
RoadEye: A System for Personalized Retrieval of
Dynamic Road Conditions

Anirban Mondal, Avinash Sharma, Kuldeep Yadav, Abhishek Tripathi, Atul Singh, and Nischal Piratla
{anirban.mondal, avinash.sharma, kuldeep.r, abhishek.tripathi3, atul.singh, nischal.piratla}@xerox.com

Xerox Research Centre India
Prestige Technology Park II

Marthahalli, Bangalore - 560103, INDIA

Abstract—Awareness of dynamically changing road conditions
is crucial for a safe and quality driving experience, as well as,
in augmenting trip planning. This work addresses the problem
of keeping users informed in a timely and personalized manner
about road conditions arising from both scheduled and ad hoc
events. We propose RoadEye, a system for personalized retrieval
of dynamic road conditions. The key contribution of RoadEye
is the ψR-tree, which is a novel R-tree-based index augmented
with linked lists for facilitating quick and personalized retrieval
of user-queried road conditions. Our performance study indicates
that the ψR-tree is indeed effective in retrieving dynamic road
conditions with reduced query response times and disk I/Os.

I. INTRODUCTION

Awareness of dynamically changing road conditions is
crucial for a safe and quality driving experience, as well
as, in augmenting trip planning. For example, when a driver
suddenly encounters a deadly pothole or a fallen rock, it
may lead to vehicle damage or even a fatal accident. The
seriousness of this issue is further exacerbated in case of poor
lighting conditions (at night, during fogs, street lights that are
dysfunctional) and difficult weather conditions (tropical rains,
snowfall or storms).

Incidentally, considerable changes in road conditions can
occur due to scheduled works (e.g., road maintenance work,
speed bumps at strategic locations, public processions etc.) or
as a consequence of ad hoc events (e.g., accidents, potholes,
water-logging on roads due to sudden rainfall or broken water
pipes, obstructions due to snowfall etc.). In the former case, it
may be easier to keep commuters informed about the locations
and the nature of obstructions (e.g., the height of a speed
bump). However, in the latter case, the ad hoc nature of
the events makes it extremely challenging to keep commuters
informed in a timely manner. Thus, an end-to-end system for
keeping commuters informed about ad hoc road conditions in
near real-time settings becomes imperative.

Consider a user Alice, who wishes to visit Museum of Fine
Arts, Boston. As depicted in Figure 1, the current location
of Alice is tagged as “My Location” and her destination is
tagged as DOI (“Destination of Interest”). We shall henceforth
use the term ‘DOI’ to refer to a spatial region of interest
pertaining to any given user. In this example, we can intuitively
understand that Alice needs to be able to visualize various
planned road works as well as ad hoc events around her DOI,

as depicted by the red color ellipse in Figure 1. Such context-
aware visualization would facilitate her in effectively planning
the trip with adequate safety considerations. It would also help
in dynamic decision-making by Alice e.g., in case she has to
deviate from a planned route due to road congestion caused
by an accident. In addition to visualization of road conditions,
the dashboard interface shown in Figure 1 would also enable
Alice to receive personalized alerts as well as to pose specific
questions about her DOI (e.g., about the availability of public
parking slots) which can be answered by other users.

Intuitively, the notion of road conditions is inherently sub-
jective i.e., the perception of the severity of a given road
condition may vary considerably across users depending upon
their preferences. For example, a user Alice may prefer a well-
lit road albeit with frequently-spaced speed bumps and some
relatively small potholes. In contrast, another user Jack may
have low preference for the same road because he generally
dislikes speed bumps and even small-sized potholes. Moreover,
it is possible for the same user to have varied perceptions
about the condition of the same road based on temporal
considerations. For example, Alice may have low preference
for an otherwise high-quality road during peak hours of traffic
such as office hours. Thus, context-aware visualization of road
conditions also needs to be personalized depending upon the
preferences of each user.

