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Abstract

Building bilateral semantic associations between images and texts is among the fundamental problems in computer vision. In
this paper, we study two complementary cross-modal prediction tasks: (i) predicting text(s) given a query image (“Im2Text”), and
(ii) predicting image(s) given a piece of text (“Text2Im”). We make no assumption on the specific form of text; i.e., it could be either
a set of labels, phrases, or even captions. We pose both these tasks in a retrieval framework. For Im2Text, given a query image,
our goal is to retrieve a ranked list of semantically relevant texts from an independent text-corpus (i.e., texts with no corresponding
images). Similarly, for Text2Im, given a query text, we aim to retrieve a ranked list of semantically relevant images from a collection
of unannotated images (i.e., images without any associated textual meta-data).

‘We propose a novel Structural SVM based unified framework for these two tasks, and show how it can be efficiently trained and
tested. Using a variety of loss functions, extensive experiments are conducted on three popular datasets (two medium-scale datasets
containing few thousands of samples, and one web-scale dataset containing one million samples). Experiments demonstrate that
our framework gives promising results compared to competing baseline cross-modal search techniques, thus confirming its efficacy.

Keywords: Image search; Image description; Cross-media analysis

1. Introduction

During the past decade, there has been a massive explosion
of multimedia content on the Internet. As a result, several inter-
esting as well as challenging research problems have emerged,
one of them being automatically describing image content us-
ing text. While most of the earlier as well as recent research has
focused on automatically annotating images using semantic la-
bels [} 12,13, 14,15, 6L [7], in the past few years, describing images
using phrases [8| 9 [10, [11]], or one or more simple captions
[0, 10, 1L 12 (13114, 15, [16] have attained significant attention.
A complementary problem to these is to automatically associate
one or more semantically relevant images given a piece of text
(such as label, phrase or caption), and is commonly referred to
as the image retrieval task [2, 14715, (16,17, 18} [19].

Although huge amount of independent visual and textual
data are available today, only a small portion of them is linked
with semantic associations. Hence, it comes as a natural choice
to develop new models that can efficiently learn the complex
associations between the two modalities using this small por-
tion, and later apply them to automatically build associations
between the two in the larger, independent space. In this work,
we address this problem of learning cross-modal associations
between visual and textual data. We study two complementary
tasks: (i) retrieving semantically relevant text(s) given a query
image (Im2Text), and (2) retrieving semantically relevant im-
age(s) given a query text (Text2Im). We pose both these tasks as
retrieval problems, where the output samples are ranked based
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Figure 1: We propose a Structural SVM based unified framework that
learns bilateral associations between images and different forms of texts (la-
bels/phrases/captions). Our approach can be used to perform cross-modal
retrieval on an independent database of textual data given a query image
(“Im2Text”), and vice-versa (“Text2Im”).

on their relevance to the query. In contrast to several existing
methods such as [2, 3,14, 5,(9, 110, 14, [15]] that make use of data
from both the modalities (image and text) during the predic-
tion phase, our approach is similar to the cross-modal retrieval
works like [[7,116, 19,20, [21]] that do not make such an assump-
tion. This means that for Im2Text, given a query image, our
method can retrieve a ranked list of semantically relevant texts
from a plain text-corpus that has no associated images. Sim-
ilarly, for Text2Im, given a query text, it can retrieve a ranked
list of images from an independent collection of images without
any associated textual meta-data. Figure[T]illustrates the theme
of this work.
The major contributions of this work are:
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1. We propose a novel Structural Support Vector Machine
(or Structural SVM) [22] based unified framework for
both Im2Text and Text2Im, which provides the following
three advantages. First, Structural SVM provides a nat-1p0
ural framework to work with complex and structured in-
put/output spaces, and a unified framework helps in better
understanding and appreciating the complementary na-
ture of the two problems. Second, our general-purpose
learning module can be easily adopted for different forms;gs
of data (diverse modalities with paired cross-modal sam-
ples and feature vector based representations) with lit-
tle modifications. Thirdly, availability of efficient algo-
rithms for Structural SVM training (such as the cutting-
plane algorithm [22]) makes it feasible to efficiently learn
max-margin models that scale well with data size. As per'"
our knowledge, this is the first attempt to examine and
validate the applicability of Structural SVM for perform-
ing cross-modal multimedia retrieval.

2. Since our framework is based on Structural SVM, it al-
lows us to learn model parameters using a variety of loss
functions. To demonstrate this adaptability, we exam-is
ine three loss functions in this work. These loss func-
tions do not make any assumption on the specific form
of data, and also connect well with representations popu-
larly used for data from diverse modalities.

3. As a part of our experimental analysis, we examine gen-
eralization of ours as well as other competing baseline'®
methods across datasets when textual data is in the form
of captions/descriptions. For this, we learn models from
one dataset, and perform retrieval on others.

To validate the applicability of our method, we conduct ex-

. . 125
periments on three diverse and popular datasets, namely, UTUC
Pascal Sentence dataset [23]], IAPR TC-12 benchmark [24]], and
SBU-Captioned Photo dataset [14]. Among these, Pascal and
IAPR datasets are medium scale datasets containing few thou-
sands of samples, and SBU is a web-scale dataset (:ontaining130
one million samples. Also, while the images in Pascal and SBU
datasets are associated with short captions that are a few sen-
tences long, those in the IAPR dataset are coupled with long
captions that give a detailed description of an image. Exten-
sive evaluations on these datasets demonstrate the superiority135
of the proposed framework as compared to competing baseline
techniques.

This paper is an extension of our conference version [25]].
Here we build upon this work in the following ways:

1. In addition to the two loss functions described in [25]],140
we demonstrate the applicability of our framework using
a new loss function (Eq. [/) that is based on normalized
correlation. Experiments show that this new loss func-
tions usually provides better performance than the two
proposed in [235]. 145

2. Along with empirical analysis, we provide a deeper com-
parison of our approach with competing baseline cross-
modal retrieval techniques.

3. We include additional evaluation using recent features for
images [26] and text [27] on cross-modal image-captioniso

2

retrieval task. This validates the applicability of our ap-
proach using modern features as well.

4. We include a detailed analysis of the training and run-
time efficiency of our approach using synthetic datasets
containing up to 0.1 and 10 million samples respectively.

5. We further strengthen the quantitative analysis by using
two additional evaluation metrics, and also include qual-
itative results. These provide additional insights into our
approach.

The paper is organized as follows. In Section [2] we re-
view the closely related work. Section [3]describes the proposed
approach. In Section 4] we provide a deeper analysis of the
proposed approach compared to competing baselines, and ana-
lyze the training and testing time in Section[5] Section [f] dis-
cusses the representations used for visual and textual data in this
work. In Section [/} we present experimental analysis. Finally,
Section [§] presents the conclusions and directions for future re-
search.

2. Related Work

Here, first we discuss related work on unimodal, multi-
modal, and cross-modal retrieval, particularly focusing on im-
ages and text as the two modalities. Then we review a few
works that perform multi/cross-modal learning in some diverse
applications. Finally, we also review recent works addressing
the problem of caption generation for images, which is closely
related to the task of describing images using cross-modal cap-
tion retrieval.

Image-Text Retrieval: The problems of image and text re-
trieval are well-studied research topics [17, |18} 28, 29, [30].
A large number of existing approaches are based on retrieval
of unimodal data; i.e., both query as well as retrieved data be-
long to the same modality (e.g., either image [28] or text [29]]).
Another approach that is popular among web-based search en-
gines is to use textual meta-data associated with images dur-
ing retrieval. Given a textual query, it is directly matched with
this meta-data instead of looking at the corresponding image.
However, such images constitute only a small portion of the
enormous amount of images available on the Internet, most of
which are without such meta-data. This limitation has led to
a growing interest in the problem of automatic image annota-
tion [} 2 13} 4} 150 16} (7 131} 132} 133]]. Such models can sup-
port label-based queries during image retrieval without assum-
ing availability of any associated textual meta-data. Among
these, perhaps WSABIE [6] is the only method that has been
applied for web-scale annotation task. Another recent work [7]]
demonstrates the applicability of Canonical Correlation Analy-
sis (CCA) for image annotation and retrieval on large datasets
(containing few hundred thousands of samples).

In parallel, there have also been several advances in the area
of multi-modal retrieval problems [34} [17} [35} |36]], where re-
trieval is performed based on multiple modalities. These are
based on either learning a separate model for each modality and
then combining their predictions, or combining features from
different modalities and then learning a single model over them.



155

160

165

170

175

180

185

190

195

200

205

However, these approaches require data from all the modalities
during the prediction phase. Moreover, some of them make use
of multi-modal queries [34]], making these somewhat difficult
for large scale retrieval tasks. 210

In the recent years, cross-modal matching and retrieval have
been actively studied [7, [16, 19, 21}, 25} 137} 138} 139] 40, 41].
Among these, the CCA algorithm [20] is one of the most pop-
ular methods. It learns a latent projection space where the cor-
relations between paired features from two modalities are max-,,,
imized. In this space, samples from different modalities are
matched using some simple nearest-neighbour based technique.
Inspired from its simplicity and efficiency, several approaches
have been proposed that perform cross-modal matching based
on CCA [16] [37, 39]. While in [16] 20, 39], CCA is used,,
to perform cross-modal retrieval of images and their associated
descriptions, [37] uses it to learn associations between images
and tags. Other than the CCA, methods such as Partial Least
Squares (PLS) [42] and Bilinear Model (BLM) [43] have been
proposed for cross-modal problems. There has also been some,,,
work on using deep neural networks for learning associations
between images and texts [44,45]]. Note that most of the above
mentioned approaches make use of two modalities in learning
the latent space for cross-modal matching. However, in some
cases, additional information is also available in the form of cat-,,,
egory labels (third modality/view). To make use of this, there
have been some recent attempts in learning the latent embed-
ding space using multi-view data [[7, 21} |38} 39].

In summary, most of the existing cross-modal search al-
gorithms try to learn a latent space that captures the intrinsic,,,
correlations present in the data. This latent space provides a
homogeneous representation for samples from diverse modali-
ties, which in turn allows direct cross-modal matching. As we
will see in the following sections, our framework can be easily
integrated with such representations, though with an increased,,,
computational load.

Multi-modal Representations: In addition to cross-modal
matching of natural scene images and text, there have also been
attempts in other domains that focus on dealing with diverse
multi-modal representations. Some of the examples includezs
scene text understanding [46], multi-modal clustering [47]],
modeling pairwise relations [48] and multi-modal image anno-
tation [49, 150]. In [46], images of scene text and text-strings
are first embedded into a vector space, and then a compatibility
function is learned that allows to perform both image retrievalzso
as well as recognition. Since a large portion of images on the
web are associated with noisy and/or sparse meta-data (e.g.,
text, GPS coordinates camera specifications, etc.), a constrained
multi-modal clustering approach was proposed in [47]]. In [48]],
relational meta-data in the form of social connections was har-zss
nessed to model pairwise relations between images. Two recent
papers [49, 50] demonstrated the utility of additional metadata
(such as user-generated tags [49] and label relations based on
WordNet taxonomy [50]) in boosting image annotation perfor-
mance. Similar to these approaches, our interest is in learn-zeo
ing higher level semantics using diverse modalities. However,
we will concentrate on the task of cross-modal retrieval, and

demonstrate the applicability of our approach considering im-
ages and text as the two modalities.

