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Abstract—In this work, we present DECAF—amultimodal data set for decoding user physiological responses to affective multimedia

content. Different from data sets such as DEAP [15] and MAHNOB-HCI [31], DECAF contains (1) brain signals acquired using the

Magnetoencephalogram (MEG) sensor, which requires little physical contact with the user’s scalp and consequently facilitates

naturalistic affective response, and (2) explicit and implicit emotional responses of 30 participants to 40 one-minute music video

segments used in [15] and 36 movie clips, thereby enabling comparisons between the EEG versus MEG modalities as well as movie

versus music stimuli for affect recognition. In addition to MEG data, DECAF comprises synchronously recorded near-infra-red (NIR)

facial videos, horizontal Electrooculogram (hEOG), Electrocardiogram (ECG), and trapezius-Electromyogram (tEMG) peripheral

physiological responses. To demonstrate DECAF’s utility, we present (i) a detailed analysis of the correlations between participants’

self-assessments and their physiological responses and (ii) single-trial classification results for valence, arousal and dominance, with

performance evaluation against existing data sets. DECAF also contains time-continuous emotion annotations for movie clips from

seven users, which we use to demonstrate dynamic emotion prediction.

Index Terms—Emotion recognition, user physiological responses, MEG, single-trial classification, affective computing

Ç

1 INTRODUCTION

AFFECT recognition is a necessity in human-computer
interaction. Users’ demands can be implicitly inferred

from their emotional state, and systems effectively respond-
ing to emotional inputs/feedback can greatly enhance user
experience. However, affect recognition is difficult as human
emotions manifest both explicitly in the form of affective
intonations and facial expressions, and subtly through phys-
iological responses originating from the central and periph-
eral nervous system. Given that the majority of multimedia
content is created with the objective of eliciting emotional
reactions from viewers, representing, measuring and pre-
dicting emotion in multimedia content adds significant
value to multimedia systems [7]. Approaches to predict
affect from multimedia can be categorized as (i) content-cen-
tric [10], [32], using primitive audio-visual features which

cannot adequately characterize the emotion perceived by the
viewer, or (ii) user-centric, employing facial expressions [28]
and speech intonations [26], which denote a conscious and
circumstantial manifestation of the emotion, or peripheral
physiological responses [21], which capture only a limited
aspect of human emotion.

Recently, cognition-based approaches employing imag-
ing modalities such as fMRI and EEG to map brain signals
with the induced affect [11], [15], [31] have gained in popu-
larity, and brain signals encode emotional information
complementary to multimedia and peripheral physiological
signals, thereby enhancing the efficacy of user-centric affect
recognition. However, acquisition of high-fidelity brain
signals is difficult and typically requires the use of special-
ized lab equipment and dozens of electrodes positioned
on the scalp, which impedes naturalistic user response.
Magnetoencephalogram (MEG) is a non-invasive technol-
ogy for capturing functional brain activity, which requires
little physical contact between the user and the sensing coil
(Fig. 2), and therefore allows for (1) recording meaningful
user responses, with little psychological stress and (2) com-
piling affective responses over long time periods. Also,
MEG responses can be recorded with higher spatial resolu-
tion as compared to EEG.

In this paper, we present DECAF—a MEG-based multi-
modal database for decoding affective user responses.
Benefiting from facile data acquisition, DECAF comprises
affective responses of 30 subjects to 36 movie clips (of length
m ¼ 80 s, s ¼ 20) and 40 one-minute music video segments
(used in [15]), making it one of the largest available emotional
databases.1 In addition to MEG signals, DECAF contains

� N. Sebe is with the Department of Information Engineering and Computer
Science, University of Trento, Italy. E-mail: sebe@disi.unitn.it.

� M.K. Abadi is the Department of Information Engineering and Computer
Science, University of Trento, Italy, and also with the Semantic Knowl-
edge an Innovation Lab (SKIL), Telecom Italia.
E-mail: khomamiabadi@disi.unitn.it.

� R. Subramanian is with the Advanced Digital Sciences Center, University
of Illinois at Urbana-Champaign, Singapore.
E-mail: subramanian.r@adsc.com.sg.

� S.M. Kia and P. Avesani are with the NeuroInformatics Lab, Fondazione
Bruno Kessler, Trento, Italy. E-mail: {moskia, avesani}@fbk.eu.

� I. Patras is with the School of Computer Science and Electronic Engineering,
QueenMary, University of London. E-mail: I.Patras@eecs.qmul.ac.uk.

Manuscript received 21 Aug. 2014; revised 2 Dec. 2014; accepted 17 Dec.
2014. Date of publication 14 Jan. 2015; date of current version 4 Sept. 2015.
Recommended for acceptance by M. Soleymain, Y.-H. Yang, G. Irie, and
A. Hanjalic.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TAFFC.2015.2392932 1. http://disi.unitn.it/~mhug/DECAF.html

IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. 6, NO. 3, JULY-SEPTEMBER 2015 209

1949-3045� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



synchronously recorded near-infra-red (NIR) facial videos,
and horizontal Electrooculogram (hEOG), Electrocardiogram
(ECG), and trapezius-Electromyogram (tEMG) peripheral
physiological responses.2 A major limitation of affective com-
puting works [15], [21], [31] that DECAF seeks to address is
the lack of benchmarking with respect to stimuli and sensing
modalities. DECAF facilitates comparisons between (1) MEG
versus EEG modalities for affect sensing via their perfor-
mance on theDEAPdatabase [15], and (2)music-video versus
movie clips concerning their suitability for emotion elicitation.

We present analyses concerning (i) participants’ self-
assessment ratings for arousal and valence for music and
movie stimuli, (ii) correlations between user ratings
(explicit feedback) and implicitly observedMEG responses,
and (iii) single-trial classification of valence, arousal and
dominance from MEG, peripheral responses, facial activity,
content-based audio visual features and fusion of these
modalities. Finally, time-continuous emotion annotations
useful for dynamic emotion analysis, were compiled from
seven experts for the movie clips—as an application, we
show dynamic emotion prediction on time-contiguous
snippets from the movie clips with a model trained using
these annotations and audio-visual/MEG features.

The paper is organized as follows: Section 2 overviews
related work. Methodology adopted for movie clip selection
is described in Section 3, while the experimental protocol is
detailed in Section 4. Analysis of users’ self assessments is
presented in Section 5, while features extracted for affect
recognition are described in Section 6. Correlations between
self-assessments and physiological responses along with
single-trial classification results are presented in Sections 7
and 8. Dynamic emotion estimation is detailed in Section 9,
and conclusions are stated in Section 10.

2 RELATED WORK

Creating a stimulus database for eliciting emotions is crucial
towards understanding how affect is expressed in controlled
lab conditions. The actual emotion induced upon perceiving
a stimulus designed to elicit an intended emotion is influ-
enced by a number of psychological and contextual factors,
and can therefore be highly subjective. Consequently, ensur-
ing that the actual affective response is in agreement with the
intended response is non-trivial, and is typically achieved in
practice as follows: (1) Many affective studies assume that
the entire gamut of human emotions can be represented on
the valence-arousal-dominance3 (VAD) space as proposed
by Bradley [4], and (2) To largely ensure that the elicited and
intended emotions are consistent, presentation stimuli are
carefully selected based on literature, or based on ‘ground
truth’ V-A ratings acquired from a large population that
evaluates them prior to the actual study.

Gross and Levenson’s seminal work on affective database
creation [9] evaluates the responses of 494 subjects to 250

movie clips for identifying 16 movie clips capable of evoking
eight target emotions. Content-based affect recognition
works [10], [32] also perform emotion analysis on movie
clips/scenes. User-centric emotion recognition works have
employed a variety of stimuli to elicit emotions—Joho et al.
[12] use a combination of movie and documentary clips
to evoke facial activity, which is then used for highlights
detection. Use of physiological responses for recognizing
affect, pioneered by Sinha and Parsons [29] to distinguish
between neutral and negative imagery, has gained popular-
ity recently. Lisetti andNasoz [21] usemovie clips andmath-
ematical equations to evoke emotions, which are decoded
from users’ skin conductance, heart rate, temperature, EMG
and heat flow responses. Kim and Andr�e [14] use audio
music clips to induce emotions, recognized through heart
rate, EMG, skin conductivity and respiration changes.

