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A B S T R A C T

Human pose as a query modality is an alternative and rich experience for image and video retrieval. It has
interesting retrieval applications in domains such as sports and dance databases. In this work we propose
two novel ways for representing the image of a person striking a pose, one looking for parts and other
looking at the whole image. These representations are then used for retrieval. Both the representations are
obtained using deep learning methods.
In the first method, we make the following contributions: (a) We introduce ‘deep poselets’ for pose-
sensitive detection of various body parts, built on convolutional neural network (CNN) features. These deep
poselets significantly outperform previous instantiations of Berkeley poselets [6], and (b) Using these detec-
tor responses, we construct a pose representation that is suitable for pose search, and show that pose
retrieval performance is on par with the previous methods. In the second method, we make the follow-
ing contributions: (a) We design an optimized neural network which maps the input image to a very low
dimensional space where similar poses are close by and dissimilar poses are farther away, and (b) We
show that pose retrieval system using these low dimensional representation is on par with the deep poselet
representation and is on par with the previous methods.
The previous works with which the above two methods are compared include bag of visual words [44],
Berkeley poselets [6] and human pose estimation algorithms [52]. All the methods are quantitatively eval-
uated on a large dataset of images built from a number of standard benchmarks together with frames from
Hollywood movies.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Pose is an atomic unit of gesture and action, and an important
aspect of human communication. Accordingly it has been the focus
of many works [15,21,25,31,39,42,51,52] in the recent past. With the
exponential growth of videos and images online, it has become very
critical to develop interfaces which allow easy access to human pose.
Text queries as an interface for image and video search will gradually
become untenable with massive growth in videos and images on the
Internet. With computer vision improving, content based retrieval
is becoming a reality. Pose is one such content, and human pose
retrieval is of great interest as it indicates action and gesture. Real-
life applications of human pose retrieval include baseball or cricket
shot retrieval from a sports database and a dance pose retrieval from
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say a ballet collection. Thus a gesture and pose as a query modality
gives an alternative and rich experience for search.

Fig. 1 illustrates an example pose retrieval. As shown in the figure,
a pose search system aims to retrieve people in a similar pose to the
query irrespective of the gender of the person, color of the clothing,
the type of clothes worn or the clutter and crowd in which the person
is standing.

In this work, we propose two novel deep learning based
approaches to pose search. In the first method, we propose ‘deep
poselets’ which can be described as classifiers which detect a subset
of body parts in a specific pose. The response of these deep poselets
are used to construct a feature representation of the pose, which is
used for the pose retrieval. The main contributions of this method
are, (a) demonstrating that explicitly clustering the pose space of
arms is useful for encoding the pose, (b) demonstrating that a similar
architecture to ImageNet-CNN [33] is able to work on the unrelated
task of poselet classification, (c) finding areas in the image that have
high probability of deep poselets being present, and thereby improv-
ing their performance, and (d) empirically demonstrating that deep
poselet based pose search outperforms competing methods. In the
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Fig. 1. Pose search: For the query image (top-left corner), the pose search system retrieves people in the database who are in the same pose as the query image. The system has
to be invariant to the color and type of the clothes, the clutter in the background and presence of other people in the image.

second method which is inspired by the work of Taylor et al. [46],
we propose ‘deep pose embedding’ model which takes an image
triplet consisting of a reference image, an image with the similar
pose and an image with the dissimilar pose and learns a projection
function to a pose-sensitive lower dimensional space. In contrast to
our ‘deep poselet’ method, this method looks at the complete image
and maps it to a lower dimensional space. The main contributions
of this method are, (a) demonstrating that an image can be mapped
to a pose space using deep networks, and (b) the projection is pose
sensitive and performs well on pose retrieval task.

The pose search task was originally proposed by Ferrari et al. [20]
where it was demonstrated on a database containing six episodes of
the popular TV show ‘Buffy the vampire slayer’. In their work, first,
all the people in a frame are detected using an upper body detector,
and a human pose estimation (HPE) algorithm is run on the detected
upper bodies. Using the marginals computed during the inference, a
feature representation is constructed for the pose. The work by Jam-
malamadaka et al. [28] extended [20] by demonstrating pose search
on 3.1 Million frames taken from 22 Hollywood movies. In [28], a
HPE algorithm is used to estimate pose and a very low dimensional
feature vector is built using the angles of the various body parts.
Furthermore, the algorithm proposed by Jammalamadaka et al. [27]
detects wrong pose estimates, and hence is able to filter them out.

Here we briefly give the outline of the paper. Deep poselets
are described in Section 3. The data driven process to obtain spe-
cific poses and their positive instances are described in Section 3.1.
The details of the feature extraction and training are described in
Section 3.3. Given an input test image, all the poselet classifiers
are run using the procedure described in Section 3.4. During the
detection stage, mutually exclusive poselet types (e.g., those cor-
responding to the left arm) fire at the locations with a significant

overlap in their detections. This conflict is resolved by spatial rea-
soning, described in Section 3.5. Using these deep poselets and their
detection scores, a representation for a pose is constructed. The deep
pose embedding model described in Section 4 projects an image
onto a lower dimensional pose-sensitive space. The properties of
this pose sensitive space, the details of the CNN projection function
and training methodology are described in Section 4.1. The projec-
tion function CNNs is trained using image triplets. In Section 4.2, we
describe how to handle the exponentially large triplet combinations.
The representations obtained from the above two methods are then
used to perform pose search as described in Section 5. In the exper-
imental Section 6, we evaluate the deep poselet method, the deep
pose embedding method, and the pose search method by comparing
them with relevant baselines.

This work is a continuation of our conference paper [29], where
the primary focus was deep poselets. Here, we extend [29] by
proposing an alternative deep pose embedding model, and make
connections between the two models. Furthermore, we train both
the models on much larger data (2×) than used in [29] to improve
the pose diversity and appearance invariance. We evaluate both the
models individually to demonstrate their performance and com-
pare them against other pose retrieval baselines to show significant
progress on this problem.

2. Related work

2.1. Convolutional neural networks (CNNs)

Convolutional neural networks are first proposed by Lecun
et al. [34] where an object is modeled as a composition of patterns
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starting from edges to higher level parts like faces. In the recent
past, convolutional neural networks [13,23,33] have been shown to
outperform and significantly improve image classification on the
challenging ImageNet dataset [12]. Furthermore, features from this
network, trained only for image classification, have been shown [41]
to improve the state-of-art on several other unrelated tasks like
scene recognition, fine grained detection and so on. In our implemen-
tation, rectified linear unit [36] is used as the activation function and
the drop-out regularization scheme [26] is used while training.

2.2. Siamese network

Siamese network, introduced in [8], is a pair of neural networks
who, at any given time instance, have the same architecture and
same weights. The network takes in a pair of images, forward propa-
gates them using a pair of neural networks to obtain the projections
and learns the weights based on a loss function on these projections.
Typically the supervision given is whether the pair of images are
similar or dissimilar. This method has been applied for signature ver-
ification [8], face verification [11], and image retrieval [50]. The work
by Taylor et al. [46] using a loss function which takes a label in [0,1]
interval. They have applied this method for character recognition and
pose retrieval. Our work extends this method by taking image triplet
and defining a ranking loss [30] on them. We further demonstrate
the method on a large dataset.

