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Detection of abnormalities from medical images is of key interest in developing computer-aided

diagnostic tools. In this paper, we observe the key challenges for representation and feature extraction

schemes to be met for detection of abnormalities by learning normal cases. We introduce an image

representation, motivated by the effect of motion on perception of structures. This representation is

based on a set of patterns called generalized moment patterns (GMP) generated via induced motion

over regions of interest, for learning normal. The proposed GMP has been utilized to develop a scheme

for addressing two well-known problems: lesion classification in mammograms and detection of

macular edema in color fundus images. The strengths of this scheme are that it does not require any

lesion-level segmentation and relies largely on normal images for training which is attractive for

developing screening tools. The proposed scheme has been assessed on two public domain datasets,

namely, MIAS and MESSIDOR. A comparison against the performance of state of the art methods

indicates the proposed scheme to be superior.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The use of computer-aided diagnosis (CAD) systems, to pro-
vide second opinion to human observers from images, is becom-
ing an integral part of everyday clinical practice. These systems
are intended to improve the accuracy and confidence of diagnosis
performed by the user and also speed up the diagnosis process
[1,2]. Given an image, the conventional CAD systems search for
disease specific patterns, to make a decision on the presence/
absence of an abnormality either in the entire image or within a
region of interest (ROI). Therefore, detecting abnormality in an
image requires solution to the challenging task of learning all the
disease-specific visual patterns. Identifying and characterizing
a single disease pattern is a difficult task in itself because of
the high variability seen within medical images. High variability
across and within images lead to loss of differentiation of disease-
related abnormalities from background structures. Typical varia-
tions include illumination via bias fields and contrast which arises
due to variations in imaging protocol and tissue types [3,4].

Towards addressing these problems, recently, an alternative
approach to detection of disease-related abnormalities has gained
interest where the visual patterns from normal cases are learnt
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and the presence of a disease is treated as a deviation from the
normal cases [5–7]. There are some inherent advantages of using
this approach. Firstly, the CAD system is required to learn only the
known structures (along with their variabilities) observed in
normal images. This effort is further simplified when pre-defined
imaging protocols are used in acquisition. Multiple symptoms of a
disease (which occur during different stages) can now be detected
in one shot as a deviation from the normal. Secondly, the disease
annotation requirement is reduced to image level rather than at
the local, lesion-level. This results in a significant reduction of
effort as obtaining annotations is a highly labor intensive task
incurring huge costs and time. Further, it has been argued that a
first step of disease/no disease classification of images is bene-
ficial for the grading at the lesion level [8] as it helps to remove
the true negatives or normal class of images. The reasoning
behind this argument is that the main function of any grading
system is to identify those patients who require further referral to
experts. Hence, rejection of normal cases in screening scenario
can significantly reduce the workload of a human grader.

In the dominant paradigm of designing disease-specific CAD
systems, image representation and descriptors are used to
describe and differentiate between disease symptoms. These are
then used to detect/segment each manifestation separately. In the
alternative approach based on learning of images from normal
cases have similar requirements: derive representation and
descriptors to capture the normal cases in a compact feature
subspace in such a manner that the disease cases can be clearly
rimination of disease-related abnormalities based on learning
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discriminated as clear deviations from this subspace. In this paper,
we examine this problem and propose a novel image representa-
tion based on patterns derived by inducing motion in static
medical images. The rest of the paper is organized as follows: in
Section 2, we draw the analogy between the existing background-
learning problem in Image/Video Surveillance and learning normal
cases in medical images and establish the challenges in directly
using the former methods for the latter. In Sections 3 and 4,
we derive the proposed representation and recommend features
for learning normal cases. The representation is motivated by the
effect of motion on human visual perception. In Sections 5 and 6,
we experimentally validate the scheme on two popular screening
problems using two public data sets, namely, classification of
lesions in digital mammograms and detection of diabetic retino-
pathy from retinal images also known as color fundus images (CFI).
2. Background

The problem of learning normal in medical images shares
similar motivation with the well researched problem of learning
background in computer vision. Approaches based on learning
background independently or in conjunction with foreground
have been tried in the computer vision community for addressing
problems like, object/motion detection on both dynamic and
static scenes [9–13]. This background information is extracted
either at each pixel or in local regions and a statistical model is
imposed.