Among cognition-based approaches, the DEAP data set
[15] is compiled to develop a user-adaptive music recom-
mender system. It contains EEG, galvanic skin response
(GSR), blood volume pressure, respiration rate, skin tempera-
ture and EOG patterns of 32 viewers watching 40 one-minute
music video excerpts. The MAHNOB-HCI database [31] is
compiled to model emotional responses of users viewing
multimedia stimuli. It contains face and upper-body video,
audio, physiological and eye-gaze signals of 27 participants
watching 20 emotionalmovie/online clips in one experiment,
and 28 images and 14 short videos in another. Analyses on the
DEAP and MAHNOB-HCI data sets confirm that EEG effec-
tively encodes emotional information, especially arousal.

Examination of related works reveals that user-centered
affect recognition has been achieved with diverse stimuli,
reflecting the fact that human affect sensing is multimodal.
However, indigenous stimuli and signals employed by each
of these works provides little clarity on (1) which stimulus
most effectively elicits consistent emotional responses across
users, in order to maximize our understanding of affect per-
ception and expression, and (2) which modality best charac-
terizes user emotional responses—answers to these questions
can increase the efficacy of affect recognition approaches.
DECAF is compiled with the aim of evaluating both stimuli
and sensingmodalities for user-centered affect recognition.

3 STIMULI SELECTION

One of our objectives was to compile a large database of
affective movie stimuli (comparable in size to DEAP [15])
and user responses for the same. This section describes how
the 36 movie clips compiled to this end were selected. Based
on previous studies that have identified movie clips suited
to evoke various target emotions [2], [9], we initially com-
piled 58 Hollywood movie segments. These clips were
shown to 42 volunteers, who self-assessed their emotional
state on viewing each video to provide: valence level (very
negative to very positive), arousal level (very calm to very
excited), and the most appropriate tag that describes the
elicited emotion (Table 1).

These annotations were processed to arrive at the final
set of 36 clips as follows:

1) To ensure that the annotations are comparable,
we transformed all V and A annotations using the
z-score normalization.

2. DECAF represents a significant extension of the data set reported
in [1], which only contains MEG and peripheral physiological
responses of 18 subjects.

3. Valence indicates emotion type (pleasant or unpleasant), while
arousal denotes the intensity of emotion (exciting or boring). Dominance
measures the extent of control on viewing a stimulus (feeling empowered
or helpless) [15]. We mainly use the VA-based affect representation,
shown to account for most emotional responses by Greenwald et al.[8].
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2) To better estimate the affective perception of annota-
tors, we discarded the outliers from the pool of annota-
tors for each video clip as follows: Along the V-A
dimensions, we thresholded the annotations at zero to
associate high (Hi) and low (Li) video sets to each anno-
tator (i ¼ 1 . . . 42).We then computed Jaccard distances
DH;DL (42� 42matrices) between each pair of annota-

tors i; j for the high, low sets, e.g.,DHði; jÞ ¼ 1� Hi \Hkj j
Hi [Hkj j,

where j:j denotes set cardinality, and cumulative dis-
tance for each annotator from peers as the sum of each
row. Finally, we derived Median Absolute Deviation
of the cumulative distance distribution, and those
annotators more than 2.5 deviations away from the
median were considered outliers as per [19]. In all, five
and two outlier annotators were respectively removed
for the V andA dimensions.

3) Similar to [15], we computed m=s from the inlier V-A
ratings for each movie clip as plotted in Fig. 1, and

chose 36 clips such that (a) their ratings were close to
the corners of each quadrant, (b) they were uniformly
distributed over the valence-arousal plane, and (c) only
one clip per movie was chosen from each quadrant to
avoid priming effects. Table 1 contains descriptions of
the selectedmovie clips, while Fig. 1 presents the distri-
bution of m=s ratings for the original 58 clips and high-
lights the 36 selected clips. The mean V-A ratings listed
in Table 1 are considered as ground truth annotations in
our work. The chosen movie clips were 51.1-128.2 s
long (m ¼ 80; s ¼ 20) and were associated with diverse
emotional tags. For benchmarking affective stimuli, we
also recorded emotional responses to 40 one-minute
music video used in the DEAP study [15].

4 EXPERIMENT SETUP

In this section, we present a brief description of (a) MEG,
peripheral physiological and facial signals recorded in

TABLE 1
Description of Movie Clips Selected for the DECAF Study with Their Duration in Seconds (L), Most Frequently

Reported Emotion Tag and Statistics Derived from 42 Annotators

Emotion ID Source Movie L Valence Arousal Scene Description

m s m s

Amusing 01 Ace-Ventura: Pet Detective 102.1 1.22 0.53 1.03 1.00 Ace Ventura successfully hides his pets from the landlord

02 The Gods Must be Crazy II 67.1 1.56 0.50 1.20 0.96 A couple stranded in the desert steal ostrich eggs for food
04 Airplane 85.2 0.99 0.83 1.15 0.88 Woman and co-passengers react as pilot struggles to control aircraft

05 When Harry Met Sally 100.2 1.05 0.61 1.08 1.02 Sally shows Harry how women fake orgasms at a restaurant

** Modern Times 106.4 0.87 0.69 �0.35 0.86 Bewildered factory worker in an assembly line

Funny 03 Liar Liar 55.1 0.95 0.65 0.56 0.96 Prosecution and defense discuss a divorce case in court

06 The Gods Must be Crazy 52.1 1.26 0.56 0.81 1.15 Man tries to get past an unmanned gate on a brakeless jeep

07 The Hangover 90.2 0.95 0.70 0.85 1.06 Group of friends on the morning after a drunken night

09 Hot Shots 70.1 0.98 0.66 0.81 0.90 A hilarious fight sequence

Happy 08 Up 67.1 1.42 0.43 0.35 1.18 Carl—a shy, quiet boy meets the energetic Elle
10 August Rush 90.1 0.76 0.68 �1.17 1.02 A son meets his lost mother while performing at a concert

11 Truman Show 60.1 0.90 0.50 �1.98 0.69 Truman and his lover go to the beach for a romantic evening

12 Wall-E 90.2 1.41 0.53 �0.82 0.91 Wall-E and Eve spend a romantic night together

13 Love Actually 51.1 1.03 0.70 �1.38 0.80 Narrative purporting that ’Love is everywhere’

14 Remember the Titans 52.1 0.79 0.58 �0.99 0.82 Titans win the football game

16 Life is Beautiful 58.1 1.10 0.42 �0.16 0.79 Funny Guido arrives at a school posing as an education officer

17 Slumdog Millionaire 80.1 0.94 0.35 �0.34 0.85 Latika and Jamal unite at the railway station

18 House of Flying Daggers 77.2 0.84 0.56 �1.79 0.88 Young warrior meets with his love with a bouquet

Exciting 15 Legally Blonde 51.1 0.64 0.37 �0.62 0.80 Elle realizes that she has been admitted to Harvard Law School

33 The untouchables 117.2 �0.70 0.60 1.05 0.70 Shoot-out at a railway station

Angry 19 Gandhi 108.1 �0.50 0.67 �1.00 0.92 Indian attorney gets thrown out of a first-class train compartment

21 Lagaan 86.1 �0.98 0.49 �0.69 0.71 Indian man is helpless as a British officer threatens to shoot him

23 My Bodyguard 68.1 �0.81 0.59 �1.35 0.79 Group of thugs provoke a teenager

35 Crash 90.2 �1.56 0.45 0.45 0.95 A cop molests a lady in public

Disgusting 28 Exorcist 88.1 �1.52 0.64 1.71 0.90 An exorcist inquires a possessed girl

34 Pink Flamingos 60.2 �1.95 0.61 0.18 0.83 A lady licks and eats dog faeces

Fear 30 The Shining 78.1 �0.85 0.49 1.01 0.95 Kid enters hotel room searching for his mom

36 Black Swan 62.2 �1.07 0.35 1.00 0.73 A lady notices paranormal activity around her

** Psycho 76.2 �1.23 0.73 0.44 1.01 Lady gets killed by intruder in her bath tub

Sad 20 My girl 60.1 �0.85 0.62 �0.82 1.06 Young girl cries at her friend’s funeral

22 Bambi 90.1 �0.95 0.37 �0.43 1.07 Fawn Bambi’s mother gets killed by a deer hunter

24 Up 89.1 �0.99 0.45 �0.97 0.76 Old Carl loses his bedridden wife

25 Life is Beautiful 112.1 �0.62 0.41 �0.16 0.81 Guido is caught, and shot to death by a Nazi soldier

26 Remember the Titans 79.1 �0.84 0.53 �0.55 0.87 Key Titans player is paralyzed in a car accident

27 Titanic 71.1 �0.98 0.57 �0.30 0.99 Rescuers arrive to find only frozen corpses in the sea

31 Prestige 128.2 �1.24 0.73 1.20 0.88 Lady accidentally dies during magician’s act

Shock 29 Mulholland Drive 87.1 �1.13 0.55 0.82 0.97 Man shocked by suddenly appearing frightening figure

32 Alien 109.1 �0.99 0.71 1.22 0.76 Man is taken by an alien lurking in his room

Introductory videos are marked with **.
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the study before detailing the (b) experimental set-up and
protocol.