Image Caption Generation: In parallel, there have been sev-
eral attempts in the last few years that use short captions to
describe images [9, 110, [11} [12} 13} 14} 15, [51]. Most of
these works first try to predict the visual content of an image
using some off-the-shelf computer vision technique (such as
pre-trained object detectors and/or scene classifiers [12] [13],
feature-based similarity with database images [10, [11], or
both [9, 14]). This information is then fused using some Nat-
ural Language Generation (NLG) technique to construct image
descriptions. All these works have shown that though gener-
ating captions provides a much larger set of possible descrip-
tions, most usually failed to match descriptions generated or
provided by humans. One primary reason for this is the lim-
itations of NLG, which is still an emerging field. Few other
works [[14}[15] try to partly address this by directly transferring
existing (human-written) captions to new images, by match-
ing query image with annotated images. However, these ap-
proaches are primarily multi-modal, since they make use of
both the modalities (image and text) during the testing phase.
As we will show in our experiments, even without image-to-
image matching, or using strong visual cues obtained from pre-
trained object detectors/classifiers, cross-modal retrieval ap-
proaches, such as ours, can provide competitive performance
compared to methods like |10} [14] that do make use of these.
Lately, there have been significant advances in the image
captioning task, with most of the approaches focusing on deep
neural network based models; e.g., [52, 53| 54} 55 56]. These
can be broadly categorized into two approaches. The first ap-
proach takes the activations from last hidden layer of an object
detection convolutional neural network (CNN) model and feeds
them into a recurrent neural network (RNN) language model,
also referred to as a multi-modal RNN (MRNN) [53] 154} 155]]
The second approach is based on first predicting a bag of words
using a convolutional neural network (CNN) model that are
likely to depict the visual content, and then using a maximum
entropy language model over the predicted words for caption
generation [56]. As discussed in [57]], one limitation of state-
of-the-art caption generation methods like above is that they
reproduce generic caption from training data quite often, and
do not perform well on images that are compositionally very
different from previously seen images. To address this, a large-
scale dataset with region-to-phrase correspondence for image
descriptions was introduced in [52]. Such an explicit corre-
spondence is expected to provide better supervision that would
help in developing richer models for a variety of image-text
compositions. These works are related to ours as they also
model semantic associations between image and textual con-
tent. However, rather than using a neural network based model
as in [53} 154} 155) 56], we model this association using a novel
Structural SVM based approach, which provides a new perspec-
tive on this task. In experiments, while we make use of domain-
specific representations, our approach is generic like existing
cross-modal retrieval methods [20l [19}[7,139]], and can easily be
applied to cross-modal retrieval tasks in diverse domains.
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Figure 2: While training, given a dataset consisting of pairs of images and corresponding texts (here captions), we learn models for the two tasks (Im2Text and
Text2Im) using a joint image-text representation. While testing for Im2Text, given a query image, we perform retrieval on a collection of only textual samples using
the learned model. Similarly, for Text2Im, given a query text, retrieval is performed on a database consisting only of images.

3. Bilateral Image-Text Retrieval

In the conventional classification task, the goal is to assign a
category from a finite set of discrete categories to a given (test)
sample. A popular approach to do this is by training a cate-
gory specific max-margin classifier using one-vs.-rest (or multi-
class) Support Vector Machine (SVM) [58]. However, this be-
comes prohibitive when (1) the number of categories is expo-
nentially large, and (2) the categories encode higher-level struc-
ture rather than being just simple labels. To overcome these,
Structural SVM was introduced in [22]]. Structural SVM is an
oracle framework that can be adapted for a variety of tasks like
object detection, classification with taxonomies, label sequence
learning, etc. by appropriately defining its components that suit
the problem at hand. In this paper, we make an initial attempt
to address the problem of cross-modal multimedia search using
Structural SVM. As per our knowledge, almost all the existing
methods for cross-modal search are based on nearest-neighbour
based similarity matching (in a learned homogeneous latent
space). As we will show, Structural SVM naturally suits this
task, where both input as well as output modalities can be quite
complex in general (image«text in our case), and may have™”
inherent structure in them. Moreover, availability of efficient
algorithms for Structural SVM training (e.g., the cutting-plane
algorithm [22]]) make it scalable to large scale datasets.

3.1. Approach

Here we present our framework for cross-modal search.
During the training phase, we learn the associations betweensos
images and texts based on a joint representation. During the
testing phase, we use the learned model to perform cross-
modal search. Figure [2]illustrates our framework. As the pro-
posed approach performs two complementary tasks (Im2Text
and Text2Im), we will refer to it as Bilateral Image-Text Re-
trieval (BITR).

First, we consider the task of retrieving semantically rel-
evant text(s) given a query image (i.e., Im2Text). In Sec-
tion. [3.4] we will discuss how the same framework is appli-
cable for Text2Im as well. Let D = {(I1,T1),...,(In,TN)}
be a collection of IV images and corresponding texts. Each im-
age I; is represented using a p-dimensional feature vector x;
in space X = RP. Similarly, each text T; is represented using
a g-dimensional feature vector y; in space )V = R9. We con-
sider the problem of learning functions f : X — ) using the
input-output pairs {(x;,y;)} € X x ). Similar to the Structural
SVM framework [22]], our objective is to learn a discriminant
function F' : X x ) — R that can be used to predict the optimal
output y* given an input x by maximizing F' over the space );
ie.,

v* = f(x;w) = argmax F(x,y;w)
yey

ey

where w is the parameter vector that needs to be learned. We
make the standard assumption of F' = w - ¥(x,y); i.e., F' is
a linear function of the joint feature representation W(-) of the
input-output pair. In the above setting, our goal is to learn w
such that the maximum number of the following constraints are
satisfied:

Vi: {w-¥(x;,y:) >w-¥(x;,y)} VyeV\y: @

The above set of constraints signifies that for every sample x;,
the parameter vector w should be learned such that the predic-
tion score for the true output (i.e., F'(x;, y;; w)) remains higher
than that for any other output. Since this is a hard problem,
its solution is approximated by introducing non-negative slack
variables. The task of learning w is then formulated as the fol-
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lowing optimization problem:

st w-U(x,y) > w-U(x,y) + Ay, y) — &
Vi,y € Y\ {yi}

where || -||3 denotes squared Lo-norm, C' > 0 is a constant that
controls the trade-off between the regularization term and the
loss term, &; denotes the slack variable, and A(y;,y) denotes,
the loss function that acts as a margin for penalizing any pre-
diction other than the true output.! In the above optimization
problem, the joint representation W(x,y) and the loss function
A(y;,y) are problem specific functions that need to be defined
based on the given task.

360

3.2. Details

Now we describe the different components of our approach
(i.e., the joint representation and the loss function), and how to
efficiently solve the optimization problem in Eq. [3] for learning
the parameter vector w. 365
3.2.1. Joint Image-Text Representation

The purpose of ¥(x,y) is to provide a joint representation
for input and output data depending upon their individual repre-
sentations. In cross-modal search (and in general), one popular,,
way of representing a sample is in the form of a feature vector.
This feature vector is computed based on domain knowledge of
the modality under consideration. Each dimension of the fea-
ture vector carries some information that is specific to a given
sample, and thus helps in distinguishing it from other samples,,
within that modality. Another well-known practice is to nor-
malize a feature vector before using it (e.g., using either L or
Lo normalization), and is commonly adopted by almost all the
practical systems including cross-modal search techniques such
as [119].

Now let us consider an image-text pair (I,7T'), where I is
represented using a feature vector x € X and 7" using another
feature vector y € Y, both of which are appropriately normal-
ized. Since these two feature vectors are computed using dif-
ferent techniques and can have different dimensionality (i.e., psso
need not be equal to q), direct comparison between the two may
be impractical. However as mentioned above, each dimension
of a feature vector carries some information that is specific to
the sample it represents. Hence, one feasible choice to learn
correspondence between x and y is by considering all possiblesss
pairs of their individual elements. Intuitively, this will capture
“cross-interactions” between the elements of the two vectors.
When we learn a weight vector (w) over these pairs, each en-
try in this weight vector would denote the significance/degree
of interaction between the corresponding cross-modal feature-
element pair. 390

In [22]], two formulations are presented for Structural SVM training. These
are based on ‘margin-rescaling’ and ‘slack-rescaling’. We adopt the margin-
rescaling one, which uses different margins for different possible outputs based
on their similarity with the true output.

Thus we propose to use the joint representation constructed
from the input-output representations x and y using their ten-

(3) sor product. That is, each dimension of x is multiplicatively

combined with every dimension of y to get

U(x,y) =x®y€eR, “

where r = pxq. This representation has the apparent advantage
of not only efficiently capturing linear interactions between the
input and output modalities but also providing computational
benefits during inference, as we will discuss in Section

3.2.2. Loss Function

The function A(y;,y) in Eq.[3|is a problem specific loss
function. It acts as a margin in the Structural SVM framework,
and is used to penalize incorrect predictions against the true
output. Given an input-output pair (x;,y;) and any other pre-
diction y, the function is defined such that its value depends
on the degree of dissimilarity between y; and y. That is, if y;
and y are dissimilar, the value of A(y;,y) should be high and
vice-versa.

Projecting/mapping the samples in the output data (7;s) to a
vector space ) allows us to adopt a suitable distance/similarity
metric defined in vector space as our choice of loss function.
Though this mapping can be highly non-linear in nature, the
assumption here is that the projected space keeps the semantic
proximity of the data intact; i.e., data points that are seman-
tically similar are closer to each other in the projected vector
space, than the data points that are semantically dissimilar to
each other.> Based on this intuition, we define three different
loss functions that are based on popular distance/similarity met-
rics: Manhattan distance A ,(-), squared Euclidean distance
A (+), and normalized correlation (or cosine similarity) A (-).
These loss functions are given by:

A (yiy) = llyi =yl (5)
A, (yiy) = Ilyi —yll3, ©6)

where || - ||; denotes Lq-norm. Since both A,, () and A ()
are distance metrics, they satisfy the properties of a valid loss
function [22]); i.e., A, (y:,yi) =0, A, (yi,y;) > 0fori # j,
and A, (yi,y;) > A, (yi,y:) fori # j (where Z € {M, E}).
Under the assumption that both y; and y are L,-normalized,
A, (-) also satisfies these properties and thus is a valid loss
function. The efficient evaluation of these loss functions helps
in a faster computation of the most violated constraint, which is
required while solving the optimization problem in Eq. 3]

3.2.3. Finding the Most Violated Constraint

Since the number of constraints in Eq. [2] can be exponen-
tially large, it could be practically infeasible to make even a
single pass over all the constraints during optimization.> Hence

2This is a fundamental assumption that is usually at the heart of some ma-
chine learning algorithms.

3Potentially infinite in our case, since ) is a continuous real-valued vector
space.
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it becomes crucial to efficiently find a small set of active con-
straints that would ensure a sufficiently accurate solution. This
is achieved using the cutting-plane algorithm proposed in [22].
As shown in [22]], this algorithm finds a solution that is close to
optimal. Rather than considering all the constraints correspond-
ing to a given pair {x;,y;}, it aims at finding the constraint that
is violated the most, also called the most violated constraint.
This in turn reduces the solution space by creating a nested se-
quence of tighter relaxations of the original problem.