2.1. Abnormality detection techniques in non-medical domains

Statistical models like Gaussian [13] and mixture of Gaussian
[9,12] have been used to represent each background pixel given a
static or dynamic scenes. A fundamental assumption here is that a
mixture of Gaussian distributions can capture various complex
background appearances [9]. The disadvantage with these kind
of approaches is that foreground pixels with statistics similar
to background are easily misclassified [10]. Principal component
analysis (PCA) based approach for detection and recognition in
the presence of cluttered background has also been tried for face
recognition [11]. Here, the role of learning normal is limited just
to add robustness to the task of face recognition in the presence of
noise and face-like background structures.

2.2. Abnormality detection in medical images

In medical images, voxel intensity and contextual information
have been used for segmentation of tumors in brain MRI images
by [5]. Here, features corresponding to healthy tissues are learnt
and used to find the deviation of a given voxel by identifying its
membership within a class using an expectation–maximization
based segmentation framework. This framework has been verified
for segmentation of large tumors in brain MRI images which is
relatively a simple problem. This method requires initialization
of tumor boundary for segmentation which limits its use for
automated detection and segmentation of pathology.

Automatic detection of Drusen from color fundus images has
been attempted by suppressing normal background pixels in [14].
A wavelet feature for every pixel is computed and used with support
vector data description (SVDD) to find the smallest n-dimensional
sphere that fits all the normal pixels. All pixels lying outside this
sphere are considered abnormal. This method has been verified on a
very small dataset of six images. Higher order local auto-correlation
(HLAC) features have been used in [6] to integrate local contextual
information in histopathological images. Every image is thus repre-
sented with a feature vector of size 25 corresponding to all the HLAC
Please cite this article as: K.S. Deepak, et al., Detection and disc
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patterns up to second order. These are used within a PCA framework
to learn the normal subspace and find deviations to detect the
degree of abnormality.

A similar technique has been attempted for white matter
lesion detection in brain MRI [7]. Multiple subspaces at different
scales, rather than a single subspace, is employed for learning
distribution of normal intensities. Principal components are
computed for each subspace and the original image is recon-
structed to estimate the deviation from normal.

The past work on learning normal cases in medical images
focuses on differentiating a disease manifestation from the
normal background. While this is important in the abnormality
detection task, no effort has gone into deriving appropriate
representation and features that are suited for describing normal
cases. Therefore there is a need for suitable image representation
and feature that (a) can address the creation of a compact normal
(cases) subspace which is simple to learn and (b) enhances the
separability of the subspaces corresponding to normal and
abnormal and cases. This approach of learning normal cases for
abnormality detection is nascent which is indicted by the fact that
most reported methods have been tested on relatively small
datasets. We next present a method to generate a normal sub-
space and demonstrate how it can be used to learn normal cases.
3. Generalized moment patterns

The representation required for learning the normal has to
capture a broad context of the appearance of normal. The following
are some of the desired characteristics of such a representation:
1.
rim
/j.p
Capacity to model the normal subspace without the need
for segmentation of individual structures or tissues. This
implies that the characteristic appearance of a given region
of interest (ROI) as a whole has to be captured using a compact
descriptor.
2.
 Robustness to deviations that occur in the appearance of the
normal and in the presence of noise in the images. This is very
important in medical images.
3.
 High enough sensitivity to reflect contextual disturbance in
the presence of abnormalities.

In order to design a representation that meets the above criteria
we take inspiration from human visual perception.

3.1. Impact of motion on imaging and human vision

It is well known that relative motion or long exposure of camera
imaging a moving object results in motion blur which results in a
streaky appearance of the moving object in the captured image. This
is due to the smearing of intensities of the moving object at the
receptor. This effect can be simulated by inducing motion in a static
scene as in Fig. 1. The two test images show objects (two dots) on
plain and textured backgrounds, respectively. The effect of induced
translation is shown in the second column of Fig. 1, while the effect
of induced rotation can be seen in the third column. These images
were obtained by averaging a set of translated/rotated versions of
the original image. It can be seen that the intensities of these objects
are smeared along the path of motion thereby leaving a motion

signature. This effect is much more interesting for the color image in
Fig. 1. Here, the textured background attains certain homogeneity
due to induced motion whereas the black and red dots appear as
streaks. Thus, for a given type of induced motion, the signature
produced by an object depends on the local contrast of the object
and its spatial extent. The smearing for the low-contrast object is
visibly less significant when compared to high contrast objects.
ination of disease-related abnormalities based on learning
atcog.2012.03.020
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Mathematically, the above observations can be expressed as
follows. The response M of a sensor/receptor to an object f(x,y) in
motion at a constant velocity is a time integral of a transforma-
tion function Gt applied to the object:

Mðx,yÞ ¼

Z T

0
Gtff ðx,yÞg dt ð1Þ

Here Gt represents the state of object f(x,y) in motion at time t,
M(x,y) is the resultant effect of motion and T is the duration of
interest. In the absence of motion, Mðx,yÞ ¼ f ðx,yÞ.