4.1 MEG, Peripheral Physiological Signals, and NIR
Facial Videos

To collect users’ implicit affective responses, we recorded (i)
Magnetoencephalogram, (ii) horizontal Electrooculogram,
(iii) Electrocardiogram, (iv) Trapezius Electromyogram and
(v) Near Infra-red facial video signals that are described
below.

MEG. MEG technology enables non-invasive recording
of brain activity and is based on SQUIDS (Super-conducting
Quantum Interference Devices), which enables recording of
very low magnetic fields. Magnetic fields produced by the
human brain are in the order of femtotesla (fT) and since
sensors are really sensitive to noise, the MEG equipment is
located in a magnetically shielded room insulated from
other electrical/metallic installations. A multiple coils con-
figuration enables measurement of magnetic fields induced
by tangential currents, and thus, brain activity in the sulci of
the cortex can be recorded. We used the ELEKTA Neuromag
device which outputs 306 channels (corresponding to 102
magnetometers and 204 gradiometers, as in Fig. 5) with a
sampling frequency of 1 KHz.

Unlike in EEG, MEG sensors do not touch the subject’s
head and the participant can potentially make head move-
ments during the recordings. However, due to high spatial
resolution, even small headmovements will cause a sensor to
sense another part of the brain and induce changes in the
MEG signal. Therefore, we asked subjects to not move their
head during the recordings. To compensate for inadvertent
head movements, before each recording, we attached five
Head Position Indicator (HPI) coils to accurately determine
the subject’s head pose. Two HPI coils were attached behind
the ears without being in the hair, while three coils were inter-
spersed on the forehead. Prior to the experiment, we also
recorded the subject’s skull shape by sampling the 3D posi-
tions of 210 points uniformly distributed around the skull.4

ECG.ECG iswell known for its relevance in emotion recog-
nition [14], [15], [31]. ECG signals were recorded using three
sensors attached to the participant. Two electrodes were
placed on the wrist, and a reference was placed on a boney
part of the arm (ulna bone). This setup allows for precise
detection of heart beats, and subsequently, accurate computa-
tion of heart rate (HR) and heart rate variability (HRV).

hEOG. Electrooculography denotes the measurement of
eye movements, fixations and blinks. In this study, we used
hEOG which reflects the horizontal eye movement of users
by placing two electrodes on the left and right side of the
user’s face close to the eyes. Zygomatic muscle activities
produce high frequency components in the bipolar EOG
signal, and hence the EOG signal also captures facial activa-
tion information.

tEMG. Different people exhibit varying muscle move-
ments while experiencing emotions. However, some move-
ments are involuntary—e.g., nervous twitches produced
when anxious, nervous or excitable. Trapezius EMG is
shown to effectively correlate with users’ stress level in [33].
We placed the EMG bipolar electrodes above the trapezius
muscle to measure the mental stress of users as in [14], [15].
The ECG reference electrode also served as reference for
hEOG and tEMG.

NIR facial videos. As the MEG equipment needs to be elec-
trically shielded, traditional video cameras could not be
used for recoding facial activity, and we therefore used a
near infra-red camera for the same. Facial videos were
recorded as avi files at 20 fps.

The ELEKTA Neuromag device accurately synchronizes
MEG signals with the peripheral physiology signals. Syn-
chronization of the NIR videos was handled by recording
the sound output of the stimulus presentation PC with the
user’s facial videos, and using this information to determine
stimulus beginning/end.

4.2 Experimental Set-Up

Materials. All MEG recordings were performed in a shielded
room with controlled illumination. Due to sensitivity of the
MEG equipment, all other devices used for data acquisition
were placed in an adjacent room, and were controlled by
the experimenter. Three PCs were used, one for stimulus
presentation, and two others for recording NIR videos
and MEG, physiology data as seen in Fig. 2. The stimulus
presentation protocol was developed using MATLAB’s
Psychtoolbox (http://psychtoolbox.org/) and the ASF
framework [27]. Synchronization markers were sent from
the stimulus presenter PC to the MEG recorder for marking

Fig. 1. Distribution of videos’ m=s ratings in the V-A plane. The 36
selected videos are highlighted in green, while two introductory videos
are highlighted in blue.

Fig. 2. (Left) Illustration of the experimental set-up. (Right) A subject per-
forming the experiment—the stimulus is presented on the screen to the
left, while the subject is seated under the MEG equipment on the right.

4. While DECAF contains HPI information, HPI-based MEG signal
compensation will be attempted in future work. Since head-movement
can induce noise in the MEG data, HPI MEG compensation can be use-
ful for discarding noise and improving signal-to-noise ratio.
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the beginning and end of each stimulus. All stimuli were
shown at 1;024� 768 pixel resolution and a screen refresh
rate of 60 Hz, and this display was projected onto a screen
placed about a meter before the subject inside the MEG
acquisition room (Fig. 2). All music/movie clips were
played at 20 frames/second, upon normalizing the audio
volume to have a maximum power amplitude of 1. Partici-
pants were provided with a microphone to report their
emotional state and communicate with the experimenters.

Protocol. 30 university graduate students (16 male, age
range 27.3 � 4.3) participated in the experiments. Data
acquisition for each participant was spread over two ses-
sions—movie clips were presented in one session, and
music videos in the other (Fig. 3). The presentation order of
the music and movie clips was counterbalanced across sub-
jects. During each session, music/movie clips were shown
in random order, such that two clips with similar valence,
arousal characteristics did not follow one another. To avoid
fatigue, each recording session was split into two halves (20
music/18 movie clips shown in each half) and lasted one
hour. We recorded the resting state brain activity for five
minutes at the beginning of each session, and for one min-
ute at the end or before/after breaks.

Subject preparation.To ensure the absence ofmetallic objects
near the MEG equipment, prior to each recording session,
participants had to change their clothing and footwear—those
wearing glasses were given suitable metal-free replacements.
First, participants were briefed about the experiment and
asked to provide written informed consent. HPI coils were
placed on their head and their head shapes and coil positions
were registered as explained in Section 4.1. Once inside the
MEG room, electrodes of physiological sensors were attached
to participants, and by checking the impedance level of the
electrodes from the MEG recorder, we made sure that they
were comfortable and were positioned correctly under the
MEG sensor. Participants were providedwith a desk pad, pil-
lows and blanket to relax during the experiment. We then
recorded five minutes resting state brain activity while the
subject was fixating on a cross at the middle of the screen.
Then, two practice trials (with the videos highlighted in blue
in Fig 1, and denoted using ** in Table 1) were conducted to
familiarize subjects with the protocol.

Each acquisition session involved a series of trials. Dur-
ing each trial, a fixation cross was first shown for four sec-
onds to prepare the viewer and to gauge his/her rest-state
response. Upon stimulus presentation, the subject conveyed
the emotion elicited in him/her to the experimenter through
the microphone. Ratings were acquired for (i) Arousal
(’How intense is your emotional feeling on watching the
clip?’) on a scale of 0 (very calm) to 4 (very excited), (ii)
Valence (’How do you feel after watching this clip?’) on a

scale of �2 (very unpleasant) to 2 (very pleasant), and (iii)
Dominance on a scale of 0 (feeling empowered) to 4 (help-
less). A maximum of 15 seconds was available to the partici-
pant to convey each rating. All in all, the whole experiment
(spread over two sessions) including preparation time took
about three hours per subject, who was paid a participation
fee of € 40.