Given an input-output pair (x;,y;), the most violated con-
straint is the constraint corresponding to the incorrect output
y predicted with the maximum score using the current learned
parameter vector w. It is given by:

y = argmax A(yhy) +w- \IJ(XMY) - W \I/(X“yz) (8)
yeV\{y:}

Since the last term is constant with respect to y, this can be
re-written as:

425
¥ = argmax A(y;,y)+w-¥(x;,y) €))

yeY\{yi}

For the three loss functions in Eq.[5} [6} and [7} this maps to the

following problems respectively:
430

V., = argmax |ly; —ylli +w- ¥(x;,y) (10)
yeY\{yi}

V. = argmax |ly; —y||5 +w - ¥(x;,y) (1)
yeY\{yi}

Vo= argmax 1 —y; -y +w-VU(x;,y) (12)
yeY\{yi}

It can be easily verified that each of the above three equations,g
corresponds to maximizing a convex function. In practice, since
every feature vector is normalized, each of its elements remains
bounded within a range. This allows us to solve the above prob-
lems efficiently using an iterative gradient-ascent method. After
each iteration of gradient-ascent, the current output is projected
depending on the particular type of normalization considered.440
More details on this can be found in our publicly available im-
plementation.*

3.3. Inference: Retrieving a Ranked List of Output

Consider an independent database 7' = {T7,... ’T\/T’|}445
consisting of only textual samples, where each T}, is represented
using a feature vector y;, € ). Given a query image J repre-
sented by x € &, Im2Text requires ranking the elements of
T’ according to their relevance with J using the learned pa-
rameter vector w. This can be performed by sorting the ele-uso
ments of 7’ based on the score F(x,y};w) = w - ¥(X,y}),
Vk € {1,...,]7’|} (where higher score means more relevance
and vice-versa), thus allowing to retrieve a ranked list of texts.

455
4http://researchweb.iiit.ac.in/~yashaswi.verma/
crossmodal/bitr.zip

3.4. Performing “Text2Im”

Now we consider the task of retrieving semanti-
cally relevant image(s) given a query text (i.e., Text2Im).
Similar to Im2Text, we are given a collection D =
{(I1,T1),...,(In,Tn)} of images and corresponding texts.
Each image I, is represented using a p-dimensional feature
vector x; in space X = RP, and each text T; is represented
using a g-dimensional feature vector y; in space Y = R9.
Our objective now becomes to learn a discriminant function
F :Y x X — R that can be used to predict the optimal output
(image) x* given an input (text) y by maximizing F' over the
space X. That is,

x* = f(y;w) = argmax F(y,x;w),
xeEX

13)

where w is the parameter vector that needs to be learned, and
F = w - ¥(y,x). Since we make no specific assumption for
the particular representations used for visual and textual data
(except that they are represented in the form of feature vec-
tors), the joint representation and loss functions defined above
for Im2Text will remain equally applicable for Text2Im as well.
Hence, in order to perform Text2Im, we can adopt the same
methodology as that for Im2Text. However, note that here since
we are dealing with a different (inverse) problem, we will learn
a separate model (w).

4. Comparison with Some Previous Approaches

As discussed in Section 2} CCA [20, [T9]] and WSABIE [6]
are two well-known methods that can scale to large datasets
and have been shown to work well for learning cross-modal
associations. Here we present a comparison of these two with
the proposed approach.

4.1. Comparison with CCA

CCA can be shown to minimize the squared Euclidean dis-
tance between pairs of samples from two modalities in the pro-
jected space [20, 59]. Let U and V denote the two projection
matrices and a and b denote a pair of samples from the two
modalities respectively. Thus, CCA can be seen to match the
samples using the similarity function exp(—||Ua — Vb||3) =
exp(al(UtV)b). This maps to minimizing the loss I(1,2) =
—log(z) during training. We can observe that both CCA as
well as BITR rely on bilateral scoring functions. An important
difference is that while CCA makes use of only similar pairs
of samples across modalities, BITR explicitly models the dis-
similar pairs and pushes them apart. However, as we will dis-
cuss in the next section, this in turn makes the training of BITR
much slower than CCA. Second, while CCA decouples the two
projection matrices and constraints each to be low rank, BITR
learns a joint full rank parameter vector w and makes use of Lo
regularization to avoid overfitting. Third, as discussed above,
our formulation can work with a variety of loss functions that
suit the cross-modal retrieval task.


http://researchweb.iiit.ac.in/~yashaswi.verma/crossmodal/bitr.zip
http://researchweb.iiit.ac.in/~yashaswi.verma/crossmodal/bitr.zip
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Figure 3: Comparison of the training time using WSABIE and BITR. The horizontal axis denotes the value of the C' parameter (power of 10), and the vertical axis
denotes the training time in seconds. Dashed lines correspond to WSABIE and solid lines correspond to BITR. Each colour denotes the dimensionality of feature
vector (same for both the modalities): {red, green, blue} map to {50, 100, 150} in that order.

4.2. Comparison with Wsabie

WSABIE was originally proposed for the task of label-
ranking, and hence can not be directly applied to captions. For
our comparisons, we thus modify the WSABIE algorithm, such*®*
that instead of learning a separate parameter vector for each
label, it learns a single parameter matrix for all the captions.
This is analogous to the parameter matrix learned for visual
features in the WSABIE algorithm (details are provided in the
Appendix). Similar to CCA and BITR, WSABIE also relies on>®
a bilateral scoring function. However, unlike BITR and anal-
ogous to CCA, WSABIE decouples the projection matrices for
the two modalities, and constraints their individual norms with-
out performing an explicit regularization. Second, during op-
timization, WSABIE considers any random (negative) sample>®
that violates the margin condition to update the model, whereas
BITR picks the sample corresponding to the most violated con-
straint (Eq. [8). This makes the training of WSABIE more scal-
able than BITR, however the model learned using BITR is more
accurate than that using WSABIE (as also validated in the ex-
perimental analysis). 510

5. Training time and Run-time Analysis

Here we will analyze the training and run-time efficiency of
the proposed approach.> We will consider the task of Im2Text,
with similar reasoning being applicable to Text2Im as well.

5.1. Training time analysis

In Figure [3] we compare the training time of WSABIE [6]s,s
and BITR using synthetic features. Following [7], we use
early stopping for WSABIE after iterating for 20 passes of
training samples. Here we do not show the training time of
CCA [20, [19] because its standard implementations are quite
efficient, and it took less than 1 second to learn the projection
matrices in the below mentioned set-up. For the comparison,
we vary the number of training samples in {5K, 20K, 100K }
and the dimensionality of image/text features in {50, 100, 150}.

520

5Using our Matlab implementation on a 2.4 GHz Intel Xeon (E5-2600) pro-
cessor with 48 GB of RAM.

In the figure, the horizontal axis denotes the value of the C' pa-
rameter (power of 10), and the vertical axis denotes the training
time in seconds. From the figure, we observe that the train-
ing time of BITR is under 15 minutes even for 100K samples
when C' is small. However, on increasing C' beyond 10, there
is a steep rise in the training time. This is expected because
on increasing C', the algorithm tries to better fit the model to
the training data. For example, using 100K samples and 150
dimensional image and text features (joint representation of
22500 dimensions), with C' = 107" it takes just around 15 min-
utes to train the model, whereas with C' = 107 it takes around
18 hours. This analysis demonstrates even though the training
time of BITR can be quite high for large values of C, it is still
feasible and thus easily scalable to large datasets.

5.2. Run-time analysis

It is interesting to note that in order to evaluate the function
F(x,y;w), we do not require to explicitly compute the joint
representation W(x,y). Since ¥(x,y) is a tensor product of
the vectors x € R? and y € RY, it is a vector of products of
pairs of elements from x and y:

U(x,y) = [x(1)y(1),....,x(p)y(1),....,x(p)y(q)]" €R"

where the superscript ¢ denotes vector transpose. Since w is
also a vector in R", it can be re-written in matrix form:

W = [wiws...w,| € RPXY

where each w;, € RP denotes the consecutive p elements of w
in the k" interval. Using the above, it is easy to verify that the
function F'(x,y; w) can be re-written as:

F(x,y;w) =x'Wy (14)

Rather than evaluating the function F'(x,yy; w) individu-
ally for each sample in the retrieval set 7, the above transfor-
mation allows to evaluate it for a batch of samples in 7’ in a
single pass. Here we will illustrate this by computing it for all
the samples in 7" in a single pass. Let Y = [y1y2...y7/|] €
R2%I7’l denote the matrix formed by concatenating the feature
representations of all the samples in 7. For a given (image)
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Figure 4: Comparison of time required (in seconds on vertical axis) for ranking the samples in a retrieval set 7' for a single query, when the prediction score is
computed (a) individually for each sample after computing the joint representation, (b) individually for each sample without computing the joint representation, and
(c) jointly for all the samples without computing the joint representation. Left: On varying the size of the retrieval set by keeping feature dimensionality of both
visual and textual features to be 100 (p = ¢ = 100). Right: On varying the feature dimensionality (same for image/text samples) for a retrieval set containing 107

samples.

query J represented by feature vector x, let s € R!7"l be a vec-
tor such that its k" element denotes the prediction score cor-
responding to the k' sample in 7”. Then it can be computed
as:

s = (xtWY)t .

After computing this, the ranking follows by sorting the ele-
ments of 7’ based on their corresponding scores in s in de-
scending order. In popular matrix multiplication softwares
(such as Matlab), the joint computation of similarity scores for as,
batch of samples can be much faster than computing them indi-
vidually. This in turn provides significant boost in the run-time
efficiency.

Assuming the features are already computed, Figure ] (left)
compares the relative time required for ranking the samples inss
a synthetic retrieval set 7’ for a single query. In cross-modal
search scenarios, the samples from both the modalities are usu-
ally represented using feature vectors containing a few tens or
hundreds of elements [19]. Keeping this in mind, we keep
p = q = 100 (recall that the dimensionality of the joint fea-sg,
ture representation is » = p X ¢, which is 10* in this case),
and vary the number of samples in 7" in {10*,102,...,107}.
We consider three situations, when the prediction score is com-
puted (a) one sample at a time by first computing the joint rep-
resentation, (b) one sample at a time without computing thesgs
joint representation (Eq.[I4), and (c) jointly for all the samples
without computing the joint representation (Eq.[I5). From the
figure, we observe that for all these three, the total time (includ-
ing similarity score computation and sorting) increases almost
linearly with the number of samples. However, even with linearsg,
increment, the total time required for (c) is significantly lower
than that for (a) and (b). For example, when the retrieval set
has ten million samples, the time taken when using (a), (b) and
(c) are around 345.8, 97.6, and 1.7 seconds respectively. For
all three, around 1.2 seconds are taken in sorting the samples
based on their scores. If we do not consider this, then (c) takes
just around 0.5 seconds in computing the prediction scores for595
all the samples, which is faster than the time required for the
sorting operation.

(15)565

In Figure [ (right), we compare the relative time required
for ranking the samples in a synthetic retrieval set 7’ contain-
ing 107 samples for a single query. Here we vary the dimen-
sionality of input and output modalities (same for both p and q)
as {10, 20, 50, 100, 200}. These result into joint feature repre-
sentations of dimensions {100,400, 2.5K, 10K, 40K } respec-
tively. We consider the three situations (a), (b), and (c) as men-
tioned above. Here we observe that for all these three cases,
the total time increases with feature dimensionality. However,
in this case, the increments are not simply linear. For lower di-
mensions, they are sub-linear, while for higher dimensions, they
are super-linear. For both (a) and (b), the total time taken is not
practically appealing even for lower dimensional features. E.g.,
these are around 78.2 and 36.4 seconds for (a) and (b) respec-
tively when p = ¢ = 10. On the other hand, the total time for
(c) using p = ¢ = 10 and p = ¢ = 200 are just around 1.3 and
2.3 seconds respectively. On discarding the time taken in sort-
ing the elements after score computation (around 1.2 seconds),
these become just around 0.1 and 1.1 seconds respectively.

