graph TheorySGT)e.qg, [8,/9]. Existing methods in SGT are mainly theoretical
results applied to small graphs and under the premise that eigenvalues can be computed exactly. However,
spectral graph matching does not easily generalize to very large graphs due to the following reasons: 1)
eigenvalues are approximately computed using eigen-solvers, 2) eigenvalue multiplicity and hence ordering
change are not well studied, 3) exact matching is intractable for very large graphs. It is important to note
that these methods mainly focus on exact graph matching while majority of the real-world graph matching
applications involve graphs with different cardinality and for which only a subgraph isomorphism cam be

sought.

The main contribution of this work is to extend the spectral graph methods to very large graphs by
combining spectral graph matching witlaplacian Embedding Since the embedded representation of a
graph is obtained by dimensionality reduction we claim that the existing SGT metbadd8g]) are not
easily applicable. The major contributions of this work are the following: 1) we discuss solutions for the
exact and inexact graph isomorphism problems and recall the main spectral properties of the combinatorial
graph Laplacian, 2) we provide a novel analysis of the commute-time embedding that allows us to interpret
the latter in terms of the PCA of a graph, and to select the appropriate dimension of the associated embedded
metric space, 3) we derive a unit hyper-sphere normalization for the commute-time embedding that allows
us to register two shapes with different sampling, 4) we propose a novel method to nd the eigenvalue-
eigenvector ordering and the eigenvector sign using the eigensignature (histogram) that are invariant to
the isometric shape deformations and ts well in the spectral graph matching framework, 5) we present a
probabilistic shape matching formulation using tegpectation Maximizatiopoint registration algorithm

which alternates between aligning the eigenbases and nding a vertex-to-vertex assignment.

The existing graph matching methods that use intrinsic representations|are: [[10] 11),[12,[13, 14, 15,
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Figure 1.1: Overview of the proposed method. First, a Laplacian embedding is obtained for each shape.
Next, these embeddings are aligned to handle the issue of sign ip and ordering change using the histogram
matching. Finally, an Expectation-Maximization based point registration is performed to obtain dense prob-

abilistic matching between two shapes.

16,[17,018] 19 20]. There is another class of methods that allows to combine intrinsic (geodesics) and
extrinsic (appearance) features and which were previously successfully applied for matching features in
pair of images [[211], 22, 23, 24, 25]. Some recent approaches apply hierarchical matching to nd dense
correspondences [26,127,28]. However, many of these graph matching algorithms suffer with the problem of
either computational intractability or a lack of proper distance metvict( underlying manifold structure)

as the Euclidean metric is not directly applicable while computing distances on non-rigid shapes. A recent
benchmarking of shape matching methods was performed |n [29]. Recently, a few methods proposed a

diffusion framework for the task of shape registration [30, 31, 32].

In this chapter we present an intrinsic approach for unsupervised 3D shape registration rst proposed
in [14,[33]. In the rst step, dimensionality reduction is performed using the graph Laplacian which allows
us to embed a 3D shape in an isometric subspace invariant to non-rigid deformations. This leads to an
embedded point cloud representation where each vertex of the underlying graph is mapped to a point in a
K-dimensional metric space. Thus, the problem of non-rigid 3D shape registration is transformed into a
K-dimensional point registration task. However, before point registration, the two embeddings need to be
correctly aligned. This alignment is critical for the spectral matching methods because the two isometric
embeddings are de ned up to the sign and the ordering of the eigenvectors of their Laplacian matrices. This
is achieved by a novel histogram matching method that uses histograms of eigenvectors as eigensignatures.
In the nal step, a point registration method based on a variant of the expectation-maximization (EM)
algorithm [34] is applied in order to register two sets of points associated with the Laplacian embeddings of
the two shapes. The proposed algorithm alternates between the estimation of an orthogonal transformation
matrix associated with the alignment of the two embeddings and the computation of probabilistic vertex-
to-vertex assignment. Figure .1 presents the overview of the proposed method. According to the results

summarized in[29], this method is one among the best performing unsupervised shape matching algorithm.
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Chapter Overview: Graph matrices are introduced in section 1.2. The problem of exact graph isomor-
phism and existing solutions are discussed in se¢tign 1.3. Séction 1.4 deals with dimensionality reduction
using the graph Laplacian in order to obtain embedded representations for 3D shapes. In the same section
we discuss the PCA of graph embeddings and propose a unit hyper-sphere normalization for these embed-
dings along with a method to choose the embedding dimension. Sectjon 1.5 introduces the formulation of
maximum subgraph isomorphism before presenting a two-step method for 3D shape registration. In the
rst step Laplacian embeddings are aligned using histogram matching while in the second step we brie y
discuss an EM point registration method to obtain probabilistic shape registration. Finally we present shape

matching results in sectign 1.6 and conclude with a brief discussion in spctjon 1.7.

1.2 Graph Matrices

the vertex setE(G) = fegjgis the edge set. LaW be the weighted adjacency matrix of this graph. Each
(i; )" entry of W matrix stores weightvi; whenever there is an edgg 2 E(G between graph vertices
andv; and O otherwise with all the diagonal elements set to 0 . We use the following notations: The degree
di of a graph vertexd; = &; ;wi; (i ] denotes the set of verticeg which are adjacent ta), the degree
matrix D = diagd;:::di:::dqy], then 1 vectorl =(1:::1)” (the constant vector), the 1 degree vector
d= D1, and thegraph volume/ol(G) = §;d;.
In spectral graph theory, it is comman [35] 36] to use the following expression for the edge weights:
dist(v;:v})

where disfvi;vj) denotes any distance metric between two verticessaisdh free parameter. In the case of
afully connected graptmatrixW is also referred to as tr@milarity matrix Thenormalized weighted ad-
jacency matrixwritesW = D WD 2. Thetransitionmatrix of the non-symmetric reversible Markov

chain associated with the graphiég = D W = D WD,

1.2.1 Graph Laplacian Matrices

We can now build the concept of tlggaph Laplacian operatarWe consider the following variants of the

Laplacian matrix([3]7, 36]:

» Theunnormalized Laplaciamwhich is also referred to as tloembinatorial Laplaciari,

« thenormalized Laplaciart, and
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 therandom-walk LapIaciarIT.R also referred to as thdiscrete Laplace operator

In more detail we have:

L =D W (1.2)
L = DD =1 W (1.3)
Lk = D IL=1 Wg (1.4)

with the following relations between these matrices:

L = D¥ID¥=Dig (1.5)
L = D ¥D ¥2=Dp¥[gD 7 (1.6)
g = D ¥2D¥=D L: (1.7)

These variants of the Laplacian matrix are related to each other and can be obtained by choosing different

weighting schemes (see_|38] for detalils).

