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Numerical Inversion of Circular arc Radon Transform
Tabish A. Syed, Venkateswaran P. Krishnan, and Jayanthi Sivaswamy

Abstract—Circular arc Radon (CAR) transforms associate to a
function, its integrals along arcs of circles. The inversion of such
transforms is of natural interest in several imaging modalities such
as thermoacoustic and photoacoustic tomography, ultrasound, and
intravascular imaging. Unlike the full circle counterpart—the cir-
cular Radon transform—which has attracted significant attention
in recent years, the CAR transforms are scarcely studied objects.
In this paper, we present an efficient algorithm for the numerical
inversion of the CAR transform with fixed angular span, for the
cases in which the support of the function lies entirely inside or
outside the acquisition circle. The numerical algorithm is nonit-
erative and is very efficient as the entire scheme, once processed,
can be stored and used repeatedly for reconstruction of images. A
modified numerical inversion algorithm is also presented to reduce
the artifacts in the reconstructed image which are induced due to
the limited angular span.

Index Terms—Circular arc Radon transform, circular Radon
transform, streak artifacts, trapezoidal product integration
method, truncated singular value decomposition, volterra integral
equations.

I. INTRODUCTION

C IRCULAR arc Radon (CAR) transforms involve the inte-
grals of a function on a plane along a family of circular

arcs. Our study of these transforms is motivated by its potential
applications in imaging modalities such as thermoacoustic and
photoacoustic tomography (TAT/PAT), ultrasound, radar and in-
travascular imaging.

In TAT/PAT the object of interest is irradiated by a short elec-
tromagnetic (EM) pulse. The irradiated tissue absorbs some of
the EM energy, with the amount depending on tissue character-
istics. Cancerous cells, for example, absorb more energy than
the healthy cells due to high metabolic activity. It is diagnos-
tically useful to know the EM absorption properties of tissues
[1]–[5]. The absorption of EM energy causes an increase in the
local temperature and makes the tissues expand and leads to
a pressure distribution in the tissue, which is roughly propor-
tional to the absorption function. The resultant pressure wave
p(t, x) propagates through the object and is measured by ultra-
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sonic receivers/transducers located on an observation surface P
surrounding the object. The goal of imaging is to use the mea-
sured data to reconstruct the initial pressure p(0, x). Assuming
that the background acoustic wave speed is a constant and that
the transducers are omni-directional, the measured data can be
modeled as a spherical Radon transform of the initial pressure
distribution p(0, x) with centers on the acquisition surface P
[6]. Furthermore, assuming linear integrating detectors [7] or
detectors focused to a plane [9], the 3-dimensional TAT/PAT
problem can be recast as a slice-by-slice inversion problem for
the 2-dimensional circular Radon transform.

However, in practical imaging systems, the aperture of detec-
tors may be limited. Therefore, we consider a scenario where
limited angular aperture detectors are used to collect data sim-
ilar to [8], [10]. Assuming that tomographic data collection is
restricted to a plane, the data measured by the limited angular
aperture detectors can be modeled as a CAR transform with
centers on the intersection of the plane with the acquisition
surface P .

The transform involved in this setup associates for a given
function, its integrals along circular arcs with fixed angular
span instead of integrals along full circles. Additionally, in some
imaging problems, full data in the radial direction may not be
available, for instance, in the case of imaging the surrounding
region of a bone. We consider these two imaging scenarios
together and they serve as the main motivation for our study of
CAR transforms in this paper. We recall that the case of partial
data in the radial direction for circular and elliptical Radon
transforms was considered in [11], [12]. Two related works
where circular arc means transform have appeared are in SAR
imaging [14] and Compton scattering tomography [15]. These
use different setups: In [14], data is acquired along semicircular
arcs of different radii with each semicircular arc being centred
on a line segment, while, in [15] data is acquired along circular
arcs with a chord of fixed length. These differ from the circular
acquisition geometry we consider where data is acquired along
arcs of different radii but with fixed angular span (see Fig. 1).