From Figure 4, we can conclude that a direct (naive) im-
plementation could mar the efficiency of our approach during
inference. However, using simple transformations that allow
batch processing, it is possible to achieve significant speed-ups,
thus making it feasible to perform retrieval on large datasets
containing millions of samples.

In our experiments, we compare the BITR approach with
two baseline methods: CCA [20} [19] and WSABIE [6]]. Com-
paring the run-time of BITR with CCA and WSABIE, we can
easily observe that for each of these methods, in practice we
need to project the features in the retrieval set just once and this
can be done off-line. Now given a query, we can rank the sam-
ples by simply taking their dot product. Hence, the run-time of
all the three methods becomes equivalent.

6. Image and Text Representation

We consider different types of representations for visual and
textual data. These representations are compact, yet known to
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be effective in capturing data semantics. The first representationsso
captures data characteristics in the form of probability distribu-
tions over unimodal topics. We refer to this as topic-based rep-
resentation (TR). The second representation is based on learn-
ing cross-modal correlations between input and output modal-
ities over TR. We refer to this as correlated topic-based repre-gss
sentation (CTR). The third representation is based on modern
CNN and word2vec features for images and text respectively.

It should be noted that since the complexity of learning
a Structural SVM model depends on both number of training
samples (/V) as well as dimensionality of the joint feature repre-,
sentation (r = p X q), in practice it is desirable to work with rep-
resentations that are compact to maintain computational load.
As discussed before, using compact representations for data is
also practiced by other cross-modal retrieval techniques such
as [19,17,139]. Hence we adadt the representations accordingly
to satisfy this requirement. 665

6.1. Topic-based Representation

This representation is based on unimodal probability dis-
tributions over topics, that are learned using Latent Dirichlet
Allocation (LDA) model [60]. LDA is a popular probabilis-,,
tic generative topic model and can effectively capture complex
semantics of data in a compact manner. It considers a given
document as a collection of discrete units/words. Based on co-
occurrences of these words, it discovers high-level topics, and
represents these in the form of multinomial distributions over,,,
words. Given a new document, LDA represents it as a proba-
bility distribution over the previously learned topics.

6.1.1. Representing Images

Since LDA requires each image to be represented as a col-
lection of words, first we need to learn the visual words’ vo-_
cabulary. For this, we randomly sample 0.50/ SIFT descrip-
tors [61] extracted densely at multiple scales from the training
images of the SBU dataset [14], and learn 1000 words using
the k-means algorithm. Each image is then represented as a
bag-of-words histogram of these visual words. From this his-
togram based representation, the visual topics are learned using
LDA by considering 5000 random (training) images from the
SBU dataset.

Now, given a new image, first we extract SIFT descriptors
densely at multiple scales, and represent it as a bag-of-words__
histogram of visual words as before. This is then used by LDA
to construct a representation in the form of a probability distri-
bution over the topics learned earlier.

6.1.2. Representing Text

1. Representing Captions: To learn textual topics, we
use the captions in the training subset of the SBU
dataset [14]]. Using these, we get a vocabulary of around™
0.18M words, after simple pre-processing like remov-
ing stop-words. This vocabulary is used to represent the
captions in the form of bag-of-words histograms, which
are then used to learn textual topics using LDA. A new
caption is represented as a bag-of-words histogram using

the above vocabulary, which is then used to obtain a rep-
resentation in the form of a probability distribution over
the learned topics.

2. Representing Phrases: Here we assume an annotated
(training) dataset where each image is tagged with a
set of phrases. We learn textual topics by considering
each phrase as a discrete unit and then representing each
phrase as a probability distribution over them similar to
captions.

3. Representing Labels: Similar to the previous case, here
we assume an annotated dataset of images tagged with a
set of labels. While learning topics, each label is consid-
ered as a discrete unit. Once the topics are learned using
LDA, each label is represented as a probability distribu-
tion over them.

6.2. Correlated Topic-based Representation

In this representation, we incorporate cross-modal correla-
tions into the topic-based representations for visual and textual
data analogous to [19]]. This is done by mapping the data into
a maximally correlated vector subspace, that is learned using
CCA [20]. This is based on the assumption that the samples
coming from two different modalities contain some joint infor-
mation that can encoded using correlations between them [20].

Note that while TR contains only non-negative (latent prob-
ability) values, CTR contains both positive as well as negative
values. This is because it is obtained by projecting TR using
a linear transformation learned through CCA, which projects
an input vector into a maximally correlated real-valued vector
space.

6.3. Modern Representations

In our conference paper [25], we had considered TR and
CTR as the two different representations for images and text.
However, lately features computed using CNN for images [26),
62| and word2vec for text [27] have been popularly used in sev-
eral tasks that deal with with visual and textual data. Hence, we
also evaluate using these features on the cross-modal image-
caption retrieval task in Section In practice, we compute
features for images using a CNN model pre-trained on the Im-
ageNet dataset [26] for image classification, that was shown to
perform well for other visual recognition tasks as well. For cap-
tions, we use the pre-trained model of [27] by taking average of
vector representations of all the words in a caption.

7. Experiments

We demonstrate the applicability of our approach and exten-
sively compare it with competing baseline methods on various
cross-modal multimedia search tasks.

7.1. Datasets

We consider three popular datasets in our experiments:
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Dataset Samples #Captions/Img. Words/Caption
Pascal 1000 5 9.82 + 3.51
TIAPRTC-12 19627 1 24.98 £10.67 4
SBU 1M 1 12.14 £ 6.01

Table 1: Statistics of the three datasets used in our experiments. The last column

shows the average number of words per caption. 35

(1) A bus drives down a busy road.

(2) A bus driving in a street.

(3) A passenger bus going down a busy city street.
(4) A white and red bus traveling on the street.

(5) Red and white bus driving down road.

A yellow building with white columns in the 740

background. Two palm trees in front of the
house. Cars are parking in front of the house. A
woman and a child are walking over the square.

Little girl and her dog in northern Thailand. They

. . . 745
both seemed interested in what we were doing.

Figure 5: Sample images with ground-truth descriptions from Pascal (top),
IAPR (middle) and SBU (bottom) datasets. 750

e UIUC Pascal Sentence Dataset: This was introduced
in [23]] and has become a de facto benchmark in the do-
main of image-caption understanding. It contains 1000
images, each of which is annotated with 5 captions from”
independent human-annotators.

5

e IAPR TC-12 Benchmark: This was introduced in [24]
for the task of cross-language information retrieval. It has
19627 images, each of which is associated with a long
description of up to 5 sentences. 760

e SBU-Captioned Photo Dataset: This was published
in [[14] and contains one million captioned images down-
loaded from Flickr. To our knowledge, this is the largest
publicly available dataset of captioned photographs.

765
Table [T] shows general statistics of these datasets and Fig-
ure [5] shows example images along with their ground-truth de-
scriptions. These datasets have been used by several approaches
for image-to-caption generation [10, [12} 13} 51], and image-
caption retrieval [14} [15] 25| 44]. For both Pascal and IAPRs
datasets, the captions/descriptions were written by guided hu-
man annotators. However, for the SBU dataset, the captions
were written by the users who had uploaded those photographs
on Flickr. Due to this, these captions are quite diverse and noisy.
Moreover, they usually contain associated sentiments and ab-
stract semantics that are not physically present in the image,,;
(e.g., see the third example in Figure [5). This makes the SBU
dataset particularly challenging for cross-modal search task.

7.2. Evaluation Metrics

We adopt following evaluation metrics depending upon the
form of textual data.

10

7.2.1. Captions

For captions, we consider two types of evaluation metrics
that have been adopted by (1) image caption generation meth-
ods (such as [9,110, 11,12, [13]), and (2) image-caption retrieval
methods (such as [16} 144]).

In the first setting, we consider BLEU [63]] and Rouge [64]
metrics for evaluation, that are popularly used for evaluating
automatic summarization and machine translation approaches®.
Here, the samples in the test set comprise the query set, and re-
trieval is performed on the full training set. For both Im2Text
and Text2Im, we report mean one-gram BLEU and Rouge
scores. For Im2Text, these scores are averaged over the top
five retrieved captions, by matching them with the ground-truth
caption of query image. For Text2Im, we compute these scores
in an inverse manner; i.e., by matching the query caption with
the ground-truth captions of the top five retrieved images. For
both these metrics, a higher score means better performance.

In the second setting, we consider Recall@K (R@K) and
MedianRank (MedR) as the metrics for evaluation. For a given
query, these are used to evaluate how correctly an approach
can retrieve the true output (image/caption), assuming it to be
present in the retrieval set. For Im2Text, this is performed by
considering the images in the test set as queries, and performing
retrieval over the captions in the test set. Similarly, for Text2Im,
this is done by querying the captions in the test set and perform-
ing retrieval over the images in the test set. Recall@K measures
for what percentage of queries, their correct output is present in
the top K (K=50 in our case) retrieved samples. MedianRank
measures the median of the retrieval ranks of the correct out-
puts corresponding to all the queries. For Recall@K, higher
score means better performance, and for MedianRank, lower
score means better performance. ’

7.2.2. Phrases and Labels

We adopt Precision@K (P@K) and mean Average Preci-
sion (mAP) for performance evaluation. For Im2Text, given a
query image, we rank the phrases/labels and match them with
the ground-truth of the query. For Text2Im, given a query
phrase/label, we rank the images in the test set and evaluate
based on the presence of the query in their ground-truth. For
Im2Text, Precision @K measures the number of true labels that
are predicted in the top-K retrieved labels (considering K=5 in
our case). For Text2Im, it measures the number of top-K re-
trieved images that are tagged with query label in their ground-
truth. For both Im2Text and Text2Im, mAP measures the mean
of average precision for all the queries. For both these metrics,
higher score means better performance.

7.3. Baselines for Comparisons

We compare our methods against two popular baselines:
WSABIE [6] and CCA [20} [19] in all the experiments. Both

%To compute BLEU scores, we use the code released by NIST (version-
13a). To compute Rouge scores, we use Release-1.5.5 obtained from http:
//www.berouge.com/Pages/default.aspx.

'Recall@K and MedianRank are the additional metrics that we consider
here, which were not considered in [25]].


http://www.berouge.com/Pages/default.aspx
http://www.berouge.com/Pages/default.aspx
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CCA and WSABIE learn separate projection matrices for in-sso
put and output data. In practice, they both may converge to
a lower dimensional projection space compared to the dimen-
sionality of the given data without really affecting the perfor-
mance. However in all our experiments, we project data into
the same space for both these methods. This not only avoids in-
formation loss but also allows fair comparisons and avoids the,
need of tuning the optimal number of projections required by
each. For CCA, we use normalized correlation in order to com-
pute nearest-neighbour based similarity between two projected
cross-modal features, which was found to perform better than
using other measures such as L or Ly distance in [19]. o

Along with CCA and WSABIE, we also consider weighted
k-nearest neighbours (wKNN) algorithm (similar to [4])
and one-versus-rest SVM for additional comparisons in
Experiment-3 and Experiment-4 while considering phrases and
labels as textual data (respectively), as these methods are appli-__
cable in those settings and are popularly used as strong base-
lines in several retrieval-related tasks involving discrete cate-
gories.

