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Abstract Automatic image annotation is one of the fundamental problems in computer
vision and machine learning. Given an image, here the goal is to predict a set of textual labels
that describe the semantics of that image. During the last decade, a large number of image
annotation techniques have been proposed that have been shown to achieve encouraging
results on various annotation datasets. However, their scope has mostly remained restricted
to quantitative results on the test data, thus ignoring various key aspects related to dataset
properties and evaluation metrics that inherently affect the performance to a considerable
extent. In this paper, first we evaluate ten state-of-the-art (both deep-learning based as well
as non-deep-learning based) approaches for image annotation using the same baseline CNN
features. Then we propose new quantitative measures to examine various issues/aspects in
the image annotation domain, such as dataset specific biases, per-label versus per-image
evaluation criteria, and the impact of changing the number and type of predicted labels. We
believe the conclusions derived in this paper through thorough empirical analyzes would be
helpful in making systematic advancements in this domain.
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1 Introduction

The last decade has witnessed an explosion of digital images on the Internet. As a result, it
has become necessary to develop new technologies that can help in efficiently archiving and
accessing large image collections. Since existing search engines are quite efficient in doing
text-based search, it comes as a natural choice to address the above problem by associating
images with text describing their semantics, such as discrete labels, short captions, or even
full descriptions. Automatic image annotation is one of the fundamental problems that sym-
bolizes the inter-play between visual and textual data. It aims at associating a set of discrete
labels with a given image that describe its semantics, and has found applications in other
visual understanding tasks such as image caption generation [13, 19, 39] and image retrieval
[12, 28]. During the last decade, a large number of both non-deep-learning based [2, 3, 8, 9,
12, 18, 22, 23, 27–29, 36–38, 41, 42] as well as deep-learning based [10, 16, 17, 20, 24, 32,
40] image annotation techniques have been developed. However, almost all of these have
primarily focussed on advancing quantitative results on the test sets of various image anno-
tation datasets, without giving much attention to some of the core aspects related to dataset
properties and evaluation metrics that internally affect the results to a significant extent.

In this paper, we attempt to investigate this situation. To summarize, our key contribu-
tions are:

1. First we evaluate ten benchmark image annotation techniques (five deep-learning based
and five non-deep learning based) using the same baseline CNN features. These results
can be useful in comparing future techniques addressing this task.

2. We thoroughly explore several aspects related to the performance evaluation metrics
and five popular image annotation datasets (Corel-5K [7], ESP Game [1], IAPR TC-12
[11], NUS-WIDE [4] and MS-COCO [25]), and discuss what impacts these can have
on quantitative performance.

3. We propose novel measures to quantify the degree of diversity (both image diversity as
well as label diversity) in image annotation datasets. These are shown to relate with the
performance of annotation methods, and can also be useful in developing new image
annotation datasets.

As per our knowledge, this is the first study that investigates the above aspects related
to the image annotation task. In the next section, we briefly describe the annotation tech-
niques that we have considered in our analyzes. In Section 3, we detail the experimental
settings and compare the results of various annotation techniques on popular annotation
datasets. In Section 4, we extensively analyze various aspects related to datasets and perfor-
mance evaluation metrics that can have significant impact while working in the real-world
settings.

2 Label prediction models

We consider the following benchmark image annotation techniques in our analysis. As
per our understanding, these techniques have made notable contributions in advancing this
challenging area, and have also reported some of the best results on standard datasets.

1. Joint Equal Contribution (JEC): Based on the idea that similar images should share
similar labels, Makadia et al. [27, 28] proposed a greedy nearest-neighbor based
approach for image annotation. Given a test image, initially it transfers the labels

Author's personal copy



Multimed Tools Appl (2018) 77:31991–32011 31993

occurring in its nearest (or visually the most similar) training image in the order of their
frequencies in the training set. Then it picks labels from additional neighbors, and con-
siders their frequencies and co-occurrence with the initially assigned labels for further
assignment.

2. Tag Relevance (TagRel): Li et al. [21] proposed an annotation approach based on the
idea that for a given test image, the degree of relevance of a label is proportional to its
frequency in the neighbor set of that image. However, in order to penalize very high
frequency of a given label occurring in the neighborhood, it also takes into account the
overall frequency of that label in the complete training set.

3. TagProp:Guillaumin et al. [12] proposed a weighted nearest neighbor model for image
annotation. Given an image, the model takes weighted average of labels occurring in
the neighbor set of that image and tries to maximize the likelihood of true labels dur-
ing training. Additionally, to boost the performance of rare labels, per-label sigmoid
functions are learned that act as wrapper functions over the baseline model.