5 RATING ANALYSIS

5.1 Self-Assessments: Music versus Movie Clips

As mentioned earlier, one objective behind compiling the
DECAF database was to examine the effectiveness of differ-
ent stimuli in eliciting similar emotional responses across
subjects. In this section, we compare the self-assessment (or
explicit) valence-arousal ratings for music and movie clips
provided by the DECAF participants. Since self-reports are
a conscious reflection of the user’s emotional state upon
viewing the stimulus, one can expect any differences
between the ratings for music and movie clips to also
impact affect recognition from physiological responses.

Fig. 4 presents distributions of the V-A ratings provided
by the 30 DECAF participants for movie and music clips.
The blue, magenta, black and red colors respectively denote
high arousal-high valence (HAHV), low arousal-high
valence (LAHV), low arousal-low valence (LALV) and high
arousal-low valence (HALV) stimuli as per the ground-
truth ratings derived from Table 1 for movie clips and [15]
for music videos. A U-shape, attributed to the difficulty in
evoking low arousal but strong valence responses [15], [17],
is observed for both movie and music clips. The ‘U’ bend is
particularly pronounced in the case of music clips, implying
that a number of stimuli were perceived to be close-to-neu-
tral in valence, and there is considerable overlap among the
four quadrants. For movie clips, perfect agreement with the
ground-truth is noted for valence, but cluster overlap is
observed along the arousal dimension.

We performed two-sample t-tests to check if the arousal
characteristics of movie/music stimuli influenced their
valence ratings—these tests revealed that valence ratings
differed very significantly for HA music (tð18Þ ¼ 9:4208;
p < 0:000001), HA movie (tð16Þ ¼ 13:5167; p < 0:000001)
clips and LA movie clips (tð16Þ ¼ 11:586; p < 0:000001), but
somewhat less significantly for LA music clips (tð18Þ ¼
5:6999; p < 0:00005). Conversely, similar significance levels
were observed while comparing arousal ratings for HV
music (tð18Þ ¼ 4:2467; p < 0:0005) and movie (tð16Þ ¼
4:2988; p < 0:0005), as well as LV music (tð18Þ ¼ �4:8256;
p < 0:005) and movie (tð16Þ ¼ �3:3194; p < 0:005) stimuli.
Overall, the valence-arousal distinction was slightly better
for movie vis-�a-vis music clips.

Fig. 3. Timeline for experimental protocol. Fig. 4. Mean V-A ratings for movie (left) and music clips (right) derived
from DECAF participants.
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To evaluate how consistently emotional responses were
elicited across subjects, we measured agreement between the
ground-truth and participant ratings using the Cohen’s
Kappa measure assuming that ground-truth V-A labels were
provided by an ‘ideal’ annotator. To this end, we assigned
high/low V-A labels to the stimuli based on each user’s
median ratings, and computed k between the ground-truth
and user judgements. The mean k over all subjects for music-
valence, movie-valence, music-arousal and movie-arousal
were found to be 0.50� 0.17, 0.67� 0.24, 0.14� 0.17 and
0.19� 0.17 respectively. Agreement with the ground-truth
was higher for movie stimuli, implying that movie stimuli
evoked intended emotions more consistently across users.
Also, agreementwas considerably higher for valence, indicat-
ing stronger differences in arousal perception across subjects.

6 DATA ANALYSIS

This section describes the procedure for data preprocessing
and feature extraction from (i) MEG signals, (ii) physiology
signals, (iii) face videos and (iv) multimedia signals. All the
cut-off frequencies and smoothing parameters employed
were adopted from [14], [15], [31]. For both MEG and
peripheral physiological modalities, we computed (1) time-
continuous features for dynamic emotion analysis and (ii)
statistical measures5 computed over the time-continuous
features, considering only the final 50 seconds.

6.1 MEG Preprocessing and Feature Extraction

MEG preprocessing involved three main steps, (i) Trial seg-
mentation, (ii) Spectral filtering and (iii) Channel correction,
that were handled using the MATLAB Fieldtrip toolbox
[25]. Since magnetometer outputs are prone to environmen-
tal and physiological noise, we only used the gradiometer
outputs for our analysis.

Trial segmentation. Participant responses corresponding
to each trial were extracted by segmenting the MEG signal
from four seconds prior to stimulus presentation (pre-stim-
ulus) to the end of stimulus. Per subject, there were 36 and
40 trials for the movie clips and music videos respectively.

Frequency domain filtering. Upon downsampling the MEG
signal to 300 Hz, low-pass and high-pass filtering with cut-
off frequencies of 95 and 1 Hz respectively were performed.
The high-pass filter removes low frequency ambient noise
in the signal (e.g., generated by moving vehicles). Con-
versely, the low-pass filter removes high frequency artifacts
generated by muscle activities (between 110-150 Hz).

Channel correction. Dead and bad channels were removed
from the MEG data. Dead channels output zero values,
while bad channels are outliers with respect to metrics such
as signal variance and signal amplitude z-score over time.
To preserve the dimensional consistency of MEG data over
all trials and subjects, removed channels were replaced
with interpolations from neighboring channels.

Time-frequency analysis (TFA). The spectral power in cer-
tain frequency bands has been found to contain valuable
information for affect recognition in a number of EEG stud-
ies. The multitaper and wavelet transforms are typically

used in order to achieve better control over frequency
smoothing, and high frequency smoothing has been found
to be beneficial when dealing with brain signals above
30 Hz [23]. Therefore, we used variable-width wavelets to
transform the preprocessed MEG signal to the time-fre-
quency domain for spectral power analysis.

MEG-TFA features. We used a time-step of 1 s for tempo-
ral processing of the MEG signal from each trial, and a
frequency step of 1 Hz to scan through a frequency range of
1-45 Hz. We linearly varied the wavelet width with fre-
quency, increasing from four for lower frequencies to eight
for higher frequencies. Upon applying a wavelet transform
on the MEG data, we performed the following steps: (a) We
used a standard Fieldtrip function for combining the spec-
tral power of each planar gradiometer pair to obtain 102
combined-gradiometer (GRAD) responses. (b) In order to
better elucidate the MEG response dynamics following
stimulus presentation for each subject, individual trial
power was divided by a baseline power, obtained as the
mean over two seconds pre-stimulus from all trials. (c) To
increase dynamic range of the spectral power, the time-fre-
quency output was logarithm transformed.

Channel grouping. On computing the MEG spectral power
over 102 GRAD pairs, in order to reduce data dimensional-
ity while preserving spatial information, the 102 channels
were divided into nine groups according to functionality of
different brain regions namely: Vertex, left temporal, right
temporal, left parietal, right parietal, left occipital, right
occipital, left frontal and right frontal (Fig. 5). The sensors in
each group encode different brain functionalities that may
directly or indirectly relate to emotions, and we show that
this grouping is beneficial for affect recognition in Section 8.
Per subject and movie/music clip, time-frequency analysis
outputs nine (one per group) 3Dmatrices with the following
dimensions: K� clip length time points � 45 frequencies,
whereK denotes the number of GRAD channels per group.

DCT features. The Discrete Cosine Transform (DCT)
is often used in signal, image and speech compression
applications due to its strong energy compaction ability.
Also, the DCT feature space has been shown to efficiently
compress spatio-temporal patterns of MEG data without
impacting model precision [13]. We employed DCT to com-
press the MEG-TFA output on a per-second basis, as well as
for single-trial classification. Per second, from each of the
nine lobes we extracted 60 DCT coefficients (four along

Fig. 5. Elekta Neuromag MEG channel positions. Channels correspond-
ing to different lobes are color-coded (figure adapted from www.
megwiki.org, best viewed under zoom).