2.3. Poselets

Poselets [6] are classifiers which model a subset of body parts. The
key difference between [6] and our method is that [6] is for person
detection, and ours is for pose detection. A poselet, for example, can

model the head and the left shoulder together. The poselet method
has recently [7] been improved using CNNs. Gkioxari et al. [24]
adapts poselets for HPE problem by proposing to discover the pose-
lets by using only the image patches corresponding to the arms. This
work by Gkioxari et al. [24] is the closest to ours. Both our approach
and [24] use body part detectors which are sensitive to pose. While
the main focus of [24] is on key point detection, ours is on implicit
pose encoding. Further, while we train CNN features specifically for
body part detection task using CNNs, Gkioxari et al. [24] have used
HOG features.

2.4. Human pose

The pose retrieval methods of [20,27,28] use HPE algorithms.
Among the many HPE algorithms, pictorial structures [19] based
methods [15,21,52] are very popular. Methods such as [38] have
integrated a modified version of Berkeley poselets [6] with pictorial
structures, while other methods such as [42] have used the pose-
lets for inferring the pose. With the success of convolutional neural
networks, a few methods [47,48] have been proposed using CNN
architectures.

3. Deep poselets

In this work, a deep poselet is defined as a model which consists
of subset of the seven body parts present in a particular pose. The
seven body parts used are the left and the right upper arms, the left
and the right lower arms, the left and right hip, and the head. Fig. 2
illustrates a few example deep poselets.

(2)

(3) (5)(1)

(4) (6)

Fig. 2. Discovered deep poselets: Six deep poselets and instances belonging to them are shown. For each deep poselet, an average image marked with stickman and example
instances are displayed. A deep poselet is composed of subset of body parts in a particular pose as indicated by the stick figure on the average image. The body parts and their
poses in each example instance matches its corresponding deep poselet.
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Deep poselet method consists of discovering the deep poselets
from the data, training the poselets and finally detecting and post-
processing them on test images. All these steps are described in great
detail in the next few sections. Fig. 3 illustrates all these four steps.

3.1. Deep poselet discovery

The deep poselet framework can be understood as a discretization
of the pose space, where each state is captured by one deep poselet.
We formulate this discretization as a data driven process by cluster-
ing the body joints. Clustering all the body parts jointly needs huge
amounts of data to fully represent the pose space. Instead we clus-
ter on seven subset of body parts, where subset i is represented by
Si. The seven subsets used are (1) the left arm and the left hip, (2) the
left arm, left hip, and the head, (3) the left arm and the right hip,
(4) the right arm and the right hip, (5) the right arm, right hip, and the
head, (6) the right arm and the left hip, and (7) all body parts minus
the head. The left and the right arm are modeled, in three different
spatial contexts, by the subsets {S1, S2, S3} and {S4, S5, S6} respectively.
These three spatial contexts are (a) itself, (b) with torso, and (c) with
head and torso. The subset S7 models both the arms and captures the
popular poses in the database. The resultant cluster means form an
atomic unit of pose and a combination of them describes an upper
body pose. Since the body parts modeled by a subset Si can only take
one of N distinct poses and clustering algorithms give unique means,
these cluster means are mutually exclusive to each other.

Clustering each subset Si is performed in the following way. First
the dataset is pre-processed by computing a bounding box of the
person from the stickman annotation. This bounding box is then
expanded by extents learnt from the data such that all possible
human poses, with their various articulations and extensions of body
parts, are contained within the expanded bounding box. Next, body

parts annotations of subset Si are x–y normalized by the dimen-
sions of the expanded bounding box. These normalized coordinates
are concatenated and passed onto a K-means algorithm for cluster-
ing. The cluster means are taken as the canonical deep poselets. In
our experiments, a total of 122 deep poselets are obtained. Fig. 2
illustrates a few deep poselets discovered using the above process.

3.1.1. Pose comparison
While it is sensible to consider the samples belonging to the deep

poselet cluster as positive samples, some of these are perceptually
dissimilar to the cluster mean. Further, there are samples whose
membership is perceptually ambiguous. Thus for a deep poselet, each
sample is classified as belonging to positive class, negative class or
ignore class using body part angle (angle made by a body part with
the image axis). The samples belonging to the ignore class are nei-
ther considered while training nor while testing. The classification is
done using the following procedure: (a) All the samples whose indi-
vidual part angles do not deviate by more than t1 from the canonical
deep poselet are taken as positive samples, (b) all the samples
whose individual part angles deviate by more than t2 degrees from
the canonical deep poselet are considered as negative samples, and
(c) finally all the samples whose individual part angles deviate by less
than t2 degrees but with at-least one part which deviates between t1

and t2 degrees are considered as ignore class. Using cross validation,
the thresholds t1 and t2 are set at 20 and 30◦ respectively.

3.2. Expected poselet area (EPA)

As deep poselets use CNNs, the sliding window approach for
locating the body parts is very expensive during test time. Previous
CNN based methods for image classification have solved this problem

Fig. 3. Deep poselet method: The proposed deep poselet method has four parts: (a) Discovery: First, poselets of various body joint configurations (illustrated in the figure) are
discovered by clustering in the pose space. (b) Training: These poselets are then trained using convolutional neural networks. (c) Detection: Each poselet has been observed to
have a localized area within the upper body bounding box. We term this area as “expected poselet area (EPA)”. The poselet detection is performed within this area. (d) Post-
processing: The EPA of several poselets intersect (e.g., all poselets belonging to the left arm). Thus within the same area, several poselets have detections while only small number
of them are correct. Using linear regression we rescore the poselet detections using the context of other poselet detections. Parts (c) and (d) are our contributions while parts (a)
and (b) have some overlap with previous works.
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by using unsupervised object proposal methods like objectness [1]
and selective search [49]. Unfortunately, poselets are not whole
objects but parts of a specific object (e.g. arms as part of human).
Thus the above object proposal methods are not useful for the task.
We solve this problem by finding the ‘expected poselet area (EPA)’
in an image. The EPA gives the highly probable location of the deep
poselet within the bounding box of the person. For example, a deep
poselet modeling the left arm typically lies in the left half of the
bounding box. The search space of the deep poselet can be restricted
to this EPA, which improves both the performance and time com-
plexity. The extent of the EPA of a deep poselet is learnt from the pos-
itives in the training data. This is done by taking 5 percentile and 95
percentile of the normalized coordinates (normalized w.r.t expanded
bounding box) as the extent of EPA respectively. Experiments show
that over 95% of the positive instances in both training and test data
are encompassed by expected poselet area. This highly precise spa-
tial locality property of poselets ensures that searching only in this
area and avoiding the rest of the image (exhaustive search) decreases
the probability of false positive occurrence. Thus this improves the
accuracy and since the search space is reduced it is computationally
efficient.