Figure 2 presents two screenshots of the RoadEye mobile
application. RoadEye provides a unique login credential to
each of its users (see Figure 2a) so that they can access
personalized information about road conditions from their
mobile devices. Each user can subsequently set her event pref-
erence configuration, as depicted in Figure 2b. This enables
a given user to visualize road conditions in a personalized
and context-aware manner. Furthermore, each user may have
personal preferences about the event updates that she would
like to receive. These preferences keep changing based on
her context (i.e. travel plan, weekday, etc). For instance,
Alice may be interested in traffic congestion information. On
the other hand, Bob could be interested in dynamic events
such as road accidents, water-logging and so on. Moreover,
for a given weekday, Alice may be interested in receiving
event updates related to transit overload. RoadEye mobile
application provides an option to subscribe to specific event
types as shown in Figure 2b. If a user chooses to receive a

2014 IEEE 15th International Conference on Mobile Data Management

978-1-4799-5705-7/14 $31.00 © 2014 IEEE

DOI 10.1109/MDM.2014.42

297



Fig. 1: RoadEye dashboard for context-aware & personalized visualization of road conditions (Map courtesy: Microsoft Bing)

specific event type update, a push notification is sent to her
mobile device whenever a new event of that type is registered
on the RoadEye system.

(a) (b)

Fig. 2: RoadEye Mobile Application: Screenshot of login
screen and event preference configuration

An efficient spatial indexing mechanism becomes a ne-

cessity to enable such personalized visualization of dynamic
road conditions. While spatial indexing has motivated several
research efforts [4], [5], [7], [8], [10]–[13], [15], [16], none
of these approaches facilitate in effectively retrieving infor-
mation about road conditions for a given spatial region in a
personalized manner. In a similar vein, existing systems, such
as Nericell [9], FixMyStreet [1] and Ushahidi [2], also lack
personalization.

This work addresses the problem of keeping users informed
in a timely and personalized manner about road conditions
arising from both planned as well as ad hoc events. The main
contributions of this work are three-fold:

1) We propose RoadEye, a system for personalized re-
trieval of dynamic road conditions.

2) We propose the ψR-tree, a novel R-tree-based index
augmented with linked lists for facilitating quick and
personalized retrieval of user-queried road conditions in
RoadEye.

3) Our performance study indicates that the ψR-tree is
indeed effective in retrieving dynamic road conditions
with reduced query response times and disk I/Os.

The remainder of this paper is organized as follows. Sec-
tion II provides an overview of existing works. Section III
describes the system architecture of RoadEye. Section IV
presents our proposed ψR-tree index. Section V reports the
performance evaluation. Finally, Section VI concludes the
paper with the directions for future work.

298



Fig. 3: Architecture of the RoadEye system

II. RELATED WORK

The problem of spatial indexing has motivated several
research efforts. In this regard, the R-tree [5] is one of the most
popular spatial index structures. Given its popularity, several
variants of the R-tree have been proposed over the past three
decades, the most notable ones being the R+-tree [13] and the
R*-tree [4]. R-tree-based indexes have also been proposed for
traditional distributed domains such as clusters e.g., the dR-
tree [10], the M-Rtree [7] and the MC-Rtree [12]. Furthermore,
R-tree-based indexes, which are specifically targeted towards
the spatio-temporal domain, include the Spatio-Temporal R-
tree (STR-tree) and Trajectory-Bundle tree (TB-tree) [11], the
time-parameterized R-tree (TPRtree) [16], Lazy Update R-
tree (LUR-tree) [8], and the Multiversion 3D R-tree(MV3R-
tree) [15]. A good survey on spatial (and spatio-temporal)
indexing can be found in [3].

Notably, despite the significant amount of research on R-
tree-based indexes, the ψR-tree differs significantly from the
existing approaches. First, unlike other R-tree-based indexes,
it augments the nodes of the R-tree with linked lists for
associating various types of road conditions with different
regions in space. Second, it keeps the linked list at each node
of the R-tree sorted in descending order of importance to
enable quick retrieval of the types of road conditions that
are more prevalent in a given region. Third, it facilitates
personalized retrieval of data concerning road conditions based
on user preferences. Thus, to the best of our knowledge, this
is the first work to propose a spatial data structure for facili-
tating personalized indexing of various types of dynamically
changing road conditions that could be associated with a given
spatial location.