Our setup leads to a non-standard integral transform, de-
scribed in Section II, which has not been considered previously.
Specifically, in our situation, we have a Volterra integral equa-
tion of the first kind with a weakly singular kernel, in which
both the upper and lower limits of the integral are functions.
Integral equations of this kind, that is, ones with variable up-
per and lower limits, have been investigated in previous studies
[16]–[20]. However, to the best of our knowledge, the inte-
gral equation that we encounter in this work does not seem to
fit into these previously established results. In the current arti-
cle, we present an efficient numerical inversion of the Volterra
integral equation of the first kind appearing in the inversion
of the CAR transform. Our work is based on the numerical
algorithm for the inversion of a Volterra integral equation re-
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Fig. 1. Measurement Setup.

cently published in [21] that used the trapezoidal product in-
tegration method [22], [23]. The inversion techniques of [21]
have also been employed in the numerical inversion of a broken
ray transform [24]. Unlike the situation in [21], the difficulty
in our setup include the presence of edges of the circular arcs
(see Fig. 1) and restricted visibility (in the sense of microlocal
analysis [25], [26]) due to fixed angular span of the arcs. Due
to these reasons the reconstruction algorithm introduces severe
artifacts in the reconstructed image. Hence we propose an ar-
tifact reduction strategy in this paper. This paper is organized
as follows. Section II gives the relevant nonstandard Volterra
integral equations of the first kind involved in the study of CAR
transform. Section III gives the numerical algorithm for invert-
ing these Volterra integral equations of first kind. Section IV
presents details of some experiments done in numerical recon-
struction along with the results. V offers a solution to suppress
artifacts arising in numerical inversion of the CAR transform.
Finally, Section VI summarizes the paper.

II. CIRCULAR ARC RADON TRANSFORM

A. Function Supported Inside Acquisition Circle

Let (r, θ) denote the standard polar coordinates on the plane
and let f(r, θ) be a continuous compactly supported function on
[0,∞) × [0, 2π) such that f(r, 0) = f(r, 2π) for all r ≥ 0. Let
P (0, R) denote a circle (acquisition circle) of radius R centered
at the origin O = (0, 0) and parametrized as follows:

P (0, R) = {(R cos φ,R sinφ) : φ ∈ [0, 2π)}.

We consider the CAR transform (Rαf) (ρ, φ) of function
f(r, θ) along circular arcs of fixed angular span α. The details
of the setup are illustrated in Fig. 2.

Fig. 2. Setup for functions supported inside the acquisition circle.

Let C(ρ, φ) be the circle of radius ρ centered at Pφ =
(R cos φ,R sin φ). That is,

C(ρ, φ) = {(r, θ) ∈ [0,∞) × [0, 2π) : |x − Pφ | = ρ},

where x = (r cos θ, r sin θ). Let Aα (ρ, φ) be the arc of the circle
C(ρ, φ) with an angular span of α. This is given by

Aα (ρ, φ) = {(r, θ) ∈ [0,∞) × [0, 2π) : |x − Pφ | = ρ,

θ ∈ [φ − α, φ + α]}.

We define the CAR transform of f over the arc Aα (ρ, φ) as
follows:

gα (ρ, φ) = Rαf(ρ, φ) =
∫

Aα (ρ,φ)
f(r, θ) ds, (1)

where ds is the arc length measure on the circle C(ρ, φ) and
Aα (ρ, φ) is the arc over which the integral is computed (see
Fig. 2) with ρ ∈ (0, R − ε), ε > 0.

Since both f(r, θ) and gα (ρ, φ) are 2π periodic in the angular
variable, we may expand them into their respective Fourier series
as follows.:

f(r, θ) =
∞∑

n=−∞
fn (r) einθ (2)

gα (ρ, φ) =
∞∑

n=−∞
gα

n (ρ) einφ , (3)

where the coefficients fn (r), gα
n (ρ) are given as follows:

fn (r) =
1
2π

∫ 2π

0
f(r, θ) e−inθdθ

gα
n (ρ) =

1
2π

∫ 2π

0
gα (ρ, φ) e−inφdφ.
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Based on our assumption on the f , the Fourier series of f and gα

will converge almost everywhere [13]. We now use an approach
similar to one followed by [11] for circular Radon transform,
which is based on the classical work by Cormack [27] for the
linear Radon case.

