
Bi-directional Trust Index Computation in Resource
Marketplace

Avinash Sharma
Xerox Research Centre India

Bangalore, India

Tridib Mukherjee
Xerox Research Centre India

Bangalore, India

Partha Dutta
Xerox Research Centre India

Bangalore, India

Vinay Hegde
IIIT-B

Bangalore, India

ABSTRACT
Commoditizing idle computing resources by sharing them in
a marketplace has gained increased attention in recent years
as a potential disruption to the modern cloud-based service
delivery. Recent initiatives have focused on scavenging for
idle resources and provide suitable incentives accordingly. A
recent work on resources marketplace has proposed a Mar-
ketplace for Compute Infrastructure that not only allows
resource owners to get incentives by sharing resources to
the marketplace but also ensures Service Level Agreements
(SLAs), such as performance guarantees, for the computing
jobs to be run by the shared resources.

This paper proposes a Trust for Resource Marketplace
(TRM) system that computes the trust level among the en-
tities in a resource marketplace (RM), by incorporating key
aspects of the interactions among these entities. In partic-
ular, an RM has three kinds of entities: users (with task
requests), resources (on which task is executed), and re-
source owners. Over these entities, the system allows two
kinds of trust queries: (i) for a user, a trust indexing of re-
sources or resource owners and (ii) for a resource owner, a
trust indexing of users. This is achieved by a novel inter-
action graph modelling followed by spectral analysis of this
graph, thereby, capturing both direct and indirect relation-
ships among RM entities while deriving trust indexes. Ex-
periments with a combination of real and synthesized traces
on TRM implementation show that the proposed trust com-
putation can capture indirect relationship among entities
and is robust against limited changes in topology.

Keywords
Trust, Resource Marketplace, Spectral Graph Analysis

1. INTRODUCTION
Marketplaces for sharing idle computing resources have re-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’15 April 13-17, 2015, Salamanca, Spain.
Copyright 2015 ACM 978-1-4503-3196-8/15/04...$15.00.
http://dx.doi.org/10.1145/2695664.2695792

cently been proposed as a potential disruption to the mod-
ern cloud-based service delivery [1, 5]. Also, Bring Your
Own Device (BYOD) is getting increased attention, espe-
cially in the growth markets. A marketplace for sharing idle
resources can enable an organization to provide cloud-like in-
frastructure experience to users/employees out of their own
devices [2]. Traditionally, volunteer computing have allowed
resources to be shared for execution of computing tasks in
voluntary manner (e.g., without any monetary incentive to
the resource owner) [6]. Some recent initiatives have focused
on scavenging for idle resources and provide proper incen-
tives accordingly [5, 7]. [1] has proposed a Marketplace for
Compute Infrastructure that not only allows resource own-
ers to get incentives by sharing resources to the marketplace
but also ensures Service Level Agreements (SLAs), such as
performance guarantees, for the computing jobs to be run
by the shared resources.

Such Resource Marketplaces (RMs) have three kinds of
entities: users (entities requesting task to be executed), re-
sources (entities on which tasks are executed) and resource
owners. A major concern for a resource marketplace is
the trust among these entities, since the users and resource
owner may be unknown to each other. This paper outlines
a Trust for Resource Marketplace (TRM) system that com-
putes a trust index among entities in a resource marketplace.

A trust index can be useful for the RM entities in multi-
ple ways. First, the users would want to have certain level
of reliability or trustworthiness from the resource, in terms
of whether their tasks execute successfully with the speci-
fied performance guarantees. Reliability of a resource can
be gauged by a trust index that takes into account the re-
sources’ historical behaviour (i.e. whether a resource had
successfully executed a certain types of request with perfor-
mance guarantees) and resource owner’s relationship to the
user (e.g., if they belong to the same or related organizations
or belong to same social community). A trust index is also
helpful for a user when the user wants to maintain a level
of security and privacy for her task or the associated data,
which is typically the case in many modern applications.
The security requirement can also persist in case the users
do not want to share any proprietary process or algorithm
to some outside party.

On the other hand, a resource owner may want a certain
level of reliability from the marketplace on the type of appli-
cations that execute on her resources. The owner may want
to avoid an application that overloads the resources (which

2305

may be detrimental to the resources’ hardware health) or an
application that is malicious (e.g., contains some computer
malware).