Incidentally, there have been several efforts towards sensing
road conditions. For example, the Nericell system [9] uses

smartphone sensors (e.g., accelerometer) to sense road condi-
tions such as potholes. In the same vein, the research proposals
in [6] and [14] use mobile sensors towards automated detec-
tion of speed breakers and anomalies on roads. Furthermore,
crowdsourcing has been used as a means of involving residents
by systems such as the FixMyStreet platform [1] and the
Ushahidi platform [2]. The FixMyStreet platform encourages
users to report road conditions (e.g., broken pavements, pot-
holes), while the Ushahidi platform enables urban planners to
take feedback directly from users. Thus, existing systems focus
on how to collect the road condition data e.g., by means of
automated sensors or via human involvement. However, they
are not capable of facilitating users in performing quick and
personalized retrieval of road condition data. Consequently,
they cannot be effectively used for applications such as aiding
the trip planning of an individual user based on her preferences
concerning various types of road conditions.

III. SYSTEM ARCHITECTURE OF ROADEYE

This section discusses the system architecture of RoadEye.
As depicted in Figure 3, the system comprises two key
components: (a) an Event Reporting System (ERS) and (b)
an Event Indexing and Analytics (EIA) engine. Additionally,
the Communication System acts as an interface for facilitating
communication between ERS and EIA.

ERS is responsible for data collection and pre-processing.
Notably, data collection can be performed in different ways
such as by deploying sensors, via crowd-sensing and so on.
However, this work is agnostic to the data collection approach
being used. Thus, it can be effectively used in conjunction
with any existing data collection approach.

On the other hand, EIA consists of the following three
components:

299



• Event Pre-processing: This component performs a com-
pleteness check on the event reports with the objective of
pruning away the incomplete reports. For example, if a
user reports a pothole, but fails to mention the location of
the pothole, his event report is incomplete and therefore
not of any practical use; hence such event reports should
be deleted.

• Event indexing: This component is responsible for spa-
tially indexing various event types associated with road
conditions. In particular, it uses our proposed ψR-tree
spatial index, whose description we defer to the next
section.

• Personalized Visualization Engine: This component
helps in providing personalized information about road
conditions to the users. It can also be used for generating
context-aware (e.g., spatial or temporal) alerts as depicted
in Figure 1.

IV. ψR-TREE: A SPATIAL INDEX FOR QUICK AND

PERSONALIZED RETRIEVAL OF USER-SPECIFIED ROAD

CONDITIONS

This section presents the ψR-tree,which is a novel R-tree-
based spatial index augmented with linked lists for facilitating
quick and personalized retrieval of user-specified road condi-
tions.

Fig. 4: An example for the distribution of event types in space

Non-leaf nodes of the ψR-tree are of the form (ptr, mbr,
LL), where ptr is a pointer to a child node in the ψR-tree,
and mbr is the MBR (Minimum Bounding Rectangle), which
covers all the MBRs in that child node. Here, LL is a linked
list structure, each node of which contains entries of the form
(eventtag, numinstances), where eventtag represents the type
of event such as potholes, public processions, dysfunctional
street lights and so on. Here, numinstances refers to the
frequency of occurrence of a given event type within a specific
MBR.

Furthermore, the nodes of LL are kept sorted in descending
order of the frequency of occurrence of the event types. The
rationale is that if a specific type of event occurs more often
within the MBR of a given region, the probability of users
issuing queries pertaining to that event type is also likely to
increase. For example, if the MBR of a region contains a
significantly high number of potholes and speed bumps, users
may be more likely to issue personalized queries to retrieve
information about road conditions pertaining only to these two
event types. Thus, keeping LL sorted facilitates in reducing
the cost of traversing LL for the ‘popular’ user queries.

Leaf nodes of the ψR-tree contain entries of the form (SRid,
loc, LLL), where SRid is a pointer to a specific spatial region
SR in the spatial database. Here, loc refers to the location
of SR. Thus, loc can be specified either by one set of (x,y)
coordinates if SR is a point in the granularity of the space
being considered, or two sets of (x,y) coordinates if SR is
a rectangle in that space. Furthermore, LLL is a linked list,
whose structure is essentially the same as that of the structure
of the linked lists that are associated with the non-leaf nodes
of the ψR-tree.