1.3 Spectral Graph Isomorphism

Let Gy andGs be twoundirected weighted graphsith the same number of nodeas,and letW o andW g
be their adjacency matrices. They are real-symmetric matrices. In the general case, therrafrdisinct
eigenvalues of these matrices is smaller thaThe standard spectral methods only apply to those graphs
whose adjacency matrices havdistinct eigenvalues (each eigenvalue has multiplicity one), which implies

that the eigenvalues can be ordered.
Graph isomorphism [39] can be written as the following minimization problem:
P?= arg mirkW a PWgP” k2 (1.8)

whereP is ann n permutation matrix (see appenflix A.1) wPH as the desired vertex-to-vertex permuta-

tion matrix andk k ¢ is the Frobenius norm de ned by (see apperidix A.2):

kWk2 = W ;Wi = a” g”wg,. = tr(W” W) (1.9)
i=1j=1
Let:
Wa = Ua aUz (1.10)
WB = UB BUE (1.11)

be the eigen-decompositions of the two matrices widigenvalues 5 = diagaj] and g = diagb;] andn

orthonormal eigenvectors, the column vectortJgfandUg.
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1.3.1 An Exact Spectral Solution

If there exists a vertex-to-vertex correspondence that makes (1.8) equal to 0, we have:

Wa= P’WgP™: (1.12)

This implies that the adjacency matrices of the two graphs should have the same eigenvalues. Moreover,
if the eigenvalues are non null and, the matridgsandUg have full rank and are uniquely de ned by their
n orthonormal column vectors (which are the eigenvectoM/afandWg), thena; = b;;8i; 1 i nand

A= . From [1.12) and using the eigen-decompositions of the two graph matrices we obtain:
A= UP°Ug gUgP”Ua= g (1.13)

where the matriUg is de ned by:

Us = UsS: (1.14)

Matrix S= diads], withs = 1, is referred to as a sign matrix with the propeBf= I. Post multiplication
of Ug with a sign matrix takes into account the fact that the eigenvectors (the column vectdg3 afe

only de ned up to a sign. Finally we obtain the following permutation matrix:
P? = UgSUax: (1.15)

Therefore, one may notice that there are as many solutions as the cardinality of the set of rBatiiees

iSnj = 2", and thanot all of these solutions correspond to a permutation maffhis means that there exist

some matrice$’ that exactly maké®® a permutation matrix. Hence, all those permutation matrices that
satisfy [1.1b) are solutions of the exact graph isomorphism problem. Notice that once the permutation has

been estimated, one can write that the rowElgfcan be aligned with the rows tfa:
Ua= PUgS™: (1.16)

The rows ofUa and ofUg can be interpreted as isometric embeddings of the two graph vertices: A vertex

v; of Ga has as coordinates th#® row of Ua. This means that the spectral graph isomorphism problem
becomes a point registration problem, where graph vertices are represented by pRihtsTimconclude,

the exact graph isomorphism problem has a spectral solution based on: (i) the eigen-decomposition of the

two graph matrices, (ii) the ordering of their eigenvalues, and (iii) the choice of a sign for each eigenvector.

1.3.2 The Hoffman-Wielandt Theorem

The Hoffman-Wielandt theorem [40, 41] is the fundamental building block of spectral graph isomorphism.
The theorem holds for normal matrices; Here, we restrict the analysis to real symmetric matrices, although

the generalization to Hermitian matrices is straightforward:
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Theorem 1
(Hoffman and Wielandt) IiV o andW g are real-symmetric matrices, andaif andb; are their eigenvalues
arranged inincreasingorder; ::: a; ::: apandby ::: by ::: bpthen
n
d(a b)? k Wa Wgké: (1.17)
i=1
Proof: The proof is derived from |9, 42]. Consider the eigen-decompositions of matigesndW g,
(L.10), [1.11). Notice that for the time being we are free to prescribe the ordering of the eigeayainds
bi and hence the ordering of the column vectors of matfiéeandUg. By combining [(1.1D) and (1.11) we
write:
Ua aAUA Ug gUg=Wa Wpg (1.18)

or, equivalently:
AUAUg UpUg g= Ux(Wa Wg)Ug! (1.19)

By the unitarily-invariance of the Frobenius norm (see app A.2) and with the noZatiod Ug we

obtain:
k AZ Z gkZ=kWa WpgkZ; (1.20)
which is equivalent to:
n n
a a(a b))’z =kwa Wgki: (1.21)
j:

1j=1
The coef cientsx;; = ;ZJ can be viewed as the entries of a doubly-stochastic m&trixj  0;&L;xj =
1; aJ 1Xij = 1. Using these properties, we obtain:

2 g 2 @ 2. 2.2 -8 8
aafa b)’z = gaf+abf 2aazab
i=1lj=1 i=1 =1 i= 11(1 )

;Za b : (1.22)

|| QJO:,

g 2. 9 Qo
_aai+abj 2mza @

Hence, the minimization of (1.21) is equivalent to the maximization of the last terjn in| (1.22). We
can modify our maximization problem to admit all the doubly-stochastic matrices. In this way we seek an

extremum over a convex compact set. The maximum over this compact set is larger than our maximum:

() ( )

n
[o] o
max g a Zaib; max a a xjaib; (1.23)
220, 2%, " X2Dn jz1j=1

05

whereQ, is the set of orthogonal matrices abd is the set of doubly stochastic matrices (see appgndix A.1).

Letc; = ajbj and hence one can write that the right term in the equation above as the dot-product of two

matrices:
n n
hX;Ci = tr(XC)= & & xijCi: (1.24)
i=1j=1
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Figure 1.2: This gure illustrates the maximization of the dot-prodidtCi. The two matrices can be

viewed as vectors of dimensior. Matrix X belongs to a compact convex set whose extreme points are

permutation matrices at its extremes, nam®lyin; Xi andhPnax; Xi in this example.

Therefore, this expression can be interpreted as the projecti¥noofto C, see gure/ 1.2. The Birkhoff
theorem (appendix Al1) tells us that the Egtof doubly stochastic matrices is a compact convex set. We
obtain that the extrema (minimum and maximum) of the projectioX @nto C occur at the projections

of one of the extreme points of this convex set, which correspond to permutation matrices. Hence, the

maximum ofhX; Ci is hPnax; Xi and we obtain:

( g g : 9
)r(r;%f i?_lj?_lXijaibj = Slaibp(i): (1.25)
By substitution in[(1.22) we obtain:
g g g
aa@ b)’Z a@ b= (1.26)
i=1lj=1 i=1

If the eigenvalues are in increasing order then the permutation that satis es theorém 1.17 is the identity
matrix, i.e.,p(i) = i. Indeed, let's assume that for some indekeendk+ 1 we have:p(k) = k+ 1 and

p(k+ 1) = k. Sinceax ay+1 andby by 1, the following inequality holds:
(ak b+ (aw1 bw1)? (ak bre)®+(ak1 by)? (1.27)

and hencg(1.17) holds.
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Corollary 1.1

The inequality|(1.17) becomes an equality when the eigenvectaiésadire aligned with the eigenvectors

of Wg up to a sign ambiguity:
Ug = UaS: (1.28)

Proof: Since the minimum 01) is achieved fér= | and since the entries &f arez, we have
thatz; = 1, which corresponds td = S.

