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Abstract—Recently, head pose estimation (HPE) from low-resolution surveillance data has gained in importance. However,

monocular and multi-view HPE approaches still work poorly under target motion, as facial appearance distorts owing to camera

perspective and scale changes when a person moves around. To this end, we propose FEGA-MTL, a novel framework based on

Multi-Task Learning (MTL) for classifying the head pose of a person who moves freely in an environment monitored by multiple, large

field-of-view surveillance cameras. Upon partitioning the monitored scene into a dense uniform spatial grid, FEGA-MTL

simultaneously clusters grid partitions into regions with similar facial appearance, while learning region-specific head pose

classifiers. In the learning phase, guided by two graphs which a-priori model the similarity among (1) grid partitions based on camera

geometry and (2) head pose classes, FEGA-MTL derives the optimal scene partitioning and associated pose classifiers. Upon

determining the target’s position using a person tracker at test time, the corresponding region-specific classifier is invoked for HPE.

The FEGA-MTL framework naturally extends to a weakly supervised setting where the target’s walking direction is employed as a

proxy in lieu of head orientation. Experiments confirm that FEGA-MTL significantly outperforms competing single-task and multi-task

learning methods in multi-view settings.

Index Terms—Multi-task learning, graph guided, head pose classification, video surveillance, multi-camera systems

Ç

1 INTRODUCTION

MOTIVATED by several applications such as video sur-
veillance, human-computer interaction and human

behavior analysis, extensive research has been devoted to
head pose estimation (HPE) recently [1]. Several approaches
precisely compute head pose when the target is close to the
camera, as high resolution images enable accurate facial fea-
ture extraction and depth information can be also integrated
[2], [3]. Nevertheless, despite recent advancements [4], [5],
[6], [7], HPE from surveillance videos is challenging as faces
are captured at very low resolution and appear blurred.

HPE accuracy on surveillance data can be improved by
fusing information from multiple cameras as monocular
systems are often insufficient for analyzing human behavior
in large environments. Surprisingly, only a few HPE meth-
ods consider a multi-view setting [7], [8], [9], [10] and typi-
cally compute head pose as a person (target) rotates in-
place [8], [9]. However, the ability to estimate head pose of
moving targets is key as head orientation is primarily
employed as a surrogate for gaze direction to infer social

interactions [11]. HPE of moving targets is a challenging
problem as illustrated in Fig. 1: facial appearance of a per-
son exhibiting identical 3D head pose at three different
scene locations varies considerably due to perspective and
scale. As the target moves, the face may appear larger/
smaller and some facial regions can become occluded/visi-
ble. These appearance changes severely impede HPE per-
formance using traditional approaches [7].

In this paper, we explicitly tackle the problem of multi-
view head pose classification under target motion. To our knowl-
edge, only [12] (monocular) and [7] (multi-view) have
explicitly studied appearance variation under target
motion, while [10] is another multi-view approach that can
accomplish the same. To tackle motion-induced appearance
variations within a scene, [12] employs unsupervised spec-
tral clustering to segment the scene into multiple regions
and trains region-wise pose estimators. In [10], multi-view
HPE under motion is performed by determining the face
location on the unwrapped spherical head texture map.
However, the texture synthesis is expensive and uses visual
information from nine camera views. Transfer learning for
multi-view HPE is proposed in [7], but this approach does
not explicitly learn the relationship between head pose,
scene location and facial appearance.

Differently, in this paper we present FlExible GrAph-
guided Multi-Task Learning or FEGA-MTL for multi-view
head pose classification under target motion. Given a set of
related tasks, Multi-task Learning (MTL) [13] exploits their
similarity to jointly learn a set of classifiers. The intuition
behind FEGA-MTL is simple: upon dividing the scene
ground plane into a uniform grid, one can expect some
similarities as well as differences in facial appearance for a
given head pose across grid partitions. For learning the
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pose-appearance relationship within each grid segment as a
task, we invoke MTL for learning a set of region-specific
head pose classifiers (related tasks). Using MTL over tradi-
tional approaches for HPE under motion is advantageous
as: (1) Employing a single classifier for the entire scene is
inefficient as perspective and scale-based face appearance
variations would impede performance, and (2) Learning an
independent classifier for each grid segment is expensive
and will require a large number of training samples.
Instead, only few examples from each grid segment are
required by FEGA-MTL, which simultaneously learns the
pose-appearance relationship across all partitions of a dense
uniform 2D spatial grid.

Also, assuming that facial appearances among all parti-
tions are related may negatively impact head pose classifica-
tion performance. Therefore, FEGA-MTL flexibly discovers
appearance-wise related grid clusters learning from both a-
priori knowledge and facial features extracted from training
examples. Two graphswhich respectively define appearance
similarity among (i) grid partitions for a given head pose
based on camera geometry, and (ii) head pose classes, model
prior knowledge and guide the algorithm to output the opti-
mal spatial partitioning and an associated set of classifiers.
For head pose classification, upon determining the target
position using a person tracker, the corresponding region-
specific classifier is invoked. Thanks to the use of a sparse
regularizer, heterogeneous descriptors with varying dis-
criminative power can be effectively utilized for learning.
We also extend the FEGA-MTL framework to employ walk-
ing direction as aweak label and eliminate the need for anno-
tated data in line with prior works [12], [14]. Since motion
direction is a noisy cue, we propose a novel strategy to dis-
card spurious annotations and only retain those samples
with consistent head and bodymotion formodel training.

While both FEGA-MTL and the method in [12] train mul-
tiple region-specific classifiers, the two can be contrasted as
follows: unsupervised spectral clustering is employed on
monocular video in [12] to segment the scene into appear-
ance-wise similar regions for HPE, and the consequent limi-
tation is that sufficient examples are required from each of
the scene regions to achieve good accuracy. For example,
high HPE errors are observed when more than five region-
specific classifiers are trained with 1,000-8,000 examples
in [12]. Instead, our FEGA-MTL framework exploits multi-
camera geometry to a-priori estimate appearance distortion
as the target moves from one grid segment to another, and

learns with few examples. A multi-camera setup also ena-
bles precise target tracking and face cropping therefrom.
Finally, the use of camera geometry allows for fine-grained
scene segmentation (Fig. 3) and learning of relationships
among the region-specific classifiers, which is advantageous
vis-�a-vis learning a set of independent classifiers as dis-
cussed in Section 5.

We present extensive evaluation to demonstrate the
superiority of FEGA-MTL over competing multi-view HPE
and MTL approaches. Overall, this paper makes the follow-
ing contributions: (1) It is one of the few works addressing
multi-view head pose classification under target motion
and, to our knowledge, the first work to use MTL to this
end; (2) A novel graph-guided MTL is proposed for simulta-
neously learning a set of region-specific classifiers and the
optimal scene partitioning. Our approach seamlessly con-
nects camera geometry (traditional computer vision) with
machine learning for HPE; (3) FEGA-MTL can also operate
in an unsupervised setting, where head pose labels derived
from motion trajectories are used for learning.

The paper is organized as follows. Section 2 reviews
related work. Section 3 introduces our approach, describes
pre-processing steps, the training data collection process,
and the region and pose graphs that are employed to guide
the learning algorithm. Section 4 describes the FEGA-MTL
algorithm. Experimental evaluation is presented in Section 5,
and conclusions are stated in Section 6.

2 RELATED WORK

We now review related work on a) HPE from low-resolution
surveillance data and b)multi-task learning.