35

0

7.4. Implementation Details

e In all the experiments, each visual and textual sample
is represented using a 100 dimensional feature vector.”
Note that while the CCA baseline [19, 20, 65] projects
the samples from both modalities into a common space
(whose dimensionality is at most the minimum of the
dimensionality of the input feature spaces), BITR does
not require the features from both modalities to have the™”
same dimensionality for cross-modal matching. How-
ever, we keep it same for fair comparisons. Also, while
the training time complexity of CCA is cubic in feature
dimensionality, that for BITR is quadratic. Based on this,
the chosen dimensionality was found to provide a good™”
trade-off between efficiency and efficacy in preliminary
experiments.

0

e For our approach, we report results using the three loss
functions given in Eq.[5][6 and [7] and will refer to themses
as BITR-M, BITR-E, and BITR-C respectively.

o In all the experiments, the particular representation being
employed will be denoted using “TR” or “CTR”.

e In all the experiments, the C parameter is tunedswo
using five-fold cross-validation in the range
{1075,1074,...,10%,10°} for BITR, WSABIE and
SVM (Exp-3 and Exp-4).

o In the case of topic-based representation, the feature rep-
resentations (separately for both the modalities) are L
normalized while considering the loss function A M(-)875
and Lo normalized while considering the other two loss
functions. In the case of CTR, the projected represen-
tations are Ly normalized throughout. These normaliza-
tion criteria are followed in all the experiments for all the
evaluated methods. The choice of these normalizations is"
based on the practices that are popular while doing fea-
ture normalization.

11

7.5. Retrieval Schemes

We consider the following retrieval schemes depending
upon the form of textual data.

7.5.1. Experiment-1: Image-Caption Retrieval

Here we consider textual data to be in the form of cap-
tions. We conduct this experiment on all the three datasets as
described in Section [Z.1}
(1) For the SBU dataset, we follow the train/test splits used
in [14], which includes 500 test samples and 999.5K training
samples. For all the compared approaches, the parameters are
learned using a subset of 0.1 million samples randomly picked
from the training data.
(2) For the other two datasets (IAPR and Pascal), we compute
performance over all the samples as in [13} [10]. This is done
by creating ten partitions of dataset. Each time, one partition
is used for testing and the others for training. The final perfor-
mance is computed by averaging the performance over all the
splits.

7.5.2. Experiment-2: Cross-dataset Image-Caption Retrieval

In this experiment, we analyze the generalization ability
of different cross-modal search methods across datasets. For
this, we consider textual data to be in the form of captions
as in Experiment-1. However, instead of learning models for
each dataset individually, we use the model learned using SBU
dataset in Experiment-1 and evaluate the performance on IAPR
and Pascal datasets. For computing BLEU and Rouge scores,
we consider queries as all the images from Pascal or IJAPR
dataset, and perform retrieval on all the captions of SBU dataset
for Im2Text. Similarly, for Text2Im, we consider queries as all
the captions from Pascal or IAPR dataset, and perform retrieval
on the full image collection of SBU dataset. For computing
Recall@K and MedianRank, we use the model learned using
SBU dataset, and perform retrieval over the samples in Pas-
cal and IAPR datasets by partitioning them into ten splits as in
Experiment-1 (for direct comparison with the results obtained
in Experiment-1). The goal of this experiment is to study the
effect of dataset specific biases in different methods, and as per
our knowledge, this is the first such study in the cross-modal
search domain. This experiment also demonstrates the appli-
cability of different methods on retrieval using large query sets
(1000 for Pascal and 19627 for IAPR) and retrieval set (all one
million samples of the SBU dataset).

7.5.3. Experiment-3: Image-Phrase Retrieval

Here we consider textual data to be in the form of phrases,
and demonstrate results on IAPR dataset. These phrases are re-
lation tuples that are automatically extracted from the available
captions of this dataset. To extract these, the captions are pro-
cessed using the Stanford CoreNLP toolkit [66]. As suggested
in [67], “collapsed-ccprocessed dependencies” are used which
are useful for the relation extraction task. In practice, we con-
sider three types of phrases that cover the basic (visual/textual)
aspects (i.e., noun, preposition, and verb) of an im-
age/caption. These include phrases of the forms (noun, verb)
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Method Im2Text Text2Im
%BLEU-11 | %Rouge-1T [ R@507 | MedR| || %BLEU-11 | %Rouge-1]7 [ R@50] [ MedR]|
CCA 31.49 13.97 47.10 | 11.05 32.54 14.32 57.60 | 6.50
Wsabie (TR) 30.77 19.64 11.40 | 26.25 31.35 19.83 10.10 | 44.90
Wsabie (CTR) 31.19 21.72 13.50 | 22.15 31.02 21.54 12.40 | 41.45
= | BITR-M (TR) 31.51 22.34 41.20 14.05 32.40 22.01 10.90 | 45.35
2 | BITR-M (CTR) 32.04 23.74 42.10 15.35 33.01 24.16 55.00 7.45
& | BITR-E (TR) 32.86 20.98 39.70 13.45 34.04 22.89 11.20 | 44.15
BITR-E (CTR) 33.80 23.06 40.30 13.85 34.91 24.01 57.20 6.90
BITR-C (TR) 32.67 22.75 46.50 11.30 33.73 23.15 10.60 | 44.55
BITR-C (CTR) 34.85 23.97 51.40 | 9.10 34.89 24.38 56.80 6.80
CCA 29.46 30.31 16.32 | 404.35 30.50 30.16 18.53 | 301.45
Wsabie (TR) 26.70 23.75 2.73 | 932.10 26.01 24.16 2.73 | 999.10
Wsabie (CTR) 28.13 24.97 4.76 772.30 27.54 27.00 3.79 798.95
& | BITR-M (TR) 31.72 30.43 10.57 | 519.85 28.58 26.50 2.58 | 987.45
g BITR-M (CTR) 32.27 31.30 10.30 | 480.25 30.28 28.20 11.98 | 409.70
= | BITR-E (TR) 31.67 30.47 10.68 | 493.30 28.74 26.46 2.63 | 979.45
BITR-E (CTR) 33.91 32.40 12.41 | 416.85 30.90 29.01 16.48 | 334.00
BITR-C (TR) 32.19 31.65 9.37 | 594.45 29.63 27.11 2.66 | 956.05
BITR-C (CTR) 34.18 32.81 13.78 | 335.95 31.49 29.66 14.36 | 355.60
CCA 13.91 11.47 16.20 | 189.50 14.53 11.05 19.80 | 190.00
Wsabie (TR) 7.74 6.64 8.40 | 254.50 13.94 11.59 10.60 | 246.50
Wsabie (CTR) 12.50 10.43 11.60 | 237.00 14.15 11.72 11.80 | 232.00
— | BITR-M (TR) 9.86 8.36 15.40 | 213.00 14.27 11.70 10.40 | 248.50
& | BITR-M (CTR) 14.01 11.21 16.40 | 212.00 15.92 13.20 21.60 | 159.50
BITR-E (TR) 10.08 8.58 13.20 | 209.00 16.62 13.32 10.60 | 249.50
BITR-E (CTR) 14.28 11.38 19.20 | 195.00 14.94 11.61 21.40 | 181.50
BITR-C (TR) 14.68 11.82 16.00 | 212.50 17.90 13.18 11.00 | 251.00
BITR-C (CTR) 15.19 11.39 24.60 | 144.50 17.82 11.66 25.20 | 149.00

Table 2: Comparison of the performance using baseline methods (CCA [19] and Wsabie [6]) and variants of our method for image-caption retrieval (Experiment-1).
The best results using both are highlighted in bold. (T: higher means better; |: lower means better.)

(e.g., “person walk™), (noun, preposition, noun) (e.g., “per-
son on road”) and (verb, preposition, noun) (e.g., “walk on
road”).

For evaluation, we create ten partitions from the IAPR905
dataset. Similar to Experiment-1, we report averaged results
over ten trials, each time considering one partition for testing
and the rest for training. For Im2Text, given a query image,
we rank the phrases. For Text2Im, given a query phrase, we
rank the images in an analogous manner. It should be noted,
that since we consider each phrase as a discrete category, we
compare using the original WSABIE [[6] algorithm, and not the
modified one as in the case of captions.

10

7.5.4. Experiment-4: Image-Label Retrieval ot
Here we assume textual data to be in the form of labels and

demonstrate results on the IAPR dataset. We use the set of la-

bels as used in the recent image annotation works [3} 4, |5]].

Similar to Experiment-3, for Im2Text, we rank the labels given

a query image, and vice-versa for Text2Im. Also, we use the

original WSABIE algorithm for comparisons.

12

7.6. Results and Discussion

7.6.1. Experiment-1: Image-Caption Retrieval

Table 2] compares the performance of different methods
on all the datasets for both the tasks. Following observations
can be made from these results: (i) For all the four meth-
ods (i.e., WSABIE, BITR-M, BITR-E and BITR-C), the per-
formance usually improves (sometimes by a large margin) by
using CTR as compared to TR. This reflects the advantage of
explicitly incorporating cross-correlations into data representa-
tions. (ii) For Pascal dataset, relative performances of differ-
ent methods follow almost similar trends for both Im2Text and
Text2Im. However, there is comparatively more diversity in the
other two datasets. This could be because Pascal dataset is rel-
atively much smaller than the other two datasets, and the diver-
sity of semantic concepts it covers is also less. This may result
in dataset specific biases, and thus reflects the necessity of eval-
uating on big and diverse datasets such as SBU. (iii) For most of
the cases, BITR-C (CTR) outperforms the other two variants of
BITR. This implies that normalized correlation based loss func-
tion models the cross-modal patterns better than the other two
loss functions. (iv) The performance of BITR-C (CTR) is either
better than or comparable to the CCA [19] approach through-
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Method Pascal IAPR SBU
%B-1 %B-2 | %B-3 | %R-1 %B-1 %B-2 | %B-3 | %R-1 %B-1 | %B-2 | %B-3 | %R-1
Ordonez et al. [[14] — — — — — — — — 13.00 — — —
Gupta et al. [10] 36.00 | 9.00 | 1.00 | 21.00 || 15.00 | 6.00 1.00 | 14.00 — - — —
BITR-C (CTR) 34.85 | 10.69 | 6.37 | 23.97 || 34.18 | 13.29 | 7.28 | 32.81 || 15.19 | 5.83 | 2.95 | 11.39

Table 3: Comparison between previously reported results and our results using BITR-C (CTR) for Im2Text under Experiment-1 (B-n means n-gram BLEU score,

and R-1 means 1-gram Rouge score).