Observe that at the non-leaf node levels of the ψR-tree,
the linked lists only contain event types (which occur within
the MBR of the region covering the respective non-leaf node)
and the respective frequencies of occurrence of each of these
event types. However, in case of the regions covered by the
MBRs at the leaf-node levels of the ψR-tree, much more
detailed information about the road conditions can be retrieved
by means of the pointer to the spatial database, where such
detailed information can typically be stored. As a single
instance, parameters pertaining to the average breadths and
depths of the potholes or the average heights of speed bumps
can also be accessed from the spatial database. Thus, the
ψR-tree contains information about road conditions at finer
granularity for the regions that are covered by the MBRs at
the leaf-node levels than those at the non-leaf node levels.

Notice how the ψR-tree provides users with the flexibility to
access both fine-grained as well as coarse-grained information
about road conditions depending upon user preferences. The
trade-off here is that accessing fine-grained information about
road conditions (e.g., average height of speed bumps in a
given region) would require spatial database accesses (i.e.,
higher disk I/O costs), thereby resulting in higher data access
costs. On the other hand, queries for accessing coarse-grained
information about road conditions entail significantly lower
data access costs because such queries can be answered
directly via the ψR-tree index without necessitating the need
to perform costly spatial database accesses.

Figure 4 depicts an illustrative example for the distribution
of event types in space, each event type being represented by a
different colour. Observe how the universe is divided into three
rectangular spatial regions {SR1, SR2, SR3}. SR1, SR2 and
SR3 are further divided into the spatial regions {A,B,C},
{D,E, F} and {G,H, I} respectively. For simplicity, Figure 4
considers only three event types, namely pothole, dysfunc-
tional street light and construction work.

300



Fig. 5: Illustrative example for the proposed ψR-tree index structure

Fig. 6: Snapshot of the part of the United States Census Bureau dataset used in our experiments

Figure 5 depicts the structure of the ψR-tree index corre-
sponding to the distribution of event types in space shown in
Figure 4. As depicted in Figure 5, p, s, c stand for pothole,
dysfunctional street light, construction work respectively. The
linked list entries of the root node indicate that the region
covered by the universe contains 14 potholes, 12 dysfunctional
street lights and 5 instances of construction work. Furthermore,
observe the linked lists corresponding to the different nodes
of the ψR-tree. The significance of the entries in these linked
lists is essentially the same as that of our explanation for the
root node. As a single instance, the linked list entries of the
non-leaf node SR1 contains 1 pothole, 3 dysfunctional street

lights and 5 instances of construction work. For the sake of
convenience, we have used this notation throughout the figure.

Observe how the entries in the linked lists are kept sorted
in descending order of occurrence. Notably, for each type of
event, the way in which the frequency of occurrence can be
quantified is pre-defined based on the application. To provide
some intuition, we could quantify the frequency of occurrence
of construction work by measuring the number of different
construction works that are currently on-going in a given
area. Moreover, we could derive the frequency of occurrence
by using more sophisticated approaches involving formulae
to compute the frequency based on some weighted average

301



function of the relative sizes of each of these construction
areas. In a similar vein, we could derive the frequency for a
water-logging event based on formulae that consider the size
of the water-logged area. However, as such, the quantification
of the frequency of occurrence of any given type of event is
outside of the scope of this work.

The ψR-tree can be populated based on information ob-
tained from Geographical Information Systems (GIS) or pro-
vided by municipal or transportation-related government agen-
cies. Creation of the ψR-tree from scratch uses the standard R-
tree insertion algorithm, the only difference being the handling
of the linked lists. Insertion of a new event requires a top-down
traversal of the ψR-tree as follows. At each level of the ψR-
tree and for each MBR (of the ψR-tree) that intersects with
the spatial window of the event type, if a given event type is
not present in a given linked list, it is added as a new node to
the linked list at the appropriate position to keep the linked list
sorted. Moreover, the corresponding frequency of occurrence
is also stored.

Notably, the frequency of occurrence for a new event type
need not necessarily be one e.g., five dysfunctional street lights
could have been discovered at the same time in a given region.
In the case that a given event type is already present in a given
linked list, the frequency of occurrence is simply incremented
by the number of event instances of that event. For example, if
the pothole event type already exists in a given linked list, and
five more potholes get discovered, the frequency of occurrence
for this event type would simply be incremented by five.