2.1 HPE from Low Resolution Data

WhileHPE from high-resolution images and videos has been
studied extensively [1], determining the coarse head orienta-
tion (i.e., head pose classification) from surveillance data has
been attempted only recently. Pose classification using a
Kullback-Leibler distance-based facial descriptor is pro-
posed in [5]. The array-of-covariances (ARCO) descriptor [6]
enables reliable HPE in the presence of occlusions, scale and
illumination changes. Methods presented in [4], [14] use
proxy information (e.g., body pose, motion direction) to esti-
mate head pose with minimal training data. However, these
algorithms work on monocular video, which is insufficient
for studying human behavior in large spaces.

Fig. 1. HPE under target motion. Face crops corresponding to three different positions of a target exhibiting the same 3D head pose are shown in
the bottom inset. Yellow and red arrows respectively denote head pose and motion direction. Significant changes in facial appearance can be
observed as the target moves closer to the camera. These appearance differences severely impede performance of traditional head pose estimation
(or classification) methods. Figure is best viewed in color and under zoom.
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HPE from multi-view video has been studied in [7], [8],
[9], [10], [15]. A particle filter is combined with two neural
networks for independently estimating head pan and tilt
in [9]. View-specific probability distributions for pose classi-
fication are computed using SVMs in [8], and are fused to
obtain a more precise pose estimate. Both these works
attempt HPE as a person rotates in-place, and motion-
induced appearance variations are not considered. Multi-
view HPE under motion is addressed in [10] by determining
the face location in the unfolded spherical texture map syn-
thesized using nine camera views. A transfer learning
approach to compute head pose under motion in a four-
view setting is presented in [7]. Weights denoting saliency
of face patches for pose classification are first learned from
source examples corresponding to stationary targets, and
adapted using an online learning algorithm to the target sce-
nario with moving targets. However, [7] does not seek to
explicitly learn the relationship between head pose, target
position and facial appearance unlike this work.

Two recent works that have expressly addressed HPE
under target motion are [15] and [12]. Scene-adaptive HPE
is proposed in [12]. The scene is segmented into multiple
regions employing spectral clustering to tackle facial
appearance variation with motion, and region-wise head
pose classifiers are independently learned. Limitations of
this approach are that (i) sufficient examples are required to
identify scene segments, and (ii) only a coarse-grained scene
segmentation is achievable. In contrast, the FEGA-MTL
framework relies on camera geometry and few training
examples for scene segmentation, and appearance-wise sim-
ilar scene regions are modeled via MTL parameters. This
paper builds on [15], where explicit learning of facial
appearance variations over grid segments for multi-view
pose classification under target motion is proposed using
FEGA-MTL. This paper extends [15], as a more efficient
solver with respect to the one presented in [15] is proposed
for the underlying optimization problem of FEGA-MTL and
an unsupervised setting is also considered in order to obvi-
ate the need for annotated training data (head pose labels
are inferred via motion direction and a warping-based filter-
ing technique is employed to extract sequences with consis-
tent head and body motion).

2.2 Multi-Task Learning

Multi-task learning has recently been employed in image
classification [16], visual tracking [17], multi-view action
recognition [18] and egocentric daily activity recogni-
tion [19]. Given a set of related tasks, MTL [13] seeks to
simultaneously learn a set of task-specific classification or
regression models. The intuition behind MTL is that a joint
learning procedure accounting for task relationships is
more efficient than learning each task separately. Tradi-
tional MTL methods [20], [21] assume that all the tasks are
related and their dependencies can be modeled by a set of
latent variables. However, in many real world applications
such as HPE under target motion, not all tasks are related,
and enforcing erroneous (or non-existent) dependencies
may lead to negative knowledge transfer.

Recently, sophisticated methods have been introduced
to counter this problem. These methods assume a-priori
knowledge (e.g., a graph) defining task dependencies [22],
or learn task relationships in conjunction with task-spe-
cific parameters [23], [24], [25], [26], [27]. Among these,
our work is most similar to [22] and our algorithm adopts
two graphs (one defining appearance similarity among
grid segments, and the other relating head pose classes)
to specify task dependencies. FEGA-MTL further
improves over [22] by automatically discovering task rela-
tionships to iteratively refine the initial graph structure.
For multi-view HPE under motion, the graph structure is
very useful as it defines inter-region facial appearance
similarity based on camera geometry. The FEGA-MTL
framework is described below.

3 MULTI-VIEW HEAD POSE ESTIMATION

3.1 System Overview

The proposed approach outlined in Fig. 2 comprises two
main steps: a training phase where multiple region-specific
classifiers are learned with FEGA-MTL and a test phase,
where head pose classification is performed on novel
instances. Our approach relies on a multi-view particle filter
tracker [28] for target position estimation and head localiza-
tion. The output of the tracker is used both in the training
and test phases.

Fig. 2. FEGA-MTLHPE framework overview assuming three camera views. Blue and red blocks correspond to the training and test phases respectively.
FEGA-MTL can be trained using annotated (‘Training’ box on top-row center) or unlabeled images, where motion direction serves as a weak label for
head pose (top-row right), enabling its use in both supervised and unsupervised settings. Figure is best viewed in color and under zoom.
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In the pre-processing step, multi-view face crops are
extracted using the tracker, and Histogram of Oriented Gra-
dient (HOG) descriptors [29] are computed from the multi-
view face images. These HOG features are provided to
FEGA-MTL for learning region-specific classifiers across
grid partitions on the scene ground plane. The learning pro-
cess is guided by two graphs: a region graphwhich quantifies
the facial appearance distortion based on camera geometry
as the target moves from one grid partition to another, and
the pose graph modeling the appearance similarity among
neighboring head pose classes. In this work, we are mainly
interested in determining the head pan for detecting face-to-
face interactions and seek to assign the target’s head pan to
one of eight classes, each denoting a quantized 45 degree
range. To eliminate the need for training data, FEGA-MTL
is also designed to operate in an unsupervised manner, i.e.,
by employing the motion direction of targets as weak labels
to signify their head orientation. Post training, FEGA-MTL
outputs (1) pose classifiers for each grid partition, and
(2) the optimal scene partitioning, where grid regions with
similar facial appearance for a given head pose constituting
a cluster. During classification, the tracker provides target
position based on which the appropriate region-based pose
classifier is invoked to output the head pan class. We now
describe each of these modules.

3.2 Tracking, Head Localization and Feature
Extraction

A multi-view, color-based particle filter [28] is used to com-
pute the 3D body centroid of moving targets. A 30 � 30 �
20 cm-sized dense 3D grid (with 1 cm resolution) of hypo-
thetic head locations is then placed around the estimated
3D head-position provided by the particle filter.1 Assuming
a spherical model of the head, a contour likelihood is com-
puted for each grid point by projecting a 3D sphere onto
each view using camera calibration information. The grid
point with the highest likelihood sum is determined as the
head location. The tracking and head localization proce-
dures are illustrated in Fig. 2.

The head is then cropped and resized to 20 � 20 pixels in
each view. Head crops from the different views are
concatenated to generate the multi-view face crops as
shown in Fig. 2 and similar to previous works [4], [14] we
employ HOG descriptors to effectively describe the face

appearance for head pose classification. The multi-view face
appearance image is divided into non-overlapping 4� 4
patches, and a nine-bin histogram is used as the HOG
descriptor for each image patch.

3.3 Region and Pose Graph Modeling

To apply FEGA-MTL, we initially divide the scene ground
plane into a uniform 5� 5 grid2 as shown in Fig. 3. We seek
to learn the pose-appearance relationship in each partition.