Method Im2Text Text2Im
%BLEU-11 | %Rouge-17 | R@501 | MedR| || %BLEU-11 | %Rouge-1T [ R@507 | MedR]
CCA 20.29 15.29 16.50 | 38.35 20.15 15.54 19.00 | 35.30
Wsabie (TR) 20.37 15.07 10.70 | 49.40 21.01 15.29 10.10 | 49.25
Wsabie (CTR) 20.10 15.28 10.50 | 48.10 20.81 15.07 11.40 | 47.70
= | BITR-M (TR) 20.78 15.73 13.80 | 42.45 21.55 15.74 10.30 | 49.25
2 | BITR-M (CTR) 21.75 17.04 15.50 | 42.50 22.53 17.45 22.30 29.85
& | BITR-E (TR) 19.07 14.49 13.00 | 43.05 19.89 14.60 11.20 | 49.30
BITR-E (CTR) 21.40 16.01 16.00 | 40.50 21.76 16.51 21.60 | 32.30
BITR-C (TR) 21.27 15.98 14.80 | 41.55 22.82 15.46 10.10 | 49.35
BITR-C (CTR) 22.17 17.47 22.10 | 30.60 23.76 17.41 24.30 | 28.00
CCA 14.60 11.68 6.30 | 706.20 14.68 11.59 711 | 641.50
Wsabie (TR) 14.95 11.78 2.32 | 988.75 14.05 10.98 2.72 | 1000.40
Wsabie (CTR) 14.71 11.77 3.28 | 905.75 14.84 11.85 2.56 943.15
o | BITR-M (TR) 15.23 12.75 4.50 | 816.90 15.04 12.53 2.50 | 976.55
% BITR-M (CTR) 16.54 14.18 4.97 | 768.85 15.86 13.44 7.52 564.85
= | BITR-E (TR) 12.84 9.86 4.46 | 774.95 12.58 9.41 2.69 978.05
BITR-E (CTR) 15.29 12.22 5.11 | 764.45 13.12 10.68 7.53 568.30
BITR-C (TR) 15.84 13.64 4.72 | 805.30 14.49 11.48 2.70 | 970.15
BITR-C (CTR) 17.19 14.78 8.04 | 550.70 16.76 14.35 7.84 | 515.90

Table 4: Comparison of the performance using baseline methods (CCA [19] and Wsabie [6]) and variants of our method for cross-dataset image-caption retrieval
(Experiment-2). The best results using both are highlighted in bold. (T: higher means better; |: lower means better.)

out, thus indicating the superiority of the proposed Structural
SVM based cross-modal search framework over the CCA tech-
nique. 945
Table [3| shows comparisons on Im2Text with the reported
results of a caption generation based approach [10] that uses
image-to-image matching and a caption retrieval based ap-
proach [14] that uses both image-to-image matching as well
as pre-trained object detectors and scene classifiers. The ap-gso
proach of [10] was shown to outperform other popular methods
such as [[12} [13]], hence we do not include comparisons with
them. Since both [14] and [10] depend on an annotated dataset
consisting of both the modalities (image and text) modalities
during the testing phase, and [10]] generates captions rather thangss
retrieving them, these results are not directly comparable. How-
ever, it is worth noticing that even by matching images directly
with captions, our method performs either comparable to or su-
perior than [10l [14]]. This reflects its effectiveness in learning
cross-modal semantic associations between images and cap-
tions. 960
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7.6.2. Experiment-2: Cross-dataset Image-Caption Retrieval

Table [ shows the results for this experiment. Here we
can observe that: (i) For all the methods, the performance de-
grades significantly compared to that in Experiment-1. This
reflects the impact of dataset specific biases, and thus empha-
sizes the necessity of performing cross-dataset evaluations. (ii)
As in Experiment-1, BITR-C performs better than other meth-
ods in almost all the cases. This suggests that the loss func-
tion Ac(+) (Eq. [7) could be a better choice in practice than
the other two loss functions A (-) and Ag(-) for real-world
applications. (iii) Unlike Experiment-1, the relative gains us-
ing BITR-C compared to CCA [19] are now much more pro-
nounced. This demonstrates the better generalization ability
across datasets achieved using our framework than CCA.
7.6.3. Experiment-3: Image-Phrase  Retrieval, and

Experiment-4: Image-Label Retrieval

Table[5]and Table[6]compare different methods when textual
data is in the form of phrases and labels respectively. Note that
in contrast to all other methods, wKNN makes use of image-
to-image similarity during the testing phase. Due to this, de-
spite its simplicity, it mostly achieves very encouraging results
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Im2Text Text2Im

Method D%P@5 | %omAP || %P@5 | %mAP
CCA 5.22 4.13 1.82 2.62
wKNN 8.38 4.23 2.04 2.98
SVM 6.85 5.12 1.92 2.44
Wsabie (TR) 5.32 4.18 1.99 2.34 |9
Wsabie (CTR) 5.86 4.54 1.58 2.30
BITR-M (TR) 5.95 4.38 1.79 2.28
BITR-M (CTR) 6.35 4.76 2.75 3.14
BITR-E (TR) 6.13 4.94 1.74 2.48
BITR-E (CTR) 8.63 5.01 2.84 3.49 |9
BITR-C (TR) 5.98 4.97 1.95 2.55
BITR-C (CTR) 8.68 5.16 2.88 3.68

Table 5: Comparison of the performance using baseline methods (CCA [19],
WKNN [, SVM [58] and Wsabie [6]) and variants of our method for*®
image<«—phrase retrieval on the IAPR dataset (Experiment-3). The best results
using both are highlighted in bold. (Higher score means better performance.)

Im2Text Text2Im
Method %P@5 | %mAP || %P@5 | %mAP |40
CCA 17.29 17.08 4.88 2.97
wKNN 19.31 | 19.78 8.25 4.30
SVM 19.15 19.41 5.22 3.13
Wsabie (TR) 17.67 17.19 2.19 2.34
Wsabie (CTR) 17.79 18.11 2.48 2.89  |toos
BITR-M (TR) 19.06 17.95 7.90 4.28
BITR-M (CTR) 18.16 17.99 7.51 4.71
BITR-E (TR) 18.56 18.59 7.39 4.85
BITR-E (CTR) 19.32 19.34 8.44 4.95
BITR-C (TR) 18.75 18.64 8.16 4.59 o0
BITR-C (CTR) 19.48 | 19.65 8.71 5.18

Table 6: Comparison of the performance using baseline methods (CCA [19],
wKNN [4], SVM [58] and Wsabie [6]]) and variants of our method for
image«—label retrieval on the IAPR dataset (Experiment-4). The best resulti®'®
using both are highlighted in bold. (Higher score means better performance.)

compared to other methods. Our methods (particularly BITR-
C (CTR)) demonstrate competitive performance, and perform
either comparable to or better than all other methods. We also
observe that the results for phrases and labels follow quite sim-
ilar trends. This is expected since in both the experiments, we
consider each phrase/label as a discrete unit, thus focusing only
on the co-occurrence of phrases/labels. An interesting direc;
tion for future research would be to build better representations
for phrases that could capture hierarchical semantic correlations
(among words co-occurring within a phrase, and among phrases
co-occurring within an annotation).

7.6.4. Qualitative Results

Figure [6] shows some qualitative results on the IAPR™
dataset. We observe that our method is able to correctly identify
specific objects such as “building”, “bed”, “table”, “church”,
“cyclist”, etc. Also, it is quite interesting that for Im2Text in
Experiment-2, the predicted caption is quite meaningful and
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representative of the image content even though it is from a
different (SBU) dataset. This demonstrates the effectiveness of
our approach in learning semantic relationships across the two
modalities.

7.7. Evaluation Using Contemporary Features

Recently, image features computed using CNN models [26}
62, |68] have become the de facto standards for several vi-
sual recognition tasks. Similarly, textual features based on
word2vec [27]® are being popularly used in linguistic applica-
tions. While word2vec gives a 300-dimensional vector repre-
sentation for text, many CNN models give a feature vector for
images with a few thousands of dimensions. E.g., [26} 162} |68]]
give a 4096-dimensional image representation. If we directly
use these two representations in BITR, the dimensionality of
the joint feature vector would become around 1.2 million (=
4096 x 300), and this in turn would be computationally very
expensive. However, some recent works like [69] have shown
that it is possible to reduce significantly the size of image repre-
sentation once they are learned, thus making our method com-
patible with CNN features. Precisely, in [69], it was shown
that applying dimensionality reduction using Principal Compo-
nent Analysis (PCA) on the CNN features can provide a very
compact representation with almost no degradation in perfor-
mance. Following this, first we compute a 4096-dimensional
CNN representation for images using [26], and then compress
it to 128-dimensional vector using PCA. This, along with 300-
dimensional textual feature vector computed using word2vec,
gives a 38400-dimensional joint feature vector, thus making
BITR compatible with these features.

We evaluate these features on the image-caption retrieval
task as discussed under Experiment-1 (Section [7.5.1). Table[7]
compares the performance of different methods. As compared
to using simple bag-of-words based features (c.f. Table[2), the
new features provide better performance for all the methods
when we consider generation-based evaluation metrics BLEU
and Rouge. Similarly, for retrieval-based evaluation metrics,
the performance improves on all the datasets, except on Pas-
cal where it degrades for MedianRank. This indicates that for
small datasets, now more number of samples have relevant re-
sults in the top-K predictions, however their individual ranks go
down. Analogous to the previous results, we can observe that:
(i) BITR-C outperforms the other two variants of BITR in most
of the cases, thus confirming the practical utility of normalized
correlation based loss function. (ii) Also, the performance of
BITR-C is either comparable to or better than CCA on all the
three datasets. Overall, this experiment demonstrates the appli-
cability of our approach in general, and validates that it can be
used with modern CNN and word2vec features as well.

7.8. Discussion and Take-home-messages
As we observed in the experiments, what features one uses

will have a critical impact on the performance. Moreover, dif-
ferent combinations of features and loss functions may perform

8http://code.google.com/p/word2vec/
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Experiment-1

Experiment-2

Im2Text Text2Im

Im2Text Text2Im

Query Text: A room with white walls,
black door and window frames, a black
carpet and three single beds made of
wood with black and white bedcovers.
Output Image

Query Image:

b oo
: ol
Output Text: A long three-storey
building with a glass facade; a road
with blue boards and a grey fence in
the foreground and a blue sky in the
background.

Query Image: Query Text: Two local teachers are
standing in a classroom with many

children sitting at their wooden desks.

Output Image:

S S =
Output Text: People are sitting at a
laid table made of wood in a little dark
restaurant.

Experiment-3

Experiment-4

Im2Text Text2Im

Im2Text Text2Im

Query Image: Query Text: church with corner

Output Image:

¢

3
%

Output Text: hill with bushes

) Query Text: cyclist
o >~ Output Image:

F—

Query Image:

Output Text: water

Figure 6: Qualitative results on IAPR TC-12 dataset for the two tasks for the four experiments.

better than others for different problems. In the experiments,
our primary motivation for performing feature transformationoss
was to maintain computational load. In practice, it is possible to
apply our method even if there is no higher level transformation
at all. This is because we can form the joint representation ¥ by
computing an outer product between any real-valued input and
output feature vectors. Also, the three loss functions that weozo
use are based on general distance/similarity metrics (Manhat-
tan distance, Euclidean distance and cosine similarity). Each of
these metrics are applicable to real-valued vectors. Only the co-
sine similarity based loss function (Eq.[7) makes an assumption
that the feature vectors are Lo-normalized, and this normalizators
tion can be easily applied on a real-valued vector.

In a broader sense, our framework can be viewed as a sup-
port vector based counterpart of the nearest-neighbour based
cross-modal matching techniques such as CCA [19]. The
goal of both the techniques is to compute similarity of a sam-
ple in one modality with that in another. Similar to the dis-
tance/similarity measures like Manhattan distance, Euclidean,,,
distance and normalized correlation used in cross-modal match-
ing [19], we have shown our framework to work with these
measures by mapping them as loss functions of Structural
SVM. This analogy is further evident from the fact that while
the similarity metric based on correlation was found to achieve
the best performance in [19], similar results are observed in
our experiments as well, where the BITR-C variant (that uses
correlation based loss function) mostly performs better than
the other two. However, unlike the nearest-neighbour based
method of [19], our approach usually provides better perfor;,
mance in both within-dataset (Experiment-1,3,4) as well as
cross-dataset (Experiment-2) settings. This is because it is
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based on Structural SVM that provides good generalization and
max-margin guarantees. Particularly in the cross-dataset ex-
periments, our approach consistently outperforms CCA, some-
times significantly.