While EPA encompasses the positives instance well, it also has
background area within it. Thus the ground truth area can be any of
the possible sub-windows of the EPA. A way to deal with this would
be to search for the true detection in the EPA over all possible scales
and locations. We simplify the search procedure by fixing the scale of
deep poselet to 90% of the EPA and translations to 9 equally spaced
sub-windows.

3.3. Training

As mentioned before, each deep poselet models a subset of parts
in a specific pose. We train a discriminative classifier which can
tell apart image regions belonging to this deep poselet from other
image regions. We use linear SVMs to train the deep poselets. For the
features, we use the representations from CNNs.

In our experiments, we use the implementation of the ImageNet-
CNN network by Donahue et al. [13]. The ImageNet-CNN [33] is a
deep neural network with five convolutional layers and three fully
connected layers. Below, the feature extraction and training are
explained

3.3.1. Feature extraction
The nine sub-windows of the EPA are passed through ImageNet-

CNN in a feed forward manner and the feature maps of the fifth
pooling layer (pool5), the first and the second fully connected lay-
ers (fc6 and fc7 respectively) are noted. From these three feature
maps, the best performing one (details in Section 6) is used as the
representation for the deep poselet.

Further, we fine-tune the ImageNet-CNN to the task of poselet
classification so that the CNN takes an image region as input and
outputs the poselet class label or background. For fine-tuning, the
last fully connected layer of the ImageNet-CNN is replaced by a 123
(122 deep poselets and a background class) neuron fully connected
layer. The weights of the newly added layer are randomly initial-
ized. The weights of the rest of the layers are initialized from the
ImageNet-CNN [13]. It has been observed that the sample strength
ratio between the largest poselet class and the smallest poselet class
is 80. To compensate for this skew, the data of the classes with low
strength are augmented by their translated versions. The original
learning rates are decreased by a factor of 10 so that the existing
weights do not significantly change. For the first two fully connected
layers, a drop-out rate [45] of 0.5 is used. For training the network,
the cuda-convnet software [32] is used.

3.3.2. Learning SVMs
Typically an EPA has significant background areas. Thus the

ground truth area can be any of the possible sub-windows of the
EPA. To select the correct sub-window a multiple instance learning
(MIL) approach is used [2]: after extracting the feature representa-
tions from the nine sub-windows of all EPAs, an initial linear SVM
model is trained. For this, all the sub-windows are given the same
label as the EPA. Using this initial SVM, the best scoring sub-windows
are selected and a new SVM model is trained. This process is repeated
until there is no change in the AP on the validation set. In practice,
it is found that three iterations suffice. Empirically, this procedure
improved the AP by 7% over the method in which all candidate win-
dows are used for training. This procedure is reminiscent of best
positive bounding box selection used in Felzenswalb et al. [18].

3.4. Testing

Given a test image, it is processed using the human detector
algorithm to obtain upper body detections. Each upper body detec-
tion is then transformed to obtain the expanded bounding box. For
each deep poselet, the corresponding EPA (expected poselet area) is
computed using the learnt transformation (Section 3.2). The EPA is
then divided into nine equally spaced sub-windows with the scale of
each sub-window at 90% of EPA. Each sub-window is passed onto the
deep poselet model to obtain a score. The sub-window with the best
score is noted as the deep poselet detection.

3.5. Spatial reasoning

On an image with a person in it, typically most of the deep pose-
lets fire, when only a few of them are correct. Many of these deep
poselet detections significantly overlap, while being mutually exclu-
sive. Fig. 4 illustrates this behavior. In the figure, three deep poselet

Fig. 4. Spatial reasoning: For a given test sample, three deep poselet detections and
their scores are shown as belonging to the area marked by an orange rectangle.
Detections 1 and 3 are partially correct as the pose of the left upper arm matches that
of the test sample. Detection 2 is the correct one. Typically many such deep poselet
detections, often mutually exclusive, have significant overlap. Using spatial reason-
ing, these detections are rescored such that correct ones (detection 2) get a score of
nearly 1 and the partially or totally incorrect ones (detections 1 and 3) get a score of
nearly 0. The image also shows that the area around the left arm (orange rectangle)
has 15 unique deep poselets while the area around the right arm (pink rectangle) has
13 unique deep poselets.
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detections corresponding to the left arm are displayed. Clearly they
are mutually exclusive because the arm can be present in only one
of the three poses represented by them. This conflict is resolved by
rescoring the deep poselet detections using other mutually exclusive
deep poselet detections as context. The expected outcome is that the
correct detections (detection 2 in the Fig. 4) have a score of nearly 1
and incorrect ones (detections 1 and 3 in the Fig. 4) have a score of
nearly 0. For this rescoring, a RBF kernel based regression model [14]
is learnt for each deep poselet type P. The input to this model is a
feature vector comprising of calibrated scores (procedure in the next
paragraph) of the P′s own detection and its mutually exclusive deep
poselets and the output is the new score. For training, the above fea-
ture is provided as input and the binary label of the deep poselet
detection is provided as target value. Given a test sample, first all the
deep poselets are run on the sample and then the above regression
models are applied to rescore each deep poselet detection. Below the
procedure for calibration and finding mutually exclusive poselets are
described.

3.5.1. Calibration
Calibration ensures that scores of various deep poselets are com-

parable. This is achieved by mapping the scores of all deep poselets
to the [0,1] interval. We use the method proposed by Platt [40], in
which a logistic regression model is learnt with the deep poselet
score as input. Let X ∈ R be the scores of the deep poselet detections
D. A mapping s : X → Y where X, Y ∈ R is learnt. The function s(x) is
parameterized by w0, w1 and is given by,

s(x) =
1

1 + e(w1x+w0)
. (1)

3.5.2. Mutually exclusive deep poselets
Foreachdeepposelet typeP, amutuallyexclusiveposelet isdefined

as one which occupies the same area in the person bounding box. For
example, the three detections in Fig. 4, which are mutually exclusive,
occupy the same area. The following procedure is used to find the
mutually exclusive deep poselets. First the ‘expected poselet areas’
(Section 3.3) of all the 122 deep poselets are collected. These deep
poselets are then clustered using the cluster partitioning algorithm
proposed by Ferrari et al. [22]. The algorithm returned 31 clusters,
where poselets in each cluster form a mutually exclusive set.

4. Deep pose embedding

In this section, we describe the second way of representing the
pose from an image. We describe the CNN projection function and
the triplet ranking loss used for training.

4.1. Model and training procedure

Given an image of a person in a particular pose, we project it into
a low-dimensional pose-sensitive space. This low-dimensional space

has the following structure: (a) The projections of all images with
similar poses are near-by, and (b) The projections of images with
dissimilar poses are far away.