The algorithm learns from a training set T t ¼ fðxti; ytiÞ : i ¼
1; 2; . . . ; Ntg for each region t ¼ 1; 2; . . . ; R, where xti 2 IRD

denote D-dimensional feature vectors and yti 2 f1; 2; . . . ; Cg
are the head pose labels (C ¼ 8 classes in our setting). One of
the graphs guiding the learning process specifies the similar-
ity in appearance for a given head pose across the grid
regions based on camera geometry. If grid partitions form
the graph nodes,we determine the edge set E1 and the associ-
ated edgeweights gmn quantifying the appearance distortion
between T m and T n due to positional change from regionm
to region n (these edge weights indicate whether knowledge
sharing between regionsm and n is beneficial or not).

As mentioned earlier, we model the target’s head as a
sphere. Let Zk denote the sphere placed at the target’s 3D
head position pk, and whose multi-view camera projection
yields training image Ik in T m. Using camera calibration
parameters, one can compute the correspondence between
surface points in Zk and pixels in Ik. Then, we move Zk to
position pl corresponding to image Il in T n, and determine
how many surface points in Zk are still visible in Il. The
appearance distortion over U camera views due to transla-

tion from pk to pl is defined as dðZk; pk ! plÞ ¼
PU

u¼1

kvuk þ �n0, where vu is the flow induced by this translation
in view u, and n0 is the number of surface points in Zk that
are occluded after translation. � is a constant that penalizes
such occlusion. Fig. 3 (left) shows an outline of the method
and a comparison of the predicted distortion between three-
camera and four-camera setups (discussed below).

The appearance similarity between regions m and n is
then computed based on a Gaussian model by considering
distortion between all image-pairs associated to T m, T n as:

gmn ¼ e
� V
NmNns2 ; (1)

Fig. 3. (From left to right) Method to predict appearance distortion induced due to translation of the head sphere Zk from pk to p (exemplified
with respect to camera C3), appearance similarity map computed around pk with U ¼ 3 and U ¼ 4 camera views, and learned grid clusters for the
three-camera setup (figure best viewed in color).

1. The grid size accounts for tracker’s variance and horizontal/verti-
cal offsets of the head from the body centroid due to pan, tilt and roll.

2. Upon experimenting with various grid sizes, we note that FEGA-
MTL works best with a 5� 5 grid as shown in Table 4.
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where V ¼
P

8Ik2T m;Il2T n
½dðZk; pk ! plÞ þ dðZl; pl ! pkÞ�; Nm

and Nn are number of images in T m and T n. s ¼ 1 and E1

is the set of edges for which gmn � 0:1.
Fig. 3 depicts the appearance similarity maps for two dif-

ferent camera configurations when the head-sphere at pk is
moved around in space (the projection of pk on the ground
is denoted by the red ‘x’). When pk is close to the camera-
less room corner in the three-camera setup, a number of
regions around pk share a high appearance similarity,
implying that pose-appearance relationship can be learnt
jointly in these regions. However, the similarity measure
decreases sharply as the target moves from pk towards any
of the three cameras, and tends to zero for the upper diago-
nal half of the room. Also, when a camera is introduced in
the fourth room corner, appearance similarity holds only
for a smaller portion of space around pk as compared to the
three-camera case.

A second graph guiding the learning process models the
fact that facial appearances should bemore similar for neigh-
boring head pose classes. For example, as shown in Fig. 2
(top-row), the facial appearance of exemplars from class 1
should be most similar to exemplars from classes 2 and 8.
Exploiting this information, a pose graph E2 is defined with
associated edge weights bij ¼ 1 if i and j correspond to

neighboring pose classes ci, cj, and bij ¼ 0 otherwise.

3.4 Motion Direction as Weak Label

In this section, we describe the process of automatically
compiling weakly labeled (instead of annotated) head crops,
so that FEGA-MTL can be applied to unsupervised HPE.

Specifically, as obtaining a large repository of annotated
data for HPE under target motion is costly, we exploit the
fact that people usually tend to look in the direction of their
motion (see Fig. 1) to collect a large set of weakly-labeled
exemplars without any human intervention. We use walking
direction, which can be conveniently extracted from the
ground locations output by the tracker, as a proxy for head
pose. Most importantly, a novel filtering technique is applied
to detect short segments where head appearance is consistent
with the observed motion employing this procedure. The fil-
tering process aims to reject samples corresponding to static
positions, tracking failures and sudden changes in direction,
where the facemay appear blurred and thewalking direction
may not correspond to the head orientation. The result of the
filtering process is a set of short image sequences that can be
used to learn head pose classifiers customized to a specific
multi-view environment and lighting condition.

3.4.1 Extracting Pose Labels Using Trajectory Analysis

To compile weakly annotated training data, we exploit the
tracker output both in terms of estimated target position
and particle-spread. Given the tracker estimates for each
target, we first employ a smoothing spline approximation to
interpolate the trajectory. From the position estimates

fpkx; pkyg
M
k¼1, we interpolate the two dimensions x and y inde-

pendently. To compute the interpolating function fIð�Þ, we
adopt Reinsch’s algorithm [30]. To filter out noisy samples,
we compute the Euclidean distance between tracker esti-
mates and their smoothed counterparts fIð�Þ, and retain
those samples with distance below threshold uD.

Furthermore, as tracking failures can also contribute to
noisy labeling, we monitor the entropy of the target position
distribution propagated by the particle filter which, up to a
certain extent, indicates the accuracy of the target position
estimate. We reject position estimates that result from large
localization uncertainty, i.e., where the volume of the typi-
cal set approximated from the particle set via kernel density
estimation [31] is above a threshold uP .

Evidently, using motion direction as a proxy for head
pose has some caveats. Even when people walk along a cer-
tain path, their attention is often captured by the environ-
ment in the form of objects, artifacts, events, or other people
in the scene. In such cases, it is unlikely that head orientation
can reliably be predicted using walking direction as a proxy.
However, attention targets are either static, or likely to move
independently of the observer, and so, visual attention direc-
tion exhibits different dynamics as compared to the target’s
(or observer’s) walking direction.3 An effective filtering tech-
nique to detect inconsistencies between observed and
expected head pose, as given by the walking direction,
involves measuring the deviation between the two.

Our filtering technique involves application of the warp-
ing detailed in Section 3.3 to recover instances (frames)
where head and body motion are consistent. If walking
direction is assumed to be an accurate proxy for head pose
at the beginning of an analysis window, the warping will
produce similar face images over the window only if
(i) head and body orientation are consistent and, (ii) head
cropping (Section 3.2) is achieved successfully. Thus, we
compute a score over each time window denoting the simi-
larity among warped head crops. The similarity at sample i

is computed as Si ¼ e�
PiþW

w¼i�W
jjxw�xijj, where W ¼ 10 is the

number of frames in the window around i, and xw is the
HOG descriptor extracted at frame w. In practice, the scores
will be penalized by head occlusion, inconsistent motion-
induced pose variations and inaccurate head crops, and
thus the filtered frames can be used to produce reliable
weakly-labeled data for learning with FEGA-MTL. Samples
with similarity score above uS are assigned a head pose label
yi 2 f1; 2; . . . ; Cg based on walking direction.

Fig. 4 shows an exemplar tracked trajectory of a target,
and demonstrates the appearance consistency-based filter-
ing procedure. This strategy has some advantages over the
outlier rejection scheme proposed in [12]. Since our tracker
operates on the ground plane instead of the image plane,
we do not need to introduce perspective-based scale factors
while computing target velocity. Moreover, the warping
procedure accounts for perspective and scale-based facial
appearance changes under target motion. Finally, as the
tracking is based on a multi-target particle filter, tracking
failures can be monitored to a certain extent by analyzing
the variance in the particle distribution.