4. 2PKNN: Inspired by the success of JEC and TagProp, Verma and Jawahar [36, 38]
proposed a two-step approach for image annotation. Given a test image, the first step
constructs a balanced neighborhood that ensures a certain minimum number of occur-
rences of each label. Then in the second step, labels are propagated from the initially
picked neighbors by computing a weighted average of their relevance based on visual
similarity with the corresponding neighboring images. Analogous to TagProp, the
motivation behind the first step is to improve the predictability of rare labels.

5. SVM: In [37], it was shown that simple binary (one-versus-rest) SVM classifiers [5]
trained for each label could achieve superior performance than several state-of-the-art
image annotation techniques. Precisely, to learn a classifier for a given label, all the
(training) images annotated with that label are considered as positive samples and the
rest as negative samples. Given a new image, all the classifiers are evaluated on it and
their scores are calibrated using the Platt’s normalization technique [31]. As discussed
in [43], since this approach addresses the problem of multi-label image annotation on
an individual label basis, it ignores the co-existence of other labels. Due to this, while
it is conceptually simple and highly efficient, it fails to utilize label correlations.

6. Deep Learning based techniques: Recently, several deep neural network based tech-
niques have been proposed for the multi-label image annotation task. Here, we focus
on techniques that use different loss layers while training. Each loss function specifies
a particular way of training the network, and how the network penalizes the differ-
ences in ground-truth and predicted labels. Precisely, we consider five loss functions:
SoftMax [10], Sigmoid, Pairwise Ranking (or simply Ranking) [10], Weighted Approx-
imate Ranking (or WARP) [10, 41], and the recently proposed Log-Sum-Exp Pairwise
Ranking (or LSEP) [24].

We evaluate the above label prediction models using two state-of-the-art convolutional
neural network architectures (GoogLeNet [34] and ResNet [15]), which were initially
trained on the ImageNet 1000-class classification dataset [33]. For each deep-learning based
method, we fine-tune the weights between the penultimate and soft-max layers using the
corresponding loss function. For non-deep-learning based methods, we use the features from
the penultimate layers of these networks. Following [35, 38], these features are transformed
into an embedding space learned using Kernel Canonical Correlation Analysis (KCCA)
[14]. This embedding is expected to provide a semantically richer representation than using
raw features. Precisely, first we compute a similarity (or kernel) matrix between visual
features using an exponential kernel and a kernel matrix between textual (binary labels)
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features using a linear kernel, and then adopt the implementation of [14] to learn the embed-
ding space using the two kernel matrices. We will publish our code and data to facilitate
reproducibility and future comparisons.

3 Experiments

3.1 Datasets

We use the following benchmark datasets in our analyzes, a subset of which has been used
by almost all the existing techniques in their evaluations.

1. Corel-5K [7]: It contains 4,500 training and 499 testing images. Each image is anno-
tated with up to 5 labels, with 3.4 labels per image on an average. This is one of the
oldest image annotation datasets, and was considered as the de facto benchmark for
evaluation until recently. Since most of the recent image annotation techniques are
based on deep neural networks and require large amount training data, there has been a
decline in the usage of this dataset.

2. ESP Game [1]: This dataset contains 18,689 training and 2,081 testing images, with
each image being annotated with up to 15 labels and 4.7 labels on an average. It was
formed using an on-line game where two mutually unknown players are required to
assign labels to a given image, and score points for every common label. This way,
several participants perform the manual annotation task, thus making this dataset quite
challenging.

3. IAPR TC-12 [11]: It contains 17,665 training and 1,962 testing images. Each image is
annotated with up to 23 labels, with 5.7 labels per image on an average. In this dataset,
each image is associated with a long description in multiple languages. Makadia et al.
[27, 28] extracted nouns from the descriptions in the English language and treated them
as annotations. Since then, it has been used extensively for evaluating image annotation
methods.

4. NUS-WIDE [4]: This is the largest publicly available image annotation dataset, con-
taining 269,648 images downloaded from Flickr. The vocabulary contains 81 labels,
with each image being annotated with up to 3 labels. On an average, there are 2.40
labels per image. Following the earlier papers [10, 35], we discard the images without
any label. This leaves us with 209,347 images, that we split into ∼ 125K images for
training and ∼ 80K for testing by adopting the split originally provided by the authors
of this dataset.

5. MS-COCO [25]: This is the second largest popular image annotation dataset, and is
primarily used for object recognition in the context of scene understanding. It contains
82,783 training images and 80 labels, with each image being annotated with 2.9 labels
on an average. For this dataset, the ground-truth of the test set is not publicly available.
Hence, we consider the validation set containing 40,504 images as the test set in our
experiments.