We propose simulating this generation of patterns at the
receptor level and consider the pattern of interest to be the
responses of a fixed set of receptors which sample the intensities
at a location from a moving image. The receptor’s response is a
result of information collation over the path traversed by the
image. Given an image I, a moving image is generated by inducing
motion to I. This collation of information should induce, in some
Fig. 1. Effect of inducing motion. Left to right: test images with uniform (top row)

and textured background (bottom row); resulting images after translation and

rotation. (For interpretation of the references to color in this figure caption, the

reader is referred to the web version of this article.)

Fig. 2. Effect of using different collating functions on sample moment patterns. All patte

Please cite this article as: K.S. Deepak, et al., Detection and disc
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sense, a wide sense stationarity in a given context and hence
enable the use of the generated pattern for learning the normal
class of static images.

Next, we present a method to generate the desired motion
signature at the receptor end.

3.2. Modeling receptor response to motion

Consider a set of static receptors whose response to a moving
image is to be modeled as a spatio-temporal sampling. For a given
image IðrÞ where r is a position vector, after inducing motion, the
intensity at location r at time ti is denoted as Iti

ðrÞ.
We consider only planar motion, namely, translation and rota-

tion around the center of the image. The given image, without any
induced motion is defined to be the static image: It0

ðrÞ ¼ IðrÞ,8r.
The number of samples N, received by a receptor mr o

at
location ro, over a duration T is N¼ T=t where t is the sampling
interval. The response of the receptor at ro depends on the sample
set ~Sr o

which is given as

~Sr o
¼ fIt0

ðroÞ,It1
ðroÞ,It2

ðroÞ, . . . ,ItN
ðroÞg ð2Þ

The samples in this set are generated by a transformation
function applied to It0

. If the induced motion is a translation at
constant velocity, then the consecutive samples Iti

ðroÞ and Itiþ 1
ðroÞ

are related as follows: Itiþ 1
ðroÞ ¼ Iti

ðroþvtÞ where v is the velocity
vector. The response of a receptor at location ro is defined as

mr o
¼F f ~Sr o

g ¼F fIt0
ðroÞ,It1

ðroÞ,It2
ðroÞ, . . . ,ItN

ðroÞg ð3Þ

where F is the collation function of the receptor applied to the
ensemble of motion generated samples. One option is to consider
these samples as the outcome of a random experiment and the
collation function as a moment generating function. In this case,
the receptor response is an nth order moment of the ensemble ~Sr .
Thus, given an input image IðrÞ, we have a moment map MðrÞ

MðrÞ ¼ Eif
~Sr g ð4Þ

Ei indicates the ith order moment.
rns are obtained with induced rotation. (a)–(d) Original, (e) mean and (f) maxima.

rimination of disease-related abnormalities based on learning
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Fig. 3. Workflow for detection of abnormal cases as deviation from normal.
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Alternately, other kinds of collation functions can also be
considered, such as extrema, L-norm and characteristic function.
When the collation function is an average, the moment map for
the moving image is (from Eq. (4))

MðrÞ ¼
X

ti

Iti
ðrÞ ð5Þ

where r is a position vector.
Generally, the derived moment pattern MðrÞ will be dependent

on the choice of velocity vector and the collation function. We call
the moment maps generated by inducing different kinds of motion
on a given static image, as generalized moment patterns (GMP).