4 FLEXIBLE GRAPH-GUIDED MTL

In this section, we describe the proposed Flexible Graph-
guided Multi-task Learning framework in details.

3. An exception is an interacting group of people. However, this sit-
uation can be easily detected with multi-target tracking, and by analyz-
ing closeness and similarity of motion trajectories.
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4.1 Notation and Definitions

In this paper we denote with k � kF and k � k1 the Frobenius

and the ‘1 norms, respectively. The notation ð�Þ0 indicates
the transpose operator, while j:j denotes a set cardinality.
The notation ID and 0D indicate the identity and the null
matrix of sizeD�D, respectively.

Modeling spatial regions as separate tasks, for each task t

we define a training set T t and a matrix Xt 2 IRNt�D,

Xt ¼ ½xt
1
; . . . ; xtNt

�0. We also define the matrix X 2 IRN�D,

X ¼ ½X0
1; . . . ;X

0
R�

0, where N ¼
PR

t¼1 Nt denotes the total
number of training samples. For each training sample, we

construct a binary label indicator vector yti 2 IRRC as

yti ¼ ½0; 0; . . . ; 0|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Task 1

; 0; 1; . . . ; 0|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Task 2

; . . . ; 0; 0; . . . ; 0|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Task R

�, i.e., the position of

the non-zero element indicates the task and class member-
ship of the corresponding training sample. A label matrix

Y 2 IRN�RC is then obtained concatenating the yti’s for all

training samples.

4.2 FEGA-MTL

For each region t and pose class c, we consider the weight

vectors st;c; uut;c;wt;c 2 IRD and define the associated matrices

S;QQ;W 2 IRD�RC , S ¼ ½s1;1; . . . ; s1;C|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Task 1

; . . . ; sR;1; . . . ; sR;C|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Task R

�,

Q ¼ ½uu1;1; . . . ; uu1;C|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Task 1

; . . . ; uuR;1; . . . ; uuR;C|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Task R

� andW ¼ SþQQ.

In this paper we present a MTL framework to learn a set
of region-specific weight vectors for pose classification

wt;c 2 IRD, wt;c ¼ st;c þ uut;c. Each weight vector is obtained
by summing up two components, st;c which models the
appearance relationships among regions and uut;c accounting
for region-specific appearance variations. Using a matrix
notation for the sake of clarity, we propose to solve the fol-
lowing optimization problem:

min
S;Q

fðS;QQÞ þ rðS;QQÞ; (2)

where:

fðS;QQÞ ¼
��U1

2ðY� XðSþQÞÞ
��2
F

rðS;QQÞ ¼ �ukQQk2F þ �skSk2F þ �s�1

X
ði;jÞ2E1

gijksti;c � stj;ck1

þ �s�2

X
ði;jÞ2E2

bijkst;ci � st;cjk1:

In the loss function fð�Þ, the matrix U 2 IRN�N ,

U ¼ NðYY0Þ�1 is obtained multiplying two terms. The nor-

malization factor ðYY0Þ�1 compensates for different number
of samples per task, while the matrix N ¼ diagðntiÞ aims to
weight differently samples labeled by a human annotator
and those automatically obtained by exploiting the informa-
tion about the walking direction. Specifically we assign a
weight nti ¼ 1 for samples with a true label (i.e., human

annotation), while nti is set to a value r � 1 for weakly
labeled data.

The regularization function rð�Þ is made by several com-
ponents. The first term penalizes large region-specific
appearance variations, the second regulates model com-
plexity, and the ‘1 norm terms impose the weights st;c of
appearance-wise related regions and neighboring classes to
be close together. Specifically, gij’s and bij’s are the appear-

ance similarity-based weights of region graph edges E1 and
pose graph edges E2 respectively as described in Section 3.3.
Similar parameters st;c for neighboring head orientations
are obtained as �2 increases. Region clusters are formed as
�1 ! 1. Importantly, this effect is feature-specific: cluster
structure varies from feature to feature. Less important fea-
tures are used similarly by all tasks, while discriminative
features are used differently by different tasks. This is one
of the main reasons why our method is termed flexible.

The optimization problem in Eq. (2) is convex. To solve it
we propose an algorithm based on smoothing proximal gra-
dient method [22]. The optimization algorithm is outlined
in Algorithm 1 and is described in details in the following
section.

Algorithm 1. FEGA-MTL

Input: T t, 8t ¼ 1; . . . ; R, �s, �u, �1, �2, E, the desired accuracy �.

Initialize V0 ¼ B0 ¼ ½S0; QQ0�, a0 ¼ 0.
Set m ¼ �

jE1jþjE2 j.

for n ¼ 1; 2; . . . , until convergence do
Compute the gradientrHðVnÞ using Eq. (12).
Bnþ1 ¼ Vn � 1

Ln
rHðVnÞ

an ¼ 1
2 ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4a2

n�1

p
Þ

gn ¼ 1�an
anþ1

Vnþ1 ¼ gnBn þ ð1� gnÞBnþ1

Output: The optimal V ¼ ½S; QQ�.

After the training phase, the computed weights wt;c are
used for classification. While testing, upon determining the
region �t associated to a test sample xtest using the person
tracker, the corresponding weights vectors are used to com-
pute the head pose label, i.e.,:

ytest ¼ argmax
c¼1;...;C

w0
�t;cxtest: (3)

Fig. 4. Exemplar target trajectory from DPOSE [7]: blue dots correspond
to samples retained after the filtering process, while red ones are dis-
carded. The two sets of head crops correspond to filtering windows
associated with two samples. In the dotted blue rectangle, high similarity
among the warped crops imply consistent head and body movements,
and thus this sample is used for training. In the red rectangle, warps
based on trajectory-based analysis differ considerably, and this sample
is rejected (best viewed under zoom).
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4.3 Optimization

In our previous work [15], as the optimization problem in
Eq. (2) belongs to the category of convex smooth/non-
smooth problems, we proposed to solve it adopting an
approach based on the Fast Iterative Shrinkage-Threshold-
ing Algorithm (FISTA) [32]. In particular, to handle the non-
smooth part, we developed a method based on the Alternat-
ing Direction Method of Multipliers (ADMM) [33]. How-
ever, the ADMM involves solving a linear system at each
iteration and may not scale well for high dimensional prob-
lems. In this paper, to solve Eq. (2) a more efficient approach
based on smoothing proximal approximation [22] can be
employed. The proposed approach is described below and
the overall procedure is outlined in Algorithm 1.

Defining V ¼ ½S; Q� and ~X ¼ ½X X�, the proposed optimi-
zation problem in Eq. (2) can be rewritten as follows:

min
V

��U1
2ðY� ~XVÞ

��2
F
þ �s LVk k2Fþ�1 EV0Gk k1; (4)

where the matrices G;L 2 IR2D�2D are defined as

G ¼ blkdiagðID; 0DÞ and L ¼ blkdiagðID;
ffiffiffiffi
�u
�s

q
IDÞ. The matrix:

E ¼
E1

�2
�1
E2

� �

is defined in terms of the edge-vertex incident matrices

E1 2 IRjE1j�RC , E2 2 IRjE2j�RC ,

E1 e¼ði;jÞ;h ¼
gij i ¼ h
�gij j ¼ h
0 otherwise

8<
: (5)

and:

E2 e¼ði;jÞ;h ¼
bij; i ¼ h
�bij; j ¼ h
0; otherwise.