Corollary 1.2
If Q is an orthogonal matrix, then

n

A b)? k Wa QWgQkE: (1.29)

i=1

Proof: Since the eigen-decomposition of mat@wWgQ” is (QUg) g(QUg)” and since it has the
same eigenvalues &¥g, the inequality[(1.29) holds and hence corolfary 1.2.

These corollaries will be useful in the case of spectral graph matching methods presented below.

1.3.3 Umeyama's Method

The exact spectral matching solution presented in section 1.3.1 nds a permutation matrix safisfying (1.15).
This requires an exhaustive search over the space of all pos8ibilatéices. Umeyama's method presented

in [8] proposes a relaxed solution to this problem as outlined below.

Umeyama([8] addresses the problemveéighted graph matchinwithin the framework of spectral
graph theory. He proposes two methods, the rstifodirected weighted graplend the second fatirected
weighted graphsThe adjacency matrix is used in both cases. Let's consider the case of undirected graphs.

The eigenvalues are (possibly with multiplicities):

Wa: a1 i a i an (1.30)

Wg: by i by i bp: (1.32)

Theorem 2
(Umeyama) IfW 5 andW g are real-symmetric matrices withdistinct eigenvalues (that can be ordered),

a;<::< aj<:i:< apandbi<:::< by<:::< bp, the minimum of :

JQ)= kWa QWgQ™kZ (1.32)
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is achieved for:
Q%= UaSUg (1.33)

and hence (1.29) becomes an equality:

n
d(ai b)?=kwWa Q'WgQ” kE: (1.34)
i=1

Proof: The proof is straightforward. By corollafy 1.2, the Hoffman-Wielandt theorem applies to
matricesW o andQWgQ” . By coroIIar, the equalit4) is achieved for:

Z=UrQ’Ug=S (1.35)
and hencg (1.33) holds.

Notice that[(1.3B) can be written as:
Ua= Q%UgS (1.36)

which is arelaxedversion of [1.1Ip): The permutation matrix in the exact isomorphism case is replaced by

an orthogonal matrix.

A Heuristic for Spectral Graph Matching: Let us consider again the exact solution outlined in sec-
tion[1.3.]. Umeyama suggests a heuristic in order to avoid exhaustive search over all pdssiateces

that satisfy[(1.15). One may easily notice that:
kP UaSUgk2 = 2n 2tr(UaS(PUg)”): (1.37)

Using Umeyama's notationsla = [ juijj]; Ug = [ jvijj] (the entries obJ 5 are the absolute values of the entries

of Ua), one may further notice that:

n n

n
a_ SjUij Vp(iyj a a juijjjvp(i)jj = tl’(UAUEP>)Z (138)

i=1lj=1 i=1lj=1

Qo5

tr(UaS(PUg)”) =

The minimization of[(1.37) is equivalent to the maximization[of (1.38) and the maximal value that can
be attained by the latter is Using the fact that botkl andUg are orthogonal matrices, one can easily
conclude that:

tr(UaUgP>) n: (1.39)

Umeyama concludes that when the two graphs are isomorphic, the optimum permutation matrix maximizes

tr(UAUEP>) and this can be solved by the Hungarian algorithm [43].

When the two graphs are not exactly isomorphic, thegriem 1 and théprem 2 allow us to relax the permu-

tation matrices to the group of orthogonal matrices. Therefore with similar arguments as above we obtain:

tr(UaSU3Q)  tr(UaUgQ”) n: (1.40)
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The permutation matrix obtained with the Hungarian algorithm can be used as an initial solution that can

then be improved by some hill-climbing or relaxation technique [8].

The spectral matching solution presented in this section is not directly applicable to large graphs. In the
next section we introduce the notion of dimensionality reduction for graphs which will lead to a tractable

graph matching solution.

1.4 Graph Embedding and Dimensionality Reduction

For large and sparsegraphs, the results of sectipn [1.3 and Umeyama’'s method (s¢ction 1.3.3) hold only
weakly Indeed, one cannot guarantee that all the eigenvalues have multiplicity equal to one: the presence of
symmetries causes some of eigenvalues to have an algebraic multiplicity greater than one. Under these cir-
cumstances and due to numerical approximations, it might not be possible to properly order the eigenvalues.
Moreover, for very large graphs with thousands of vertices it is not practical to compute all its eigenvalue-
eigenvector pairs. This means that one has to devise a method that is able to match shapes using a small set

of eigenvalues and eigenvectors.

One elegant way to overcome this problem, is to reduce the dimension of the eigenspace, along the
line of spectral dimensionality reductions techniques. The eigendecomposition of graph Laplacian matrices

(introduced in section 1.7.1) is a popular choice for the purpose of dimensionality reduction [35].

1.4.1 Spectral Properties of the Graph Laplacian

The spectral properties of the Laplacian matrices introduced in s¢ctioh 1.2.1 have been thoroughly studied.

They are summarized in taljle [L.1. We derive some subtle properties of the combinatorial Laplacian which

Laplacian Null space | Eigenvalues Eigenvectors

L=UuU "~ up=1 O=1li<lz it In|ull1=0U7uj= di
[=00 0p=D¥1 |0=g<@g :: o |0,D¥1=000=d;
lg=TT LT=D P20 |t;=1 O=g<@ :: & |t3;D1=0t’Dt;=d;

Table 1.1: Summary of the spectral properties of the Laplacian matrices. Assuming a connected graph, the
null eigenvaluel(1; g1) has multiplicity one. The rst non null eigenvalué; @) is known as the Fiedler
value and its multiplicity is, in general, equal to one. The associated eigenvector is denoted the Fiedler

vector [37].

will be useful for the task of shape registration. In particular, we will show that the eigenvectors of the
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combinatorial Laplacian can be interpreted as directions of maximum variance (principal components) of
the associated embedded shape representation. We note that the embeddings of the normalized and random-

walk Laplacians have different spectral properties which make them less interesting for shape registration,
i.e., AppendiX A.B.