Given a region of interest, different GMPs can be generated
based on the choice of the collation function. Fig. 2 shows
GMPs with induced rotation for two different collation functions,
namely, the mean and maximum for images with uniform and
textured backgrounds. It can be noted that the generated
GMPs are consistent with the effect of motion that was observed
earlier. Thus, it follows that an image region capturing a parti-
cular context, for example, a particular region of interest (ROI)
from healthy tissue samples, will have a characteristic GMP.
Following an introduction of a high contrast structure, there will
be a disturbance in this GMP map. Based on this observation, the
problem of learning a normal ROI can be approached as follows.
A set of feature descriptors derived on GMPs generated using
the normal ROIs can be used to represent the normal subspace.
The normal subspace can be learnt using a single class classifier.
An image belonging to the test set will be considered normal if it
falls within the normal subspace. Any image deviating from this
normal behavior is deemed abnormal. Fig. 3 shows this general
workflow. Next, we look at the feature descriptors that can be
used to describe the GMP response for images.
4. Learning the normal subspace

4.1. Features used for learning normal subspace

We hypothesize that any contextual disturbance in a given ROI
can be encoded as shape/texture deviation in the moment pattern
of the ROI. Feature descriptors can be. We test this hypothesis using
different descriptors for capturing texture or shape. The local binary
patterns (LBP) [15] and radon transform (RT) [16] are well-estab-
lished descriptors of texture and shape information and hence, we
consider some variants of these descriptors for our purpose. Thus,
three feature descriptors were considered for learning the normal
subspace: (i) a descriptor based on the radon transform (RT)
constructed by vectorizing the RT of the ROI by column ordering.
The resulting descriptor is referred to as SRT and it provides a
compact shape representation; (ii) a descriptor derived from the
texture of projections which was shown in [17] to be effective for
representation of shape information in gray scale images. In that
Please cite this article as: K.S. Deepak, et al., Detection and disc
normal cases, Pattern Recognition (2012), http://dx.doi.org/10.1016
work, the image matching problem was considered. A descriptor
consisting of a combination of LBP computed on the intensity and

the projection spaces was shown to improve the performance over
LBP computed in the intensity space. Given the GMP representation
for an ROI, we wished to investigate if the texture of projection
of the GMP is sufficient to capture shape information. Hence,
the desired TOP descriptor was constructed as follows: the RT of
the GMP is computed first, following which the LBP of this RT is
computed; (iii) the last descriptor considered was the standard LBP
computed over the intensity space.

4.2. K-nearest neighbor-based classifier for abnormality detection

The features derived over the GMP are used for learning the
subspace corresponding to normal cases. A single-class classifier,
K-nearest neighbor data description (KNN DD) that uses the
natural distribution of data is used for this purpose. The ROIs
corresponding to normal cases are divided into training and test
set. Since the abnormal cases are not used for training the KNN
DD classifier, the corresponding ROIs are considered to be part of
the test set. In the validation stage, the number of nearest
neighbors (K) within a specified distance (d) from a test ROI is
found in the normal subspace. This test ROI is deemed to be
normal if the number of nearest neighbors is greater than a
specified threshold (see Eq. (6)). The distance to nearest neighbors
is determined using Euclidean distance

ClassðROIÞ ¼
normal if KZthreshold

abnormal otherwise

�
ð6Þ

The KNN DD is known to be one of the simplest one-class
classifiers and requires the features to be distinctive enough for
classification. Unlike linear classifiers, KNN DD can perform well
when the feature subspace corresponding to normal cases form
several localized clusters. It is also known to perform well in the
high-dimensional spaces.
5. Implementation details

Given an ROI a GMP for our experiments were generated by
inducing motion to the given ROI. As explained earlier, this results
in a vector of samples at each pixel location which are combined as
per the chosen collation function. The vector length depends on the
rate and type of motion. Both rotation and translation motions
were considered. Rotations of yk ¼ k � y0; where k¼ f0;1,2, . . . ,Kg
were used with different choices of y0, ranging from 51 to 1351.
Translation of xl ¼ l � x0; where l¼ f0;1,2, . . . ,Lg was induced by
applying shift in a particular direction f with x0 ¼ f1;2, . . . ,Mg.
Once again, a range of values for x0 starting from 10% to 40% of ROI
width were considered for different sampling rates at the receptor.
Collation functions that were considered were mean and maximum.
A challenge in generating a moment map is to evaluate the best
rimination of disease-related abnormalities based on learning
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motion parameter values for a given classification problem. There-
fore, the motion parameter values that achieve highest discrimin-
ability between a small set of sample normal and abnormal cases
are found first and then used for generating this moment map.
6. Experimental results

Two case studies were taken up for demonstrating the utility
of the proposed method. The first study involves a classification
problem, namely classification of lesions in mammograms as
benign or malignant. This is a challenging task as both types of
lesions share many similar characteristics (see top row of Fig. 4)
and the research activity in this area spans two decades. The ROI
is the output of a candidate selection module in a mammogram
analysis system [18]. The traditional approach to classification of
a candidate ROI has been to detect and segment lesions within the
ROI and then classify them based on derived shape and texture
features. In our approach, the aim will be to learn the normal
(benign) subspace and use it to verify the malignancy or benign
nature of the lesions of a given ROI.