5. mean (m), standard deviation (s), skewness, kurtosis, percentage
of values above mþ s, and percentage of values below m� s.
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spatial and 15 along spectral respectively), and
concatenated them to extract 540 DCT features. For single-
trial classification, from each brain lobe, we used the first
n ¼ 2 DCT coefficients from the spatial, temporal and spec-
tral dimensions to obtain a total of 9� 8 ¼ 72 features. We
observed that classification results did not improve with
n > 2 DCT coefficients per dimension—this could be attrib-
uted to the fact that our model training involves much fewer
examples as compared to the feature dimensionality.

6.2 Peripheral Physiological Feature Extraction

6.2.1 hEOG Features

The horizontal EOG signal has information about eye move-
ments, point-of-gaze and eye blinks. Muscular facial activi-
ties and eye blinks appear as high frequency components in
the EOG signal. Eye movements, blinks and facial muscular
activities have been found to be highly correlated with emo-
tional responses [15], [31].

Eye movements. To extract eye movement information, we
low-pass filtered the signal with 5 Hz cut off, and then used
wavelet transform to extract power spectral density (PSD)
in 0-2 Hz range with a frequency resolution of 0.2 Hz, and
temporal resolution of 50 ms. Then for each second, we
averaged the PSD values over frequency ranges of f½0; 0:1Þ;
½0:1; 0:2Þ; ½0:2; 0:3Þ; ½0:3; 0:4Þ; ½0:4; 0:6Þ; ½0:6; 1:0Þ; ½1:0; 1:5Þ;
½1:5; 2Þg. Therefore, we obtained eight features per second to
describe eye movements.

Facial muscle activity. Facial muscular activities mainly
relate to the movement of zygomatic major muscles, which
occurs when a subject exhibits a smile, frown or other facial
expressions. We limited the signal to 105-145 Hz, and then
used wavelet transform to extract PSD with a frequency res-
olution of 1 Hz and temporal resolution of 500 ms.

Then for each second, we averaged the PSD values
over f½105; 115Þ; ½115; 130Þ; ½130; 145Þg frequency ranges. Since
there are many muscles controlling facial activities, we used
the three bands to obtained fine-grained information regard-
ing muscular activities. Therefore per second, we obtained
three values to represent zygomatic activities. Overall, from
hEOG,we obtained 11 vectors of clip-length duration.

6.2.2 ECG Features

From the ECG signal, we extracted information from both
the original signal and its PSD.

Heart beats. We detected heart beats through R-peak
detection in the ECG signal. Upon removal of low frequency
components, R-peaks were detected as the amplitude peaks.
We then computed inter-beat-intervals (IBI), heart rate and
heart rate variability as the derivative of HR. Upon smooth-
ing HR with a Kaiser window of temporal width 10 sec,
and shape parameter b ¼ 1

6), we computed two features
(smoothed HR and HRV) per second from which, statistical
measures over IBI, smoothed HR, and HRV during the final
50 seconds of each trial were derived for affect recognition.

Power spectral density. ECG was recorded at 1 KHz sam-
pling rate, and we used a wavelet transform over the ECG
signal to extract the PSD in the frequency range of 0-5 Hz.
Then, the mean PSD magnitudes over the frequency inter-
vals fð0; 0:1�; ð0:1; 0:2�; ð0:2; 0:3�; ð0:3; 0:4�; ð0:4; 0:5�; ð0:5; 0:6�;

ð0:6; 1�; ð1; 1:5�; ð1:5; 2�; ð2; 2:5�; ð2:5; 5:0�g were used as fea-
tures—this gave us 11 values per second.

For single-trial classification alone, additional low-fre-
quency information characterizing emotions was extracted
as in [15]. We downsampled the ECG signal from 1 KHz to
256 Hz, and removed the low frequency drift. Then, we esti-
mated the signal PSD using Welch’s method with a window
length of 15� sr and the overlap of 10� sr, where sr
denotes signal sampling rate. We used the mean PSD
over f½0; 0:1Þ; ½0:1; 0:2Þ; ½0:2; 0:3Þ; ½0:3; 0:4�g bands, and the
logarithm PSD obtained for the sub-bands obtained on
dividing [0, 2.4] into 10 equal intervals to obtain 14 more
ECG PSD features.

6.2.3 Trapezius EMG

EMG effectively captures the mental stress of users [30]. As
bipolar EMG electrodes are placed above the trapezius mus-
cle, heart-related artifacts are observed in the signal and the
EMG signal consists of two components: (1) Heart activities
such as heart beats can be mainly inferred from the 0-45 Hz
range, and (2) Trapezius EMG can be obtained from the
f½55; 95Þ; ½105; 145Þg range.

Heart activities. We low-passed the signal to within 45 Hz,
and used wavelet transform to extract the PSD map with
frequency and temporal resolution of 0.2 Hz and 50 ms
respectively. Per second and trial, we computed the mean
PSD over the following frequency bands: f½0; 0:5Þ; ½0:5; 1:5Þ;
½1:5; 2:5Þ; ½2:5; 3:5Þ; ½3:5; 5:0Þ; ½5:0; 10Þ; ½10; 15Þ; ð15; 25Þ; ½25; 45Þg,
to describe heart activities when the ECG signal was
unavailable.

Muscle activities. We band-passed the EMG signal between
55-145 Hz and employed wavelet transform to extract the
PSD map with frequency resolution of 1 Hz, and temporal
resolution of 500 ms. Per each second and trial, we computed
two values corresponding to mean PSD over the f½55; 95Þ;
½105; 145Þg frequency bands to characterize trapezius muscle
activities, and aforementioned statistical measures over the
final 50 secondswere used for affect recognition.

6.3 Facial Expression Analysis

We used histogram equalization to enhance contrast in the
recorded NIR facial videos, and then employed the facial
tracker described in [28] to track 12 facial landmarks (Fig. 6).
Statistical measures over the activation of these landmarks in
the final 50 seconds of each trial were used for classification.

6.4 Multimedia Features

We computed low-level audio visual features from the
movie and music clips as described in [15] for comparing
different modalities, and identifying the salient emotional
information sources—extracted features are listed in Table 2.

Fig. 6. Participant’s facial video before (left) and after (middle) histogram
equalization. Tracking 3D grid is shown on the right.
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All in all, 49 video features and 56 audio features were
extracted. For single-trial classification, we computed
statistics over one-second segments, while using statistics
from features computed at the frame level for fine-grained,
per-second emotion estimation described in Section 9.

7 MEG CORRELATES WITH USER RATINGS

We now present correlations observed between users’ self-
assessments and their MEG responses. In order to directly
compare our results with [15], we performed MEG feature
extraction identical to [15] briefly described as follows. Fol-
lowing artefact rejection, we downsampled the MEG signal
to 256 Hz and then band-limited the same to within 1-48 Hz.
Upon combining gradiometer outputs, the spectral power
between 3 and 47 Hz over the last 30 seconds of each clip was
extracted using Welch’s method with a window size of 256
samples. Mean power over the u ([3-8] Hz), a ([8-14] Hz), b
([14-30] Hz) and g ([30-45] Hz) for each of 102 MEG sensors
were correlatedwith the users’ self-assessments.

We computed Spearman correlations between the above
MEG-PSD outputs and participants’ self ratings. Following
[15], per subject, trial, emotion dimension and frequency

band, correlations were computed over the 102 combined
GRAD outputs. Upon computing correlations for each sub-
ject, and assuming independence [18], p-values obtained for
each subject and condition were fused over all users using
Fisher’s method. Different from [15], we also accounted for
multiple comparisons by controlling false discovery rate
(FDR) using the procedure proposed in [3], and the observed
significant correlations are highlighted in Fig. 7
(p < 0:05; 0:01, and 0:001 are respectively denoted in cyan,
magenta, and red).

Observations.Observations similar to [15] can also be noted
from Fig. 7. Thanks to the higher spatial resolution of MEG, a
greater number of significant correlates and a wider range of
correlations ([�0.15, 0.25] with MEG versus [�0.1, 0.1] with
EEG) are observed with MEG signals as compared to EEG.
For both movie andmusic stimuli, we observe a negative cor-
relation between a, b and g powers and the arousal level over
the vertex, the parietal and occipital lobes, which is consistent
with the findings in [15]. Over the temporal and occipital
lobes, we observe a positive correlation between the u, b and g

powers and the valence level. Note that the occipital and tem-
poral lobes encode low-level audio-visual information which
are responsible for inducing emotions [32]. The possibility of

Fig. 7. Spearman correlation analysis between the MEG responses and participants’ self-assessments. Correlation over each channel (in green) is
denoted by the gray level, and significant (p < 0:05, p < 0:01, and p < 0:001) correlations are highlighted with �marks (in cyan, magenta, and red).