For learning the projection function, image triplets (xi, xp
i , xn

i ) are
given which consists of a reference image, an image with similar pose
and an image with dissimilar pose respectively. The projection func-
tion f : X → Y parameterized by w, is learnt such that the L2 distance
dp

i between the pair (yi, yp
i ) (here y = f(x)) is less than the L2 distance

dn
i between the pair (yi, yn

i ) by a margin of 1. Formally, the parameters
w are learnt by minimizing the following equation,

L =
a

2
‖w‖2 +

∑
i∈I

max(0, 1 −
(

dn
i − dp

i

))
(2)

where a is a hyper-parameter to control the amount of regulariza-
tion and I is the set of indices of the training samples. The above
equation is minimized using stochastic gradient descent where the
gradient is given by,

∂L
∂w

= a ∗ w +
∑
i∈I

∂g
∂w

. (3)

Here g = max(0, 1 − (dn
i − dp

i )) and its gradient is given by,

∂g
∂w

=

⎧⎨
⎩

0, if 1 −
(

dn
i − dp

i

)
≤ 0

− ∂dn
i

∂w +
∂dp

i
∂w , otherwise.

The gradient of the L2 distance d between two points (y1, y2) is
given by,

∂d(y1, y2)
∂w

=
1

d(y1, y2)
(y1 − y2)T

[
∂y1

∂wk
− ∂y2

∂wk

]
(4)

For the projection function, we use convolutional neural net-
works (CNNs) which are highly non-linear and can handle the artic-
ulations of the poses. The architecture of our network is again based
on Krizhevsky et al. [33] and is shown in Fig. 5. The network has
three identical CNNs, both in terms of architecture and the param-
eters and is illustrated in Fig. 6. Each CNN has five convolutional
layers followed by two fully connected layers. For the non-linearity,
we use leaky relu unit [35] which is effective against saturation. The
weights of all the layers are randomly initialized from the Gaussian
distribution. For the convolutional layers, (0,0.01) are used as mean
and standard deviation respectively. For the fully connected layers
(0,0.005) are used as mean and standard deviation respectively. The
size (width × height) of the first, second and fifth max pooling lay-
ers are 3 × 3 with a stride of 2. The third and fourth convolutional
layers are not followed by any max-pooling layers. Both the first and
second max-pooling layers are followed by cross map local response
normalization with a size of 5×5 and its parameters are given in [33].

Fig. 5. CNN architecture: This architecture is a minor variation of the CNN architecture proposed in [33]. The number of layers and the number of the parameters are depicted.
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Fig. 6. Triplet architecture: A training sample to this network contains a tuple of
three images. The three images are reference image, a positive image which contains
the similar pose as reference image, and a negative image which contains a dissim-
ilar pose to the reference image. The images are forward propagated and passed to
the loss function which measures how well the network separates reference-positive
pair and the reference-negative pair. This architecture can be visualized as containing
three networks, each for an image, with the same CNN architecture and same set of
parameters at any given time.

For training the network, a mini-batch of 128 image triplets X
are presented to the network. The sampling strategies and augmen-
tations are discussed in the next sections. For a given image triplet
Xi, the three images are passed through the network to obtain fea-
ture maps Yi of the final layer. These feature maps are then used to
obtain the gradient (Eq. (3)) of the loss function defined in Eq. (2).
The weight vectors are then updated using the following equation:

wt = wt−1 − g
∂L
∂w

+ bwt−1
m (5)

wt
m = wt−1

m − g
∂L
∂w

. (6)

Here wm is the standard momentum term, b = 0.9 is the rate of
momentum and g is the learning rate. Note that the gradient of the L2

regularization term in Eq. (2) is accounted for in Eq. (3). The network
is trained using the popular deep learning library Theano [4,5].

4.2. Data

The challenge with models that use triplets is the data explosion. A
data set of just ten thousand images can produce a training set of one
trillion triplets. While training the CNNs, which requires thousands
of data augmentations [33] (through minor translations, scaling and
rotations), this problem is further compounded. Given the computa-
tional constraints, clearly it is not possible to train the network on all
the triplets and their augmentations. Yet, it is not prudent to discard
them from which the network can learn. To solve this problem, we
propose a method which mines the difficult triplets and their aug-
mentations. By presenting these difficult examples to the network

and leaving the simpler examples out, both the computational effi-
ciency and better utilization of data are achieved. The method works
by first mining for difficult triplets and then difficult augmentations
per triplets. Both these mining steps are described below.

4.2.1. Triplet mining
Many real datasets follow power law and have significantly

higher samples for certain classes. To correct this skew, we organize
the data set into K clusters {C1, . . . , CK} where samples belonging to
each cluster have similar poses. We obtain these clusters using K-
means algorithm described in Section 3.1.1. For the first few epochs
(5 in our implementation), we randomly sample image triplets in
the following way. First R images are randomly sampled from each
cluster without replacement. For each sample, T positives and nega-
tives are randomly sampled to form triplets. Thus the total number of
triplets are RTK. At the end of these epochs the network would have
reasonable estimate of parameters.

After the initial epochs, the data is mined to obtain difficult
examples for training. As before, from each cluster Ci, Ri samples
are randomly sampled. Each sample is then forward propagated to
obtain the loss value. All the sample values whose loss is 0 are
discarded. The remaining samples, which the network found diffi-
cult, are sent for training. Similar strategies have been used in other
applications [43].

4.2.2. Augment mining
Given a triplet Ti, it is augmented with minor translated, rotated

and scaled versions of itself. Each image in the triplet is transformed
by small random translation, rotation and scaling several times to
obtain the augmentations Tj

i , where j = 1 . . . N. In our implemen-
tation, we obtain 4 augmentations per triplet. These augmented
triplets are then forward propagated to obtain the loss given in
Eq. (2). The M augmented triplets (5 in our implementation) with the
non-zero loss are retained for training.

5. Pose search

In this section, we first describe our pose search approaches. We
then review three standard retrieval methods for the pose search
task. Later in the paper (Section 6.4), we compare the proposed pose
search method against standard retrieval schemes described below.
All the methods below take an expanded bounding box as input.

5.1. Proposed deep poselets

Given a test image, all the deep poselets are run on it using
the procedure described in Section 3.4 and the detection scores are
noted. All the deep poselet detections are clustered by the person to
which they belong. These deep poselet detections are then rescored
using spatial reasoning (Section 3.5). Finally a feature vector of K
dimensions, where K is the number of deep poselet detectors, is
constructed by max pooling the detections. The feature is then l2 nor-
malized. Thus for each upper body in the dataset, a feature vector is
constructed.

Given a query image, a feature representation is created using the
method described above and it is compared against all the samples
in the dataset using Euclidean distance. The samples in the dataset
are sorted by distance and presented to the user.

5.2. Proposed deep pose embedding network

Given a query image, it is passed through the trained convolu-
tional neural network and the output representation is noted. This
representation is compared against all the samples in the dataset
using Euclidean distance. The samples in the dataset are sorted by
distance and presented to the user.
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5.3. Bag-of-visual words models [44]

Given a training data composed of images with people in vari-
ous poses, the SIFT features are extracted at the key points and 1000
visual words are obtained. Given a test upper body detection, the
SIFT features are extracted in the expanded bounding box and bag of
words representation is obtained using the visual words computed
from the training data. This representation is then compared against
all the images in the database. The distances or similarity scores are
sorted to obtain the ranked list.