The second case study is an example of abnormality detection,
namely macular edema detection. Sample color fundus images
are shown in the bottom row of Fig. 4. The ROI is a circular region
of fixed diameter from the center of macula, a substructure of the
retina. Macular edema is the swelling of this region and the
presence of diabetic retinopathy symptoms within this ROI is
known to be one of its indicators. This is traditionally detected by
identifying (locating) the presence of subtler lesions namely hard
exudates, which appear as tiny bright lesions and red irregular
structures which are hemorrhages [19]. In our approach, the
subspace of normal ROIs will be learnt and this should enable
detection of the presence of lesions, regardless of their locations
within the macula.

In the mammogram study, the decision is on whether a
detected lesion is malignant or not. If several lesions are present
in a given mammogram then each of them has to classified before
deciding if the given mammogram is of a normal or a disease-free
breast. In contrast, in the edema case, the decision of normal
Fig. 4. Sample images and the regions of interest (enclosed in a black rectangle). First

Second row (left to right): sample normal and abnormal color fundus images. (For inte

the web version of this article.)

Please cite this article as: K.S. Deepak, et al., Detection and disc
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versus abnormal macula directly leads to a decision of whether a
given image is of an eye with or without macula edema. Thus,
the two case studies not only provide two different types of
challenges, they also illustrate the applicability of the proposed
method in different scenarios.

The processing pipeline (see Fig. 3) in both case studies is as
follows: (i) given an ROI a GMP is computed for the ROI and a
feature descriptor is derived for the GMP and (ii) the normal
subspace is learnt by training a naive K-nearest neighbor (KNN
DD) based classifier on a set of normal ROI images. Receiver
operating characteristics (ROC) plots are generated by varying the
normalized distance (d) from 0 to 1 for evaluating the algorithm’s
performance.

Two publicly available datasets that are commonly used in
benchmarking algorithms for the detection and classification tasks
were selected: the mini-MIAS dataset for lesion classification [20]
and the Messidor dataset for macular edema detection [21].

The organization of the rest of this section is as follows.
We begin with a description for two publicly available datasets.
Next, we describe the procedure for determining the optimal
motion parameters that maximize the discriminability (based on
Shannon’s entropy) between the normal and abnormal cases.
Finally, we report the results of validation (with the optimal
motion parameters) on public datasets: ROC curves, sensitivity,
specificity and AUC are presented first for different features
descriptors followed by an analysis of performance using scatter
plots. Since the type of classifier is fixed (KNN D) for all validation,
the scatter plots help to analyze the influence of a descriptor on
classification performance.

6.1. Classification of lesions in mammograms

6.1.1. Dataset

mini-MIAS: This dataset comprises of 322 digital mammo-
grams provided by Mammographic Image Analysis Society (MIAS)
and annotated by expert radiologists. The annotations provide
information on individual locations, extent of lesions and their
tissue characteristics. Additionally, information on the benign
(normal) or malignant nature of the lesions is also available.
row (left to right): mammograms with benign and malignant lesions respectively.

rpretation of the references to color in this figure caption, the reader is referred to

rimination of disease-related abnormalities based on learning
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The number of benign regions are 68 and malignant are 51.
Sample benign and malignant ROI’s can be seen in Fig. 5. It should
be noted that apart from high intra class variability there are very
subtle intensity variations in ROIs across classes as well. 20 (of 68)
benign cases were randomly selected and used for learning the
normal subspace. The remaining ROIs were used in testing if a
given ROI is benign or malignant.
6.1.2. Determining motion patterns

In order to determine the best motion parameters for the task
of lesion classification, three representative lesions from each
class (benign and malignant) were selected. These lesions were
resized to 50�50 pixels. Two kinds of motion, namely, rotation
and translation were induced to generate the respective GMPs,
GMPr and GMPt by varying the motion parameters. For GMPr, the
value of y0 was varied from 51 to 1351 and the value of yk ¼ 3601
was selected. Consequently, the resultant sampling at the recep-
tor occurs for one complete cycle of rotation. For generating GMPt,
the value of x0 was varied from 10% to 40% of ROI width and the
direction of motion was set to f¼ 01. The value of xl was selected
to be the width of the ROI.