8<
: (6)

To solve Eq. (4), following [22], [34] we first consider a
smooth approximation of the non-smooth term in Eq. (4):

VEðVÞ ¼ EV0Gk k1 (7)

in two steps. First, VEðVÞ is reformulated into a linear trans-
formation of V via the dual norm. Specifically, for each vec-

tor ~vd, where ~vd is the dth column of ~V ¼ V0G, d ¼ 1; . . . ; 2D,

we can reformulate E~vd
�� ��

1
¼ maxkqdk1�1ðqdÞ

0E~vd, where qd

is a vector of auxiliary variables. By defining the matrix

Q ¼ ½q1; . . . ;q2D�, Q 2 Q ¼ fQ : kqdk1 � 1;qd 2 IRjE1jþjE2j;
8d ¼ 1; . . . ; 2Dg, the non-smooth term VEðVÞ can be equiva-
lently reformulated as:

VEðVÞ ¼ max
Q2Q

hEV0G;Qi; (8)

where hA;Bi ¼ TrðA0BÞ is the inner product of two matri-
ces. Even after the reformulation, Eq. (8) is still a non-
smooth function of V and this makes the optimization chal-
lenging. To tackle this problem, following [22] a smoothing
approximation function hmð�Þ is introduced, i.e.,:

hmðVÞ ¼ max
Q2Q

hEV0G;Qi � 1

2
mkQk2F : (9)

The optimization problem which must be solved is then:

min
V

HðVÞ ¼
��U1

2ðY� ~XVÞ
��2
F
þ �s LVk k2Fþ�1hmðVÞ: (10)

Since Eq. (10) is convex and smooth, it can be efficiently
solved with standard gradient methods. In [22], it has been
shown that for any m, the gradient of hmðVÞ can be com-

puted as hmðVÞ ¼ GðQ	Þ0E, where Q	 is the optimal solution
to Eq. (9). Specifically, the optimal solution Q	 is composed

of qd
	 ¼ SðE~vd

m
Þ, 8d, where S is a projection operator such

that for any vector x, SðxÞ is defined by applying on each
entry of x:

SðxÞ ¼
x if � 1 < x < 1;
1 if x > 1;
�1 if x < �1:

8<
: (11)

Then, the gradient ofHðVÞ can be easily computed as:

rHðVÞ ¼ ~X0Uð~XV� YÞ þ �sL
0LVþ �1GðQ	Þ0E: (12)

As standard gradient schemes have a slow convergence
rate, in this paper we follow the method in [22], [32]. The
detail of the optimization are described in Algorithm 1.

Computational complexity. In the update of V, the compu-
tational cost at each iteration is dominated by the gradient
computation. As the product of some matrices can be pre-
computed and typically D 
 N , the time complexity at

each iteration is OðD2RC þ jE1j þ jE2jÞ. With respect to the
approach proposed in [15], this method is faster since at
each iteration ADMM requires to solve D linear systems

with cost OððRCÞ2Þ. This step can be avoided with the novel
solver. As demonstrated in [22], the rate of convergence of

the proposed algorithm is Oð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjE1jþjE2jÞ

p
� Þ.

5 EXPERIMENTAL RESULTS

In this section, we first conduct experiments with synthetic
data to demonstrate the effectiveness and the flexibility of
our MTL algorithm. Then we perform real-world data
experiments to show that FEGA-MTL outperforms the
state-of-the-art for multi-view head pose classification.

5.1 Synthetic Data Experiments

To demonstrate the generality of FEGA-MTL, we simulate
two toy experiments, one for a classification task and the
other for regression.

In case of classification, we consider a multi-class prob-
lem with three classes and R ¼ 8 tasks. The input data

xti 2 IRD, D ¼ 10 are generated from multivariate normal

distributions as follows: for each task, the first D=2 feature

vector components are obtained from xd
ti
� Nð0; 1Þ, while

for the d ¼ D=2þ 1; . . . ; D components, we group the tasks
into three different clusters, namely t ¼ f1; 2g, t ¼ f3; 4g
and t ¼ f5; 6; 7; 8g and generate xdt � Nðm; sÞ according to
m; s values listed in Table 1. This toy data problem is meant
to simulate a realistic scenario, where one expects some
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discriminative features and some non-discriminative ones.
The associated graph describing task dependencies is
defined, appropriately setting gij ¼ �1 if two tasks are

related, and gij ¼ 0 otherwise. The pose graph is not used in

these experiments, i.e., bij ¼ 0 8i; j. We generate 100 sam-

ples for training, 50 for validation and 100 for test.
In case of regression, we consider R ¼ 9 tasks. The input

data xti 2 Rd, D ¼ 20 are generated from a multivariate nor-

mal distribution Nð0; IÞ, while the outputs are obtained
with yti � wtxti þNð0; 100Þ. The weight vectors wt for each

task are obtained by generating the first D=2 components

from a common cluster wd
t � Nð0; 1Þ, while grouping the

tasks into three different clusters for the last D=2 features,

i.e., wd
t � Nð0; 1Þ; t ¼ 1; 2; 3, wd

t � 10þNð0; 4Þ; t ¼ 4; 5; 6,

wd
t � 20þNð0; 9Þ; t ¼ 7; 8; 9. We generate 100 samples for

training, 50 for validation and 100 for test.
We compare FEGA-MTL with state-of-the-art MTL

approaches. For competing methods, the publicly available
implementations in the MALSAR (Multi-tAsk Learning via
StructurAl Regularization) [35] library are adopted. In par-
ticular, we consider the regularized MTL with a single
global model (‘21 MTL) [20], the Flexible Task Clusters
(FTCMTL) method [24], the dirty model MTL method
(DMTL) [25], the Cluster MTL (CMTL) [26], the Robust
MTL method (RMTL) [27]. The validation sets are used to
tune the regularization parameters of all the methods. All
the regularization parameters vary in the range [0.01, 0.1, 1,
10, 100]. The results are shown in Fig. 5. Fig. 5 (left) shows
the classification accuracy while Fig. 5 (middle) depicts the
mean square error (MSE) (lower numbers indicate better
performance). It is evident from the plots that in this situa-
tion, an MTL method assuming all tasks are related does
not suffice, since tasks are clustered in groups. Therefore,

‘21 MTL approach has the highest regression MSE and low-
est classification accuracy. Moreover, considering methods
which assume grouping among tasks, our method performs
best. This is probably due to the fact that features are con-
sidered independently, thus discarding the contribution of
non-discriminative features. Fig. 5 (right) shows the learned
S matrix in the regression task. Here, we can clearly see a
common cluster for the first D=2 dimensions and three dif-
ferent clusters for the lastD=2 dimensions.

5.2 Multi-View Head Pose Classification

We now present head pose classification results and demon-
strate the superiority of our method with respect to other
multi-view head pose estimation and multi-task learning
algorithms.

5.2.1 Datasets

To assess quantitatively the performance of our method, we
conduct our experiments on the publicly available DPOSE
dataset [7]. DPOSE comprises over 50,000 4-view synchro-
nized images recorded by distant, large field-of-view cameras
for 16 moving targets, with associated positional and head
pose measurements (target positions are computed using the
person tracker [28]). To our knowledge, there are no other
databases for benchmarking multi-view head pose classifica-
tion performance under target motion. We also manually
annotated a video sequence of 30minutes duration capturing
six persons involved in an informal social gathering. Denoted
as the PARTY sequence (Fig. 8), this dataset is very challeng-
ing, as it involves several targets freely moving around in a
room and affected by persistent and substantial occlusions.