The combinatorial Laplacian. LetL= U U ~ be the spectral decomposition of the combinatorial Lapla-

cian withUU” = I. Let U be written as:

2
Uip i Uik it Uin
u:§ : 5 sz (1.41)
Un1 =

Unk Unn

Each column ofJ, ux = (uik:::Uik:::unk)” is an eigenvector associated with the eigenvalueFrom the
de nition of L in (1.) (seel[35]) one can easily see that= 0 and thau; = 1 (a constant vector). Hence,

u; ,1 = 0and by combining this witl ux = 1, we derive the following proposition:

Proposition 1
The components of the non-constant eigenvectors of the combinatorial Laplacian satisfy the following con-

straints:

at,uk=0; 8k2 k n (1.42)

I1<ux<1 8kl i n2 k n (2.43)

Assuming a connected graph, has multiplicity 1 [36]. Let's organize the eigenvaluesloin increasing

order: 0=11<12 ::: |, We prove the following proposition [37]:

Proposition 2

Forallk n,wehavd y 2max(d;), whered; is the degree of verteix

Proof: The largest eigenvalue afcorresponds to the maximization of the Rayleigh quotient, or

u” Lu
lh= max IR (1.44)

We haveu”Lu = &4 Wij(u uj)® From the inequalitya b)? 2(a”+ b*) we obtain:

I . =

286 Wi (U7 + U5) 28, diu?
= 2maxd;): 1.45
. s 2mad) (1.45)
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This ensures an upper limit on the eigenvalues 0By omitting the zero eigenvalue and associated
eigenvector, we can rewriteas:
n
L= & | kuxuy: (1.46)
k=2

Each entryuy of an eigenvectoung can be interpreted as a real-valued function that projects a graph vertex
v; onto that vector. The mean and variance of thef sl ; are therefore a measure of how the graph

spreadswvhen projected onto thieth eigenvector. This is clari ed by the following result:

Proposition 3

Themeanuy and thevariances,, of an eigenvectoux. For2 k n;andl i nwe have
o
Uk = a Uik = 0 (1.47)
i=1
1d _ 1
Su = ﬁizl(uik U)* = a (1.48)

Proof: These results can be easily obtained fngjn,1 = 0 anduy ux = 1.

These properties will be useful while aligning two Laplacian embeddings and thus registering two 3D

shapes.

1.4.2 Principal Component Analysis of a Graph Embedding

The Moore-Penrose pseudo-inverse of the Laplacian can be written as:

L" = v W

1]
—~
NI
Cc
\%
~
\%
—~
Nl
c
\%
~

- X>X (1.49)

where 1= diag0;14 »;:::; 1 ).

The symmetric semi-de nite positive matrlx' is a Gram matrix with the same eigenvectors as those
of the graph Laplacian. When omitting the null eigenvalue and associated constant eigeXvbettomes
a(n 1) nmatrix whose columns are the coordinates of the graph's verticeseméiedded (or feature)
space i.e., X = [Xg:::Xj:::Xp]. Itis interesting to note that the entries of may be viewed agernel
dot-products, or a Gram matrix [44]. The Gram-matrix representation allows us to embed the graph in an

Euclidean feature-space where each vevieof the graph is a feature point represented jas

The left pseudo-inverse operator of the LapladiarsatisfyingL'Lu = u for any u? null(L), is also

called theGreen functiorof the heat equation. Under the assumption that the graph is connected ahd thus
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has an eigenvalue; = 0 with multiplicity 1, we obtain:
!
L'= 4 I—ukui: (1.50)
k=2'K
The Green function is intimately related to random walks on graphs, and can be interpreted probabilistically
as follows. Given a Markov chain such that each graph vertex is the state, and the transition from vertex
v is possible to any adjacent vertex v; with probabilityw;;=d;, the expected number of steps required
to reach vertew; from v;, called theaccessor hitting time ({vi;v;). The expected number of steps in
a round trip fromy; to v;j is called thecommute-time distancé:TDz(vi;vj) = O(vi;vj) + O(vj;Vvi). The

commute-time distancé [45] can be expressed in terms of the enttiés of

CTDX(v;;vj) = VOl(Q(LT(isi)+ LT(j;1)  2L7(s ) ,

g 1, &1, g 1
= Wol(G a I—uik+ a I—ujk 2a I—uikujk
k=2 K k=2'k k=2'k

o 1=2 2
= Wwl(Ga |, (uk uw
k=2
= Vol(Gkx; xjk; (1.51)

where the volume of the graph, @) is the sum of the degrees of all the graph vertices. The CTD func-
tion is positive-de nite and sub-additive, thus de ningnaetric between the graph vertices, referred to as
commute-timegor resistancg distance[46]. The CTD is inversely related to the number and length of
paths connecting two vertices. Unlike the shortest-path (geodesic) distance, CTD captures the connectivity
structure of the graph volume rather than a single path between the two vertices. The great advantage of
the commute-time distance over the shortest geodesic path is that it is robust to topological changes and

therefore is well suited for characterizing complex shapes. Since the volume is a graph constant, we obtain:
CTD?(vi;vj) pt kxi Xk (1.52)

Hence, the Euclidean distance between any two feature pwirdadx; is the commute time distance

between the graph vertexandv;.

Using the rstK non null eigenvalue-eigenvector pairs of the Laplatiathecommute-time embedding

of the graph's nodes corresponds to the column vectors df th& matrix X:
_ 1=2 > _ CaeyL e .

From [1.43) and (1.33) one can easily infer lower and upper bounds fotthheoordinate ok;:

I P exi<t, (1.54)
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The last equation implies that the graph embedding stretches along the eigenvectors with a factor that is
inversely proportional to the square root of the eigenvalues. Thégrem 3 below characterizes the smallest non-
null K eigenvalue-eigenvector pairs lofas the directions of maximum variance (the principal components)

of the commute-time embedding.

Theorem 3
The largest eigenvalue-eigenvector pairs of the pseudo-inverse of the combinatorial Laplacian matrix are
the principal components of the commute-time embedding, i.e., the pdiate zero-centered and have a

diagonal covariance matrix.

Proof: Indeed, from[(1.47) we obtain a zero-mean while frpm (]L.53) we obtain a diagonal covariance

matrix:
0 1 O 1
n éP:luiZ 0
X= -~ x= - %% ; Ez%% (1.55)
i=1 n
&iL 1 Uik+ 1 0
1 1 1
= XX>=> Y’y z=- 1 (1.56)
n n n

Figure[ 1.3 shows the projection of graph (in this case 3D shape represented as meshes) vertices on eigen-

vectors.