5.4. Human pose estimators [9,37,52]

Following the method proposed by Jammalamadaka et al. [28],
the HPE algorithms are used for the pose search task as described
below. First the pose estimation algorithms Yang and Ramanan [52],
Chen and Yuille [9] and Pfister et al. [37] are run on all the expanded
versions of the upper body detections in the database to obtain
the pose estimates. This HPE algorithm gives the locations of vari-
ous body joints by efficiently searching over multiple scales and all
possible translations. For each pose estimate, the sine and cosine of
upper and lower parts of both the arms are extracted to form a pose
representation. Given a test upper body bounding box, the above
procedure is applied to obtain the pose representation. It is then
compared against all the instances in the database and the ranked
list is obtained after sorting the scores.

5.5. Berkeley poselets [6]

Here, all the poselet classifiers are run on an image to obtain poselet
detections.Theseposeletdetectionsarethenpooledintoclustersbased
onthepersonboundingbox,andaremaxpooledtoobtainadescription
of the human pose. The above procedure is applied on the database
and the representations are stored. Given the query sample the above
representation is obtained and is compared against all the samples in
the database. The ranked list is obtained by sorting the scores.

Table 1
The contributions of various datasets before adding the flipped versions.

Dataset Train Val Test Total

H3D [6] 238 0 0 238
ETH PASCAL [15] 0 0 548 548
Buffy [21] 747 0 0 747
Buffy-2 dataset [27] 396 0 0 396
Movie dataset [27] 1098 491 2172 3756
FLIC [42] 2724 2279 0 5003
MPII human pose [3] 6742 0 0 6742
Poses in wild [10] 660 0 0 660
We are family [16] 1290 0 0 1290
Synchronic activities [17] 1112 0 0 1112
Total 15,007 2764 2720 20,491

6. Experiments

In this section, we present the experimental evaluation of the
deep poselet method and the pose search method. First the data used
for both the tasks is described in detail. Then the experimental setup
and results for the deep poselet method and pose search method are
described.

6.1. Data

Training deep poselet classifiers and deep pose embedding algo-
rithms require moderately large amounts of data. We thus pool sev-
eral existing datasets to create training and test data for deep poselets
and pose search. The datasets used are Buffy stickmen dataset [21],
ETH PASCAL dataset [15], the H3D dataset [6], Buffy stickmen-2
dataset [27], movie stickmen dataset [27], FLIC dataset [42], MPII
human pose dataset [3], Poses in the wild dataset [10], We are family
dataset [16] and Synchronic Activities dataset [17]. Each of these
datasets contains images and stick figure annotations of the humans.
Fig. 7 shows some examples from these datasets. For the conve-
nience of pose search method, we consider only those annotations in
which all parts are visible. For a partially occluded person, defining

Fig. 7. Images from the dataset: These images show the pose variation in the dataset.
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Table 2
Comparison of our method with state-of-art poselet methods on the test data.

Method AP-test

HOG poselets 32.6
Deep poselets before fine-tuning 48.6
Deep poselets after fine-tuning 56.0

Bold in table indicates the proposed method′s best result.

a positive instance for retrieval is ambiguous. In all, there are 20,491
fully visible annotations. The statistics are given in the Table 1. To
further enhance the dataset size, each image and annotation is hori-
zontally flipped effectively doubling the corpus to 40,982 stickmen.
Using the stickman annotations, the bounding box of the upper body
is constructed and transformed into the expanded bounding box. To
understand the efficacy of various pose representation schemes, the
ground truth bounding box is assumed.

The combined dataset of 40,982 samples is divided into train-
ing, validation and test datasets. The training dataset consists of
Buffy stickmen dataset [21], H3D dataset [6], Buffy-stickmen II
dataset [27], five movies from the movie stickmen dataset [27] and
twenty movies from FLIC dataset [42]. The validation dataset con-
sists of one movie from movie stickmen dataset [27] and ten movies
from FLIC dataset [42]. The testing dataset consists of ETH PASCAL
dataset [15] and the remaining five movies from the movie stick-
men dataset [27]. This division of data ensures that training and
testing datasets have no overlap in movies and helps in evaluating
the methods on unseen data. The individual contributions of various
datasets to the train, validation and test data are given in Table 1.

6.2. Deep poselets

Given a set of deep poselet detections and ground truth bounding
boxes, the deep poselet performance is reported in terms of average
precision (AP) in the following way. First all the deep poselet detec-
tions in an image are compared against the ground truth bounding
boxes using the intersection over union measure (IOU). All the detec-
tions which have more 0.35 IOU, a value used in [6], are considered
as positive. All the detections are then sorted in the decreasing order
of score and AP is calculated using the labels.

6.2.1. HOG poselets
To baseline the performance of the deep poselets, we compare it

with poselets which use HOG features. In this method, a linear SVM
is trained using the standard hard-negative mining approach [18].
For the positive samples, the HOG feature is extracted in the bound-
ing box. For the negative samples, the HOG feature of all possible
bounding boxes in scale and translation space are considered. Given
a test sample, the classifier is run on all scales and locations. All the
detections which are above a pre-determined threshold (95% recall
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Fig. 9. Posesearch performance: The distribution of query performances by various
retrieval methods are shown. Each bar in the graph shows the percentage of queries
(Y-axis) having an average precision (X-axis). Thus the more the number of queries on
the right side of the graph the better the method. This is also reflected by the mean of
the distribution (mAP) of various methods given in the top right corner. It is clear that
the proposed method significantly outperforms other methods.

on the training data) are deemed as positive detections. Further,
all the poselet detections which do not overlap more than 0.35 IOU
with the ‘expected poselet area’ (Section 3.3) are discarded. This step
improves the average AP by 10%.

Table 2 shows the performances of HOG poselets and deep pose-
lets. These values are averaged across all the 122 classifiers. It is
apparent from the numbers that deep poselets outperform the HOG
poselets. It is also observed that out of 122 deep poselets, 118 of
them using features before fine-tuning and 120 of them using fea-
tures after fine-tuning outperform the HOG poselets. Fig. 8 compares
the AP curves of HOG poselets and deep poselets. Fig. 10 shows
the example detections of three deep poselets. As illustrated in the
figure, the performance of the deep poselet improves with more
training data.

6.3. Deep pose embedding

Given the training and validation data described in Section 6.1,
the performance of the deep pose embedding method is measured
using average value of the loss function. The training data is chosen
as described in Section 4.2. A total of 44 epochs have been generated

Fig. 8. Deep poselets vs HOG poselets: The graphs show the performance of three deep poselets on test data. The red curve in each graph corresponds to HOG poselet while the
green curve corresponds to the deep poselet. As can be seen, the deep poselet outperforms the HOG poselet.
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Fig. 10. Top deep poselet detections: Three deep poselets and top detections by them are shown. For each deep poselet, every fifth detection is displayed. In the top 50 detections,
while there are no mistakes in deep poselet (a), there are 4 mistakes in deep poselet (b) and 20 mistakes in deep poselet (c). In the deep poselets (b) and (c), the first mistakes
occur at ranks 20 and 10 respectively. It can be seen that the performance of deep poselets improve as the number of training samples increases.

to train the neural network. For the validation data, we use a total of
20,000 triplets using the procedure described in Section 4.2.1 for the
initial set of training epochs. Note that for validation data, we nei-
ther discard triplets with zero loss nor do any augmentations. The
Fig. 11 displays the performance of both training and validation data
over the epochs. The minimum possible loss value is 0 and there is
no upper bound on the loss function. Loss value of 0 indicates that
the network is able to separate the positive and negative sample by a
margin of at least 1. Loss value (0,1) indicates that the network is still
able to separate reference-positive pair and the reference-negative
pair but by a margin less than 1. A loss [1, inf) on a training sam-
ple indicates that the distance between the reference-positive pair is
more than or equal to the reference-negative pair.