3.2 Evaluation metrics

To analyze annotation performance, we consider both per-label as well as per-image evalua-
tion metrics. While per-label evaluation metrics have been popularly used to evaluate image
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annotation models for over a decade [7, 8, 12, 28, 36–38], some recent papers also use
per-image metrics [10, 17, 26, 35]. Below we describe the metrics in these two categories:

3.2.1 Per-label evaluation metrics

Here, we consider per-label precision, recall and mean average precision (mAP). Given a
label, let it be present in the ground-truth of m1 images, and during testing let it be predicted
for m2 images out of which m3 predictions are correct (m3 ≤ m1 and m3 ≤ m2). Then
the precision for this label will be m3/m2, and recall will be m3/m1. These values are
averaged over all the labels in the vocabulary to get average (percentage) per-label precision
(PL) and average per-label recall (RL) respectively. From these, we compute average per-
label F1 score (F1L), which is the harmonic mean of PL and RL; i.e., F1L = 2 × PL ×
RL/(PL + RL). We also consider the N+ metric, that counts the number of labels with
positive recall (or, how many labels in the vocabulary are correctly predicted for at least one
test image). Additionally, we compute label-centric mAP (mAPL) that measures the quality
of image-ranking corresponding to each label.

3.2.2 Per-image evaluation metrics

Here, we consider per-image precision, recall and mAP. Given an image, let there be n1
labels present in its ground-truth, and during testing a model predicts n2 labels out of which
n3 predictions are correct (n3 ≤ n1 and n3 ≤ n2). Then the precision for this image will
be n3/n2, and recall will be n3/n1. These values are averaged over all the images in the
test set to get average (percentage) per-image precision PI and average per-image recall RI.
From these two scores, we compute per-image F1 score (F1I), which is the harmonic mean
of PI and RI. We also compute image-centric mAP (mAPI) that measures the quality of
label-ranking corresponding to each image.

3.2.3 Label assignment

Unless stated otherwise, we follow the earlier papers [8, 10, 12, 35, 36] and assign the top 5
labels to each test image in the Corel-5K, ESP Game and IAPR TC-12 datasets, and the top
3 labels in the NUS-WIDE and MS-COCO datasets for evaluating all the metrics, except
for mAPL and mAPI that are evaluated on the complete ranked list of all the (test) images
and labels respectively.

3.3 Model comparison

In Table 1 (for NUS-WIDE), Table 2 (for MS-COCO) and Tables 3 and 4 (for Corel-5K,
ESP Game and IAPR TC-12), we compare the annotation performance of different label
prediction models. As discussed earlier, since per-image evaluation metrics have become
popular only recently, and most of the recent papers have reported results only on the NUS-
WIDE dataset, we show results for per-image metrics only for the methods considered in
this paper in Tables 2, 3 and 4.

In general, we can observe significant variations in the results on different datasets. This
is becuase of the differences in how these datasets were created and their vocabularies. For
datasets with large vocabularies (Corel-5K, ESP Game and IAPR TC-12), the results are
usually lower than those with small vocabularies (NUS-WIDE and MS-COCO). Another
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Table 1 Performance comparison of various annotation models (deep-learning based models are marked by
‘*’) on the NUS-WIDE dataset