@) (b) ()

Figure 1.3: This is an illustration of the concept of the PCA of a graph embedding. The graph's vertices are
projected onto the second, third and fourth eigenvectors of the Laplacian matrix. These eigenvectors can be

viewed as the principal directions of the shape.
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1.4.3 Choosing the Dimension of the Embedding

A direct consequence of theor¢m 3 is that the embedded graph representation is centered and the eigenvec-

tors of the combinatorial Laplacian are the directions of maximum variancepriiapal eigenvectors cor-

1 1

respond to the eigenvectors associated withkttargesteigenvalues of the', i.e.,| 5 1 3 I
The variance along vectax is | , *=n. Therefore, the total variance can be computed from the trace of the
L" matrix :

tr( x)= %tr(LT): (1.57)

A standard way of choosing the principal components is to usedie® diagram

Q)o

q(K) = k=2 "k .

k
n I 1
k=2" k

K+l| 1
=2 (1.58)
2

Qo

The selection of the rsK principal eigenvectors therefore depends on the spectral fall-off of the inverses

of the eigenvalues. In spectral graph theory, the dimenkios chosen on the basis of the existence of

an eigengap, such thak+2 | k+1> t witht> 0. In practice it is extremely dif cult to nd such an
eigengap, in particular in the case of sparse graphs that correspond to a discretized manifold. Instead, we
propose to select the dimension of the embedding in the following way. Noticd that (1.58) can be written
asq(K) = A=(A+ B) with A= &{"}1 P andB = &, ! . Moreover, from the fact that the's are

arranged in increasing order, we obt&in (n K 1) i,. Hence:

Omin  d(K) 1, (1.59)
with
oK+l 1
ar ol
Omin = ~ k=2 "k ; (1.60)

Alcol i tH(n Ky
This lower bound can be computed from themallest non null eigenvalues of the combinatorial Laplacian
matrix. Hence, one can chookesuch that the sum of the r eigenvalues of thé " matrix is a good

approximation of the total variance, e.gmin = 0:95.

1.4.4 Unit Hyper-sphere Normalization

One disadvantage of the standard embeddings is that, when two shapes have large difference in sampling the
embeddings will differ by a signi cant scale factor. In order to avoid this we mamalizethe embedding
such that the vertex coordinates lie on a unit sphere of dimeSiarhich yields:

Xi |
kXik'

R = (1.61)
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In more detail, thé-th coordinate ok; writes as:

1
| kzuik

Xik = 1= . (1.62)

NI

o K+1 2
ajzp 1) 2uj

1.5 Spectral Shape Matching

In the previous sections we discussed solutions for the exact and inexact graph isomorphism problems, we
recalled the main spectral properties of the combinatorial graph Laplacian, and we provided a novel analysis
of the commute-time embedding that allows to interpret the latter in terms of the PCA of a graph, and to
select the appropriate dimensikn n of the associated embedded metric space. In this section we address
the problem of 3D shape registration and we illustrate how the material developed above can be exploited

in order to build a robust algorithm for spectral shape matching.

Let's consider two shapes described by two gra@asandGs wherejVaj = nandjVgj = m. LetLa and
Lg be their corresponding graph Laplacians. Without loss of generality, one can choose the same dimension

K inf(n;m) for the two embeddings. This yields the following eigen decompositions:

La Un k k(Un k)~ (1.63)

Ls

Um k k(Um k)7 (1.64)
For each one of these graphs, one can buildissmorphicembedded representations, as follows:
» An unnormalized Laplacian embedditigat uses th& rows ofU,, k as the Euclidean coordinates of

the vertices ofa (as well as th& rows ofU%,  as the Euclidean coordinates of the vertice&g,

and

» A normalized commute-time embeddijigen by ), i.e.Xa= [Xe:i:Xjiii%q] (as well asXg =
[%9:::%9:::%0]). We recall that each colunt) (and respectivel§?) is aK -dimensional vector corre-

sponding to a vertey; of Gy (and respectively? of Gg).

1.5.1 Maximum Subgraph Matching and Point Registration

Let's apply the graph isomorphism framework of Secfiorj 1.3 to the two graphs. They are embedded into
two congruent spaces of dimensig¥. If the smallestK non-null eigenvalues associated with the two

embeddings are distinct and can be ordered, i.e.:
lo<iii< Ig<:iii< ke (1.65)

19<:i< 10<iic 19, (1.66)
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then, the Umeyama method could be applied. If one uses the unnormalized Laplacian embeddings just
de ned, (1.33) becomes:
Q%= Un kSk(UY )’ (1.67)

Notice that here the sign matr& de ned in[1.33 became K K matrix denoted bySx. We now

modeled by multiplication with & K permutation matriP:
Q= Uy kSkPk(UY &) (1.68)

Pre-multiplication ofU%, )> with Px permutes its rows such tha ! ug(k). Each entryq;; ofthen m

matrix Q can therefore be written as:

K+1
o

Gij = |92 SKUikU?p(k) (1.69)

Since bothJ,, k andU?, « are column-orthonormal matrices, the dot-product de ne1.69) is equiva-
lent to the cosine of the angle between tfxalimensional vectors. This means that each enti® & such

that 1 ¢j +1andthattwo verticeg andv? are matched ifj; is close to 1.

One can also use the normalized commute-time coordinates and de ne an equivalent expression as

above:
A= X~ scPrX° (1.70)
with:
K¥l .
Gi = A K (1.71)

~

=2

Because both sets of poirf(sandf(olie on aK-dimensional unit hyper-sphere, we also have dj; +1.

It should however be emphasized that the rank ofrthem matricesQ; Q is equal toK. Therefore,
these matrices cannot be viewedrakxed permutation matricelsetween the two graphs. In fact they
de ne many-to-many correspondences between the vertices of the rst graph and the vertices of the second
graph, this being due to the fact that the graphs are embedded on a low-dimensional space. This is one of
the main differences between our method proposed in the next section and the Umeyama method, as well
as many other subsequent methods, that use all eigenvectors of the graph. As it will be explained below,
our formulation leads to a shape matching method that will alternate between aligning their eigenbases and

nding a vertex-to-vertex assignment.

It is possible to extract a one-to-one assignment matrix f€or from Q) using either dynamic pro-
gramming or an assignment method technique such as the Hungarian algorithm. Notice that this assignment

is conditioned by the choice of a sign matBx and of a permutation matriRy, i.e., XK! possibilities,
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and that not all these choices correspond to a valid sub-isomorphism between the two graphs. Let's consider
the case of the normalized commute-time embedding; there is an equivalent formulation for the unnormal-
ized Laplacian embedding. The two graphs are described by two sets of pbmm;i,)?o both lying onto

the K-dimensional unity hyper-sphere. THe K matrix Sk Pk transforms one graph embedding onto the
other graph embedding. Hence, one can wijte SKPKX? if vertex vi matchesvj. More generally Let

Rk = SkPxk and let's extend the domain &« to all possible orthogonal matrices of sike K, namely

Rk 2 Ok or theorthogonal groupof dimensionK. We can now write the following criterion whose min-
imization overRk guarantees an optimal solution for registering the vertices of the rst graph with the
vertices of the second graph:

n m
mind & Gijkk Rkxk? (1.72)