As discussed earlier, inducing motion over the ROI results in
some contextual disturbance. As the extent of motion is increased
over the ROI, so does the extent of disturbance in the surround-
ings. This local contextual disturbance, observed in the ROI can be
characterized with the Shannon’s entropy. Starting with a GMP M,
its gradient magnitude Mg is computed. For every location X in Mg,
the local entropy (in a neighborhood OðXÞ chosen as 9�9 in our
work) is computed to derive an entropy map Me. A total entropy
M is then derived by summing all these values of Me. The
difference dGMP , between this total value for the benign and
malignant case, is used as a metric to determine the separability
between the two classes.
Fig. 5. Sample benign and malignant lesion examples. Top row: benign lesions;

bottom row: malignant lesions.

Fig. 6. Effect of increasing motion step on the class separability of

Please cite this article as: K.S. Deepak, et al., Detection and disc
normal cases, Pattern Recognition (2012), http://dx.doi.org/10.1016
The notation for this metric is as follows: the superscripts y
and D refer to the type of motion namely, rotation and translation,
respectively. The subscript max and mean indicate the type of
collation function used in generating the GMPs. The entropy plots
are shown in Fig. 6. For the translation motion, the experiment
was conducted by fixing the direction of motion (f¼ 01). From
these plots it can be observed that the discriminability between
the normal and abnormal is maximum around y0 ¼ 601 in the case
of rotation and around x0 ¼ 20% of ROI width in the case of
translation. Furthermore, the achievable discriminability is better
with translation than with rotation. Next, we studied the influ-
ence of direction of translation on the class separability by
varying the direction of translation while keeping the translation
rate fixed at x0 ¼ 20%. Fig. 7 shows the effect of changing the
direction of translation. It should be noted that the magnitude of
variation (or amplitude) in this plot is actually insignificant (only
15%). Hence, we conclude that for translation, the choice of
direction is not important.
6.1.3. Results

Empirically, a combination of two translations was found to be
effective for GMP generation. Hence, two GMPs were generated
with linear motions in two different directions (l¼15; x0 ¼ 15%;
f¼ 01 and 451) using the collation function of maximum in each
case. The final GMP was taken as an average of these two GMPs.
This set of parameters is then used to generate GMPs from 20
benign samples to train a KNN DD classifier. The value of K was
lesions. (a) dy: class separability and (b) dD: class separability.

Fig. 7. Effect of change in direction of translation motion on class separability of

lesions.

rimination of disease-related abnormalities based on learning
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Table 1
Performance comparison of lesion classification on MIAS database—AUC.

Method Sensitivity Specificity AUC

Mudigonda et al. [22] � 0:85 � 0:7 0.79
Buciu and Gacsadi [23] 0.84 0.8 0.78
Martins et al. [24] 0.9 0.71 NA

Proposed method 1 0.97 0.98

Table 2
Performance comparison of lesion classification on MIAS database—accuracy.

Method Mass Microcalcification

Benign

(%)

Malignant

(%)

Average

(%)

Benign

(%)

Malignant

(%)

Average

(%)

Mousa et al.

[25]

100 83.3 93.7 75 100 87.5

Proposed

method

100 100 100 97 100 98.9

Fig. 9. Feature scatter plot for lesion classification in mammograms. (For interpretation

version of this article.)

Fig. 8. ROC curves: classification performance for lesion classification.
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considered as 3 for computing the sensitivity and specificity
values in the classification tasks.

Receiver operating characteristics: The ROC plots for lesion classi-
fication is shown in Fig. 8 for a set of chosen feature descriptors: SRT,
LBP, TOP, SRT-Static. The last descriptor refers to the case where SRT
was computed over a static image: no motion is induced and hence
the GMP is the original image. It can be observed that SRT-GMP
performs best and that too significantly better than the rest. The
computed AUC is 0.98 for the best performing descriptor GMP-SRT.