TABLE 2
Extracted Audio-Visual Features from Each Movie Clip (Feature Dimension Listed in Parentheses)

Audio features Description

MFCC features (39) MFCC coefficients [20], Derivative of MFCC, MFCC Autocorrelation (AMFCC)
Energy (1) and Pitch (1) Average energy of audio signal [20] and first pitch frequency
Formants (4) Formants up to 4,400 Hz
Time frequency (8) mean and std of: MSpectrum flux, Spectral centroid, Delta spectrum magnitude, Band energy ratio [20]
Zero crossing rate (1) Average zero crossing rate of audio signal [20]
Silence ratio (2) Mean and std of proportion of silence in a time window [5], [20]

Video features Description

Brightness (6) Mean of: Lighting key, shadow proportion, visual details, grayness, median of Lightness for frames,
mean of median saturation for frames

Color Features (41) Color variance, 20-bin histograms for hue and lightness in HSV space
VisualExcitement (1) Features as defined in [32]
Motion (1) Mean inter-frame motion [22]
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facial muscle activities, which are also prominent at high fre-
quencies, influencing the observed correlations between
valence/arousal ratings and MEG responses is minimal as
facial activities are likely to occur in response to both negative
and positive valence stimuli (e.g., funny and disgust). Finally,
a few significant negative correlates in the parietal lobe, and
few positive correlates in the occipital lobe are observed
between dominance ratings and theMEG b; g powers.

Movie versusmusic.As evident fromFig. 7, larger andmore
significant correlations are observed for movie clips as com-
pared to music video clips, which suggests that emotions are
more strongly and consistently evoked by movie stimuli. In
particular, no correlations with p < 0:001 are observed for
music videos for the arousal and dominance dimensions.
However, a larger number of correlations are observed over
all frequency bands for arousal withmusic clips.Wemention
here that some of the detectable correlates for movie stimuli
may have arisen from extraneous factors—e.g., correlates
between u;a powers and valence ratings may be attributed
to eye movements/blinks. Likewise, positive correlation
between g power and dominance over the occipital lobes
could be explained by low-level visual cues [24], while the
similar but weaker correlate observed for arousal could be
owing to the strong positive correlation between arousal and
dominance ratings (0.57 � 0.24) across participants. Further
examination to more accurately identify the information
source responsible for the above correlations would involve
(1) HPI-based MEG signal compensation, (ii) Independent
component analysis, and (iii) Brain source localization using
MR brain scans, which is left to future work.

8 EXPERIMENTAL RESULTS

We now present comparisons between MEG versus EEG,
and movie versus music clips based on single-trial classifi-
cation results.

8.1 Single-Trial Classification: MEG versus EEG

In order to evaluate our MEG-based approach against the
EEG framework described in [15], we attempted single-trial
binary (high/low) classification of valence and arousal
employing (i) labels derived from subject-wise self-reports
and (ii) extracting MEG features in a manner identical to
[15]. Employing the Naive-Bayes classifier and subject-spe-
cific models, only the top 10 percent discriminative features
based on Fisher feature selection criteria were used in each
loop of a leave-one-trial-out cross-validation scheme. Very

comparable results with EEG and MEG obtained with this
procedure (Table 3) suggest that the affect encoding power
of EEG and MEG are comparable. However, the increased
spatial resolution of MEG allows for fine-grained affective
analysis, which enables similar or superior recognition per-
formance on music and movie clips using the features
extracted in Section 6 as described later.

While the fairest comparison between EEG and MEG
would entail simultaneous recording of the two modalities
for identical subjects and stimuli, such a study may be
impossible to implement in practice. We have compared
emotion recognition performance based on the results
observed on two random subject populations that are com-
parable in size, and this is the second best possible way of
performing a comparison in our view. Designing better
approaches for comparing the efficacy of different modali-
ties for user-centric emotion recognition is a research prob-
lem requiring further investigation.

8.2 Classification Procedure and Results

On a per-user basis, we attempted to recognize the emo-
tional valence (V), arousal (A) and dominance (D) of a test
music/movie clip as high/low based on the MEG and
peripheral physiological responses. Given the large subjec-
tivity in user responses for music videos in [15], subject-spe-
cific labels were used for each stimulus. However, as (i)
many significant correlates observed between ratings and
MEG responses of the user population, and (ii) the stimulus
label should reflect the perception of the population instead
of individuals, we repeated the classifications with both
population-based (denoted as PB in Table 4) and subject-
based (SB in Table 4) labels.

Under PB labeling, each stimulus was assigned a high/
low (V/A/D) label based on whether its rating was higher
or lower than the mean rating provided by the participant
population for the stimulus set. Likewise, the SB label for
each stimulus denoted whether its rating was higher/lower
than the mean subject rating. The proportion/distribution
of positive and negative classes for movie and music V,A,D
under PB/SB tagging is presented in Table 4. For SB label-
ing, the mean and standard deviation of the positive class
distribution are specified. Under PB labeling, the proportion
of positive and negative classes is most imbalanced for
music and movie arousal, whereas the most balanced distri-
butions under SB labeling are observed for movie valence
and music arousal. Given the unbalanced positive and neg-
ative classes, we use F1-scores as the primary measure to
compare classification performance with different stimulus
types and information modalities.

We used a linear SVM classifier for our experiments and
the mean accuracy and F1-scores obtained over the 30 par-
ticipants using leave-one-trial-out cross-validation are tabu-
lated in Table 4. The optimal SVM slack parameter was
tuned by considering values in ½10�4; 104� using an inner
leave-one-out cross-validation loop. As baselines, we pres-
ent the F1-scores of (i) a random classifier, (ii) majority-
based voting6 and (iii) voting based on training class

TABLE 3
Mean Binary Classification Performance for Music-Video

Clips with the Schema Described in [15]

Music (SS)

Arousal Valence Dominance

Acc F1 Acc F1 Acc F1

EEG [15] 0.62 0.58** 0.58 0.56** NR NR
Max Baseline [15] 0.64 0.50 0.59 0.50 NR NR

MEG 0.62 0.58*** 0.59 0.55* 0.62 0.53*
Max Baseline 0.52 0.50 0.54 0.50 0.66 0.50

F1-scores of distributions significantly over 0.5 are highlighted (*: p < 0.05, **:
p < 0.01, ***: p < 0.001). NR denotes ‘not reported’.

6. With leave-one-out classification on a balanced class distribution
(Table 4), majority-based voting would yield 0 percent accuracy as the
test-label class is in minority in the training set.
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distribution—note that the maximum baseline F1-score is
0.50. Instances where the F1-score distribution across sub-
jects is significantly higher than 0.5 as determined by a
paired t-test are highlighted in Table 4.

To demonstrate how the higher spatial resolution of

MEG benefits affect recognition, we present results

achieved with features extracted exclusively from each

brain lobe, and also the concatenation of features from all

lobes (MEG Early Fusion or MEF). In addition, we present

accuracies and F1-scores achieved using (i) the combina-

tion of hEOG, ECG and tEMG responses (peripheral physi-

ology or PP), (ii) facial expressions (FE), (iii) multimedia

features (MM), and (iv) late fusion of the decisions from

the the MEF, PP, FE and MM classifiers following the

methodology proposed in [16]. If fpig4i¼1 denote the poste-

rior probabilities output by the four classifiers and

ti ¼ aiFi=
P4

i¼1 aiFi, where ai’s denote fusion weights and

Fi denotes F1-score of the ith classifier on training data,

the optimal weights fa�
i g are chosen as those maximizing

F1-score on the training set using an inner cross-validation

loop. Posterior probability of the test sample is computed

as
P

a�
i piti, which is then used to assign the test label.