1.1 Our Contribution
The contributions of this work are three fold. The primary

contribution is the introduction of notion of trust among
different entities in a resource marketplace (RM). The bi-
directional trust index introduced in this work enables, 1)User
specific trust ranking of resources, as well as 2) Resource
owner specific trust ranking of users.

Secondly, we propose the novel interaction graph mod-
elling for RM which enables considering multiple factors,
such as historical usage patterns, organizational relation-
ships as well as inter and intra-group social network inter-
actions, while computing trust. Additionally, the spectral
analysis based trust computation exploits both the direct
and indirect interaction among RM entities modelled in the
interaction graph.

Thirdly, we have implemented the proposed trust compu-
tation methods and evaluated them with real and synthe-
sized traces. Experimental results show that the trust com-
putation can capture indirect relationship while computing
trust among entities and it robust against limited changes
in number and weight of their connection edges.

2. RELATED WORKS
The notion of trust has been studied in multiple distributed

computing setup such as Volunteer Computing (VC) and
Peer-to-Peer (P2P) computing. In VC [6, 9], resource own-
ers donate their computing resources to a specific project.
However, as there is no monetary payment for using re-
sources, there are no or limited SLAs or performance guar-
antees. In P2P setting, [8] outlines an approach in which
peers make use of trust values to determine from which peer
to download files, where a unique global trust value is com-
puted for each peer based on the peers’ history of uploads.

Trust has also been studied in the context of social net-
works. [10] leverages pre-established trust formed through
friend relationships in a social network, which is used to
share resources among the users. [13] use the distance in a
social network for computing trust levels. [11] deals with
predefined relationships of trust amongst users in a system
that enables the sharing of resources between these users.
Finally, [12] defines computing environments of different
enterprises, which interact within a federated computing en-
vironment and rely upon a trust service to manage the in-
teraction between the federation partners.

Recently, a framework for evaluating trust of service providers
in cloud marketplaces was introduced in [3, 4]. The pro-
posed technique enables verifying the capabilities captured
in the Cloud Security Alliance’s framework and also pro-
vides a decision model that checks consumer requirements
against the verification results. The underlying verification
uses hard trust based on rigid validation along with soft
trust based on evidence about past behaviour.

While the above prior work consider the notion of trust
in various distributed environments, none have been pro-
posed for a resource marketplace (RM). Trust computing
in a resource marketplace requires a composition of histori-
cal usage patterns (including task SLAs, performance mea-
sures and user ratings), organizational relationships, as well
as, inter and intra-group social network interactions among

users and resource owners. Also, different from earlier work,
trust computation in this work considers direct and indi-
rect interactions between the entities in a marketplace, by
computing average connectivity between entities in the in-
teraction graph of the RM. Finally, none of the earlier work
computes bi-directional trust while sharing resources: users
would prefer trusted resources, and resource owners would
prefer tasks from trusted users.

3. SYSTEM DESCRIPTION
This paper outlines a Trust for Resource Marketplace (TRM)

system (see Figure 1) that computes the trust level among
the entities in an RM, by incorporating various aspects of
the interactions among these entities. In particular, an RM
has three kinds of entities: users (with task requests), re-
sources (on which task is executed), and resource owners.
Over these entities, the system allows two kinds of trust
queries: (i) for a user, a trust indexing of resources or re-
source owners (ii) for a resource owner, a trust indexing of
users.

The TRM system is composed of a Trust Computation
Engine (TCE), which performs the trust computation, and
multiple Trust Databases (TDB), which stores the profiles
and historical usage information. In the current setup, the
TRM interacts (e.g., serves trust related queries) with the
RM. However, the proposed trust computation method ap-
plies to other configurations where TRM directly interacts
with the users, resources and resource owners.

The trust computation in TCE is derived from the interac-
tion graph between the entities in RM, where the nodes are
users, resources or resource owners, and the edges (and their
weights) capture relationships or interactions among the en-
tities. This interaction graph is created by a graph induction
(GI) module. GI uses different weighing functions to assign
edge weights to the interaction graph. These weighing func-
tions consider historical usage patterns in RM, as well as
geographical, organizations or social network relationships
among users and resource owners.