The plot in Fig. 11 demonstrates that the learning is converging. It
also shows how the loss function on validation data has similar error
values as on the training data. This indicates that the network is able
to generalize well. As described earlier, the first five epochs do not
use any data augmentations. After the fifth epoch, augmentation and
data mining applied which explains the sudden spike in the plot.
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Fig. 11. Deep pose embedding network’s performance.

6.4. Pose search

Given a query image, the feature representation is computed and
its similarity score or distance is computed with all samples in the
test data. These scores are then sorted to obtain a ranked list. The
label for each sample in this list, which indicates if the sample has
a similar pose as the query, is determined using the part angles as
described in Section 3.1.1. Using the ranked list and labels, average
precision (AP) is calculated. Each sample in the test data is used as
a query to retrieve the results, thus evaluating the various retrieval
methods on a total of 5440 queries, the size of test data. The pose
search task is evaluated using mean average precision (mAP), which
is the average of APs over all the queries.

Table 3 shows the mAPs of various methods over all the queries
and the dimension of the pose representation. As is evident, the pro-
posed approaches deep poselet method and deep pose embedding
method, with a mAPs of 34.6% and 34.3% respectively, significantly
outperform the traditional methods with the best of them at 17.5%.
The table also shows that applying spatial reasoning for deep pose-
lets has improved the mAP from 32.9% to 34.6%, an improvement of
1.7%. The new CNN based human pose estimation algorithms ‘CNN-
HPE I’ and ‘CNN-HPE II’, which are currently the state-of-the-art on
several datasets, do better than their traditional counter-parts. The
‘CNN-HPE II’ algorithm mildly outperforms our algorithm by 2.5%.
We have to note that these both algorithms have used sophisticated

Table 3
Pose search performance (mAP) and pose representation’s dimensions of various
methods.

Methods #Dimension mAP

Bag of visual words [44] 1000 14.2
Berkeley poselets [6] 150 15.3
Human pose estimation [52] 8 17.5
CNN-HPE I [37] 8 23.8
CNN-HPE II [9] 8 37.1
Ours — deep pose embedding 4096 34.3
Ours — deep poselets 122 32.9
+Spatial reasoning 122 34.6

Bold in table indicates the proposed method′s best result and also best result from
competing methods.
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Fig. 12. Example retrievals by deep poselets: Top retrievals and AP curves for three queries are displayed. For the top retrievals every fifth sample from the top in retrieved list is
displayed. The first mistake occurs at ranks 11, 4 and 33 respectively for the above queries.

modeling while ours uses a standard and relatively small neural
network. We strongly believe that our method will significantly ben-
efit from initializations with a pretrained model, increasing the depth
of the network and improving the data mining strategies. Fig. 9,
which shows the distribution of pose search APs over all the queries,
gives an insight into our method’s better performance. Our methods
perform extremely well on queries such as query 3 in Fig. 12 with APs
in the excess of 50%. Such queries have low intra-class variation and
high frequency. The second mode on the right in Fig. 9 corresponds
to these poses. On queries with rare poses, our method gives better

APs, while other methods post near zero APs. Few examples queries
and their top retrievals are displayed in Fig. 12.

Fig. 9 shows an interesting pattern where the AP distributions
for the deep poselet method and deep pose embedding method are
very similar. This observation throws up questions and we attempt
to answer them here: (i) Do they have similar failure cases? If we
consider all the queries which have an AP less than 10% as failures,
the number of common failure queries between both the methods
are about 70% of the total failure queries for either of the methods.
This clearly suggests that both the methods have similar failure cases.

Fig. 13. Deep poselet analysis: For the two query–retrieval pairs, the top and bottom poselets based on prominence scores are displayed for all three poselet categories. For the
first pair (above), the retrieval is incorrect. This analysis clearly shows that the top poselet in positive–negative category has misfired for the retrieval image. Similarly the top
poselet in negative–negative category also misfired. For the second pair (below), the retrieval is correct and all the prominence scores reflect it.
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(ii) What are their strengths and weaknesses? The deep poselet
method is easily comprehensible. A failure can be easily under-
stood and can typically be attributed to either a poselet misfiring
or the query’s pose not being covered by any of the poselets. The
flip side is that there are several steps involved in training and
building the feature vector. Further a unified method for locating
the parts and reasoning the spatial consistency could have bet-
ter performance.Consider the following analysis of pose retrieval
using deep poselets. For both query and the retrieved image, the
poselet labels and detection scores are noted. First, each poselet
is classified into one of the three categories: (a) Positive–positive,
(b) positive–negative or (c) negative–negative where, for example,
“positive–negative” label would mean one of query/retrieval is posi-
tive and other is negative. In order to understand which of the poselet
detections have affected the result most, the product of detection-
score-sum and detection-score-absolute-difference is noted and is
termed as prominence score. For positive–positive and negative–
negative poselets, the prominence score should be small and for
positive–negative poselets the prominence score should be large.
Note that each poselet category are independently analyzed. The
prominence scores of poselets belonging to the same category are
appropriately sorted (ascending order for positive–negative poselets
and descending order for other pairs). The poselets at the top of the
sorted list are responsible for wrong retrieval and poselets at the bot-
tom are responsible for correct retrieval. Fig. 13 demonstrates this
analysis on two query–retrieval pairs.

For the deep embedding though, the training and building the fea-
ture vector is straight forward. But what is being learnt is not very
clear and understanding the failures can be very difficult.

7. Conclusions

In this work, we successfully demonstrated a novel approach for
image and video search using pose as a query modality. We proposed
two ways, deep poselet method and deep pose embedding method,
to obtain the pose descriptors and perform the pose retrieval. In
the first method, we have shown that pose space can be discretized
by using ‘pose-sensitive’ deep poselets. These deep poselet detec-
tors model a subset of body parts in a particular pose. We have
shown that using the state-of-the-art CNN [13] features, these detec-
tors perform very well. They have been used as a basic building
blocks in constructing a feature representation for pose. In the sec-
ond method, we have shown how an image can be directly mapped
to a lower dimensional pose-sensitive space. We then empirically
demonstrated that pose retrieval using our both methods are on par
with competing pose retrieval methods.

Acknowledgments

We would like to thank Aniket Singh for helping with the imple-
mentation of the triplet network in the Theano framework and for
other helpful discussions during the implementation. We also would
like to thank James Charles for sharing the trained models of a HPE
algorithm. We are grateful for financial support from the UKIERI and
EPSRC (EP/M013774/1) program grant Seebibyte.