Using the Fourier series expansion of function f(r, θ) in
Equation (1) we have

gα (ρ, φ) =
∞∑

n=−∞

∫
Aα (ρ,φ)

fn (r)einθdθ.

Since the arc Aα (φ, ρ) is symmetrical about φ we may rewrite
the integral as follows.

gα (ρ, φ) =
+∞∑

n=−∞

∫
A+

α (ρ,φ)
fn (r)

(
einθ + ein(2φ−θ)

)
ds

where A+
α (ρ, φ) is the part of arc corresponding to θ ≥ φ. Fur-

ther we observe that

einθ + ein(2φ−θ) = 2einφ cos n(θ − φ).

We therefore have

gα (ρ, φ) =
∞∑

n=−∞

∫
A+

α (ρ,φ)
fn (r) cos[n(θ − φ)]einφds.

Comparing with Equation (3) we have

gα
n (ρ) =

∫
A+

α (ρ,φ)
fn (r) cos[n(θ − φ)]ds. (4)

From Fig. 2, a straightforward calculation gives

θ − φ = arccos
(

r2 + R2 − ρ2

2rR

)
(5)

and

ds =
rdr

R

√
1 −

(
ρ2 +R2 −r 2

2ρR

)2
. (6)

Using Equations (5) and (6) in (4) we get

gα
n (ρ) =

∫ √
R2 +ρ2 −2Rρ cos α

R−ρ

×
r cos

(
n cos−1

(
r 2 +R2 −ρ2

2rR

))
fn (r)

R

√
1 −

(
ρ2 +R2 −r 2

2ρR

)2
dr (7)

Letting cos(n arccos x) = Tn (x) and u = R − r, we have

gα
n (ρ) =

∫ ρ

R−
√

R2 +ρ2 −2ρR cos α

Kn (ρ, u)√
ρ − u

Fn (u)du (8)

where

Fn (u) = fn (R − u)

and

Kn (ρ, u) =
2ρ(R − u)Tn

[
(R−u)2 +R2 −ρ2

2R(R−u)

]
√

(u + ρ)(2R + ρ − u)(2R − ρ − u)
. (9)

Fig. 3. Setup for functions supported outside the acquisition circle.

B. Function Supported Outside Acquisition Circle

Next we consider the reconstruction of functions supported
outside the acquisition circle. More precisely, we consider func-
tions supported inside the annular region A(R1 , R2) where
R1 = R is the inner radius and R2 = 3R is the outer radius
of the annulus. R is the radius of the acquisition circle P . The
acquisition setup for this case is illustrated in Fig. 3.

A similar derivation as above leads to the following Volterra
integral equation of the first kind:

gα
n (ρ) =

∫ R+ρ

√
R2 +ρ2 +2ρR cos α

rTn (R2 +r 2 −ρ2

2rR )√
1 −

(
R2 +ρ2 −r 2

2ρR

)2
fn (r) dr.

(10)
Substituting u = r − R we have

gα
n (ρ) =

∫ ρ

√
R2 +ρ2 +2ρR cos α −R

Fn (u) · Kn (ρ, u)√
ρ − u

du (11)

where Fn (u) = f(R + u) and

Kn (ρ, u) =
2ρ(R − u) · Tn ( (R−u)2 +R2 −ρ2

2R(R−u) )√
(u + ρ)(2R + ρ − u)(2R − ρ − u)

.

Note that in this case, the kernel of the integral transform is the
same as in Equation (8), but, as is to be expected, the limits of
the integral are different.