Method Per-label metrics Per-image metrics

PL RL F1L mAPL N+ PI RI F1I mAPI

Johnson [17] 54.74 57.30 55.99 61.88 – 53.46 75.10 62.46 80.27

Hu [16] (1) 57.02 59.82 58.39 67.20 – 56.84 78.78 66.04 89.99

Hu [16] (2) 58.30 60.63 59.44 69.24 – 57.05 79.12 66.30 82.53

Liu [26] 71.73 61.73 66.36 – – 77.41 76.88 77.15 –

Gong [10] 31.65 35.60 33.51 – 80 48.59 60.49 53.89 –

Ren [32] 37.74 40.15 38.91 – 81 52.23 65.03 57.93 –

Wang [40] 40.50 30.40 34.73 – – 49.90 61.70 55.18 –

Liu [26] 55.65 50.17 52.77 – – 70.57 71.35 70.96 –

Using GoogLeNet

SoftMax* 45.16 51.72 48.22 46.45 81 52.98 74.92 62.07 79.95

Sigmoid* 45.91 52.18 48.85 53.97 81 53.84 75.69 62.92 81.19

Ranking* 44.49 51.70 47.82 45.41 81 52.84 74.27 61.75 79.34

WARP* 43.91 53.17 48.09 46.04 81 53.03 74.56 61.98 79.54

LSEP* 44.29 53.46 48.45 49.32 81 53.64 75.54 62.73 80.91

JEC 37.15 40.91 38.94 21.63 80 29.36 69.32 41.25 61.68

TagRel 39.75 59.27 47.58 49.15 81 49.87 70.71 58.49 73.55

TagProp 48.84 58.10 53.07 53.81 80 51.52 73.16 60.46 76.90

2PKNN 52.49 52.28 52.38 51.96 81 45.30 64.77 53.31 67.82

SVM 46.56 52.38 49.30 51.84 81 53.31 74.96 62.31 79.87

Using ResNet

SoftMax* 44.36 51.88 47.82 47.94 80 53.61 75.68 62.76 80.73

Sigmoid* 46.97 53.11 49.85 55.72 81 54.64 76.74 63.83 82.20

Ranking* 45.73 52.82 49.03 49.30 81 54.09 75.96 63.19 81.28

WARP* 44.74 52.44 48.28 48.96 81 53.81 75.48 62.83 80.65

LSEP* 43.30 53.98 48.05 51.09 81 54.34 76.41 63.52 81.86

JEC 39.71 40.60 40.15 22.05 80 49.27 69.84 57.78 62.83

TagRel 40.27 60.26 48.28 50.87 81 50.86 71.95 59.60 74.85

TagProp 49.45 59.13 53.86 54.55 81 52.37 74.21 61.41 78.03

2PKNN 47.94 55.76 51.55 52.97 81 51.90 73.00 60.67 77.46

SVM 46.35 54.02 49.89 53.55 81 54.23 76.00 63.30 80.97

reason is the diversity in these datasets (in terms of both images as well as labels), that we
will analyze and discuss in Section 4.2.

In Table 1, the first two blocks show the performances reported by some recent tech-
niques, all of which are based on some end-to-end trainable deep neural network. Note
that while the techniques in the second block make use of only the available training data
(images and their labels), those in the first block also make use of additional meta-data such
as either social tags [17, 26] or the WordNet hierarchy [16]. Due to this, while these are able
to achieve significantly higher results than others, these can not be compared directly. From
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Table 2 Performance comparison of various annotation models (deep-learning based models are marked by
‘*’) on the MS-COCO dataset

Method Per-label metrics Per-image metrics

PL RL F1L mAPL N+ PI RI F1I mAPI

Using GoogLeNet

SoftMax* 58.87 57.41 58.13 59.47 80 58.32 71.76 64.35 80.34

Sigmoid* 61.14 58.87 59.98 67.74 80 60.16 73.22 66.05 82.37

Ranking* 58.84 57.18 57.99 61.48 80 58.65 71.48 64.43 80.22

WARP* 59.21 56.44 57.79 61.07 80 58.27 71.00 64.01 79.80

LSEP* 60.16 59.24 59.70 63.92 80 59.80 73.05 65.77 82.04

JEC 53.03 42.68 47.30 29.63 80 49.52 61.52 54.87 55.82

TagRel 52.36 57.61 54.86 62.87 80 54.20 67.07 59.95 73.35

TagProp 60.35 56.82 58.53 63.13 80 57.23 70.13 63.02 77.97

2PKNN 71.00 49.25 58.16 61.03 80 50.20 61.50 55.28 69.74

SVM 61.71 59.07 60.36 68.33 80 60.11 73.03 65.94 81.75

Using ResNet

SoftMax* 56.77 56.20 56.49 57.24 80 57.88 71.05 63.79 79.69

Sigmoid* 58.82 57.92 58.37 66.74 80 59.78 72.62 65.58 81.72

Ranking* 56.75 55.75 56.25 58.75 80 58.00 70.54 63.66 79.42

WARP* 57.09 55.31 56.19 58.11 80 57.54 70.03 63.18 78.93

LSEP* 57.35 58.66 57.99 61.41 80 59.52 72.61 65.41 81.51

JEC 56.06 45.53 50.25 32.53 80 51.64 64.29 57.27 59.77

TagRel 55.67 59.67 57.60 63.30 80 55.66 68.67 61.49 74.40

TagProp 63.11 58.29 60.61 63.46 80 58.17 71.07 63.98 78.52

2PKNN 63.77 55.70 59.46 62.72 80 54.13 66.95 59.86 75.48

SVM 60.27 57.67 58.94 65.52 80 59.33 72.08 65.09 80.38

Table 1, we observe that both non-deep-learning methods as well as deep-learning based
methods (that do not use additional meta-data) give comparable results.

In Table 2, we compare the performance of various methods on the MS-COCO dataset.
Here, we observe that generally TagProp and SVM achieve the best results among the non-
deep-learning based methods, and Sigmoid and LSEP achieve the best results among the
deep-learning based methods. Similar to the NUS-WIDE dataset, the best results using both
deep as well as non-deep methods are comparable.

In Tables 3 and 4, we compare the performance of the five non-deep-learning based
methods on small-scale datasets using GoogLeNet and ResNet features respectively. Here,
we do not consider deep-learning based methods since they require large amount of data
for proper training. From the results, we observe that 2PKNN generally achieves the best
performance.