One way to solve minimization problems such [as ([L.72) is to use a point registration algorithm that
alternates between (i) estimating tie K orthogonal transformatioRg, which aligns the&K-dimensional
coordinates associated with the two embeddings, and (ii) updating the assignment veyjableis Can be
done using either ICP-like methods (th¢'s"are binary variables), or EM-like methods (tfy¢'s"are poste-
rior probabilities of assignment variables). As we just outlined above, nfairikelongs to the orthogonal
groupQx. Therefore this framework differs from standard implementations of ICP and EM algorithms that

usually estimate a 2-D or 3-Btation matrix which belong to thepecial orthogonal group

It is well established that ICP algorithms are easily trapped in local minima. The EM algorithm recently
proposed in[[34] is able to converge to a good solution starting with a rough initial guess and is robust to the
presence of outliers. Nevertheless, the algorithm proposedlin [34] performs wellrigidéransformations
(rotation and translation), whereas in our case we have to estimate a more general orthogonal transformation
that incorporates both rotations and re ections. Therefore, before describing in detail an EM algorithm
well suited for solving the problem at hand, we discuss the issue of estimating an initialization for the
transformation aligning th& eigenvectors of the rst embedding with those of the second embedding and
we propose a practical method for initializing this transformation (namely, matBigesd Pk in (1.70))

based on comparing the histograms of these eigenvectagaensignatures

1.5.2 Aligning Two Embeddings Based on Eigensignatures

Both the unnormalized Laplacian embedding and the normalized commute-time embedding of a graph are

represented in a metric space spanned by the eigenvectors of the Laplacian matrix, namely the n-dimensional

tions and each such eigenfunction maps the graph's vertices onto the real line. More preciskih the
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eigenfunction maps a vertex onto uy. Propositiong L anfl] 3 revealed interesting statistics of the sets
_21. Moreover, theorerﬂ3 provided an interpretation of the eigenvectors in terms of
principal directions of the embedded shape. One can therefore conclude that the probability distribution of
the components of an eigenvector have interesting properties that make them suitable for comparing two
shapes, namely 1< uy < +1, 0= 1=nd[L, ux = 0, andsx = 1=nd L, u2 = 1=n. This means that one

can build a histogram for each eigenvector and that all these histograms share the same birawitithe

same number of bins [47]:

355 _ 35
w = 3. 38 (1.73)
b, = SURUK_infil =, (1.74)

W 2

We claim that these histograms are eigenvector signatures which are invariant under graph isomorphism.
Indeed, let's consider the Laplaciarof a shape and we apply the isomorphic transforma@bR” to this
shape, wher® is a permutation matrix. & is an eigenvector of, it follows thatPu is an eigenvector
of PLP” and therefore, while the order of the componentsi @fre affected by this transformation, their
frequency and hence their probability distribution remain the same. Hence, one may conclude that such a

histogram may well be viewed as aigensignature

We denote withHf ug the histogram formed with the componentsuwénd letC(Hf ug; Hf u%) be a
similarity measure between two histograms. From the eigenvector properties just outlined, it is straightfor-
ward to notice thaHfug 6 Hf ug: These two histograms are mirror symmetric. Hence, the histogram is
not invariant to the sign of an eigenvector. Therefore one can use the eigenvectors' histograms to estimate
both the permutation matriRx and the sign matri$x in (1.70). The problem of nding one-to-one assign-
mentsf ux $ &ug(k)gE=+21 between the two sets of eigenvectors associated with the two shapes is therefore

equivalent to the problem of nding one-to-one assignments between their histograms.

Let Ak be an assignment matrix between the histograms of the rst shape and the histograms of the

second shape. Each entry of this matrix is de ned by:
a = sugC(Hf uxg; Hf ulg); C(Hf ukg; Hf  u’g)] (1.75)

Similarly, we de ne a matriXBk that accounts for theign assignments
8
S +1 if C(HfuwgHfulg) C(HfukgHf uY)

b = (1.76)
-1 if C(HfugHfulg) < C(Hfukg;Hf udg)
Extracting a permutation matrRx from Ak is an instance of the bipartite maximum matching problem

and the Hungarian algorithm is known to provide an optimal solution to this assignment problem [43].
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Moreover, one can use the estimafg to extract a sign matrix from Bk. Algorithm[] estimates an

alignment between two embeddings.

Algorithm 1 Alignment of Two Laplacian Embeddings

input : Histograms associated with eigenvectougg's andf ulgl’s.

output : A permutation matriPx and a sign matrixSg.
1. Compute the assignment matrickg andBg.
2: ComputePk from Ak using the Hungarian algorithm.

3: Compute the sigh matri8x usingPk andB.

Figure[ 1.4 illustrates the utility of the histogram of eigenvectors as eigensignatures for solving the prob-
lem of sign ip and change in eigenvector ordering by computing histogram matching. It is interesting to
observe that a threshold on the histogram matching sgorg (1.75) allows us to discard the eigenvectors with
low similarity cost. Hence, starting with lardgé obtained using (1.60), we can limit the number of eigen-
vectors to just a few, which will be suitable for EM based point registration algorithm proposed in the next

section.

1.5.3 An EM Algorithm for Shape Matching

As explained in sectiop 1.5.1, the maximum subgraph matching problem reduces to a point registration
problem inK dimensional metric space spanned by the eigenvectors of graph Laplacian where two shapes
are represented as point clouds. The initial alignment of Laplacian embeddings can be obtained by matching
the histogram of eigenvectors as described in the previous section. In this section we propose an EM algo-
rithm for 3D shape matching that computes a probabilistic vertex-to-vertex assignment between two shapes.
The proposed method alternates between the step to estimate an orthogonal transformation matrix associ-
ated with the alignment of the two shape embeddings and the step to compute a point-to-point probabilistic

assignment variable.

The method is based on a parametric probabilistic model, namely maximum likelihood with missing
. . . 5 ~ ~0 ~ .
data. Let us consider the Laplacian embedding of two shape, (X53)XigL ;X = fx?g'j“: 1, With
)2;5(0 RK. Without loss of generality, we assume that the points in the rstXetre cluster centers of
a Gaussian mixture model (GMM) with clusters and an additional uniform component that accounts for

outliers and unmatched data. The matcrf(n@ X will consist in tting the Gaussian mixture to the oef

Let this Gaussian mixture undergda K transformatiorR (for simplicity, we omit the indexX) with
R R = Ix;defR) = 1, more preciselfR 2 O, the group of orthogonal matrices acting Bff. Hence,

each cluster in the mixture is parametrized by a ppgora cluster meap; = RX;, and a covariance matrix
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Figure 1.4: An illustration of applicability of eigenvector histogram as eigensignature to detect sign ip
and eigenvector ordering change. The blue line shows matched eigenvector pairs and the red-cross depicts

discarded eigenvectors.

i. It will be assumed that all the clusters in the mixture have the same prjars, pingiL ;, and the same
isotropic covariance matriXf, ; = slkgl,;. This parametrization leads to the followimjpserved-data

log-likelihood (with poyt= 1 npj, andU is the uniform distribution):
!