The analogue of Equations (8) and (11) arising in full circular
Radon transform are Volterra integral equations of first kind,
where one of the limits is fixed. These were studied in [11], [12].
An exact solution of such equations arising in full circular Radon
transform is known. However, the exact solution is numerically
unstable. An efficient numerical algorithm for the inversion of
Volterra integral equations of the first kind appearing in [11],
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[12] recently appeared in [21]. In the case under consideration,
however, both the limits of integration are variable, and we are
unable to address the question of existence and uniqueness of
solutions to such integral equations in this work. Instead, we
discretize the integral equation following the algorithm given
in [21]. For this discrete problem, a unique solution exists, and
we present an efficient numerical inversion method to deal with
the inversion of such nonstandard Volterra integral equations
of the first kind. The presence of edges of the circular arcs
in the domain introduces artifacts in the reconstructed images.
Furthermore, the fixed angular span α places restrictions on
the edges that are visible, leading to a streak-like artifacts. We
propose an artifact suppression strategy that reduces some of
these artifacts in this paper. To invert the transform, we directly
discretize Equation (8) and invert using a Truncated Singular
value Decomposition (TSVD); a method originally proposed in
[28]. In the next section, we explain the numerical inversion
algorithm as well as a method for the suppression of artifacts.

III. NUMERICAL INVERSION

A. Forward Transform

The forward transform is computed by discretizing Equation
(1). It may be noted that we consider data till half of the dimater
only. The discrete transform is computed for ρ ∈ [0, R − ερ ],
ερ > 0. We have

gα (ρk , φp) =
∑

(xn ,ym )∈Ak , p

f(xn , ym ), (12)

where

Ak,p =
{

(xn , ym ) :
√

(xn − R cos φp)2 + (ym − R sin φp)2

= ρ2
k , φp − α ≤ arctan

(
ym

xn

)
≤ φp + α

}
,

ρk = kh, k = 0, 1, . . . ,M − 1, h =
R − ερ

M
,

and

φp = pl, j = 0, 1, . . . , N − 1, l =
2π

N
.

Note that gα (ρk , φp) is an M × N matrix. Fig. 4 shows an
image f(x, y) and the corresponding CAR transform gα for
α = 25◦ and M = N = 300.

B. Computation of Fourier Series

Given the data matrix gα (ρk , φp), we compute the discrete
Fourier series coefficients gα

n using the FFT algorithm. We as-

Fig. 4. Sample image and corresponding Circular arc Radon transform for
α = 25◦. The dotted circle surrounding the image represents the acquisition
circle.

sume the matrix gα (ρk , φp) to be real. Note that gα
n is a vector

of length M given by

gα
n (ρk ) =

N −1∑
p=0

gα (ρk , φp) · e−i2πn p
N .

C. Computation of Forward Transformation Matrix

Equation (8) can be discretized and written in the matrix form
as follows

gα
n = BnFn (13)

where

gα
n =

⎛
⎜⎜⎜⎜⎝

gα
n (ρ0)

.

.

.
gα

n (ρM −1)

⎞
⎟⎟⎟⎟⎠ Fn =

⎛
⎜⎜⎜⎜⎝

Fn (ρ0)
.
.
.

Fn (ρM −1)

⎞
⎟⎟⎟⎟⎠

Matrix Bn is a piecewise linear, discrete approximation of
the integral kernel in Equation (8), gα

n is the Fourier series
coefficients of the circular arc Radon data and Fn the Fourier
series coefficients of the original unknown function. The matrix
Bn is computed using the trapezoidal rule [22], [23]. The method
essentially breaks the full integral into a sum of M integrals.
The function is approximated to be linear in each interval so
that

√
h

⎧⎨
⎩

k∑
q= l

bkqKn (ρk , ρq )Fn (ρq )

⎫⎬
⎭ = gn (ρk ) (14)

where unnumbered eqn. shown at the bottom of the page, and
l = max(0, �R −

√
R2 + ρ2

k − 2ρkR cos α	) where �x	 is the
greatest integer less than equal to x.

The detailed derivation of Equation (14) is given in
Appendix A. From Equation (14) it is clear that the entries

bkq =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

4
3
{(k − q + 1)

3
2 +

4
3
(k − q)

3
2 + 2(k − q)

1
2 q = l

4
3

(
(k − q + 1)

3
2 − 2(k − q)

3
2 + (k − q − 1)

3
2

)
q = l + 1, . . . k − 1.

4
3

q = k.
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of matrix Bn are independent of both the data gα (ρk , φp) as
well as the function f to be recovered. Hence, the matrix Bn

may be pre-computed and stored.
From Equation (14) we have

[Bn ]kk =
4
3

√
h 
= 0 also, [Bn ]kq = 0 ∀ q > k

⇒ det(Bn ) =
(

4
3

√
h

)M


= 0.