As discussed in Section [2} several techniques for cross-
modal retrieval such as [7} 39, 21]] are based on learning a tran-
formation of cross-modal input/output features. During infer-
ence, they usually adopt some simple similarity criteria such as
cosine similarity in the transformed space. Our approach can
serve as an improved inference technique for all such methods,
where rather than using cosine similarity, one can learn a sup-
port vector model w over the tranformed features and use it for
inference. Though this will add another layer of training, it will
be a one-time process. Moreover, there will be almost no effect
on the testing time as discussed in Section[5.2]

8. Conclusion and Future work

We have presented a novel Structural SVM based frame-
work to perform cross-modal multimedia retrieval. We have
demonstrated the applicability of our method to cross-modal
search on two medium and one web-scale dataset. For both
Im2Text and Text2Im, our method achieved promising results
and outperformed competing baseline techniques. In this work,
we have considered visual (image) and textual data as the two
modalities, nevertheless the fundamental ideas discussed can be
applied to cross-modal retrieval tasks in other domains as well.

Directions for future research include implementing an effi-
cient training algorithm for our approach that could scale to mil-
lions of samples with high-dimensional joint feature represen-
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Method Im2Text Text2Im
%BLEU-11 | %Rouge-17 | R@501 | MedR| || %BLEU-11 | %Rouge-1T [ R@501 | MedR|
CCA 34.69 14.29 72.80 | 21.25 34.07 16.49 85.10 | 20.65
= | Wsabie 32.98 23.43 35.40 | 28.30 33.78 22.49 36.90 | 33.45
‘g; BITR-M 34.66 24.73 70.50 | 24.35 35.02 25.97 80.40 19.10
A& | BITR-E 36.12 25.78 74.30 19.60 35.43 26.37 84.70 | 21.15
BITR-C 37.12 26.02 75.10 | 18.75 37.41 26.81 85.20 | 18.15
CCA 31.63 32.78 23.18 | 277.05 32.79 31.21 22.68 | 259.00
oz | Wsabie 29.64 26.85 9.42 | 571.17 28.40 28.71 7.24 | 604.89
% BITR-M 34.71 33.98 19.36 | 261.75 31.02 29.43 21.68 | 304.85
= | BITR-E 35.68 34.59 21.69 | 283.25 31.95 30.88 22.38 | 262.35
BITR-C 36.72 35.45 22.67 | 243.90 33.61 31.76 19.82 | 423.55
CCA 14.52 12.37 21.40 | 153.50 16.81 13.78 25.90 | 158.50
o | Wsabie 13.95 12.80 16.90 | 190.00 16.35 13.42 15.30 | 194.50
& | BITR-M 15.14 13.66 23.70 | 164.00 18.25 15.26 24.30 | 207.50
BITR-E 16.28 15.19 26.10 | 142.50 19.03 15.47 26.80 | 175.00
BITR-C 17.23 14.92 29.80 | 129.00 19.74 15.86 31.40 | 138.00

Table 7: Comparison of the performance using baseline methods (CCA [19] and Wsabie [6]]) and variants of our method for image<«—caption retrieval (Experiment-1)
using CNN image features [261(69] and word2vec [27] textual features. The best results using both are highlighted in bold. (T: higher means better; |: lower means
better.)

tations, and building better representations for phrases and cap- Algorithm 1 WSABIE Algorithm
tions that could capture hierarchical correlations among words. Require: labeled data (z;,v;),v; € {1,...,Y}
repeat

Pick a random labeled example (x;, y;)

Let fy, (z:) = ®w (y:)T @1 (x:)

Appendix A. Extending WSABIE for Captions

Here, first we briefly discuss the WSABIE algorithm [6], and Set N =10
then present the proposed extension of WSABIE to adapt it for repeat
captions. Pick a random annotationj € {1,...,Y}\ ;.
Let fy(z;) = Pw (y)" @1(z:)
Appendix A.1. WSABIE N=N+1

until f5(z;) > fy,(x;)) —1lor N>Y —1
if f7 > fy,(x;) — 1 then
Make a gradient step to minimize:

WSABIE (Web Scale Annotation by Image Embedding)
learns a mapping space where both images and annotations
(e.g. labels) are represented. The mapping functions for both a
the modalities are learned jointly by minimizing the WARP i L (L%D'l = fylw) + f 17($1)|+
(Weighted Approximate-Rank Pairwise) loss, that is based on Pr.OJeCt weights to enforce constraints in Eq.
optimizing precision at k. Each image is represented by = € efld lf. . .

RP, and each annotation i € Y = {1,...,Y}, where Y is the until validation error does not improve.
(fixed) vocabulary size. Then, a mapping is learned from image
feature space to the joint space R”:

where the possible annotations ¢ are ranked according to the
®;(x) : RP — RY, (A1 magnitude of f;(z) in descending order. This family of models
have constrained norm:

while jointly learning a mapping function for annotations: IVilla < Ayi =1 »
3 = » v Yt

Py (i) : {1,...,Y} - RP. (A2) [[Willa < Aji=1,...,Y. (A4)

which acts as a regularizer. Algorithm[I|shows the pseudo-code

for learning model variables using a stochastic gradient descent

algorithm that minimizes WARP loss (where L(k) = 2?21 aj,

Both these mappings are chosen to be linear; i.e., ®;(z) =
Vz, and @y (i) = W; where W; indexes the i column of a
P x Y matrix. The goal is to learn the possible annotations of a
given image such that the highest ranked ones best describe thé!% with a; = %)
semantic content of the image. For this, the following model is

considered: Appendix A.2. Adapting WSABIE for Captions

In case of captions, we have a (training) set of captions C =
fi(z) = dw ()T ®r(x) = WV, (A.3)  {c;} rather than a fixed annotation vocabulary. In order to adapt

16
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Algorithm 2 Adapted WSABIE Algorithm for Captions

Require: labeled data (z;,¢;), y is a feature vector represent-
ing caption ¢ € C
repeat
Pick a random labeled example (z;, ¢;)
Let gy, (zi) = @z (y:)" ©r(2s)
Set N =0
repeat
Pick a random caption ¢ € C \ ¢;.
Let gy(2i) = ®2(7)" ®r(z;)
N=N+1
until g5(z;) > gy, (x;)) —1lor N > |C| — 1
if g5 > gy, (x;) — 1 then
Make a gradient step to minimize:
LS DIT = gy () + gy )+
Project weights to enforce constraints in Eq.
end if
until validation error does not improve.
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WSABIE for captions, we modify the feature mapping given
in Eq. [A.2] such that instead of learning a separate parameter
vector for each annotation, we learn a single parameter matrixtso
for all the captions. Given a caption ¢ € C represented by y €
RY, a mapping is learned from caption feature space to the joint
space RY:

Dz(y) : R - RY, (A.Syss

where Z is a P x ¢ matrix. Now, given a set of captions, the
goal is to learn the possible caption(s) of a given image such
that the highest ranked ones best describe the semantic contenf,
of the image. For this, the following model is considered:

gy(2) = () @ (2) =y" Z" V. (A.6)
Similar to Eq. [A4] this family of models have constrained®
norm:

IWVillz <Xi=1,....p,

1Zill2 < Ai=1,....q. (ATY™

which acts as a regularizer. Algorithm[2|shows the pseudo-code
for learning the model variables using a stochastic gradient de-
scent algorithm. It is similar to Algorithm [I] except that ins7s
stead of randomly picking an annotation from vocabulary, now
we randomly pick a caption from the training set consisting of
image-caption pairs.

1180

Acknowledgement

Yashaswi Verma is partly supported by Microsoft Research
India PhD fellowship 2013. e

References

1190
[1] P. Duygulu, K. Barnard, J. F. G. de Freitas, D. A. Forsyth, Object recog-
nition as machine translation: Learning a lexicon for a fixed image vo-
cabulary, in: ECCYV, 2002.

17

[2]
[3]
[4]

(51
(6]
(71

(8]
[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

S. L. Feng, R. Manmatha, V. Lavrenko, Multiple Bernoulli relevance
models for image and video annotation, in: CVPR, 2004.

A. Makadia, V. Pavlovic, S. Kumar, Baselines for image annotation, Int.
J. Comput. Vision 90 (1) (2010) 88-105.

M. Guillaumin, T. Mensink, J. Verbeek, C. Schmid, TagProp: Dis-
criminative metric learning in nearest neighbour models for image auto-
annotation, in: ICCV, 2009.

Y. Verma, C. V. Jawahar, Image annotation using metric learning in se-
mantic neighbourhoods, in: ECCV, 2012.

J. Weston, S. Bengio, N. Usunier, WSABIE: Scaling up to large vocabu-
lary image annotation, in: IJCAI, 2011.

Y. Gong, Q. Ke, M. Isard, S. Lazebnik, A multi-view embedding space for
modeling internet images, tags, and their semantics, IICV 106 (2) (2013)
210-233.

M. A. Sadeghi, A. Farhadi, Recognition using visual phrases, in: CVPR,
2011.

P. Kuznetsova, V. Ordonez, A. C. Berg, T. L. Berg, Y. Choi, Collective
generation of natural image descriptions, in: ACL, 2012.

A. Gupta, Y. Verma, C. V. Jawahar, Choosing linguistics over vision to
describe images, in: AAAI 2012.

Y. Verma, A. Gupta, P. Mannem, C. V. Jawahar, Generating image de-
scriptions using semantic similarities in the output space, in: CVPR
Workshop, 2013.

G. Kulkarni, V. Premraj, S. Dhar, S. Li, Y. Choi, A. C. Berg, T. L. Berg,
Baby Talk: Understanding and generating simple image descriptions, in:
CVPR, 2011.

Y. Yang, C. L. Teo, H. D. III, Y. Aloimonos, Corpus-guided sentence
generation of natural images, in: EMNLP, 2011.

V. Ordonez, G. Kulkarni, T. L. Berg, Im2Text: Describing images using
1 million captioned photographs| in: NIPS, 2011.
URLhttp://tlberg.cs.unc.edu/vicente/sbucaptions/
A. Farhadi, M. Hejrati, A. Sadeghi, P. Young, C. Rashtchian, J. Hocken-
maier, D. Forsyth, Every picture tells a story: Generating sentences for
images, in: ECCV, 2010.

M. Hodosh, P. Young, J. Hockenmaier, Framing image description as a
ranking task: Data, models and evaluation metrics, JAIR 47 (2013) 853—
899.

M. Paramita, M. Sanderson, P. Clough, Diversity in photo retrieval:
overview of the ImageCLEFPhoto task 2009, CLEF working notes.

R. Datta, D. Joshi, J. Li, J. Wang, Image retrieval: Ideas, influences and
trends of new age, ACM Computing Surveys 40 (2) (2008) 1-60.

N. Rasiwasia, J. C. Pereira, E. Coviello, G. Doyle, G. R. G. Lanckriet,
R. Levy, N. Vasconcelos, A new approach to cross-modal multimedia
retrieval, in: ACM MM, 2010.