Deletion of obsolete events is required to keep the ψR-
tree updated. Intuitively, we can understand that the algorithm
for deleting events from the ψR-tree also proceeds in a
similar vein, except that the number of deleted event instances
are subtracted from the frequencies stored at the respective
linked lists as opposed to being added. For example, if it
is discovered that a specific number of potholes have been
repaired in a given region, the frequency for the corresponding
linked list entries would need to be decremented accordingly.
Furthermore, if the frequency for a given node of a linked list
becomes zero as a result of the decrement, that node simply
needs to be deleted from the linked list.

V. PERFORMANCE EVALUATION

This section reports our performance evaluation. The pro-
posed ψR-tree indexing structure has been implemented in
Java. All our experiments have been performed on a 64-bit
machine with 8 GB memory and 2 CPU cores.

In our ψR-tree index implementation, each rectangle was
represented using two (x,y) coordinates; hence 16 bytes were
used to represent each of the input rectangles with 4 bytes for
each child pointer. We used a branching factor of 64, thereby
resulting in (64*20) i.e., 1280 bytes of space consumption.
Furthermore, the linked list structure at each R-tree node
requires 4 bytes for the event type, another 4 bytes for the
frequency of event occurrence and 4 bytes for each pointer.
Given that we consider the maximum possible number of event
types to be 100, the space consumption arising from the linked

list structure at each R-tree node is (100 * 12) i.e., 1200 bytes.
Additionally, 4 bytes are needed for the pointer connecting
the R-tree node to the linked list structure. Therefore, the
maximum space consumption of each augmented R-tree node
is (1280 + 1200 + 4) i.e., ≈ 2.4 KB.

We selected the disk page size to be 4 KB and each
augmented R-tree node is assumed to fit in a disk page. Hence,
for our experiments, one disk I/O is counted as one disk page
access or equivalently one augmented R-tree node access.
Observe that each disk page has more than 1.5 KB of free
space, which can be used to accommodate future updates to
the ψR-tree without necessitating expensive node-splits.

We evaluate the performance of the ψR-tree on a part of the
publicly available road network dataset of the United States
Census Bureau1. The part of the dataset used in our exper-
iments comprises 1 million rectangular bounding boxes of
road segments. In this dataset, the road network is represented
by shape files, and these rectangular bounding boxes were
extracted from those shape files. A snapshot of the dataset is
shown in Figure 6.

We divide the universe into a grid of 10X10 equal-sized
cells. We sort the cells in descending order of the number of
input data rectangles. Given the highly skewed spatial dataset
used in our experiments, there would be a relatively few ‘hot’
cells containing a disproportionately large number of input
data rectangles, while the other cells would each contain a
relatively low number of input data rectangles.

Event types are associated with input data rectangles as
follows. We use a highly skewed Zipf distribution with a
zipf factor of 0.7 to ensure that some event types have a
significantly higher probability of occurrence than the other
event types. Given an input rectangle, a random number Rnd
is generated between 0.0 and 1.0 for each event type. If
Rnd is less than the probability (generated using the Zipf
distribution) for that event type, the event type is considered
to have occurred within that input rectangle; otherwise the
event type is deemed not to have occurred within that input
rectangle.

As reference, for the purpose of meaningful performance
comparison, we use an approach designated as MR (Multiple
R-trees). MR creates and maintains separate R-trees, one for
each event type. Thus, for a total of NE event types, MR would
use NE separate R-trees. For example, all the pothole-related
events would be indexed by an R-tree, while all the events
related to dysfunctional street lights would be indexed by a
different R-tree. Thus, for a user query containing multiple
event types, MR entails the traversal of multiple R-trees.
Observe that this is in contrast with our proposed ψR-tree
approach, which requires the traversal of only one R-tree-
based index i.e., the ψR-tree. This is made possible because
the ψR-tree is capable of indexing multiple road condition
events in a single R-tree structure due to its novel linked list
augmentation at each R-tree node.