5.2.2 Experimental Setup

As we consider faces at very low resolution (i.e., 20� 20 pix-
els) and estimating the head pose orientation is very chal-
lenging in these conditions, we only focus on classifying the
head-pan into one of eight classes, each denoting a 45 degree
pan range. For each dataset, we consider an initial, uni-
formly spaced grid with R ¼ 25 regions (Fig. 3) and
define mutually exclusive training/validation/test sets. For
all considered classification methods, the regularization
parameters are tuned using the validation set. In particular,

we set �s ¼ 2, �u ¼ 22, �1 ¼ 22, �2 ¼ 1, r ¼ 0.25 for FEGA-
MTL in our experiments. To extract short sequences with
consistent head and body motion when annotated training

TABLE 1
Synthetic Data Generation for Classification

m for the three different classes s

Task 1 10, 12, 14 7
Task 2 10.1, 12.1, 14.1 7
Task 3 20, 22, 24 20
Task 4 20.1, 22.1, 24.1 20
Task 5 2, 4, 6 10
Task 6 2.1, 4.1, 6.1 10
Task 7 2.2, 4.2, 6,2 10
Task 8 2.3, 4.3, 6.3 10

Fig. 5. Synthetic data experiments: (left) Comparison with several MTL methods: classification accuracy. Higher numbers indicate better perfor-
mance. (middle) Comparison with several MTL methods for the regression problem. Lower numbers indicate better performance. (right) S matrix for
regression task comprising task clusters.
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data are unavailable, thresholds are set to uP ¼ 0:5 m2 using
Gaussian kernel with variance 0.15 m for entropy estimation
of tracking particle set, uD ¼ 0.1 and uS ¼ 0.001.

5.2.3 Evaluating HPE Performance

Fig. 6 presents the results obtained comparing FEGA-MTL
with competing head pose classification methods. The
mean classification accuracies obtained from five indepen-
dent trials are reported, where a randomly chosen training
set is employed in each trial. In this series of experiments,
we consider annotated training data. We gradually increase
the training set size from 5 to 30 samples/class/region,
while the test set comprises images from all regions. To
underline the usablity of FEGA-MTL with arbitrary camera
configuration, we show the results obtained with both four
(Fig. 6 left) and two camera views (Fig. 6 right). As expected,
all the considered methods perform better when informa-
tion from four cameras is used.

As baselines, we consider recent multi-view approaches,
namely, the warping algorithm in [7] combined with RBF-
SVMs for classification (no transfer learning is required in
this case), the approach in [8] which probabilistically fuses
the output of multiple SVMs, and the monocular ARCO [6]
(image features from multiple views are used to extend
ARCO to multi-view) and SVM+Spectral Clustering [12]
methods. As shown in Fig. 6, both ARCO and the method in
[8] perform poorly with respect to FEGA-MTL as they are
not designed to account for facial distortions due to scale/
perspective changes.

Considering baselines that have explicitly accounted for
motion-based facial appearance variations while predicting
head pose, the warping method in [7] achieves lower accu-
racy with respect to FEGA-MTL, despite considerably out-
performing Single SVM. Here, it is also important to point
out two differences between our approach and [7]. The
scene is a priori divided into four quadrants in [7], which is
not necessarily optimal for describing the pose-appearance
relationship under arbitrary camera geometry. Second, task
dependencies are ignored in [7], and an independent classi-
fier is used for each quadrant. In contrast, FEGA-MTL dis-
covers the optimal configuration of grid clusters that best
describes the pose-appearance relationship given camera
geometry. Considering task relationships enables FEGA-
MTL to achieve higher classification accuracy than a single
global classifier (Single SVM), Single SVM+Warping and
separate region-specific classifiers that do not consider
inter-region appearance relationships (Multiple Region-
specific SVMs).

We have also compared our approach against SVM
+Spectral Clustering adopted as a proxy for [12] (a rigorous
comparison is not possible as the approach in [12] is monoc-
ular). In our implementation of SVM+Spectral Clustering,
we use the training images and the spectral clustering algo-
rithm described in [12] to learn a set of spatial regions
according to facial appearance similarity. The number of
clusters is set to five. Then, five independent SVM classifiers
are trained (one for each learned region). As shown in
Fig. 6, by learning the optimal region partitioning and the
classifiers simultaneously, we achieve higher accuracy than
SVM+Spectral Clustering.

5.2.4 Comparison with MTL Approaches

Table 2 compares HPE performance of various MTL meth-
ods. Here again, we consider annotated training data. The
advantage of employing MTL for head pose classification
under target motion is obvious since all MTL approaches
greatly outperform a single SVM. However, assuming that
all tasks share a common component, i.e., using the ‘21 MTL
approach [20] is sub-optimal, and having a flexible learning
algorithm which is able to infer appearance relationships
among regions improves classification accuracy. This is con-
firmed by the fact that in all situations (varying training set
sizes and number of camera views), FTC MTL [24], Clus-
tered MTL [26] and FEGA-MTL achieve superior perfor-
mance. FEGA-MTL, which independently considers
features and employs graphs to explicitly model region and
head pose-based appearance relationships, achieves the
best performance. The usefulness of modeling both region
and pose-based task dependencies through FEGA-MTL is
evident when observing the results in Table 2. Using the
region graph alone is beneficial as such, while employing
the region and pose graphs in conjunction produces the best
classification performance.

When multiple targets move freely in the environment
such as a party scenario shown in Fig. 8 (bottom), many
occlusions usually exist making head pose estimation even
harder. Table 3 compares FEGA-MTL with other MTL
methods on the PARTY sequence. Even if inferior classifica-
tion is achieved with respect to the DPOSE dataset given
the more challenging nature of the scene, and more training
examples per class typically needed to achieve satisfactory
performance, the advantages of FEGA-MTL over competing
methods can be clearly observed.

To further demonstrate the advantages of FEGA-MTL,
we compare it with the other graph-guided MTL meth-
ods [22], [35]. Fig. 7 shows that higher accuracy is obtained

Fig. 6. DPOSE dataset: Comparison with state-of-the-art head pose classification methods.
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with our approach for different training set sizes. Amain dif-
ference between FEGA-MTL and the methods described
in [22], [35] is that they do not decompose W as SþQQ, and
due to the non-consideration of task-specific components QQ,
they have less flexibility. Moreover, in [35] (due to the use of
the ‘2 norm) and [22] (due to smoothing) task-clustering is
encouraged but not enforced, i.e., the weights corresponding
to a cluster are similar but not identical. As discussed above,
FEGA-MTL can also be used with an arbitrary number of
cameras and even in a monocular setting. However, the use
of several views is typically advantageous and improves per-
formance. The performance gain achieved using FEGA-MTL
over a single SVM classifier trained for the entire scene is evi-
dent, irrespective of the number of camera-views used.

5.2.5 Qualitative Results

Fig. 8 shows some qualitative results obtained with FEGA-
MTL on the DPOSE and PARTY sequences. For illustration,

identical colors are used to denote the pose direction frus-
tum and face crop rectangle for each target. As discussed
above, the party scene is quite challenging as six targets are
interacting naturally (resulting in prolonged and substantial
occlusions) and freely moving around in the scene. How-
ever, as demonstrated by the results in Table 3, FEGA-MTL
generally estimates head orientation correctly despite the
presence of occlusions and low scene resolution.