Next, the interaction graph created by GI is used by a
Spectral Analysis (SA) module for computing trust indices.
SA performs trust computation using spectral graph analy-
sis of the interaction graph. In particular, SA computes a
spectral (or Laplacian) embedding of the interaction graph
that preserves the local neighbourhood structure and con-
nectivity of the interaction graph. Finally, given an entity
or node in RM, trust indices for other entities are computed
by finding and ranking the Euclidean distances between the
respective graph nodes in the embedded space. Comput-
ing trust between a pair of entities using their distance in
the Laplacian embedding space has the advantage that it
simultaneously considers all possible paths (or connections)
between those entities in the original interaction graph, and
it is scalable to large number of trust queries: once the em-
bedding is computed for the interaction graph, it can be used
to quickly compute trust level between any pair of entities.

3.1 Graph Induction
Graph induction module performs a domain specific mod-

elling of the interaction graph of RM that captures the in-
formation relevant for trust computation. The interaction
graph is modelled as a weighted undirected graph where each
pair of nodes (vertices) can have at most one undirected pos-
itively weighted edge connecting them. The graph is defined

2306

Figure 1: Trust for Resource Marketplace Architecture.

as follows:

• Vertex definition: Each entity of RM is modelled as
unique vertex of the interaction graph. There are three
type of entities or vertices, namely, Users, Resources
and Owners.

• Edge definition: The edges model the relationship among
RM entities. There are six type of edges in the inter-
action graph. The first three type of edges model con-
nectivity/interaction between same type of vertices,
i.e., User-User, Resource-Resource and Owner-Owner
edges. These edges capture the relationship between
same type of RM entity based on their profile attributes,
e.g., users belonging to same organization or social
group. The remaining three type of edges captures
User-Resource, Resource-Owner and Owner-User rela-
tionship. The latter two types are binary relationship
in the sense that they model resource ownership and
scenarios where a user also owns some resource(s). The
User-Resource edges encode historical usage patterns
in the RM. These User-Resource edges are important
for trust computation, as they allow the trust compu-
tation method to induce a trust definition based on
historical experience of a user (or resource owner).

User-User fuu(social, location, organization)
Owner-Owner foo(social, location, organization)

Resource-Resource frr(location, capability)
Owner-Resource whether owns a resource; constant value
User-Resource fur(usage freq, avg feedback)
User-Owner whether same entity; constant value

Table 1: List of functions used for computing edge weighs.

• Edge weight functions: The edge weights always have
positive valued, normalized between 0 and 1, where
0 denotes no direct connectivity, and 1 denotes very
strong connectivity relationship (between the edge end-
points). Although these edge weights reflect direct re-
lationship between entities, the overall graph structure

(topology information) captures the indirect interac-
tions that are also important for defining the trust in-
dex. Table 1 summarizes list of weighting functions
with associated parameters.

There can be multiple preferences while computing edge
weights in the graph representation, e.g., some systems might
want to give lower importance to historical usage patterns
and higher preference to a resource belonging to same orga-
nization/geographical location, or vice-versa. Therefore, dif-
ferent entity attributes act as parameters to weight functions
where these attributes along with their relative importance
factor is used to generate a positive real value as edge weight.
For example, fuu function (that is used to compute user-user
edge weights) has three input parameter attributes. So for a
given pair of users, a positive value between 0 and 1 is first
assigned to each attribute based on their similarity (e.g. af-
filiation to same organization) and later a weighted linear
combination of these values is computed along with respec-
tive importance factor in order to compute a real positive
weight value. These importance factors are explicitly pro-
vided the GI module from RM via the TI module. As these
preferences can change over time, the weights can be recom-
puted in fixed temporal cycles or on specific request from
RM.

Using these definitions, an interaction graph model for
TRM is induced with the following method.

INPUT: RM entities, TDB, attribute importance fac-
tors
OUTPUT: A TRM interaction graph

I For each RM entity instantiate a graph vertex.

II For each pair of entities belonging to same class (e.g.
user-user, resource-resource, or owner-owner), fetch en-
tity attributes from TDB and feed these attributes to
edge weighing functions (e.g. fuu) along with attribute
importance factors, to compute edge weight value.

III For each pair of entities belonging to user-owner and
owner-resource, specify a pre-determined fixed edge weight
if relationships user ’is also a’ owner and owner ’owns’
resource hold.