Therefore solution Fn of Equation (13) exists and is unique.
However, the existence and uniqueness of solution in the con-
tinuous case (Equation 8) does not follow from the discrete case
and a proof for the continuous case is an open question.

While the Bn matrix is invertible, in practice, it is ill-
conditioned. In order to obtain a numerically stable inverse, we
use Truncated Singular Value Decomposition (TSVD) based
pseudo-inverse of the matrix. The TSVD based method is ex-
plained briefly in the next section.

D. Inversion using Truncated Singular Value Decomposition

TSVD is a commonly used technique to compute the pseudo-
inverse of matrices. This method was introduced in [28] as a
numerically stable method for solving least squares problem.
The method involves the following steps.

1) Consider the singular value decomposition of matrix Bn

such that Bn = UDnV T . Dn is an n × n diagonal ma-
trix of singular values of Bn and U , V are orthogonal
matrices consisting of left and right singular vectors of
Bn respectively.

2) A rank r approximation Bn,r of the matrix Bn , is given
by Bn,r = UDrV

T , where Dr is a diagonal matrix with

Dr (i, i) =

{
Dn (i, i) = σi, i ≤ r

0 i > r.

3) Then the rank r inverse of the matrix is given by B−1
n,r =

V D−1
r UT where,

D−1
i,i =

⎧⎪⎨
⎪⎩

1
σi

i < r

0 otherwise

4) Using B−1
n,r in Equation 13 we have

Fn ≈ B−1
n,r gn

5) The approximation of original function f(r, θ) may be
obtained by computing inverse Fourier transform of Fn .

f(rk , θn ) =
N −1∑
p=0

Fn (R − ρk , φp) · ei2πn p
N . (15)

The final image f(x, y) in the Cartesian coordinates is ob-
tained by interpolating the the polar image f(rk , θn ) onto the
Cartesian grid using bilinear interpolation. Algorithm 1 sum-
marizes the steps involved in the numerical inversion.

Fig. 5. Phantoms used in the experiments. The dotted circle represents the
acquisition circle. (a) Phantom with support inside, (b) Phantom with support
outside.

IV. EXPERIMENTS AND RESULTS

We use the strategy discussed in Section III to reconstruct
analytical phantoms shown in Fig. 5. During reconstruction, the
view angle α will be determined by the transducer, while the
discretisation of angular and radial variables are chosen as part
of an imaging protocol depending on constraints on acquisition
time, sensor bandwidth and sensitivity.

At the algorithm level, a key parameter affecting the qual-
ity of reconstruction is the rank r of the matrix Bn,r . The
matrix Bn is non-singular, however due to the high condi-
tion number

(
O(1015)

)
, a full rank (r = n) inversion will be

unstable and will not result in a meaningful reconstruction.
Therefore, an r-rank (with r < n,) approximation of the matrix
Bn is one approach to stable inversion. Such a low-rank ap-
proximation is achieved in the proposed numerical scheme via
TSVD.

The SVD decomposes a signal f into a sum of harmonics
f =

∑n
i=1 σiuiv

T
i . Consequently, setting σi = 0 for i > r in

the TSVD of Bn,r will lower the number of harmonics in the
reconstructed image leading to ringing artifacts. Fig. 6 shows
reconstruction for a fixed view angle α = 31◦ with different r.
The results are as expected, with good quality reconstruction
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Fig. 6. Effect of rank r of matrix Bn ,r on the reconstruction quality. n = 300
in all the above examples. (a) Rank = n/6, (b) Rank = n/2, (c) Rank = 9n/10,
(d) Rank = n.

Fig. 7. Effect of rank r of matrix Bn ,r for support outside case. n = 300 in
all examples. (a) Rank = n/6, (b) Rank = n/2, (c) Rank = 9n/10, (d) Rank = n.

seen for r = 0.9n and visible degradation in the quality with
a reduction in r. Specifically, severe ringing artifacts can be
seen in the result when r = 0.5n or lower. Thus, there is a
tradeoff between rank and quality of reconstruction. Fig. 7 shows
a similar relation for the case of object supported outside the
acquisition circle.