Fig. 8 also shows the optimal spatial partitioning learned
for a three-camera system with five training images/class/
region. The learned grid clusters are also shown in Fig. 3
together with the initial spatial grid. Clustered regions cor-
respond to identical columns of the task similarity matrix S,
i.e., two regions ti and tj merge if sti;c ¼ stj;c 8c. Constrained
by the appearance similarity graph weights, spatially adja-
cent regions tend to cluster together. While regions closer to
the camera-less room corner tend to form large clusters,
smaller clusters are observed as one moves closer to the

TABLE 2
DPOSE Dataset: Comparing Head Pose Classification Accuracy with Competing MTL Methods

5 training samples/class/region 10 training samples/class/region

2-view 3-view 4-view 2-view 3-view 4-view

Single SVM 0.441 � 0.011 0.494 � 0.024 0.523 � 0.016 0.486 � 0.012 0.549 � 0.008 0.564 � 0.013
‘21 MTL [20] 0.525 � 0.010 0.567 � 0.009 0.589 � 0.012 0.642 � 0.012 0.675 � 0.015 0.696 � 0.014
Flexible Task Clusters MTL [24] 0.555 � 0.008 0.598 � 0.009 0.621 � 0.007 0.65 � 0.005 0.681 � 0.008 0.715 � 0.006
Dirty model MTL [25] 0.546 � 0.006 0.585 � 0.008 0.603 � 0.011 0.655 � 0.011 0.686 � 0.009 0.696 � 0.008
Clustered MTL [26] 0.540 � 0.007 0.590 � 0.007 0.619 � 0.009 0.639 � 0.014 0.682 � 0.011 0.711 � 0.010
Robust MTL [27] 0.550 � 0.012 0.580 � 0.011 0.581 � 0.009 0.655 � 0.005 0.689 � 0.004 0.705 � 0.008

FEGA-MTL (region graph only, �2 ¼ 0) 0.581 � 0.002 0.623 � 0.004 0.643 � 0.006 0.677 � 0.006 0.718 � 0.003 0.733 � 0.007
FEGA-MTL (pose graph only, �1 ¼ 0) 0.564 � 0.006 0.605 � 0.006 0.637 � 0.007 0.661 � 0.009 0.699 � 0.011 0.728 � 0.005
FEGA-MTL (region graph + pose graph) 0.602 � 0.002 0.643 � 0.003 0.660 � 0.004 0.711 � 0.003 0.748 � 0.004 0.759 � 0.005

TABLE 3
PARTY Dataset: Head Pose Classification Accuracy

20 training samples/class/region 30 training samples/class/region

2-view 3-view 4-view 2-view 3-view 4-view

Single SVM 0.422 � 0.021 0.463 � 0.016 0.498 � 0.014 0.508 � 0.015 0.529 � 0.018 0.541 � 0.013
ARCO [6] 0.501 � 0.009 0.513 � 0.013 0.561 � 0.012 0.529 � 0.017 0.554 � 0.014 0.606 � 0.015

‘21 MTL [20] 0.491 � 0.013 0.525 � 0.011 0.552 � 0.009 0.557 � 0.008 0.573 � 0.004 0.596 � 0.011
Flexible Task Clusters MTL [24] 0.526 � 0.021 0.538 � 0.004 0.541 � 0.014 0.578 � 0.014 0.611 � 0.009 0.625 � 0.006
Robust MTL [27] 0.521 � 0.005 0.532 � 0.007 0.551 � 0.008 0.575 � 0.014 0.599 � 0.012 0.61 � 0.011
FEGA-MTL (region graph only, �2 ¼ 0) 0.543 � 0.006 0.569 � 0.004 0.571 � 0.002 0.601 � 0.004 0.637 � 0.003 0.652 � 0.008
FEGA-MTL (pose graph only, �1 ¼ 0) 0.534 � 0.007 0.553 � 0.003 0.572 � 0.004 0.611 � 0.005 0.629 � 0.006 0.643 � 0.006
FEGA-MTL (region graph + pose graph) 0.575 � 0.006 0.592 � 0.001 0.606 � 0.004 0.631 � 0.005 0.663 � 0.002 0.681 � 0.004

Comparison with state-of-the-art approaches.

Fig. 7. (Left to right) Classification accuracies with Graph-guided MTL methods using 4, 3, 2 and single-view information.
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cameras owing to larger facial appearance distortions
caused by perspective and scale changes. Apart from the
region and pose-based appearance similarity graph
weights, facial appearance features also influence the clus-
tering of related regions, and therefore, the computed opti-
mal partitioning.

5.2.6 FEGA-MTL Analysis

We now examine the impact of (i) grid size, (ii) considered
visual features, (iii) prediction strategy and (iv) the head
localization accuracy on FEGA-MTL performance. Finally,
we also show the results of the parameter sensitivity study
and computational cost analysis.

Table 4 shows the classification accuracy of FEGA-MTL
when different grid sizes are considered for partitioning the
scene ground plane. For this experiment, we consider four-
views and use a fixed set of 250 training samples/class that
are uniformly distributed over the scene. From the table, it
is evident that the best performance corresponds to a 5 � 5
grid. Too coarse (higher within-region appearance distor-
tion) or too fine scene partitioning (fewer training samples/
class/region) typically hampers HPE performance.

We also evaluate FEGA-MTL performance with different
visual features and their combinations. In addition to HOG
features [29], we consider three other descriptors: Kullback-
Leibler (KL) divergence features [5], Local Binary Pattern
(LBP) [36] and skin color features [12]. KL features are com-
puted as described in [5] by indexing each pixel with
respect to the mean appearance template of different head
pose classes. For LBP, we use 256-dimensional histogram

features (16 cells � 16 bins). For computing skin color fea-
tures we first detect skin pixels using a Gaussian Mixture
Model. Then, we divide the face image into 4 � 4 cells and
count the number of skin pixels in each cell, obtaining a 16-
dimensional feature vector.

Fig. 9 shows the head pose classification accuracy
obtainedwith different methods employing various features.
Among the different features, HOG and skin color histo-
grams are respectively the most and least effective features.
This justifies our choice of HOG in this work. Furthermore,
Fig. 9 demonstrates that the performance of FEGA-MTL (and
other methods) can be improved by combining different
descriptors. For all methods, maximum classification accu-
racy is obtainedwithHOGandKL feature combination.

We also examine if a weighted voting strategy for com-
bining classifiers from neighboring regions is beneficial in
the test phase. Specifically, we compare three different
approaches for prediction, namely, using a single classifier
(as discussed in Section 4.2), and employing a combination
of classifiers from adjacent scene regions according to a
four-neighbor or eight-neighbor connection scheme. When
multiple classifiers are employed, the class label is assigned

Fig. 8. (Top) Head pose classification results for a target moving freely within a three-camera setup are shown two-by-two. The learned clusters, as
seen from a fourth view, are shown on the bottom-left inset. Cluster corresponding to the target position (denoted using a stick model) is highlighted.
(Bottom) Head pose classification results for the PARTY sequence involving mobile targets (best viewed under zoom).

TABLE 4
DPOSE Dataset: HPE Accuracy with Varying Grid Sizes

Size 3 � 3 5 � 5 8 � 8 15 � 15
Acc 0.745 � 0.007 0.759 � 0.005 0.736 � 0.006 0.717 � 0.004 Fig. 9. DPOSE dataset: Head pose classification accuracy obtained with

different methods employing different features and features combination.
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by computing the mode of the classifier-score distribution.
Table 5 shows the empirical results when 10 training sam-
ples/class/region are used. By considering classifiers from
four nearby regions, the classification accuracy generally
improves with respect to the use of a single region-specific
classifier. However, little performance improvement is
observed when eight neighboring classifiers are considered,
probably due to large appearance changes in the area cov-
ered by the eight regions.