In general, for all the datasets and methods, we can observe that the scores correspond-
ing to per-image metrics are higher than per-label metrics. We will study this trend in
Section 4.1, where we will empirically show that per-image metrics show some bias toward
good performance on frequent labels.
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Table 3 Performance comparison of various annotation methods on Corel-5K, ESP Game and IAPR TC-12
datasets using GoogLeNet features

Method Per-label metrics Per-image metrics

PL RL F1L mAPL N+ PI RI F1I mAPI

Corel-5K

JEC 41.70 44.95 43.27 37.29 161 45.97 64.92 53.76 50.87

TagRel 40.64 46.43 43.34 41.81 167 45.29 63.76 52.96 58.56

TagProp 37.88 42.79 40.19 43.15 155 46.05 65.27 54.00 60.13

2PKNN 46.10 52.85 49.25 53.18 197 44.48 62.60 52.01 57.89

SVM 36.64 46.29 40.90 53.15 158 48.42 68.77 56.83 67.30

ESP Game

JEC 45.15 31.39 37.03 21.66 239 41.85 47.06 44.31 35.83

TagRel 38.89 42.05 40.41 38.81 252 43.57 48.52 45.92 49.91

TagProp 44.48 41.23 42.79 38.95 250 44.17 49.77 46.80 51.44

2PKNN 45.48 42.20 43.78 41.40 260 43.89 49.43 46.50 51.57

SVM 44.21 36.07 39.73 41.33 245 47.13 52.97 49.88 55.70

IAPR TC-12

JEC 44.52 27.77 34.20 20.08 226 49.62 47.92 48.76 38.08

TagRel 45.07 42.21 43.59 39.71 267 50.66 49.01 49.82 52.40

TagProp 49.13 41.73 45.13 44.18 270 50.39 49.18 49.78 55.40

2PKNN 50.77 41.64 45.75 46.39 275 50.41 48.72 49.55 56.39

SVM 51.13 30.81 38.45 46.67 235 54.41 52.63 53.50 60.60

4 Analysis

Now we analyze various aspects of image annotation datasets and performance evaluation
metrics by considering the ten annotation methods discussed in Section 2 as the working
examples wherever required.

4.1 Per-label versus Per-image evaluation

In per-image metrics each test image contributes equally, and thus they tend to get biased
toward performance on frequent labels. In contrary, each label contributes equally in per-
label metrics, due to which they tend to get affected by performance on rare labels. It
is important to note that the issue of imbalance in label frequencies (also called class-
imbalance) in image annotation datasets has attained some attention in the past [12, 36,
38].

Recall that as discussed in Section 3.2.3, we assign a fixed number of labels to each
test image during evaluation. However, since several test images may have either more or
less labels in the ground-truth, no method can achieve perfect performance. In order to
study the relative trade-off between per-label and per-image metrics, we try to evaluate the
best performance achievable by each method. For this, we assume to know what labels are
incorrect predictions for each test image using a given annotation method, and then replace
these labels by either the most frequently occurring, or the least frequently occurring, or
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Table 4 Performance comparison of various annotation methods on Corel-5K, ESP Game and IAPR TC-12
datasets using ResNet features

Method Per-label metrics Per-image metrics

PL RL F1L mAPL N+ PI RI F1I mAPI

Corel-5K

JEC 37.87 43.04 40.29 34.94 151 46.41 65.80 54.43 51.64

TagRel 37.01 45.23 40.71 40.13 157 46.25 65.43 54.20 59.16

TagProp 36.54 42.62 39.34 49.23 145 47.81 67.92 56.12 62.10

2PKNN 47.21 54.95 50.78 54.6 201 45.41 64.30 53.23 59.08

SVM 36.79 43.84 40.01 54.32 155 48.94 69.64 57.48 68.13

ESP Game

JEC 47.14 30.43 36.99 21.92 235 42.69 48.22 45.29 37.20

TagRel 43.12 41.84 42.47 39.97 255 44.55 49.87 47.06 51.37

TagProp 48.48 41.78 44.88 41.04 253 45.70 51.60 48.47 53.48

2PKNN 46.17 44.22 45.17 42.89 262 46.04 52.25 48.95 54.22

SVM 47.11 35.02 40.17 43.46 236 48.99 55.55 52.06 58.61

IAPR TC-12

JEC 48.69 27.16 34.87 20.52 226 51.34 49.49 50.40 39.86

TagRel 48.29 41.35 44.55 41.70 265 53.03 51.31 52.15 55.50

TagProp 52.27 40.97 45.93 45.82 266 52.88 51.28 52.07 57.72

2PKNN 53.54 42.58 47.43 48.88 281 53.21 51.43 52.30 59.32

SVM 51.97 28.16 36.53 48.71 224 54.41 52.37 53.37 61.05

randomly chosen incorrect labels to satisfy the requirement of 3/5 label assignment. Note
that in this analysis, we can not evaluate mAPL and mAPI.