Our performance metrics are average response time (ART)

1http://www.census.gov/geo/maps-data/data/tiger-line.html

302



10

20

30

40

2 4 6 8 10

A
R

T
 (

s)

k

ψR-tree
MR

(a) (b)

Fig. 7: Effect of variations in number k of user-specified event types in a a given query

Parameter Default Variations
No. of input rectangles 10

6

No. of possible event types (NE ) 100
Query scaling factor (QSF ) 1 1.5, 2, 2.5, 3, 3.5, 4

No. of user-queried event types (k) 6 1,2,3,4,5,7,8,9,10
Disk Page Size 4 KB

ψR-tree branching factor 64

TABLE I: Performance study parameters

and disk I/Os incurred by the queries in our experiments.
Here, ART = (1/NQ)

∑NQ

i=1
(Tci−Tai), where Tai represents

the time of query issuing and Tci is the time of completion
for the ith query. NQ is the total number of queries. The
disk I/O metric measures the corresponding number of disk
I/Os incurred for traversing the R-tree-based index structure(s)
during the course of each experiment. Hence, in case of the
ψR-tree approach, the disk I/O metric measures the disk I/Os
incurred for traversing the ψR-tree. On the other hand, for the
MR approach, the disk I/O metric measures the total number
of disk I/Os incurred for traversing each of the R-trees relevant
to the event types specified in the query.

Table I provides a summary of the parameters used in our
performance evaluation. NE represents the total number of
possible event types. In real-world scenarios, the value of NE

would typically not exceed 100; hence we set NE = 100 for
our experiments. A given query is characterized by the area
Area of its spatial window as well as the user-queried event
types in it. We define Area as a percentage of the total area of
the universe under consideration. Based on the results of our
preliminary experiments, we set Area to 5% of the universal
space. Furthermore, we use a scaling factor, designated asQSF

to study the effect of varying Area. When QSF = b, both the
length and width of the rectangular spatial window would be
multiplied by b. For example, suppose Area = 40 and b =
1.25, the area of the scaled rectangle would be 40 ∗ 1.252 i.e.,
62.5. In Table I, k is the number of user-specified event types
in a given query.

Notably, a significantly larger number of queries are likely

to come from the relatively ‘hot’ cells. Hence, we use a highly
skewed Zipf distribution with zipf factor of 0.7 to determine
the probability of a query originating from a particular cell. A
given query is generated as follows. (a) A cell is selected based
on the above Zipf distribution. (b) A point is selected randomly
from that cell. (c) A rectangle of size Area is constructed
around the selected point. (d) Finally, any k event types are
randomly selected from the total number NE of 100 possible
event types.

We ran each experiment at least five times and the results
presented here represent the average of those runs. The confi-
dence interval of our experimental results is 95%.

A. Effect of variations in k

Figure 7 depicts the results for the effect of variations in the
number k of queried event types. Observe that with increase in
k, the reference MR approach exhibits a significant increase in
both ART and disk I/Os. This occurs because as k increases,
MR has to traverse an increased number of R-trees, thereby
incurring higher number of disk I/Os. On the other hand, as
Figure 7 suggests, ART and disk I/Os remain comparable for
the ψR-tree with increase in k. This is because the ψR-tree
is capable of indexing multiple event types in a single R-tree
structure due to its novel augmentation of the R-tree nodes by
incorporating linked lists. Thus, in case of the ψR-tree, the
disk I/O cost remains comparable, irrespective of the value of
k. Furthermore, this also explains the increase in performance
gap between the two approaches with increase in k.

Interestingly, a detailed examination of the experimental
logs revealed that ART increases (albeit slightly) with increase
in k in case of ψR-tree. This occurs because with increase in k,
the time taken to traverse the linked lists increases. However,
this increase in ART is negligible because the cost of traversing
the linked lists is dwarfed by the predominant disk I/O costs of
ψR-tree node retrievals. Furthermore, observe that ART and
disk I/O follow comparable trends for both the approaches
essentially due to the reason explained above.

303



200

400

600

800

1000

1 2 3 4

A
R

T
 (

s)

QSF

ψR-tree
MR

(a)

20

40

60

80

100

1 2 3 4

D
is

k 
I/

O
 (

x 
10

3 )

QSF

ψR-tree
MR

(b)

Fig. 8: Effect of variations in query scaling factor QSF

B. Effect of variations in QSF

Figure 8 depicts the results for the effect of variations in
the scaling factor QSF for a given query. Recall that we use
QSF to vary the area of the query window. As QSF increases,
both the approaches exhibit increase in both ART and disk
I/Os. This occurs because increased query window area results
in the query intersecting a relatively larger number of index
nodes. However, the ψR-tree shows relatively lower increase
in both ART and disk I/Os with increase in QSF . Furthermore,
the performance gap between the two approaches exhibits an
increasing trend with increase in QSF . The rationale for this
performance gap can essentially be explained in the same
manner as for the results in Figure 7.