References

[1] B. Alexe, T. Deselaers, V. Ferrari, Measuring the objectness of image windows,
IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 34 (11) (2012) 2189–2202.

[2] S. Andrews, I. Tsochantaridis, T. Hofmann, Support vector machines for mul-
tiple-instance learning, Advances in Neural Information Processing Systems
(NIPS), 2002.

[3] M. Andriluka, L. Pishchulin, P. Gehler, B. Schiele, 2D human pose estimation:
new benchmark and state of the art analysis, IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2014.

[4] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I.J. Goodfellow, A. Bergeron, N.
Bouchard, Y. Bengio, Theano: new features and speed improvements.
Deep Learning and Unsupervised Feature Learning NIPS 2012 Workshop,
2012.

[5] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins, J.
Turian, D. Warde-Farley, Y. Bengio, Theano: a CPU and GPU math expres-
sion compiler, Proceedings of the Python for Scientific Computing Conference
(SciPy), 2010. oral Presentation.

[6] L. Bourdev, J. Malik, Poselets: body part detectors trained using 3D human pose
annotations, IEEE International Conference on Computer Vision (ICCV), 2009.

[7] L.D. Bourdev, F. Yang, R. Fergus, Deep poselets for human detection, CoRR
(2014) abs/1407.0717.

[8] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, R. Shah, Signature verification
using a siamese time delay neural network, Advances in Neural Information
Processing Systems Conference (NIPS), 1993. pp. 737–744.

[9] X. Chen, A. Yuille, Parsing occluded people by flexible compositions, Computer
Vision and Pattern Recognition (CVPR), 2015.

[10] A. Cherian, J. Mairal, K. Alahari, C. Schmid, Mixing body-part sequences for
human pose estimation, IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2014.

[11] S. Chopra, R. Hadsell, Y. LeCun, Learning a similarity metric discriminatively,
with application to face verification, IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR), 2005. pp. 539–546.

[12] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, ImageNet: a large-scale
hierarchical image database, IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2009.

[13] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, T. Darrell,
DeCAF: a deep convolutional activation feature for generic visual recognition,
2013. arXiv preprint arXiv:1310.1531

[14] H. Drucker, C.J.C. Burges, L. Kaufman, A.J. Smola, V. Vapnik, Support vec-
tor regression machines, Advances in Neural Information Processing Systems
Conference (NIPS), 1996.

[15] M. Eichner, V. Ferrari, Better appearance models for pictorial structures, British
Machine Vision Conference (BMVC), 2009.

[16] M. Eichner, V. Ferrari, We are family: joint pose estimation of multiple persons,
European Conference on Computer (ECCV), 2010. pp. 228–242.

[17] M. Eichner, V. Ferrari, Human pose co-estimation and applications, IEEE Trans.
Pattern Anal. Mach. Intell. (TPAMI) 34 (11) (2012) 2282–2288.

[18] P.F. Felzenszwalb, R.B. Girshick, D. McAllester, D. Ramanan, Object detection
with discriminatively trained part based models, IEEE Trans. Pattern Anal.
Mach. Intell. (TPAMI) 32 (9) (2010) 1627–1645.

[19] P.F. Felzenszwalb, D.P. Huttenlocher, Pictorial structures for object recognition,
Int. J. Comput. Vis. (IJCV) 61 (1) (2005) 55–79.

[20] V. Ferrari, M. Marin-Jimenez, A. Zisserman, Pose search: retrieving people
using their pose, IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2009.

[21] V. Ferrari, M.J. Marín-Jiménez, A. Zisserman, Progressive search space reduction
for human pose estimation, IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2008.

[22] V. Ferrari, T. Tuytelaars, L.J.V. Gool, Real-time affine region tracking and copla-
nar grouping, IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2001.

[23] R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich feature hierarchies for accurate
object detection and semantic segmentation, IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2014.

[24] G. Gkioxari, P. Arbelaez, L. Bourdev, J. Malik, Articulated pose estimation using
discriminative armlet classifiers, IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2013.

[25] G. Gkioxari, B. Hariharan, R. Girshick, J. Malik, Using k-poselets for detecting
people and localizing their keypoints, IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2014.

[26] G.E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Improv-
ing neural networks by preventing co-adaptation of feature detectors, CoRR
(2012) abs/1207.0580.

[27] N. Jammalamadaka, A. Zisserman, M. Eichner, V. Ferrari, C.V. Jawahar, Has my
algorithm succeeded? An evaluator for human pose estimators, IEEE European
Conference on Computer Vision (ECCV), 2012.

[28] N. Jammalamadaka, A. Zisserman, M. Eichner, V. Ferrari, C.V. Jawahar,
Video retrieval by mimicking poses, International Conference on Multimedia
Retrieval (ICMR), 2012.

[29] N. Jammalamadaka, A. Zisserman, C.V. Jawahar, Human pose search using deep
poselets, International Conference on Automatic Face and Gesture Recognition,
2015.

[30] T. Joachims, Optimizing search engines using clickthrough data, Proceedings
of the Eighth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, July 23–26, 2002, Edmonton, Alberta, Canada, 2002. pp.
133–142.

[31] M. Kiefel, P. Gehler, Human pose estimation with fields of parts, European
Conference on Computer Vision (ECCV), 2014.

[32] A. Krizhevsky, Cuda-Convnet: a fast C++/CUDA implementation of convolu-
tional neural networks.

[33] A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep
convolutional neural networks, Advances in Neural Information Processing
Systems Conference (NIPS), 2012.

[34] Y. Lecun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to
document recognition, Proc. IEEE (1998)

http://refhub.elsevier.com/S0262-8856(16)30220-7/rf0005
http://refhub.elsevier.com/S0262-8856(16)30220-7/rf0010
http://refhub.elsevier.com/S0262-8856(16)30220-7/rf0015
http://refhub.elsevier.com/S0262-8856(16)30220-7/rf0020
http://refhub.elsevier.com/S0262-8856(16)30220-7/rf0025
http://refhub.elsevier.com/S0262-8856(16)30220-7/rf0030
http://refhub.elsevier.com/S0262-8856(16)30220-7/rf0035
http://refhub.elsevier.com/S0262-8856(16)30220-7/rf0040
http://refhub.elsevier.com/S0262-8856(16)30220-7/rf0045
http://refhub.elsevier.com/S0262-8856(16)30220-7/rf0050
http://refhub.elsevier.com/S0262-8856(16)30220-7/rf0055
http://refhub.elsevier.com/S0262-8856(16)30220-7/rf0060
http://refhub.elsevier.com/S0262-8856(16)30220-7/rf0065
http://refhub.elsevier.com/S0262-8856(16)30220-7/rf0065
http://refhub.elsevier.com/S0262-8856(16)30220-7/rf0070
http://refhub.elsevier.com/S0262-8856(16)30220-7/rf0075
http://refhub.elsevier.com/S0262-8856(16)30220-7/rf0080
http://refhub.elsevier.com/S0262-8856(16)30220-7/rf0085
http://refhub.elsevier.com/S0262-8856(16)30220-7/rf0090
http://refhub.elsevier.com/S0262-8856(16)30220-7/rf0095
http://refhub.elsevier.com/S0262-8856(16)30220-7/rf0100
http://refhub.elsevier.com/S0262-8856(16)30220-7/rf0105
http://refhub.elsevier.com/S0262-8856(16)30220-7/rf0110
http://refhub.elsevier.com/S0262-8856(16)30220-7/rf0115
http://refhub.elsevier.com/S0262-8856(16)30220-7/rf0120
http://refhub.elsevier.com/S0262-8856(16)30220-7/rf0125
http://refhub.elsevier.com/S0262-8856(16)30220-7/rf0130
http://refhub.elsevier.com/S0262-8856(16)30220-7/rf0135
http://refhub.elsevier.com/S0262-8856(16)30220-7/rf0140
http://refhub.elsevier.com/S0262-8856(16)30220-7/rf0145
http://refhub.elsevier.com/S0262-8856(16)30220-7/rf0150
http://refhub.elsevier.com/S0262-8856(16)30220-7/rf0155
http://refhub.elsevier.com/S0262-8856(16)30220-7/rf0160
http://refhub.elsevier.com/S0262-8856(16)30220-7/rf0165