IV For each pair of user-resource entities, fetch histori-
cal performance data from TDB and along with at-
tribute importance factor, and feed these information
to the edge weighting function fur to compute the edge
weights.

The interaction graph obtained by above method is used
to derive trust relationships among RM entities (detailed
explanation is provided while describing Spectral Analysis
module and Trust Queries). Figure 2 shows an example
graph modelling of RM entities without the edges weights,
and Figure 5 shows some example interaction graphs with
some edge weights.

GI module outputs an interaction graph from the above
weighted graph modelling of RM entities, where the topol-
ogy is defined by set of edges, and quality of interaction
between entities is captured by edge weights: higher edge
weight indicates stronger interaction and relationship be-
tween the two RM entities. For example, high edge weight
assigned to a user-resource edge indicates that they had a
satisfactory historical interaction.

2307

Figure 2: Proposed Interaction Graph Representation.

3.2 Spectral Analysis
The Spectral Analysis (SA) module performs trust com-

putation using the interaction graph obtained from GI mod-
ule. The trust computation is based on an implicit analysis
of interaction graph using the spectral graph framework [14].
In contrast to implicit techniques that transform the origi-
nal graph by projecting it to an alternate multi-dimensional
space, explicit techniques use classical graph traversal meth-
ods on original graph. There are multiple factors while
choosing between explicit and implicit graph analysis tech-
nique, e.g., computational complexity, static versus dynamic
graph modelling etc. However, implicit techniques, such as
the spectral analysis, are more relevant to TRM setup as
they enable a topology-centric graph analysis, thereby cap-
turing the overall connectivity between two graph vertices
as opposed to shortest path (geodesic metric) or local neigh-
bourhood traversal techniques [15].

The spectral graph framework computes an implicit graph
representation known as spectral embedding. The Laplacian
embedding [14, 16] is a popular spectral representation tech-
nique where each graph vertex is mapped to a K-dimensional
space spanned by the first K non-null eigenvectors of the
graph Laplacian matrix. The trust index computation, uses
the Laplacian embedding of the interaction graph, and it
exploits the fact that the Euclidean distances in the em-
bedding space reflects the average connectivity between two
graph vertices in the original graph. In particular, for two
entities in the RM, their average connectivity in the inter-
action graph, is used as a measure of level of trust between
two entities. Thus, small Euclidean distance between two
RM entities in the embedding space reflects a strong aver-
age connectivity between them over the interaction graph
which is interpreted as high trust level between them.

Trust Queries handled by SA: The RM can request
two kinds the trust queries to the TRM which are handled
by the SA module in TRM.

1. For a given reference user, the RM can ask for trust in-
dex (or trust ranking) of various resources or resource
owner. The result of this query can be used by the RM
to schedule a task from reference user on resources that
are well-trusted (i.e., trust index or ranking is above a
certain threshold) by the user.

2. For a given reference resource owner, the RM can ask
for trust index (or trust ranking) of various users. This
user ranking can be used by the reference resource
owner to determine which users’ tasks are executed
on her resources. In particular, for well-trusted users,
the resource owner can provide privileged access over
its resources (e.g., access to operating system kernel
calls).

The first type of resources ranking query is executed by
computing the sorted Euclidean distances between projec-
tion of reference user and all the resource vertices in the
embedding space. In an off-line configuration, TRM pre-
computes interaction graph representation and stores the
pairwise Euclidean distances between each pair of vertices
projected in the embedding space as well as sort indices with
respect to every user vertex. This step can be periodically
repeated in order to consider recent changes in profiles and
historical usage database. However, an on-line configuration
is also possible where the historical usage information and
other profile information is continuously modified by TRM
system via DM module and subsequently, for every ranking
query a new graph is induced depending on system provided
preferences.

A method for computation of trust ranking of resources
with respect to a user is as follows:

INPUT: interaction graph, embedding dimension(K),
set of reference user vertices.
OUTPUT: Trust ranking indices of resources.

I Compute a K-dimensional Laplacian embedding of in-
teraction graph.

II For each reference user vertex, compute the Euclidean
distance to all the resource vertices in the embedding
space.

III For each reference user vertex, sort these Euclidean dis-
tances in the increasing order so that smaller distances
corresponds to higher ranking.