Lesion classification (as benign or malignant) in mammograms
is a well-researched problem. We present a comparison of the
proposed scheme in Table 1 for abnormality detection against the
methods reported in the literature. However, it should be noted
that while our figures are for 68 benign and 51 malignant lesions
the existing methods report on different (smaller) number of
ROIs. Overall, we can observe that the proposed method achieves
high specificity (0.97) for the sensitivity of 1.0 on the test set.
There is a significant increase compared to other methods, in both
the sensitivity and the specificity. Table 2 shows the results in
terms of percentage accuracy of classification for the masses and
calcification. Ref. [25] reports an average accuracy of 93.7% for
masses and 87.5% for microcalcification, whereas our method has
100% and 98.9% accuracies, respectively.

Scatter plots: The ROC plots indicate that SRT-GMP outperforms
the rest. In order to understand the reason behind this behavior,
the feature scatter plots for the descriptors were analyzed in a
lower dimensional (2d) space.

In order to generate a scatter plot, the feature vectors (for each
of the descriptors) were computed and then a PCA was performed
on the vectors. The distribution of features along their two
principal components are shown in Fig. 9 for the mini-MIAS
dataset. The axes in the scatter plots are the normalized repre-
sentation of descriptors computed corresponding to each ROI for
first two directions in principal component space. In these figures,
blue and red data points indicate elements of the normal (benign)
and abnormal (malignant) subclasses, respectively. From the
feature scatter plots, it can be observed that among the three
feature descriptors, the GMP-SRT is the most effective for lesion
of the references to color in this figure caption, the reader is referred to the web
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Fig. 10. Sample normal and abnormal near macular regions in color fundus images (green channel). Top row: normal ROI; bottom row: abnormal ROI. (For interpretation
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Fig. 11. ROC curves: classification performance for detection of macular edema.

Table 3
Performance comparison for Edema detection on MESSIDOR database.

Method No. of images Sensitivity Specificity AUC

Barriga et al. [26] 400 1 – 0.98
Proposed method 522 1 0.87 0.99
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classification as it provides greater class separation. The poor
performance of TOP descriptor is due to its lack of invariance to
shift operations in images, and in the case of LBP, its inability to
capture the subtle difference of texture (in the GMP images)
between benign and malignant classes. The last plot attests to the
importance of induced motion as its removal adversely affects the
class separability.

6.2. Detection of macular edema in color fundus images

6.2.1. Dataset

MESSIDOR: The dataset comprises of color fundus images with
associated annotation (at the image level) indicating the severity
of macular edema. Disease severity is measured in terms of the
extent of exudates near the macula region (see Fig. 4). About 522
images were used for detection of these disease symptoms.
They exhibited wide variations in illumination, pigmentation
and hence pose a good challenge. These images were divided into
a set of 122 normal images picked randomly for training and 400
images for testing the presence of macular edema. Out of 400 test
images, only 57 images show any signs of disease while a large
proportion of the dataset (343 images) is normal which is
typically the case in screening scenario.

Circular ROIs of 2 optic disk diameter were selected from the
center of macula for all images. Only the green channel was used
for processing as it provides maximum contrast. There is high
variability in the structure as well as illumination of these ROIs
within and across the two classes, namely, normal and abnormal
(see Fig. 10). The task for the classifier was to detect whether a
given ROI is normal or not.
6.2.2. Determining motion patterns

As in the case of lesion classification in mammograms, the
optimal motion parameters were found using three normal and
three abnormal ROIs for retina. The discriminability between the
normal and abnormal images, measured using entropy difference
in the gradient of the GMP, was found to be maximum for
rotational GMP (y0 ¼ 101) with maximum as collating function.
Please cite this article as: K.S. Deepak, et al., Detection and disc
normal cases, Pattern Recognition (2012), http://dx.doi.org/10.1016
6.2.3. Results

Receiver operating characteristics: The GMP for a given retinal
image was derived using induced rotation with y0 ¼ 101, yk ¼ 3601
and maximum as the collation function. The ROC plot for macular
edema detection is shown in Fig. 11. The value of K (KNN DD
classifier) was taken to be 5 while computing the sensitivity
and specificity. From these plots it can be observed that (a) the
detection performance is best with features computed with
induced motion as the curves for GMP-X where X denotes
different descriptors, lie above the curve for the static case;
(b) the ROC for GMP-TOP outperforms all other descriptors. The
AUC is nearly 1 for the best performance and close to 0.5 for the
static-TOP.