In Tables 5 and 6, we show the performance of various methods in terms of F1 scores
using GoogLeNet and ResNet respectively. Here, “True” denotes the actual performance
obtained by each method, and “Rare”, “Freq.”, and “Rand” denote the scores obtained by
filling the empty slots with rare, frequent and random incorrect labels respectively. In case of
“Ground” (ground-truth), the “True” performance is 100% since here we relax the constraint
of assigning exactly 3/5 labels and evaluate over the ground-truth labels themselves. In one
sense, these results can be thought of as upper-bounds achievable using various methods.
In case of F1L, we can observe that the performance of each method improves significantly
when we replace the incorrect predictions by either the most rare or the most frequent
(incorrect) labels. This is expected because very few labels tend to get highly penalized.
Due to this, while their performances drop, that of each of the remaining labels improves,
thus significantly improving the overall performance. However, when we randomly assign
incorrect labels, the penalty spreads across all the labels and this leads to significant drop
in the performance. In contrast, in case of F1I, we can observe that the performance of
each method improves significantly when we replace the incorrect predictions by the most
frequent labels. However, the performance of each method generally remains close to its
actual (“True”) performance when we replace incorrect predictions by either the most rare
or randomly chosen (incorrect) labels.

These results show that per-image metrics are biased toward rewarding correct pre-
dictions of frequently occurring labels. Moreover, as long as the number of incorrect
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Table 5 Comparing the actual per-label and per-image performance (using GoogLeNet) of various label
prediction models (deep-learning based models are marked by ‘*’) with those obtained by replacing incorrect
predictions with rare/frequent/random incorrect labels

Method Per-label F1 score (F1L) Per-image F1 score (F1I)