IV Return ranked indices of resources w.r.t. set of reference
user vertices.

As consequence of interaction graph being undirected, the
relationships in the graph are bi-directional. Hence, the
computation for second type of user ranking query is similar
to the first type of query, and it does not require additional
efforts except the sorting of the user vertices based on their
distances (in the embedding space) from a reference resource
vertex.

A method for finding user rankings with respect to a re-
source owner is as follows:
INPUT: interaction graph, embedding dimension(K), set
of reference owner vertices.
OUTPUT: Trust ranking indices of users.

I Compute a K-dimensional Laplacian embedding of in-
teraction graph.

II For each reference owner vertex, compute the Euclidean
distance to all the user vertices in the embedding space.

III For each reference owner vertex, sort these Euclidean
distances in the increasing order so that smaller dis-
tances corresponds to higher ranking.

IV Return ranked indices of users w.r.t. set of reference
owner vertices.

2308

3.3 Scalability
The scalability of proposed TRM system has two major

aspects. The first aspect deals with scalability of TCE.
The traditional bottleneck of spectral (Laplacian) analysis
of large graphs is the Eigen-decomposition step which can be
handled easily due to the inherent sparseness of Laplacian
embedding method which can be efficiently processed with
existing sparse eigen-solvers [19] with computational com-
plexity of O(Cn2) for graph with n vertices and constant
C which is directly propotional to number of eigenvectors
computed, i.e., K.

The second aspect of scalability deals with number of
queries posted to TCE module. In this aspect, the proposed
system is highly scalable given that, once the spectral em-
bedding is computed, the ranking queries can be efficiently
solved by computing and sorting the Euclidean distances in
embedding space.

4. EXPERIMENTAL EVALUATION
In this section, we provide details of the experimental

setup used for interaction graph modelling and associated
spectral analysis that enables both qualitative and quanti-
tative evaluation of trust queries.

4.1 Interaction Graph Modelling Setup
The interaction graph modelling involves a combination

of multiple data sources stitched together namely, large real
resource usage traces from grid computing, employee and
resource details from internal organizational database of a
large IT company and synthesized social media connections.

Grid Computing Traces (GCT): Resource usage traces
are used from publicly available datasetThe Grid Workloads
Archive, (http://gwa.ewi.tudelft.nl/datasets/gwa-t-1-das2).
The traces were generated by DAS2 sytem in 2005 where
the system had 5 sites with total of 1124772 jobs submitted
by 333 users. We preprocessed this data and kept 1048539
jobs for which a completion status (successful/failed) was
known.

Users & Owners Database (UOD): We have used an
internal organizational database from a large IT company
which comprises employees and allocated resource for syn-
thesizing the realistic user and owner data in the setup. This
database also contains the employees’ location and depart-
ment which act as useful attributes of users and owners in
our setup.

Resource Configuration Data (RCD): This is also an
internal organizational dataset which details the configura-
tion as well as location of each resource allocated to employ-
ees. We used this information to characterize the computa-
tional capability as well as location constraint of resources.

Social Media Connections (SMC): We generated syn-
thesized social network graph using the (random walk) graph
model [18](http://current.cs.ucsb.edu/socialmodels/) where
we used following parameter to control the graph structure:
1) qe : the probability of continuing the walk after each step
and 2) qv : the probability of attaching to visited node.

4.1.1 Graph Induction
Data from different sources listed above was combined in

following fashion. First, jobs in GCT were assigned to the
214 resources (identified as R-1 to R-433) in RCD randomly
and depending on the success and failure of the job the feed-
back was calculated. If job was successful feedback values

were 3 to 5 otherwise it ranged from 1-3. Total number of
jobs used were 1048539, out of which only 1125 were failed
jobs. We had total 433 users (identified as U-1 to U-433)
from UOD, among which 214 were also owners (identified
as R-1 to R-214) of the resources where each owner had
exactly one resource allocated from RCD. The final social
media graph was generated for all user and owners yielding
total of 433 nodes and 5083 edges with parameter values
qe = 0.9995 and qv = 0.0035. Figure 3 shows the social
media graph induced on all users/owners nodes.

Figure 3: A visualization of social meda conenction graph
induced on all users and owners.