8.3 Discussion of Classification Results

In Table 4, the obtained F1-scores clearly demonstrate that
the increased spatial resolution of MEG benefits affect anal-
ysis and recognition. For all conditions, the classification
performance obtained with MEG features from at least one
of the nine brain lobes is similar to or better than the perfor-
mance achieved with MEF, where features of all the brain
lobes are pooled together. This result is unsurprising as the
various brain lobes are known to encode different types of
emotional information, as also suggested by the correlation
analysis in Section 7. Under PB stimulus labeling, the best
F1-scores for movie and music arousal are obtained for the
right temporal lobe, while the left and right temporal lobes

TABLE 4
Single Trial Classification for Music and Movie Clips—(Upper) Classification Results

Using MEG Information from Each of the Brain Lobes

Movie (PB) Music (PB) Movie (SB) Music (SB)

A V D A V D A V D A V D

Vertex Acc 0.59 0.57 0.57 0.51 0.51 0.52 0.55 0.55 0.51 0.53 0.50 0.53
F1 0.58*** 0.57*** 0.57*** 0.51 0.51 0.51 0.54 0.53 0.48 0.52 0.49 0.49

Left Acc 0.60 0.60 0.58 0.51 0.51 0.52 0.59 0.58 0.51 0.54 0.50 0.54
Temporal F1 0.60*** 0.60*** 0.58*** 0.51 0.51 0.51 0.59*** 0.57** 0.49 0.52 0.49 0.51
Right Acc 0.62 0.56 0.57 0.55 0.53 0.53 0.59 0.55 0.54 0.60 0.54 0.54
Temporal F1 0.62*** 0.55** 0.57*** 0.55* 0.53* 0.53* 0.58** 0.53 0.51 0.58*** 0.53 0.51
Left Acc 0.60 0.56 0.57 0.52 0.52 0.55 0.55 0.56 0.53 0.53 0.48 0.52
Parietal F1 0.60*** 0.55** 0.57*** 0.52 0.51 0.54* 0.54* 0.54* 0.49 0.52 0.47 0.49
Right Acc 0.58 0.57 0.57 0.51 0.51 0.52 0.55 0.55 0.58 0.51 0.53 0.54
Parietal F1 0.57** 0.57*** 0.56*** 0.50 0.50 0.52 0.53 0.53 0.55** 0.50 0.52 0.51
Left Acc 0.58 0.59 0.57 0.51 0.50 0.52 0.53 0.56 0.54 0.55 0.48 0.53
Occipital F1 0.57** 0.58*** 0.56** 0.51 0.50 0.52 0.51 0.54* 0.50 0.54* 0.47 0.50
Right Acc 0.60 0.56 0.56 0.50 0.53 0.50 0.57 0.54 0.55 0.54 0.53 0.53
Occipital F1 0.60*** 0.55** 0.56* 0.50 0.53 0.50 0.56** 0.53 0.52 0.53 0.51 0.49
Left Acc 0.59 0.56 0.57 0.55 0.51 0.51 0.56 0.56 0.53 0.57 0.55 0.60
Frontal F1 0.58*** 0.56*** 0.57*** 0.54* 0.50 0.51 0.55** 0.55** 0.50 0.55** 0.54* 0.56**
Right Acc 0.55 0.59 0.61 0.50 0.52 0.50 0.51 0.54 0.53 0.54 0.52 0.53
Frontal F1 0.55*** 0.59*** 0.61*** 0.49 0.52 0.49 0.50 0.53 0.49 0.53 0.51 0.49

MEG Acc 0.60 0.61 0.59 0.53 0.53 0.54 0.55 0.58 0.55 0.58 0.56 0.55
Early Fusion F1 0.60*** 0.61*** 0.59*** 0.52 0.53 0.54* 0.54* 0.58*** 0.53 0.55** 0.55** 0.53*
Peripheral Acc 0.55 0.60 0.50 0.55 0.59 0.56 0.56 0.60 0.56 0.57 0.55 0.57
Physiology F1 0.54* 0.59*** 0.50 0.54* 0.59*** 0.55** 0.55** 0.59*** 0.54* 0.56** 0.54* 0.54**
Facial Acc 0.58 0.64 0.53 0.60 0.61 0.53 0.56 0.61 0.55 0.58 0.60 0.55
Expressions F1 0.57** 0.64*** 0.53 0.59** 0.60*** 0.53 0.54** 0.61*** 0.54 0.56** 0.58*** 0.52
Multimedia Acc 0.58 0.64 0.33 0.85 0.73 0.57 0.52 0.61 0.53 0.62 0.68 0.58
Content F1 0.57 0.64 0.33 0.85 0.72 0.57 0.51 0.60*** 0.52 0.61*** 0.67*** 0.55*
Late Acc 0.70 0.79 0.66 0.85 0.82 0.66 0.66 0.73 0.72 0.73 0.76 0.74
Fusion F1 0.68*** 0.77*** 0.64*** 0.84*** 0.81*** 0.65*** 0.62*** 0.71*** 0.66*** 0.70*** 0.73*** 0.67***

Random Acc 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
F1 0.49 0.50 0.50 0.49 0.50 0.50 0.49 0.49 0.48 0.49 0.49 0.48

Majority Acc 0.58 0.00 0.53 0.57 0.53 0.00 0.57 0.53 0.60 0.52 0.54 0.66
F1 0.37 0.00 0.35 0.37 0.34 0.00 0.37 0.33 0.36 0.32 0.34 0.39

Class-ratio Acc 0.51 0.50 0.50 0.51 0.50 0.50 0.54 0.52 0.56 0.52 0.53 0.57
F1 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

+ve Class Mean 58.3% 50.0% 52.8% 57.5% 52.5% 50.0% 48.4% 49.3% 41.9% 49.3% 46.3% 45.6%
proportion STD - - - - - - 13.6% 9.5% 14.9% 10.7% 10.9% 19.0%

(Middle) Unimodal and multimodal classification results. (Bottom) Baseline comparisons along with the distribution of positive samples are tabulated. Mean F1
scores derived from a distribution significantly above chance level (0.50) are highlighted (*: p < 0.05, **: p < 0.01, ***: p < 0.001). PB, SB respectively denote
use of population and subject-based labels in the classification framework.

218 IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. 6, NO. 3, JULY-SEPTEMBER 2015



respectively are found to encode optimal information for
decoding the valence of movie and music stimuli. Best per-
formance for dominance is obtained with right-frontal lobe
features for movies, and left parietal for music.

Another salient observation is that despite the subjectiv-
ity in emotion perception and expression, reliable and
above-chance emotion recognition is achieved upon asso-
ciating the physiological responses of each user with
stimulus labels assigned by the population. For movie
clips in particular, much better classification performance
achieved under PB labeling as compared to SB labeling.
In practice, emotion (or genre) tags to movies or music
videos are attached based on the perception of the general
audience, and not on the basis of individual perception.
Likewise, for the purpose of affect recognition and emo-
tion elicitation, it would be desirable to work with con-
trol stimuli consistently capable of evoking the target
emotion from target users. Movie clips (and correspond-
ing user responses) compiled as part of DECAF are an
important contribution in this respect.

The obtained results also point to the complementar-
ity of different signals in encoding emotions. Consistent
with the findings in [15], MEG signals are seen to effec-
tively encode arousal and dominance, while peripheral
physiology signals efficiently encode valence. Facial
expressions are also seen to best encode valence, while
audio-visual features achieve best arousal recognition for
music clips with PB labels. This complementarity was
also evident when finding the best two and three infor-
mation modalities for recognizing valence and arousal
under PB labeling—considering feature pairs, MEG and
peripheral physiological features produced the best
arousal recognition for movie clips (F1 ¼ 0.66***), while
peripheral and audio-visual features best recognized
valence from music clips (F1 ¼ 0.83***). Facial activities
and multimedia content provided best recognition of
valence from movies (F1 ¼ 0.78***) and arousal from
music clips (F1 ¼ 0.87***). Considering triplets, the com-
bination of MEF, PP and MM consistently produced the
best F1-scores for movie-arousal (F1 ¼ 0.71***), movie-
valence (F1 ¼ 0.81***), music-arousal (F1 ¼ 0.87***),
music-valence (F1 ¼ 0.85***). F1-scores obtained by fus-
ing the outputs of all modalities are slightly lower than
those obtained from combinations of feature triplets, sug-
gesting that feature selection may be necessary for opti-
mal fusion results.