D. R. Hardoon, S. Szedmak, J. Shawe-Taylor, Canonical correlation anal-
ysis: An overview with application to learning methods, Neural Comput.
16 (12) (2004) 2639-2664.

C. Kang, S. Xiang, S. Liao, C. Xu, C. Pan, Learning consistent feature
representation for cross-modal multimedia retrieval, IEEE Transactions
on Multimedia 17 (3) (2015) 370-381.

1. Tsochantaridis, T. Hofmann, T. Joachims, Y. Altun, Support vector ma-
chine learning for interdependent and structured output spaces, in: ICML,
2004.

C. Rashtchian, P. Young, M. Hodosh, J. Hockenmaier, Collecting image
annotation using amazon’s mechanical turk, in: NAACLHLT Workshop
on Creating Speech and Language Data with Amazon’s Mechanical Turk,
2010.
URLhttp://vision.cs.uiuc.edu/pascal-sentences/
M. Grubinger, P. D. Clough, H. Miiller, T. Deselaers, The IAPR bench-
mark: A new evaluation resource for visual information systems, in:
International Conference on Language Resources and Evaluation, 2006.
URL http://www—16.informatik.rwth—-aachen.de/
imageclef/resources/iaprtcl2.tgz

Y. Verma, C. V. Jawahar, Im2Text and Text2Im: Associating images and
texts for cross-modal retrieval, in: BMVC, 2014.

J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, T. Dar-
rell, DeCAF: A deep convolutional activation feature for generic visual
recognition, 2014.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, J. Dean, Distributed rep-
resentations of words and phrases and their compositionality, in: NIPS,
2013.


http://tlberg.cs.unc.edu/vicente/sbucaptions/
http://tlberg.cs.unc.edu/vicente/sbucaptions/
http://tlberg.cs.unc.edu/vicente/sbucaptions/
http://tlberg.cs.unc.edu/vicente/sbucaptions/
http://vision.cs.uiuc.edu/pascal-sentences/
http://vision.cs.uiuc.edu/pascal-sentences/
http://vision.cs.uiuc.edu/pascal-sentences/
http://vision.cs.uiuc.edu/pascal-sentences/
http://www-i6.informatik.rwth-aachen.de/imageclef/resources/iaprtc12.tgz
http://www-i6.informatik.rwth-aachen.de/imageclef/resources/iaprtc12.tgz
http://www-i6.informatik.rwth-aachen.de/imageclef/resources/iaprtc12.tgz
http://www-i6.informatik.rwth-aachen.de/imageclef/resources/iaprtc12.tgz
http://www-i6.informatik.rwth-aachen.de/imageclef/resources/iaprtc12.tgz
http://www-i6.informatik.rwth-aachen.de/imageclef/resources/iaprtc12.tgz

1195

1200

1205

1210

1215

1220

1225

1230

1235

1240

1245

1250

1255

1260

[28]

(29]

(30]

(31]
(32]
(33]
[34]
[35]

[36]

[38]
[39]
[40]
[41]
[42]
[43]

[44]

[45]
[46]
[47]
[48]
[49]
[50]
[51]

(52]

[53]

[54]

[55]

[56]

[57]

[58]

A. Smeulders, M. Worring, S. Santini, A. Gupta, R. Jain, Content-based
image retrieval at the end of the early years, PAMI 22 (12) (2000) 1349265
1380.

C. Meadow, B. Boyce, D. Kraft, C. Barry, Text information retrieval sys-
tems, Emerald Group Pub Ltd.

A. F. Smeaton, P. Over, W. Kraaij, Evaluation campaigns and trecvid, in:
MIR: Proceedings of the 8th ACM International Workshop on Multimediaz7o
Information Retrieval, 2006.

Y. Verma, C. V. Jawahar, Exploring SVM for image annotation in pres-
ence of confusing labels, in: BMVC, 2013.

Z. Niu, G. Hua, X. Gao, Q. Tian, Semi-supervised relational topic model
for weakly annotated image recognition in social media, in: CVPR, 20141275
L. Ballan, T. Uricchio, L. Seidenari, A. D. Bimbo, A cross-media model
for automatic image annotation, in: ICMR, 2014.

N. Srivastava, R. Salakhutdinov, Multimodal learning with deep boltz-
mann machines, in: NIPS, 2012.

H. J. Escalante, C. A. Hérnadez, L. E. Sucar, M. Montes, Late fusion of280
heterogeneous methods for multimedia image retrieval, in: MIR, 2008.
J. C. Caicedo, J. BenAbdallah, F. A. Gonzilez, O. Nasraoui, Multimodal
representation, indexing, automated annotation and retrieval of image
collections via non-negative matrix factorization, Neurocomput. 76 (1)
(2012) 50-60. 1285
S. J. Hwang, K. Grauman, Learning the relative importance of objects
from tagged images for retrieval and cross-modal search, Int. J. Comput.
Vision 100 (2) (2012) 134-153.

A. Sharma, A. Kumar, H. D. III, D. W. Jacobs, Generalized multiview
analysis: A discriminative latent space, in: CVPR, 2012. 1290
N. Rasiwasia, D. Mahajan, V. Mahadevan, G. Aggarwal, Cluster canoni-
cal correlation analysis, in: AISTATS, 2014.

K. Wang, R. He, W. Wang, L. Wang, T. Tan, Learning coupled feature
spaces for cross-modal matching, in: ICCV, 2013.

T. Mei, Y. Rui, S. Li, Q. Tian, Multimedia search reranking: A literature
survey, ACM Comput. Surv. 46 (3) (2014) 38:1-38:38.

R. Rosipal, N. Kriamer, Overview and recent advances in partial least
squares, in: SLSFS, 2006.

J. B. Tenenbaum, W. T. Freeman, Separating style and content with bilin-
ear models, Neural Comput. 12 (6) (2000) 1247-1283.

R. Socher, A. Karpathy, Q. V. Le, C. D. Manning, A. Y. Ng, Grounded
compositional semantics for finding and describing images with sen-
tences, TACL 2 (2013) 207-218.

A. Karpathy, A. Joulin, L. Fei-Fei, Deep fragment embeddings for bidi-
rectional image sentence mapping, in: NIPS, 2014.

J. Rodriguez, F. Perronnin, Label embedding for text recognition, in:
BMVC, 2013.

K. Duan, D. J. Crandall, D. Batra, Multimodal learning in loosely-
organized web images, in: CVPR, 2014.

J. J. McAuley, J. Leskovec, Image labeling on a network: Using social-
network metadata for image classification, in: ECCV, 2012.

J. Johnson, L. Ballan, L. Fei-Fei, Love thy neighbors: Image annotation
by exploiting image metadata, in: ICCV, 2015.

H. Hu, G.-T. Zhou, Z. Deng, Z. L. andGreg Mori, Learning structured
inference neural networks with label relations, in: CVPR, 2016.

Y. Ushiku, T. Harada, Y. Kuniyoshi, Understanding images with natural
sentences, in: ACM MM, 2011.

B. Plummer, L. Wang, C. Cervantes, J. Caicedo, J. Hockenmaier,
S. Lazebnik, Flickr30k entities: Collecting region-to-phrase correspon-
dences for richer image-to-sentence models, in: ICCV, 2015.

A. Karpathy, L. Fei-Fei, Deep visual-semantic alignments for generating
image descriptions, in: CVPR, 2015.

J. Mao, W. Xu, Y. Yang, J. Wang, A. L. Yuille, Explain images with mul-
timodal recurrent neural networks, in: NIPS Deep Learning Workshop,
2014.

R. Kiros, R. Salakhutdinov, R. S. Zemel, Unifying visual-semantic em-
beddings with multimodal neural language models, TACL.

H. Fang, S. Gupta, F. Iandola, R. Srivastava, L. Deng, P. Dollar, J. Gao,
X. He, M. Mitchell, J. Platt, L. Zitnick, G. Zweig, From captions to visual
concepts and back, in: CVPR, 2015.

K. Papineni, S. Roukos, T. Ward, W. Zhu, Language models for image
captioning: The quirks and what works, in: ACL, 2015.

N. Cristianini, J. Shawe-Taylor, An Introduction to Support Vector Ma-
chines: And Other Kernel-based Learning Methods, Cambridge Univer-

18

[59]

[60]
[61]
[62]
[63]
[64]
[65]

[66]

[67]

[68]

[69]

sity Press, 2000.

A. K. Menon, D. Surian, S. Chawla, Cross-modal retrieval: A pairwise
classification approach, in: SIAM International Conference on Data Min-
ing, 2015.

D. Blei, A. Ng, M. Jordan, Latent dirichlet allocation, JIMLR 12 (1) (2003)
234-278.

D. G. Lowe, Distinctive image features from scale-invariant keypoints,
TICV 60 (2) (2004) 91-110.

R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich feature hierarchies for
accurate object detection and semantic segmentation, in: CVPR, 2014.
K. Papineni, S. Roukos, T. Ward, W. Zhu, BLEU: A method for automatic
evaluation of machine translation, in: ACL, 2002.

C.-Y. Lin, E. Hovy, Automatic evaluation of summaries using n-gram co-
occurrence statistics, in: NAACLHLT, 2003.

H. Hotelling, Relations between two sets of variates, Biometrika 28
(1936) 321-377.

C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard, D. Mc-
Closky, The Stanford CoreNLP natural language processing toolkit, in:
ACL: System Demonstrations, 2014.

URL http://nlp.stanford.edu/software/corenlp.
shtml

M.-C. de Marneffe, C. D. Manning, The stanford typed dependencies
representation, in: COLING Workshop on Cross-framework and Cross-
domain Parser Evaluation, 2008.

M. D. Zeiler, R. Fergus, Visualizing and understanding convolutional net-
works, in: ECCYV, 2014.

A. Babenko, A. Slesarev, A. Chigorin, V. Lempitsky, Neural codes for
image retrieval, in: ECCV, 2014.


http://nlp.stanford.edu/software/corenlp.shtml
http://nlp.stanford.edu/software/corenlp.shtml
http://nlp.stanford.edu/software/corenlp.shtml
http://nlp.stanford.edu/software/corenlp.shtml

	Introduction
	 Related Work
	Bilateral Image-Text Retrieval
	Approach
	Details
	Joint Image-Text Representation
	Loss Function
	Finding the Most Violated Constraint

	Inference: Retrieving a Ranked List of Output
	Performing ``Text2Im''

	Comparison with Some Previous Approaches
	Comparison with CCA
	Comparison with Wsabie

	Training time and Run-time Analysis
	Training time analysis
	Run-time analysis

	Image and Text Representation
	Topic-based Representation
	Representing Images
	Representing Text

	Correlated Topic-based Representation
	Modern Representations

	Experiments
	Datasets
	Evaluation Metrics
	Captions
	Phrases and Labels

	Baselines for Comparisons
	Implementation Details
	Retrieval Schemes
	Experiment-1: Image-Caption Retrieval
	Experiment-2: Cross-dataset Image-Caption Retrieval
	Experiment-3: Image-Phrase Retrieval
	Experiment-4: Image-Label Retrieval

	Results and Discussion
	Experiment-1: Image-Caption Retrieval
	Experiment-2: Cross-dataset Image-Caption Retrieval
	Experiment-3: Image-Phrase Retrieval, and Experiment-4: Image-Label Retrieval
	Qualitative Results

	Evaluation Using Contemporary Features
	Discussion and Take-home-messages

	Conclusion and Future work
	Extending Wsabie for Captions
	Wsabie
	Adapting Wsabie for Captions