Table 2 gives weighting parameter used in the edge weights
functions listed in Table 1. Finally, the overall combined re-
alistic traces were fed to graph induction algorithm outlined
in Section 3.1 to induce an interaction graph. The output
interaction graph had total 861 nodes comprising 214 re-
sources nodes, 214 owners (who were also users) and 219
users. Total number of edges with non-zero edge weights
were 70317 where each edge weight is normalized between 0
& 1 as enforced by associated functions.

Func. Parameter 1 Parameter 2 Parameter 3
fuu social ∼ 0.2 location ∼ 0.4 org. ∼ 0.4
foo social ∼ 0.2 location ∼ 0.4 org. ∼ 0.4
frr location ∼ 0.3 capability ∼ 0.1
for constant ∼ 0.3
fuo constant ∼ 0.3

Table 2: Weights used to combine parameters of edge weight
functions.

4.2 Spectral Analysis Setup
We consistently used K = 10 as the only parameter for

spectral analysis module. This is a significantly low value
for the Laplacian embedding dimension as K � n. This
effectively reduces the overall computational complexity of
the method as discussed in Section 3.3. We have developed
a java based application interface which enables an admin-

2309

istrator to induce an interaction graph and perform spectral
analysis.

4.3 Evaluation of Trust Queries
Evaluation of trust is not straightforward given the ab-

sence of notion of ground-truth. Additionally, the output
trust index is subsequently fed to the Resource Marketplace
scheduler where while achieving a trade-off between trust
and SLA requirements, it is possible sometime that SLA re-
quirement might take priority over trust index. In this work,
first we perform qualitative evaluation where we visualize
the respective graph structure with reference node and top
ranked nodes. Later, we perform a quantitative evaluation
of robustness aspect of trust queries.

Figure 4 shows different aspects of qualitative trust in-
dex evaluations plotted in open-source graph visualization
tool Gephi [17]. First, the induced interaction graph with-
out edges is visualized in Figure 4a where different colors
are used to characterize different types of nodes (see the
figure legends). Next, the same interaction graph is visual-
ized with edges where annotations are attached to different
sets of nodes in Figure 4b. In particular, a user node U-85
is annotated as the reference node for which we computed
trust index of all resources. The five top ranked resource
nodes are also annotated in the same figure with R-23 being
the resource with highest trust ranking. This resource be-
long to owner O-23. Later, we computed the owner to user
ranking by taking O-23 as the reference owner node and
associated top ranked users are shown in Figure 4b where
user U-85 being the top ranked user. This case is one of the
case where the bi-directional trust rankings are symmetric
thereby giving a higher confidence to the scheduler that user
and resource owner both trust each other.

The proposed trust computation is also robust in the sense
that it considers average connectivity over graph topology
as opposed to individual paths in the (local) neighbourhood.
Thus, a trust ranking is robustly derived based on over-
all interaction between users, resources as well as resource
owners in RM. This topology-centric analysis that considers
overall interaction handles (to a certain extent) scenarios
where some users/owners try to cheat or mislead the trust
computation system by adding social media connections to
artificially inflate weights of few edges. Figure 5 summa-
rize the robustness analysis of bi-directional trust indices.
First we computed top α (= 5,10,15 and 20) ranked re-
source nodes for each user node for the original graph as
well as graphs modified by adding random pairwise edges
among owner nodes (varying between 1-20). Later, we com-
puted the retention by finding the intersection of original
and modified rankings and plotted the average % retention
for each α as shown in Figure 5a. Similarly, we plotted the
average % retention for all α in case of owner-to-user trust
rankings in Figure 5b. We can observe that retention val-
ues are quite high which suggest that artificially inflating
the edge weights for minority edges in the interaction graph
can’t significantly change the trust rankings.

Thus, to significantly influence the trust indices computed
using the methods proposed in this paper, the cheating en-
tities need to influence many edge weights, which may be
challenging for a single or a small group of entities.

5. CONCLUSION
This paper proposes a Trust for Resource Marketplace

(a) Interaction graph visualization without edges.

(b) Interaction graph with emphasized reference user node and re-
spective top five ranked resource nodes.

(c) Interaction graph with emphasized reference owner node and re-
spective top five ranked users nodes.

Figure 4: Qualitative Trust Query Evaluation.