True Rare Freq. Rand True Rare Freq. Rand

Corel-5K Ground 100.00 99.25 99.55 71.59 100.00 82.61 82.61 82.61

JEC 43.27 52.07 51.74 33.87 53.76 53.80 56.42 54.33

TagRel 43.34 54.53 53.61 34.53 52.96 53.09 57.01 53.42

TagProp 40.19 50.59 49.47 32.46 54.00 54.14 56.52 54.14

2PKNN 49.25 62.27 61.98 38.15 52.01 52.11 55.61 52.51

SVM 40.90 52.90 52.15 34.72 56.83 56.92 59.08 57.11

ESP Game Ground 100.00 99.26 99.56 81.50 100.00 88.60 88.60 88.60

JEC 37.03 47.38 46.81 29.02 44.31 44.36 49.37 44.92

TagRel 40.41 58.92 58.44 36.10 45.92 45.98 52.40 46.62

TagProp 42.79 57.99 57.43 35.82 46.80 46.87 52.22 47.25

2PKNN 43.78 59.22 59.14 36.10 46.50 46.54 52.15 47.02

SVM 39.73 52.76 51.92 32.99 49.88 49.95 53.69 50.47

IAPR TC-12 Ground 100.00 99.26 99.71 87.58 100.00 92.83 92.83 92.83

JEC 34.20 41.30 41.11 28.21 48.76 48.88 52.72 49.28

TagRel 43.59 57.83 58.06 38.33 49.82 49.89 55.97 50.27

TagProp 45.13 57.70 57.81 38.37 49.78 49.87 55.65 50.32

2PKNN 45.75 57.90 57.95 38.07 49.55 49.63 54.10 50.04

SVM 38.45 44.95 44.64 31.10 53.50 53.62 55.91 54.05

NUS-WIDE Ground 100.00 98.56 99.11 62.33 100.00 79.88 79.90 79.88

SoftMax* 48.22 68.33 67.97 36.41 62.07 62.08 65.12 62.48

Sigmoid* 48.85 68.57 68.30 36.49 62.92 62.94 65.36 63.33

Ranking* 47.82 68.34 67.94 36.25 61.75 61.76 64.82 62.20

WARP* 48.09 69.44 69.19 36.99 61.98 61.99 65.12 62.43

LSEP* 48.45 69.58 69.40 37.17 62.73 62.75 65.51 63.16

JEC 38.94 57.17 56.62 28.81 41.25 56.74 61.01 57.37

TagRel 47.58 74.31 74.42 39.42 58.49 58.50 65.80 59.07

TagProp 53.07 73.61 72.96 39.51 60.46 60.48 65.13 60.95

2PKNN 52.38 68.03 68.64 33.88 53.31 53.32 58.65 54.06

SVM 49.30 68.95 68.48 36.60 62.31 62.32 64.89 62.72

MS-COCO Ground 100.00 98.36 99.19 82.9 100.00 85.46 85.46 85.46

SoftMax* 58.13 72.90 72.73 52.06 64.35 64.41 66.75 64.84

Sigmoid* 59.98 73.98 73.82 53.41 66.05 66.12 67.92 66.47

Ranking* 57.99 72.74 72.52 51.96 64.43 64.51 66.49 64.94

WARP* 57.79 72.09 71.96 51.28 64.01 64.08 66.26 64.52

LSEP* 59.70 74.23 74.13 53.61 65.77 65.83 67.88 66.22

JEC 51.05 63.34 62.93 42.21 57.22 57.30 59.80 57.99

TagRel 58.20 74.77 74.94 52.85 61.55 61.61 67.70 62.09

TagProp 61.44 73.71 73.68 52.90 64.21 64.27 66.54 64.74

2PKNN 62.05 72.33 72.22 50.77 61.47 61.54 66.85 62.07

SVM 60.37 73.11 73.02 52.59 65.28 65.34 66.94 65.72

(Refer Section 4.1 for details)
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Table 6 Comparing the actual per-label and per-image performance (using ResNet) of various label pre-
diction models (deep-learning based models are marked by ‘*’) with those obtained by replacing incorrect
predictions with rare/frequent/random incorrect labels

Method Per-label F1 score (F1L) Per-image F1 score (F1I)

True Rare Freq. Rand True Rare Freq. Rand

Corel-5K Ground 100.00 99.26 99.55 70.65 100.00 82.62 82.62 82.62

JEC 40.29 49.92 49.06 33.19 54.43 54.57 56.64 54.99

TagRel 40.71 52.19 51.37 34.95 54.20 54.33 57.38 54.98

TagProp 39.34 49.16 47.87 32.53 56.12 56.31 57.73 56.56

2PKNN 50.78 64.36 63.96 39.39 53.23 53.32 57.01 53.84

SVM 40.01 50.89 50.13 34.06 57.48 57.58 59.21 57.72

ESP Game Ground 100.00 99.26 99.56 81.74 100.00 88.60 88.60 88.60

JEC 36.99 46.26 45.50 28.44 45.29 45.35 49.80 45.85

TagRel 42.47 58.71 58.42 35.92 47.06 47.11 53.09 47.56

TagProp 44.88 58.83 58.08 36.61 48.47 48.53 52.99 49.14

2PKNN 45.17 61.38 61.06 37.83 48.95 49.00 53.43 49.34

SVM 40.17 50.90 50.20 32.18 52.06 52.12 55.00 52.62

IAPR TC-12 Ground 100.00 99.26 99.71 87.75 100.00 92.83 92.83 92.83

JEC 34.87 40.77 40.41 28.21 50.40 50.53 53.67 51.03

TagRel 44.55 56.95 57.01 38.45 52.15 52.24 56.89 52.63

TagProp 45.93 56.71 56.73 38.56 52.07 52.16 56.85 52.52

2PKNN 47.43 59.19 59.12 39.43 52.30 52.39 55.39 52.80

SVM 36.53 41.87 41.23 29.04 53.37 53.52 55.14 53.86

NUS-WIDE Ground 100.00 98.57 99.12 62.36 100.00 79.88 79.88 79.88

SoftMax* 47.82 68.43 67.75 36.74 62.76 62.77 65.33 63.17

Sigmoid* 49.85 69.44 69.08 37.26 63.83 63.84 66.18 64.20

Ranking* 49.03 69.25 68.84 37.07 63.19 63.20 65.74 63.60

WARP* 48.28 68.86 68.51 36.72 62.83 62.84 65.33 63.21

LSEP* 48.05 70.14 69.82 37.70 63.52 63.53 66.10 63.90

JEC 40.15 58.14 57.57 29.43 57.78 57.80 61.60 58.37

TagRel 48.28 74.85 75.12 40.19 59.60 59.61 66.25 60.13

TagProp 53.86 74.14 74.10 40.19 61.41 61.42 65.93 61.84

2PKNN 51.55 71.15 71.31 37.94 60.67 60.68 63.71 61.12

SVM 49.89 70.19 69.82 37.64 63.30 63.31 65.60 63.68

MS-COCO Ground 100.00 98.36 99.20 82.94 100.00 85.46 85.46 85.46

SoftMax* 56.49 72.08 71.76 51.26 63.79 63.88 66.26 64.33

Sigmoid* 58.37 73.35 73.06 52.81 65.58 65.65 67.35 66.02

Ranking* 56.25 71.65 71.37 50.87 63.66 63.74 65.76 64.20

WARP* 56.19 71.43 71.04 50.34 63.18 63.26 65.68 63.70

LSEP* 57.99 73.84 73.68 53.14 65.41 65.48 67.47 65.90

JEC 50.25 63.27 62.66 42.01 57.27 57.37 59.77 58.04

TagRel 57.60 74.70 74.68 52.78 61.49 61.56 67.47 62.12

TagProp 60.61 73.66 73.42 52.54 63.98 64.05 66.36 64.45

2PKNN 59.46 71.70 71.44 49.77 59.86 59.94 66.06 60.49

SVM 58.94 73.10 72.87 52.44 65.09 65.16 66.86 65.53

(Refer Section 4.1 for details)
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predictions remains the same, the performance will not get seriously affected irrespec-
tive of what labels are incorrectly assigned. In contrast, per-label metrics are expected to
provide comparatively better insights about annotation performance for both rare as well
as frequently occurring labels, even though the performance scores corresponding to rare
labels might be somewhat noisy in the sense that they are based on only a handful of test
images.