Despite the fact that the view angle is a parameter that is
generally fixed for a particular imaging setup, it is of interest
to gain insight into the relationship between this parameter and
the quality of reconstruction. In general, limiting the view by
restricting the angular span α should introduce artifacts, as all
edges in the object may not be visible. This notion of visibil-
ity can be explained as follows. If the data set C representing
the curves of integration, are smooth objects such as lines, full
circles, spheres etc., then roughly speaking, for an edge in the
image to be stably reconstructed, there should be an element of
C tangential to the edge. A formal justification of this statement
is possible with the tools of Fourier integral operator theory
and microlocal analysis [25], [29], [30]. We refer to all edges
which are tangential to the interiors of the arcs in the data set C,
as visible edges. Edges which fail to satisfy this condition are
not reconstructed stably. Such a principle, for our set up, can
be applied for edges at points where the interiors of the arcs
satisfy the aforementioned tangential condition. However, due
to the corners of the arcs inside the domain, we expect artifacts
to be present in the reconstructed image. A rigorous study of the
microlocal analysis of CAR transform, in particular, the charac-
terization of the added artifacts into the reconstructed image is
an important and challenging problem and we hope to address
this in a future work. Fig. 10 shows reconstruction at r = 0.9n
for various α. We observe from these results that, as expected,
the reconstruction of the visible edges is sharp, whereas the
other edges are blurred out. As the angle α increases, the visible
region of edges increases, and hence most of the edges in the
images with large α are reconstructed. Larger α corresponds
to a wider arc, and therefore more edges are tangential to the
curve of integration. This dependence on α is clearly observed
in the lower ellipse in Fig. 10. As the span of arc increases,
some arcs become tangential to the lower boundary of the el-
lipse. Hence we observe that the lower portion of the ellipse
becomes sharper as α increases. A similar behavior is also ob-
served in Fig. 11 where the support of the function is outside
the acquisition circle. In this Figure, there are circular arcs in
the data set tangential to the edges in a neighborhood of the
radial direction whereas none is tangential in the complement
of such directions. Therefore, these edges are blurred out and
the reconstruction of the edges does not appear to improve with
increasing α.

We also observe various streaks and a strong circular artifact
whose location changes with α. These artifacts are to be ex-
pected as we are dealing with a limited view problem. Handling
of these artifacts to improve the quality of reconstructed image
is considered in the next section.

V. SUPPRESSION OF ARTIFACTS

To understand the source of artifacts, and subsequent suppres-
sion in the reconstructed images we re-write the CAR transform
(equation 1) as follows.

gα (ρ, φ) = Rαf(ρ, φ) =
∫

C (ρ,φ)
χAf(r, θ) ds, (16)
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Fig. 8. Location of sharp artifact(red circle) with respect to the arcs(orange).

where, χA is the characteristic function of the arc Aα (ρ, φ) such
that

χA =

{
1, (r, θ) ∈ Aα (ρ, φ)

0, else

The function χA truncates the full data f(r, θ) before com-
putation of the integral. χA is a Heaviside type function with
sharp cut-off at the edges of the arc. Since the data is measured
only for ρ ∈ (0, R − ερ), there is also a similar Heaviside type
truncation function in the radial direction, with hard truncation
at ρ = R − ερ .

It should be noted that χA ≡ 1 for the whole circle C(ρ, φ)
in the circular Radon transform while, χA = 0 beyond the arc
Aα (ρ, φ) in the CAR transform. The sharp truncation in data
should lead to strong streaking artifacts in the reconstructed re-
sult. Moreover, a strong circular artifact is also observed along
the edges of arcs corresponding to largest value of ρ as de-
picted in Fig. 8. The double penalization in the form of hard
truncation of data i) at the edges of the arc in the angular direc-
tion and ii) in the radial direction for ρ = R − ερ , we believe,
is the reason for the sharp circular artifact at a specific radial
location.