o D N
logP(X)= & log & pinN (i 5)+ Poul (1.77)
j=1 i=1

It is well known that the direct maximization gf (1]77) is not tractable and it is more practical to maximize

theexpected complete-data log-likelihoosing the EM algorithm, where “complete-data” refers to both the
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observed data (the poinfs% and the missing data (the data-to-cluster assignments). In our case, the above

expectation writes (sek [34] for details):

aji(k&? R%k?+ klogs); (1.78)

Qo5

13
E(R;s)= éa
=1

i=1

whereaj; denotes the posterior probability of an assignméfﬁ Xi:
exp( k %) R%k?=2s) _
A0-1exp(k X0 RXgk?=2s)+ 0sk2’

where0 is a constant term associated with the uniform distributibnNotice that one easily obtains the

aji = (2.79)

posterior probability of a data point to remain unmatchegl,1 = 1 &L,a;;. This leads to the shape

matching procedure outlined in Algoritim 2.

Algorithm 2 EM for shape matching

input : Two embedded shap&sandX "
output : Dense correspondencﬁss x°between the two shapes;

1: Initialization: SetR(® = Sy Pk choose a large value for the variare@;

2: E-step:Compute the current posterica 9 from the current parameters using (1.79);

3: M-step: Compute the new transformatid¥{*? and the new variance(@* D using the current pos-
terors:

R@D = arg nl_j{iné ai(jq) k  Rxik?
i

s@Y = §aflks) RO V5k?=k§ af’
15] 15)

4: MAP: Accept the assignmeff $ & if max; ai(jq) > 0:5.

1.6 Experiments and Results

We have performed several 3D shape registration experiments to evaluate the proposed method. In the
rst experiment, 3D shape registration is performed on 138 high-resolution (10K-50K vertices) triangular
meshes from the publicly available TOSCA dataset [29]. The dataset includes 3 shape classes (human, dog,
horse) with simulated transformations. Transformations are split into 9 classes (isometry, topology, small
and big holes, global and local scaling, noise, shot noise, sampling). Each transformation class appears in
ve different strength levels. An estimate of average geodesic distance to ground truth correspondence was

computed for performance evaluation (see! [29] for details).

We evaluate our method in two settings. In the rst setting SM1 we use the commute-time embedding

(L.53) while in the second setting SM2 we use the unit hyper-sphere normalized embpdding (1.61).
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Strength

Transform 1 2 3 4 5

SM1 SM2| SM1 SM2| SM1 SM2| SM1 SM2| SM1 SM2
Isometry 0.00 0.00| 0.00 0.00f 0.O0O 0.00| 0.00 0.00f 0.00 0.00

Topology 689 59| 792 6.76| 792 7.14| 804 755| 841 8.13

Holes 732 517| 839 555| 934 6.05| 947 6.44| 1247 10.32
Micro holes 0.37 0.68| 0.39 0.70| 044 0.79| 045 0.79| 049 0.83
Scale 0.00 0.00| 0.00 0.00f 0.O0O 0.00| 0.00 0.00f 0.00 o0.00

Local scale 0.00 0.00| 0.00 0.00f 0.00 0.00f 0.00 0.00| 0.00 0.00
Sampling  11.43 10.51] 13.32 12.08 15.70 13.65/ 18.76 15.58 22.63 19.17
Noise 0.00 0.00| 0.00 0.00f 0.O0O 0.00| 0.00 0.00f 0.00 0.00
Shotnoise 0.00 0.00| 0.00 0.00| 0.00 0.00| 0.00 0.00|{ 0.00 0.00
Average 288 248 334 279| 3.71 3.07| 408 3.37| 489 4.27

Table 1.2: 3D shape registration error estimates (average geodesic distance to ground truth correspondences)
using proposed spectral matching method with commute-time embedding (SM1) and unit hyper-sphere

normalized embedding (SM2).

Tablg 1.2 shows the error estimates for dense shape matching using proposed spectral matching method.
In case of some transforms, the proposed method yields zero error because the two meshes were having
identical triangulation. Figufe 1.5 shows some matching results. The colors emphasize the correct matching
of body parts while we show only 5% of matches for better visualization. In F[gufe 1.5(e) the two shapes
have large difference in the sampling rate. In this case the matching near the shoulders is not fully correct

since we used the commute-time embedding.

Table[ 1.3 summarizes the comparison of proposed spectral matching method (SM1 and SM2) with gen-
eralized multidimensional scaling (GMDS) based matching algorithm introducédlin [17] and the Laplace-
Beltrami matching algorithm proposed in [10] with two settings LB1 (uses graph Laplacian) and LB2 (uses
cotangent weights). GMDS computes correspondence between two shapes by trying to embed one shape
into another with minimum distortion. LB1 and LB2 algorithms combines the surface descriptors based
on the eigendecomposition of the Laplace-Beltrami operator and the geodesic distances measured on the
shapes when calculating the correspondence quality. The above results in a quadratic optimization problem
formulation for correspondence detection, and its minimizer is the best possible correspondence. The pro-
posed method clearly outperform the other two methods with minimum average error estimate computed

over all the transformations in the dataset.
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Strength
Method 1 2 3 4 5

LB1 10.61 15.48 19.01 23.22 23.88

LB2 1551 18.21 2299 25.26 28.69
GMDS 39.92 36.77 35.24 37.40 39.10
SM1 288 334 371 4.08 4.89
SM2 248 279 3.07 337 4.27

Table 1.3: Average shape registration error estimates over all transforms (average geodesic distance to
ground truth correspondences) computed using proposed methods (SM1 and SM2), [GMDS [17] and LB1,
LB2 [10].

Strength

Transform 1 3 5

Isometry SM1,SM2 SM1,SM2 SM1,SM2

Topology SM2 SM2 SM2
Holes SM2 SM2 SM2
Micro holes SM1 SM1 SM1
Scale SM1,SM2 SM1,SM2 SM1,SM2
Local scale SM1,SM2 SM1,SM2 SM1,SM2
Sampling LB1 SM2 LB2
Noise SM1,SM2 SM1,SM2 SM1,SM2

Shot noise SM1,SM2 SM1,SM2 SM1,SM2

Average SM1,SM2 SM1,SM2 SM1,SM2

Table 1.4: 3D shape registration performance comparison: The proposed methods (SM1 and SM2) per-
formed best by providing minimum average shape registration error over all the transformation classes with

different strength as compare to GMDS]|[17] and LB1, LB2][10] methods.
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(a) Holes (b) Isometry (c) Noise

(e) Sampling (f) Local scale

Figure 1.5: 3D shape registration in the presence of different transforms.