To study the influence of head localization accuracy on
HPE performance (we use a multi-view particle filter
tracker as described in Section 3.2), we compare manually
annotated head crops with the crops obtained with the pro-
posed automatic procedure adding noise to the estimated
head coordinates. To this end, we manually marked the
head coordinates of all targets in the PARTY sequence and
regenerated head crops upon adding different levels of
Poisson noise to the estimated target head locations, which
were then input to the FEGA-MTL. Corresponding results
(Table 6) clearly indicate the importance of accurate head
localization. �p indicates the Poisson noise level. Indeed,
even perturbing head location estimates by few pixels in x
and y (cropsize is 20� 20) reduces HPE accuracy. These
results also confirm the effectiveness of the proposed head
localization method.

We also examine the effect of varying FEGA-MTL regu-
larization parameters (results correspond to one of our
experiments on the DPOSE dataset). In Fig. 10 (left), the role
of �1 and �2, i.e., the parameters which regulate the impor-
tance of the region and pose graphs respectively are ana-
lyzed. It is interesting to observe that when �s and �u are
fixed, very small or large values of �1 and �2 correspond to
decreased classification accuracy, thereby evidencing the
importance of both graph terms. Fig. 10 (right) presents clas-
sification accuracies on varying �s and �u when �1 and �2

are fixed. These parameters balance the importance of the

two regularization terms kSk2F and kQQk2F or in other words,
regulate the influence of the common and region-specific

components of the classifier parameters. As expected, the
highest classification performance is achieved when �s � �u,
i.e., equal importance is given to the shared and task-spe-
cific components.

Finally, we examine the computational efficiency of the
training phase of the proposed FEGA-MTL. As discussed in
Section 4.3, in this paper to solve Eq. (2) we propose a dif-
ferent approach with respect to the one introduced in [15]
that was based on ADMM. Compared with the ADMM
solver in [15], the novel approach is more efficient, as no lin-
ear systems must be solved. To confirm this fact, in Table 7
we report the computation time required by the two solvers
in some of our experiments on the DPOSE dataset (the asso-
ciate accuracy is reported in Table 2). Specifically, we com-
pute the times associated to the experiments done using five
training samples/class/region and fixed regularization
parameters chosen with cross-validation. Both the proposed
approach and the method in [15] have been implemented in
MATLAB and our experiments run on a desktop computer
with Intel (R) Xeon (R) CPU E5-2620 0 @ 2.00 GHz processor.

5.2.7 Extending MTL to a Weakly-Supervised Setting

We now evaluate FEGA-MTL performance when head pose
labels extracted using motion trajectories (Section 3) are
used for learning. We again consider the DPOSE data in this
series of experiments, and evaluate FEGA-MTL perfor-
mance in three different settings: supervised (as in [15]),
semi-supervised and unsupervised. For unsupervised
learning, we train FEGA-MTL exclusively using 1,000
images (five images/class/region) with head pose labels
computed using motion direction. For supervised learning,
we train the classifier only using annotated examples (i.e.,
5/10 training samples/class/region). We also evaluate
FEGA-MTL performance in the semi-supervised case where
the training set comprises the above annotated-plus-weakly
labeled examples.

Table 8 shows the results of our evaluation (note that the
case corresponding to zero annotated samples in the semi-
supervised setting exemplifies the unsupervised setting).
While classification accuracy achieved with unsupervised
learning is expectedly lower than with supervised learning,

TABLE 5
DPOSE Dataset: Accuracy with Different Prediction Strategies

4-view 3-view 2-view

Single Classifier
(Eq.3)

0.759 � 0.005 0.748 � 0.004 0.711 � 0.003

Classifier-comb
(4-neighbor)

0.772 � 0.005 0.762 � 0.008 0.733 � 0.012

Classifier-comb
(8-neighbor)

0.753 � 0.011 0.752 � 0.005 0.702 � 0.006

TABLE 6
PARTY Dataset: Head Localization versus

Classification Accuracy

Poisson noise 4-view 3-view 2-view

Annotated head location 0.712 � 0.003 0.691 � 0.003 0.663 � 0.005
�p = 0.05 � cropsize 0.694 � 0.004 0.677 � 0.006 0.641 � 0.007

�p = 0.10 � cropsize 0.652 � 0.006 0.647 � 0.007 0.599 � 0.008

�p = 0.15 � cropsize 0.612 � 0.007 0.599 � 0.011 0.557 � 0.013

�p = 0.25 � cropsize 0.576 � 0.013 0.554 � 0.015 0.516 � 0.018

Localization via tracking 0.681 � 0.004 0.663 � 0.002 0.631 � 0.005

Fig. 10. Sensitivity analysis. Classification accuracy on varying regulari-
zation parameters �1 and �2 when �s and �u are fixed (left); �s and �u

with �1 and �2 fixed (right).

TABLE 7
DPOSE Dataset: Computation Time Comparison

Solver 2-views 3-views 4-views

[15] (ADMM based) 107 sec 267 sec 490 sec
This paper 78 sec 185 sec 312 sec
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weakly labeled examples nevertheless boost performance
when used in conjunction with annotated ones. An
improvement of 8.8 and 9.6 percent respectively is obtained
by adding motion-based examples with five annotated
examples/class/region with four and single-view informa-
tion. This result implies that FEGA-MTL can be used to
effectively estimate head pose in practice with few anno-
tated and sufficient number of automatically labeled exam-
ples. Finally, the filtering approach employed for weak
labeling is also found to enhance classification performance.
Higher accuracies are observed by using only those exam-
ples where head and body motion are consistent using the
filtering process (using appearance filtering, i.e., the sam-
ples where the appearance similarity score exceeds the
threshold uS), with higher relative improvements observed
when a larger proportion of (clean) annotated data is used
for training. Overall, the obtained empirical results confirm
the efficacy of the FEGA-MTL framework when unlabeled
examples are used for training, and the usefulness of the
proposed filtering procedure to extract image sequences
with consistent head and body motion. As a reference, we
also compute the accuracy obtained in estimating the head
pose when motion direction is used as a label and no learn-
ing and no filtering (no spline smoothing, entropy and
appearance filtering) are performed. This corresponds to
estimating the level of noise of the weakly annotated sam-
ples. As expected performance significantly degrade (note
that the last column report just one number since there is no
learning involved).

6 CONCLUSIONS

The proposed FEGA-MTL framework for estimating the
head pose of moving targets is found to outperform a host
of monocular/multi-view HPE approaches as well as multi-
task learning methods via extensive experiments. FEGA-
MTL efficiently leverages on camera geometry information
and sparsely annotated training data from different grid
partitions to discover scene regions where the head pose-
appearance relationship is consistent, and can also be uti-
lized when no labeled training data are available through
the use of motion direction as a proxy for head orientation.
Since camera geometry is incorporated in the learning pro-
cess, model training may be scene-specific as discussed in
[15]. Nevertheless, this does not limit the applicability of
our method as multi-camera installations are easy to cali-
brate nowadays, and efficient HPE is possible with few
labeled examples even on the challenging DPOSE and
PARTY datasets. Finally, it worth noting that the FEGA-
MTL algorithm is a general framework, potentially applica-
ble to many other computer vision and pattern recognition
problems such as action recognition and event detection.

Future works will be devoted to extend the proposed
FEGA-MTL to deal with sparse training data and arbitrary
camera configurations. Currently, FEGA-MTL cannot be
used when the spatial distribution of training data is highly
unbalanced across the scene. In this case, typically no grid
partitioning with sufficient samples/class/region can be
determined to learn robust region classifiers. Moreover, in
this work an early fusion approach is adopted to combine
features corresponding to multiple cameras, hindering the
use of FEGA-MTL in case of cameras with non-overlapping
field of view. Addressing these limitations will involve new
research towards a distribution-sensitive MTL approach
with late fusion scheme for combining multiple views.
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