In order to suppress the artifacts, we modify the character-
istic function to χ̂A , so that it decays smoothly instead of go-
ing to 0 abruptly at the edge. This smooth decay serves to
remove the singularity due to the Heaviside-type truncation. We

choose a smooth, squared exponential decay of the form e
−x 2

σ 2 .
Specifically, the values of the matrix Bn are weighted by an

exponential decay factor of the form e
−( j −m ) 2

σ 2 as explained in
Algorithm 2.

Here, σ controls the degree of smoothing. A large σ results
in excessive smoothing and hence lead to blurring of the true
edges of the reconstructed image. A low σ results in mimimal

Fig. 9. Structure of matrix Bn . The original matrix (left) has a sharp cut off
in the entries of Bn , while in the modified matrix (right) they decay smoothly.
(a) original matrix Structure, (b) Modified matrix Structure.

smoothing, preserves edge definition but also in retention of
artifacts. In our experiments, we chose σ = 40 which suppresses
the strong streak artifacts, (see Fig. 10), whilst retaining the
definition of true edges in the image. Algorithm 2 is a modified
version of the numerical inversion Algorithm 1 and includes
artifact suppression with χ̂A .

As noted in Section III, matrix Bn is a lower triangular matrix.
Fig. 9 is a visualization (as an image) of the structure of matrix
Bn in the original and the modified form. Here, the white/black
pixels indicate non-zero/zero entries. The modification of the
transformation matrix leads to a slow decay of numerical values
as shown in Fig. 9 with grey coloured pixels. This helps smooth
the sharp circular artifacts generated in the inversion process.
Note that only the matrix Bn , which is constant for a given setup,
is changed in the modified algorithm. The data, gα (ρ, φ) is not
changed or pre-processed in any form. Fig. 10, 11 show the
reconstructed images after artifact suppression is performed for
the cases of function supported inside and outside, respectively.
We observe that using the modified algorithm, the sharp circular
artifacts are significantly suppressed while the true edges of the
image are retained.
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Fig. 10. Reconstructed images corresponding to different α before (column
1), and after artifact suppression (column 2), for the support inside case.
(a) α = 21, (b) α = 21, (c) α = 31, (d) α = 31, (e) α = 46, (f) α = 46,
(g) α = 76, (h) α = 76.

VI. CONCLUSION

We presented a numerical algorithm to invert CAR transform
arising in some imaging applications. The numerical algorithm
required the solution of ill-conditioned matrix problems which
was accomplished using a TSVD method. The entries of the
matrix are independent of the image function, and therefore the
TSVD need to be done only once and can be used repeatedly for
image reconstruction leading to an efficient image reconstruc-
tion algorithm.

Fig. 11. Reconstructed images corresponding to different α before (column
1), and after artifact suppression (column 2), for the support outside case.
(a) α = 21, (b) α = 21, (c) α = 31, (d) α = 31, (e) α = 46, (f) α = 46,
(g) α = 76, (h) α = 76.

Compared to the inversion of full circular Radon transform,
the quality of image reconstruction in the case of CAR transform
is poorer due to the following reasons. (a) The edges of the arcs
of circles introduce strong artifacts. (b) Several edges of the
image are invisible due to the limit in the angular span of the
arcs. These lead to some “streak” and circular artifacts. We also
presented a numerical algorithm for handling this problem and
demonstrated it helps reduce some of these artifacts.
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bkq =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

4
3
{(k − q + 1)

3
2 +

4
3
(k − q)

3
2 + 2(k − q)

1
2 q = l

4
3

(
(k − q + 1)

3
2 − 2(k − q)

3
2 + (k − q − 1)

3
2

)
q = l + 1, . . . k − 1.

4
3

q = k.

The theoretical inversion of CAR leads to some very inter-
esting non-standard Volterra integral equations of the first kind
with weakly singular kernel, that to the best of our knowledge,
have not been dealt with in current literature. We hope to address
them in our future work.
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APPENDIX A
TRAPEZOIDAL INTEGRATION

The Fourier coefficients of the forward transform are given
by equation 8 restated below.

gα
n (ρ) =

∫ ρ

R−
√

R2 +ρ2 −2ρR cos α

Fn (u)Kn (ρ, u)√
ρ − u

dr.