In table[1.4, we show a detailed comparison of proposed method with other methods. For a detailed
guantitative comparison refer to_[29]. The proposed method inherently uses diffusion geometry as opposed

to geodesic metric used by other two methods and hence outperform them.

In the second experiment we perform shape registration on two different shapes with similar topology.
In Figure[1.6, results of shape registration on different shapes is presented. [Figure 1.6(a),(c) shows the
initialization step of EM algorithm while Figure 1.6(b),(d) shows the dense matching obtained after EM

convergence.

Finally, we show shape matching results on two different human meshes captured with multi-camera

system at MIT[[5] and University of Surreyl[2] in Figure [L.7

1.7 Discussion

This chapter describes a 3D shape registration approach that computes dense correspondences between two
articulated objects. We address the problem using spectral matching and unsupervised point registration
method. We formally introduce graph isomorphism using the Laplacian matrix, and we provide an analysis

of the matching problem when the number of nodes in the graph is very laggef the order ofO(10%).

We show that there is a simple equivalence between graph isomorphism and point registration under the
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(@) EM Initialization Step (b) EM Final Step

(c) EM Initialization Step (d) EM Final Step

Figure 1.6: 3D shape registration performed on different shapes with similar topology.

(a) Original Meshes (b) Dense Matching

Figure 1.7: 3D shape registration performed on two real meshes captured from different sequence.

group of orthogonal transformations, when the dimension of the embedding space is much smaller than the

cardinality of the point-sets.
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The eigenvalues of a large sparse Laplacian cannot be reliably ordered. We propose an elegant alternative
to eigenvalue ordering, using eigenvector histograms and alignment based on comparing these histograms.
The point registration that results from eigenvector alignment yields an excellent initialization for the EM

algorithm, subsequently used only to re ne the registration.

However, the method is susceptible to large topology change that might occur in the multi-camera shape
acquisition setup due to self-occlusion (originated from complex kinematics poses) and shadow effects. This
is because Laplacian embedding is a global representation and any major topology change will lead to large
changes in embeddings causing failure to this method. Recently, a new shape registration method proposed

in [32] provide robustness to the large topological changes using the heat kernel framework.
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Appendix A

A.1 Permutation and Doubly-stochastic Matrices

A matrix P is called apermutationmatrix if exactly one entry in each row and column is equal to 1, and
all other entries are 0. Left multiplication of a matéxby a permutation matri permutes theowsof A,

while right multiplication permutes theolumnsof A.

Permutation matrices have the following properties:(gt 1, P> = P 1, the identity is a per-
mutation matrix, and the product of two permutation matrices is a permutation matrix. Hence the set of
permutation matriceB 2 P, constitute a subgroup of the subgroup of orthogonal matrices, deno®@g by

andP, has nite cardinalityn!.

A non-negative matriA is a matrix such that all its entries are non-negative. A non-negative matrix
with the property that all its row sums afel is said to be grow) stochastic matrixA column stochastic
matrix is the transpose of a row stochastic matrix. A stochastic matmxth the property thaf” is also
stochastic is said to b#oubly stochasticall row and column sums arel anda;; 0. The set of stochastic
matrices is a compact convex set with the simple and important propertf tisagtochastic if and only if

Al = 1 wherel is the vector with all components equaltd..

Permutation matrices are doubly stochastic matrices. If we denok2 lilge set of doubly stochastic
matrices, it can be proved th&, = Q,\ D, [48]. The permutation matrices are the fundamental and
prototypical doubly stochastic matrices, for Birkhoff's theorem states that any doubly stochastic matrix is a
linear convex combination of nitely many permutation matrices [42]:

Theorem 4

(Birkhoff) A matrix A is a doubly stochastic matrix if and only if for sof\e< ¥ there are permutation

A complete proof of this theorem is to be found in[[42][pages 526-528]. The proof relies on the fact

thatD,, is a compact convex set and every point in such a set is a convex combination of the extreme points
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of the set. First it is proved that every permutation matrix is an extreme polD§ ahd second it is shown

that a given matrix is an extreme pointdf, if an only if it is a permutation matrix.

A.2 The Frobenius Norm

The Frobenius (or Euclidean) norm of a matdix , is anentry-wisenorm that treats the matrix as a vector
ofsize 1 nn. The standard norm properties hokdikg > 0, A6 0,kAkr =0, A= 0,kcAkr = ckAkg,
andkA + Bkg k Akg + kBkg. Additionally, the Frobenius norm sub-multiplicative

kABke k AkrpkBkg (A1)
as well aaunitarily-invariant. This means that for any two orthogonal matriteandV:
KUAV kg = KAKE: (A.2)
It immediately follows the following equalities:

kUAU~ k|: = kUA k|: = kAU k|: = kAkFZ (A3)

A.3 Spectral Properties of the Normalized Laplacian

The normalized Laplacian Let {ix and g« denote the eigenvectors and eigenvalueﬁ;oThe spectral
decomposition i€ = U U~ with U™ = I. The smallest eigenvalue and associated eigenvectos aré@

andti; = D1,
We obtain the following equivalent relations:

a%,d0=0; 2 k n (A.4)

4 i<l 1 0 om2 ko om (A.5)

Using (1.%) we obtain a useful expression for the combinatorial Laplacian in terms of the spectral de-
composition of the normalized Laplacian. Notice, however, that the expression below is NOT a spectral

decomposition of the combinatorial Laplacian:

L= ( D1=20 1=2)(Dl=20 l=2)> : (A6)

For a connected grapgh has multiplicity 1: = g1 < @ ::: ¢, Asinthe case of the combinatorial

Laplacian, there is an upper bound on the eigenvaluesi(skee [37] for a proof):
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Proposition 4

Forallk n,wehavey 2.

We obtain the following spectral decomposition for the normalized Laplacian :

L= & adily: (A7)

2

il Qo5

The spread of the graph along tk¢h normalized Laplacian eigenvector is given8(k;i);2 k n;1

i on
~ 18
U= —a Ui (A.8)
Ni=1
1
Sy = - uﬁ: (A.9)

Therefore, the projection of the graph onto an eigenvegtds not centered. By combining (1.5) and (A.7)
we obtain an alternative representation of the combinatorial Laplacian in terms of the the spectrum of the
normalized Laplacian, namely:

n
L= & a(D*i)(D*200y)”: (A.10)
k=2

Hence, an alternative is to project the graph onto the ve¢torsD{i,. From by ,01= 0 we get that
¢ »1 = 0. Therefore, the spread of the graph's projection drtbas the following mean and variance,
8(kii;2 k nml1 i n

fk=&L.d Gx= 0 (A.11)

Sal Al (A.12)

The random-walk Laplacian. This operator is not symmetric, however its spectral properties can be
easily derived from those of the normalized Laplacian uging (1.7). Notice that this can be used to transform

a non-symmetric Laplacian into a symmetric one, as proposédlin [49] and in [50].
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