2310

(a) Retention plot of user-to-resource trust queries.

(b) Retention plot of owner-to-user trust queries.

Figure 5: Quantitative Evaluation of Trust Queries.

(TRM) system that computes the trust level among the en-
tities in an RM, by incorporating various aspects of the in-
teractions among these entities. In particular, an RM has
three kinds of entities: users (with task requests), resources
(on which task is executed), and resource owners. Over these
entities, the system allows two kinds of trust queries: (i) for
a user, a trust indexing of resources or resource owners and
(ii) for a resource owner, a trust indexing of users. This is
achieved by a novel interaction graph modelling followed by
spectral analysis of this graph thereby capturing both direct
and indirect relationships among RM entities while deriv-
ing trust indexes. Finally, both quantitative and qualitative
evaluation of trust queries is performed using interaction
obtained from data synthesized from real traces.

6. REFERENCES
[1] T. Mukherjee and S. Gujar. A System to Enable Novel

Marketplace for Democratizing Computing
Infrastructure. US Patent Application No.
20130170US01, 2013.

[2] P. Dutta, T. Mukherjee, S. Gujar, and V. Hegde.
C-Cloud: A Cost-Efficient Reliable Cloud of Surplus
Computing Resources. IEEE CLOUD, 2014.

[3] S. M. Habib, V. Varadharajan, and M. Muhlhauser. A
framework for evaluating trust of service providers in
cloud marketplaces. ACM Symposium on Applied
Computing (SAC), 1963-1965, 2013.

[4] S. M. Habib, S. Ries, M. Muhlhauser and P.
Varikkattu. Towards a trust management system for
cloud computing marketplaces: using caiq as a trust
information source. Security and Communication
Networks, (2013).

[5] http://www.cpusage.com/

[6] http://boinc.berkeley.edu/

[7] P. Langhans, C. Wieser, and F. Bry. Crowdsourcing
MapReduce: JSMapReduce. International conference on
World Wide Web companion, 2013.

[8] S. D. Kamvar, M. T. Schlosser and H. Gracia-Molina.
The Eigen Trust Algorithm for Reputation Management
in P2P Networks. 2003.

[9] A. L. Beberg and V. S. Pande. Storage@home:
Petascale distributed storage. IPDPS 2007.

[10] K. Chard, S. Caton, O. Rana and K. Bubendorfer.
Social Cloud: Cloud Computing in Social Networks.
IEEE Cloud Computing (CLOUD), 2010.

[11] C.M. Tam, P. S. Gill and B. S. Gill. System and
Method for Creating Secure Trusted Social Network. US
Patent US-2006/0259957-A1.

[12] H. Hinton, D. Falola, A. Moran and P. Wardrop.
Method and System for Enabling Trust Infrastructure
Support for Federated User Life Cycle Management. US
Patent US-2006/0021018-A1.

[13] T. P. Pannu, E. J. Chen, P. Gilliam and M. Raley.
System and Method for Developing and Using Trusted
Policy Based on a social model.US Patent US
20140245382-A1.

[14] F.R.K. Chung. Spectral graph theory. American
Mathematical Society, 1997.

[15] H. Qiu and E. R. Hancock. Clustering and Embedding
Using Commute Times. Pattern Analysis and Machine
Intelligence, vol. 29, no. 11, 1873-1890, 2007.

[16] M. Belkin and P. Niyogi. Laplacian eigenmaps for
dimensionality reduction and data representation.
Neural computation, vol. 15, no. 6, 1373-1396, 2003.

[17] M. Bastian, S. Heymann and M. Jacomy. Gephi - an
open source software for exploring and manipulating
networks. International AAAI Conference on Weblogs
and Social Media. 2009.

[18] A. Sala, X. Zhao, C. Wilson, H. Zheng, and B. Y.
Zhao. Sharing Graphs using Differentially Private
Graph Models. ACM SIGCOMM (Internet
Measurement Conference IMC), 2011.

[19] R. B. Lehoucq , D. C. Sorensen , C. Yang. ARPACK
Users Guide: Solution of Large Scale Eigenvalue
Problems by Implicitly Restarted Arnoldi Methods. 1997.

2311

	MAIN MENU
	Help
	Search
	Print
	Author Index
	Keyword Index
	Table of Contents