Table 3 shows the performance comparison for macular
edema detection on the Messidor dataset. Ref. [26] report a high
rimination of disease-related abnormalities based on learning
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Fig. 12. Feature scatter plot for macular edema.
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performance on abnormality detection for only the severe (and
not the moderate) cases of clinically significant macular edema.
Our figures are reported for both moderate and severe cases.
Based on the reported figures for our method, we conclude that
the performance has actually improved since the larger dataset
we considered had a higher number of normals despite which
the AUC marginally improved. It was also noted that when
least number of ROIs are misclassified, a specificity of 0.95 was
achieved for the sensitivity of 0.98.

Scatter plots: As in the previous case study, the feature sub-
space for different descriptors were analyzed in lower 2-dimen-
sional feature space using scatter plots.

The scatter plots in Fig. 12 for the Messidor dataset shows
that GMP-TOP (with induced rotation) is able to generate a
well-separated, compact normal subspace in the case of macular
edema. LBP fails to capture the normal subspace as the granular-
ity of the resultant texture is non-uniform. SRT performs rela-
tively better than LBP due to the smearing effect of abnormalities
in the radial direction in rotational motion. The last scatter plot in
this figure shows the effect of removing the induced motion for
the TOP descriptor: the two classes are no longer well separated.
Hence, it can be concluded that GMP plays a vital role in capturing
the difference between normal and abnormal.

From the assessment results of the two case studies, we
conclude that GMP is indeed effective for generating a compact,
well-separated normal subspace.
7. Discussion and conclusion

The key idea that has been proposed in this paper uses the
spatio-temporal collation of information that is found (at the
receptor level) in low-level vision, as an inspiration to generate a
representation for a normal subspace. The receptor response is
simulated with the GMP pattern generated by inducing motion
to a given image. An abnormality is always with reference to
a context which is deemed to be normal. Hence, collation of
Please cite this article as: K.S. Deepak, et al., Detection and disc
normal cases, Pattern Recognition (2012), http://dx.doi.org/10.1016/
intensities from induced motion ensures that the required context
(normal) is captured and the disease related deviations are
enhanced. The choice of the type of induced motion and the
collation function depends solely on the properties of the selected
ROI and the characteristics of disease deviations observed.

The case of collation of information from rotational motion
over the ROI can also be explained in terms of integration of
intensities over a rotation group of the ROI. Deriving image features
by normalization or group integration has been attempted [27] for
representing rotationally invariant features. In this work, however,
the rotational subgroup generated by inducing rotations is used to
enhance the deviation between the normal and abnormal ROI.

We have established that features computed over GMP are
suited for learning the normal subspace by experimentally vali-
dating the performance of the method for two popular screening
problems, classification of lesions in breast cancer and detection
of macular edema (a sub-problem of diabetic retinopathy) in
retina. For breast cancer, an ROI is considered, whose malignancy
is of interest whereas in macular edema, the disease manifests
as multiple, subtle/high contrast lesions within the ROI. Relevant
GMP after evaluating the best motion parameter values are
derived for both the problems separately. The experiments on
two publicly available representative datasets and its results
are compared with the earlier methods in the literature. High
performance of even a naive single class classifier (KNN DD) with
the proposed moment patterns demonstrates its effectiveness.
A key strength of the proposed method is that it does not require
any (a) additional preprocessing for enhancing image quality or
removal of background structures, like blood vessels near macula
or (b) segmentation of the individual lesions for disease classifi-
cation. The current method is promising in terms of its applic-
ability to CAD systems as it is able to achieve high sensitivity and
specificity.

There is scope for future work in different avenues. The theo-
retical analysis of different collation functions and their effect
on the contextual information captured by GMP is one avenue.
In addition to functions like mean and maxima considered in this
rimination of disease-related abnormalities based on learning
j.patcog.2012.03.020

dx.doi.org/10.1016/j.patcog.2012.03.020


K.S. Deepak et al. / Pattern Recognition ] (]]]]) ]]]–]]]10
work, the effect of other more complex functions, for example,
higher order moments and other non-linear functions can be
explored. Further, we can seek to find a systematic way in which
the best motion parameters can be determined for a given
problem, via a simulation of normal and abnormal tissues.
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