The integral is approximated by the sum in Equation (14). The
sum is obtained by the trapezoidal product integration method
proposed in [22], [23] (see also [21]) which we briefly outline
below. Let M be a positive integer and ρl = lh, l = 0, . . . , M
and h = R−ε

M be a discretization of radial variable ρ ∈ [0, R − ε]
The above equation may be rewriten as follows

gα
n (ρk ) =

k∑
q=1

∫ ρq

ρq −1

Fn (u)Kn (ρ, u)√
ρ − u

du.

We approximate Fn (u) · Kn (ρ, u) by linear function in the
interval [ρq−1 , ρq ], such that

Fn (u)Kn (ρ, u) ≈ Fn (ρq−1)Kn (ρk , ρq−1)
ρq − u

h

+ Fn (ρq )Kn (ρk , ρq )
u − ρq−1

h
.

Here the function takes values Fn (ρq−1)Kn (ρk , ρq−1) and
Fn (ρq )Kn (ρk , ρq ) at the end points of the interval respectively.
Hence we have

gα
n (ρk ) =

k∑
q=1

∫ ρq

ρq −1

1√
ρ − u

[
Fn (ρq−1)Kn (ρk , ρq−1)

ρq − u

h

+ Fn (ρq )Kn (ρk , ρq )
u − ρq−1

h

]
du.

Simple integration gives

h
−3
2

∫ ρq

ρq −1

ρq − u√
ρk − u

du = −4
3
{(k − q + 1)

3
2 − (k − q)

3
2 }

+ 2(k − q + 1)
1
2

and,

h
−3
2

∫ ρq

ρq −1

u − ρq−1√
ρk − u

du =
4
3
{(k − q + 1)

3
2 − (k − q)

3
2 }

− 2(k − q)
1
2 .

Hence we have

gα
n (ρk ) = √

h
k∑

q = l

[
− 4

3 {(k−q+1)
3
2 −(k−q)

3
2 }+2(k−q+1)

1
2

]

× Fn (ρq−1)Kn (ρk , ρq−1)

+
[4
3
{(k − q + 1)

3
2 − (k − q)

3
2 } − 2(k − q)

1
2

]

× Fn (ρq )Kn (ρk , ρq ).

From the support assumption, we have Fn (p) = 0 ∀p ≤ 0. Then
the above expression simplifies to the following expression.

√
h

⎧⎨
⎩

k∑
q= l

bkqKn (ρk , ρq )Fn (ρq )

⎫⎬
⎭ = gn (ρk )

where unnumbered eqn. shown at the top of the page, and

l = max
(
0, �R −

√
R2 + ρ2

k − 2ρkR cos α	
)

where �x	 is

the greatest integer less than equal to x.
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[30] F. Trèves, Introduction to Pseudodifferential and Fourier Integral Opera-
tors. vol. 2. New York, NY, USA: Plenum Press, 1980.

Tabish A. Syed received the B.Tech. degree in elec-
tronics and communication engineering (Hons.) from
the International Institute of Information Technology
(IIIT), Hyderabad, India, in 2014 and the M.S. (by
research) degree in electronics and communication
engineering from the Center for Visual Information
Technology, IIIT, in 2016. He is currently working
toward the Ph.D. degree at the Center for Intelligent
Machines, McGill university, Montreal, QC, Canada.
His research interests include signal processing, com-
puted tomography, and mathematical problems of

imaging.

Venkateswaran P. Krishnan received the Ph.D.
degree in mathematics from the University of
Washington, Seattle, WA, USA, in 2007. He is cur-
rently at TIFR Centre for Applicable Mathematics,
Bangalore, India. His research interests include in-
verse problems, partial differential equations, image
reconstruction, and microlocal analysis.

Jayanthi Sivaswamy received the Ph.D. in electrical engineering from Syracuse
University, Syracuse, NY, USA. Since 2001, she has been with International
Institute of Information Technology, Hyderabad, India. Prior to that, she was
with the University of Auckland, Auckland, New Zealand. Her research interests
include the area of medical image analysis, CAD algorithm development in
particular.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