VI. CONCLUSION

In this work, we have addressed the problem of keeping
users informed in a timely and personalized manner about dy-
namic road conditions. We have presented RoadEye, which is
a system for personalized retrieval of dynamic road conditions.
In particular, RoadEye incorporates our proposed ψR-tree,
which is a novel R-tree-based index augmented with linked
lists for facilitating quick and personalized retrieval of user-
queried road conditions. Our performance study indicates the
overall effectiveness of the ψR-tree in retrieving dynamic road
conditions with reduced query response times and disk I/Os.

In the near future, we intend to study the effect of incor-
porating event type hierarchies into the ψR-tree index. For
example, an event type such as ‘obstacles on the road’ would
encompass events such as fallen trees on the road, snow on the
roads and so on, thereby forming a hierarchy of event types.
Moreover, we intend to examine the effect of skews in the
event type distributions in space as well as the use of hash
tables to augment our proposed R-tree-based data structure.
Finally, we plan to investigate the feasibility of extending
the ψR-tree to go beyond road conditions so that it can be
relevant to other diverse and important aspects of smart city
management.

REFERENCES

[1] Fixmystreet platform. http://www.fixmystreet.com.
[2] Ushahidi platform. http://blog.ushahidi.com/2012/06/05/ushahidibeijing.
[3] Tamas Abraham and John F. Roddick. Survey of spatio-temporal

databases. In Proc. of Geoinformatica, 1999.
[4] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard

Seeger. The R*-tree: An efficient and robust access method for points
and rectangles. In Proc. of ACM SIGMOD, 1990.

[5] Antonin Guttman. R-trees: A dynamic index structure for spatial search-
ing. In Proc. of ACM SIGMOD, 1984.

[6] Mohit Jain and Ajeet Pal Singh. Speed breaker early warning system. In
Proc. of USENIX/ACM Workshop on Networked System for Developing
Regions, 2012.

[7] Nick Koudas, Christos Faloutsos, and Ibrahim Kamel. In Proc. of EDBT,
1996.

[8] Dongseop Kwon, Sangjun Lee, and Sukho Lee. Indexing the current
positions of moving objects using the lazy update R-tree. In Proc. of
MDM, 2002.

[9] Prashanth Mohan, Venkata N. Padmanabhan, and Ramachandran Ram-
jee. Nericell: Rich monitoring of road and traffic conditions using mobile
smartphones. In Proc. of ACM Conference on Embedded Network
Sensor Systems, 2008.

[10] Anirban Mondal, Masaru Kitsuregawa, Beng Chin Ooi, and Kian Lee
Tan. R-tree-based data migration and self-tuning strategies in shared-
nothing spatial databases. In Proc. of ACM GIS, 2001.

[11] Dieter Pfoser, Christian S. Jensen, and Yannis Theodoridis. Novel
approaches in query processing for moving object trajectories. In Proc.
of VLDB, 2000.

[12] Bernd Schnitzer and Scott T. Leutenegger. Master-client R-trees: A new
parallel R-tree architecture. In Proc. of SSDBM, 1998.

[13] Timos K. Sellis, Nick Roussopoulos, and Christos Faloutsos. The R+-
tree: A dynamic index for multi-dimensional objects. In Proc. of VLDB,
1997.

[14] Yu-chin Tai, Cheng-wei Chan, and Jane Yung-jen Hsu. Automatic road
anomaly detection using smart mobile device. In Proc. of Conference
on Technologies and Applications of Artificial Intelligence, 2010.

[15] Yufei Tao and Dimitris Papadias. MV3R-tree: A spatio-temporal access
method for timestamp and interval queries. In Proc. of VLDB, 2001.

[16] Simonas Saltenis, Christian S. Jensen, Scott T. Leutenegger, and Mario
A. Lopez. Indexing the positions of continuously moving objects. In
Proc. of ACM SIGMOD, 2000.

304