N. Jammalamadaka et al. / Image and Vision Computing 59 (2017) 31–43 43

[35] A.L. Maas, A.Y. Hannun, A.Y. Ng, Rectifier nonlinearities improve neural net-
work acoustic models, ICML Workshop on Deep Learning for Audio, Speech,
and Language Processing (WDLASL), 2013.

[36] V. Nair, G.E. Hinton, Rectified linear units improve restricted Boltzmann
machines, IEEE International Conference on Machine Learning (ICML), 2010.

[37] T. Pfister, J. Charles, A. Zisserman, Flowing ConvNets for human pose estimation
in videos, IEEE International Conference on Computer Vision, 2015.

[38] L. Pishchulin, M. Andriluka, P.V. Gehler, B. Schiele, Poselet conditioned picto-
rial structures, IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2013.

[39] L. Pishchulin, M. Andriluka, P.V. Gehler, B. Schiele, Strong appearance and
expressive spatial models for human pose estimation, IEEE International Con-
ference on Computer Vision (ICCV), 2013.

[40] J. Platt, Probabilistic outputs for support vector machines and comparison to
regularize likelihood methods, Advances in Large Margin Classifiers, 2000.

[41] A.S. Razavian, H. Azizpour, J. Sullivan, S. Carlsson, CNN Features off-the-shelf:
an astounding baseline for recognition, CoRR (2014) abs/1403.6382.

[42] B. Sapp, B. Taskar, MODEC: multimodal decomposable models for human
pose estimation, IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2013.

[43] F. Schroff, D. Kalenichenko, J. Philbin, Facenet: a unified embedding for face
recognition and clustering, IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2015.

[44] J. Sivic, A. Zisserman, Video Google: a text retrieval approach to object
matching in videos, IEEE International Conference on Computer Vision (ICCV),
2003.

[45] N. Srivastava, G.E. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov,
Dropout: a simple way to prevent neural networks from overfitting, J. Mach.
Learn. Res. 15 (1) (2014) 1929–1958.

[46] G.W. Taylor, I. Spiro, C. Bregler, R. Fergus, Learning invariance through imitation,
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011.

[47] J.J. Tompson, A. Jain, Y. LeCun, C. Bregler, Joint training of a convolutional net-
work and a graphical model for human pose estimation, Advances in Neural
Information Processing Systems (NIPS), 2014.

[48] A. Toshev, C. Szegedy, DeepPose: human pose estimation via deep neural
networks, IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2014.

[49] J.R.R. Uijlings, K.E.A. van de Sande, T. Gevers, A.W.M. Smeulders, Selective
search for object recognition, Int. J. Comput. Vis. (IJCV) 104 (2) (2013) 154–171.

[50] J. Wang, Y. Song, T. Leung, C. Rosenberg, J. Wang, J. Philbin, B. Chen, Y. Wu,
Learning fine-grained image similarity with deep ranking, IEEE Conference on
Computer Vision and Pattern Recognition, 2014. pp. 1386–1393.

[51] Y. Wang, D. Tran, Z. Liao, Learning hierarchical poselets for human parsing, IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2011.

[52] Y. Yang, D. Ramanan, Articulated pose estimation with flexible mixtures-of–
parts, IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2011.

http://refhub.elsevier.com/S0262-8856(16)30220-7/rf0170
http://refhub.elsevier.com/S0262-8856(16)30220-7/rf0175
http://refhub.elsevier.com/S0262-8856(16)30220-7/rf0180
http://refhub.elsevier.com/S0262-8856(16)30220-7/rf0185
http://refhub.elsevier.com/S0262-8856(16)30220-7/rf0190
http://refhub.elsevier.com/S0262-8856(16)30220-7/rf0195
http://refhub.elsevier.com/S0262-8856(16)30220-7/rf0200
http://refhub.elsevier.com/S0262-8856(16)30220-7/rf0205
http://refhub.elsevier.com/S0262-8856(16)30220-7/rf0210
http://refhub.elsevier.com/S0262-8856(16)30220-7/rf0215
http://refhub.elsevier.com/S0262-8856(16)30220-7/rf0220
http://refhub.elsevier.com/S0262-8856(16)30220-7/rf0225
http://refhub.elsevier.com/S0262-8856(16)30220-7/rf0230
http://refhub.elsevier.com/S0262-8856(16)30220-7/rf0235
http://refhub.elsevier.com/S0262-8856(16)30220-7/rf0240
http://refhub.elsevier.com/S0262-8856(16)30220-7/rf0245
http://refhub.elsevier.com/S0262-8856(16)30220-7/rf0250
http://refhub.elsevier.com/S0262-8856(16)30220-7/rf0255

	Human pose search using deep networks
	1. Introduction
	2. Related work
	2.1. Convolutional neural networks (CNNs)
	2.2. Siamese network
	2.3. Poselets
	2.4. Human pose

	3. Deep poselets
	3.1. Deep poselet discovery
	3.1.1. Pose comparison

	3.2. Expected poselet area (EPA)
	3.3. Training
	3.3.1. Feature extraction
	3.3.2. Learning SVMs

	3.4. Testing
	3.5. Spatial reasoning
	3.5.1. Calibration
	3.5.2. Mutually exclusive deep poselets


	4. Deep pose embedding
	4.1. Model and training procedure
	4.2. Data
	4.2.1. Triplet mining
	4.2.2. Augment mining


	5. Pose search
	5.1. Proposed deep poselets
	5.2. Proposed deep pose embedding network
	5.3. Bag-of-visual words models [44]
	5.4. Human pose estimators [9,37,52]
	5.5. Berkeley poselets [6]

	6. Experiments
	6.1. Data
	6.2. Deep poselets
	6.2.1. HOG poselets

	6.3. Deep pose embedding
	6.4. Pose search

	7. Conclusions
	Acknowledgments
	References