Finally, comparing the emotion recognition performance
with music and movie clips, superior F1-scores achieved
using MEG features for population-rated movie clips again
confirms that they serve as better control stimuli for affect

recognition studies. For music stimuli, relatively higher rec-
ognition is achieved with subject-specific labels, and the
best performance with PB labels is achieved for arousal
using multimedia features.

9 CONTINUOUS EMOTION ESTIMATION

DECAF also contains time-continuous arousal (A) and
valence (V) annotations for the 36 movie clips acquired
from seven experts, who were very familiar with the movie
clips, but were not part of the MEG study. While the user
ratings acquired in Section 4 are useful for recognizing the
general stimulus emotion, dynamic V-A ratings are used for
estimating the emotional highlight in a given clip. We show
how these annotations were utilized to predict V-A levels of
time-contiguous snippets using (i) multimedia audio-visual
(MM), and (ii) MEG features.

Experiments and results. We asked seven experts to pro-
vide per-second V-A ratings for 36 movie clips listed in
Table 1 using the G-Trace software [6]. The experts, who
could familiarize themselves with scene dynamics by
viewing the movie clips as many times as they wanted to
prior to rating them, were required to annotate the target
emotion meant to be evoked in the viewer (in terms of V-
A levels) for each second of the video. Upon rescaling the
annotations using z-score normalization, Kendall’s coeffi-
cient of concordance (W ) was used to measure the
dynamic inter-annotator agreement—overall W was
found to be 0.47 � 0.27 for arousal, and 0.64 � 0.18 for
valence, signifying good agreement. Re-computing W
over the first and second half of the clips, we observed W
to be 0.35 � 0.25, 0.43 � 0.28 and 0.58 � 0.24, 0.54 � 0.23
for V-A respectively, implying that expert assessments
were more consistent for the emotionally salient second
halves of the clip (all clips began with a neutral segment).
Finally, the median annotation was used as the gold stan-
dard dynamic rating for each clip. Dynamic V-A ratings
are illustrated in Fig. 8.

We then attempted prediction of dynamic V-A levels in
time-contiguous snippets derived from the movie clips
using (i) audio-visual and (ii) MEG features. Per-second fea-
tures extracted in Section 6 were used to this end. Apart
from Lasso sparse regression, we also employed Multi-task
learning (MTL) based regressors—given a set of T related
tasks (movie clips related in terms of V-A in this case), MTL

[34] seeks to jointly learn a set of weights W ¼ fWtgTt¼1,
where Wt models task t. MTL enables simultaneous learn-
ing of similarities as well as differences among tasks, lead-
ing to a more efficient model than learning each task
independently. In this work, we employed three MTL var-
iants from the MALSAR library [35]—multi-task Lasso,
Dirty MTL where the weight matrix W ¼ P þQ, with P
and Q denoting group-common and task-specific compo-
nents, and sparse graph-regularized MTL (or SR MTL),
where a priori knowledge on task-relatedness is incorpo-
rated in the learning process so that weight similarity is
only enforced among related tasks.

V-A weights for the 36 movie clips learned from audio-
visual (MM) features (concatenatation of audio and video
features) through the Dirty and SRMTL approaches are pre-
sented in Fig. 9. A-priori knowledge available in the form of

Fig. 8. Time-continuous A (left), V (right) ratings for Clip 36 in Table 1
from seven experts are plotted in cyan. Both continuous and static rat-
ings (red) are z-score normalized and are in the range [�3, 3].
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ground truth labels (Table 1) were used to group related
stimuli and input to the SR MTL algorithm. SR MTL
weights learnt for high and low arousal clips are shown in
the top row, while the bottom row presents weights learned
for high and low valence clips. MFCCs are found to be the
most salient audio features, while color and brightness
video features are the best predictors for both valence and
arousal. Concerning SR MTL outputs, visual excitement fea-
tures are found to be characteristic of high arousal clips,
while inter-frame motion is indicative of high-valence clips.

Finally, dynamic V-A level prediction performance using
MM and MEG features (average MEG response of the 30
DECAF participants was used here) on 5 and 15 second
snippets randomly extracted from the first and second half
from each of the movie clips is presented in Table 5—
remainder of the movie clips was used for model training.
The root mean square error (RMSE) measure is used for
comparison—evidently, larger prediction errors are noted
for snippets from the second half, and for 15-sec segments.
MTL considerably outperforms Lasso regression, implying
that jointly learning from features of multiple movie clips is
beneficial as compared to clip-wise learning, while slightly
better prediction performance is achieved with MM features
considering the best model for each condition.

10 CONCLUSION

The DECAF database compiled with the aim of evaluating
user-centered affect recognition with (i) MEG versus EEG
sensing, and (ii) movie versus music clips, is presented in
this paper. The increased spatial resolution of MEG enables
fine-grained analysis of cognitive responses over brain lobes
in turn aiding affect recognition, while coherence between
explicit ratings and implicit responses is greater across users
for movie clips, suggesting that they are better control stim-
uli for affect recognition studies. While classification results
for valence, arousal and dominance are presented with the
aim of comparing with [15], dominance may be hard to
qualify in a movie-watching context even if it has been
found to be relevant with regard to musical compositions.
This study was limited to sensor-space analyses of MEG
responses—source-space analysis was not performed, and
is left to future work. Finally, dynamic emotion prediction
with time-continuous emotion annotations available as part
of DECAF is demonstrated, and simultaneously learning
from multimedia/MEG features from all clips is found to
be more beneficial than learning one model per clip. Unlike
EEG, MEG is a relatively new technology, and with
improvements in techniques such as HPI-based MEG signal

TABLE 5
Valence/Arousal Prediction with Multimedia (MM) and MEG Features

First Second

5 s 15 s 5 s 15 s

Valence MM Lasso 1.98 � 1.25 3.07 � 1.48 1.68 � 0.18 2.81 � 0.97
MT-Lasso 1.00 � 0.05 1.66 � 0.54 1.18 � 0.14 2.03 � 0.71
Dirty MTL 1.11 � 0.06 1.79 � 0.55 1.27 � 0.16 2.10 � 0.69
SR MTL 1.09 � 0.09 1.55 � 0.39 1.89 � 0.13 2.80 � 0.74

MEG Lasso 1.30 � 0.09 1.87 � 0.46 2.03 � 0.25 2.93 � 0.78
MT-Lasso 1.32 � 0.09 1.98 � 0.54 1.54 � 0.21 2.47 � 0.81
Dirty MTL 1.42 � 0.10 2.44 � 0.82 1.51 � 0.19 2.44 � 0.82
SR MTL 1.09 � 0.05 1.58 � 0.41 2.07 � 0.17 2.84 � 0.69

Arousal MM Lasso 1.54 � 0.47 2.11 � 0.77 2.18 � 0.58 3.28 � 2.17
MT-Lasso 0.91 � 0.11 1.47 � 0.47 1.10 � 0.08 1.89 � 0.66
Dirty MTL 1.07 � 0.09 1.62 � 0.46 1.23 � 0.08 1.97 � 0.61
SR MTL 1.01 � 0.07 1.42 � 0.35 1.86 � 0.13 2.48 � 0.53

MEG Lasso 1.11 � 0.08 1.65 � 0.45 1.75 � 0.06 2.53 � 0.66
MT-Lasso 1.12 � 0.09 1.71 � 0.51 1.41 � 0.11 2.27 � 0.73
Dirty MTL 1.19 � 0.11 1.84 � 0.56 1.38 � 0.11 2.25 � 0.75
SR MTL 0.99 � 0.08 1.42 � 0.36 1.73 � 0.06 2.44 � 0.60

RMSE mean, standard deviation over four runs are reported. Range of V-A levels is [�3, 3]. Best model is shown in bold.

Fig. 9. Learned weights for arousal (top) and valence (bottom) for the movie clips with Dirty MTL and SR MTL. Audio-visual features over the entire
clip length were used for model training. Larger weights are denoted using darker shades. MM features (106 in total) are arranged in the order speci-
fied in Section 6. Best viewed under zoom.
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compensation, we believe that much higher recognition per-
formance than that achieved in this introductory work is
possible.
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