To further study the bias of per-image metrics toward frequent labels, we assign to all the
test images in a dataset (i) the same 3/5 most rare labels, (ii) the same 3/5 most frequent
labels, and (iii) 3/5 randomly chosen labels. The fixed set of frequent/rare labels is chosen
based on the frequencies of labels in the training subset of a given dataset. While assigning
random labels, we pick different randomly chosen labels for each image. Table 7 shows
the performance obtained using these label assignment techniques. We can observe that the
performance is negligibly low in all the cases, except in the case of per-image metrics with
frequent label assignment. Precisely, simply by assigning the same three/five most frequent
labels to all the test images, we can achieve quite significant F1I scores. This is because as
we can see in Fig. 1, in real-world datasets the label distributions follow the Zipf’s law, due
to which there are a small number of frequently occurring labels and a large number of rare
labels.

From the above results, we arrive at the conclusion that for the image annotation prob-
lem, per-label metrics should be preferred over per-image metrics in general. Additionally,
this analysis also suggests another issue in the evaluation schemes that have been followed
for over a decade in the image annotation domain, that require each test image to be anno-
tated with a pre-defined fixed number of labels rather than doing variable number of label
assignments, and thus warrants more discussion in future work.

Table 7 Performance by assigning the three most rare, the three most frequent, and three randomly chosen
labels to each test image

Dataset Method Per-label metrics Per-image metrics

PL RL F1L N+ PI RI F1I

Corel-5K Rare 0.00 1.92 0.00 5 0.24 0.33 0.28

Frequent 0.34 1.92 0.57 5 17.59 25.50 20.82

Random 1.16 0.99 1.07 23 1.28 1.68 1.45

ESP Game Rare 0.00 1.86 0.00 5 0.15 0.13 0.14

Frequent 0.31 1.86 0.53 5 16.51 18.72 17.55

Random 1.90 1.80 1.84 96 1.83 1.94 1.88

IAPR TC-12 Rare 0.00 1.72 0.01 5 0.32 0.46 0.37

Frequent 0.33 1.72 0.55 5 19.10 17.04 18.01

Random 2.04 1.75 1.88 105 2.05 1.84 1.94

NUS-WIDE Rare 0.00 3.70 0.00 3 0.04 0.06 0.05

Frequent 1.06 3.70 1.65 3 28.71 39.37 33.21

Random 2.95 3.68 3.28 80 2.96 3.71 3.30

MS-COCO Rare 0.01 3.75 0.02 3 0.33 0.37 0.35

Frequent 0.93 3.75 1.49 3 24.87 24.29 24.57

Random 3.48 3.61 3.54 80 3.46 3.59 3.52
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Fig. 1 Frequency of labels in the training sets of each of the five datasets sorted in decreasing order (best
viewed in color)

4.2 Dataset diversity

Here we analyze various aspects in the context of diversity in image annotation datasets.

4.2.1 Label diversity

To study this, we compute two measures: percentage unique label-sets and novel label-sets.
The former computes what percentage of labels-sets are unique in the ground-truth of the
test data, and the latter computes what percentage of label-sets are novel (i.e., not seen in
the training data). Note that while computing the percentage of novel label-sets, we omit
the uniqueness criterion; i.e., multiple test images can have the same novel label-set.

Table 8 shows the values of these two measures for various datasets. We observe that
ESP Game and IAPR TC-12 datasets offer maximum diversity in terms of both unique as
well as novel label-sets. However, for the NUS-WIDE dataset, we observe that there are
only 12.3% of unique label-sets in the test set, and only 6.7% of test images that have novel
label-sets in their ground-truth that are not seen in the training set. This indicates that there
is a lack of label diversity in the NUS-WIDE dataset. This is because though it has a large
number of images, its vocabulary contains only 81 labels with just around 2.40 labels per
image, indicating a low degree of multi-labelness in this dataset.

Table 8 Label diversity in test data in terms of percentage “unique” and “novel” label-sets

Dataset Corel-5K ESP Game IAPR TC-12 NUS-WIDE MS-COCO

Unique 86.8 95.2 95.3 12.3 27.2

Novel 48.9 82.5 73.2 6.7 17.3
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4.2.2 Image diversity

One natural expectation from an image annotation dataset is that its test set should contain
compositionally novel images that are not seen in entirety in the training set [6]. To study this

Table 9 Performance comparison (using GoogLeNet) of various label prediction models (deep-learning
based models are marked by ‘*’) over the 20% most overlapping test subsets of various datasets (refer
Section 4.2.2 for details)

Method Per-label metrics Per-image metrics

PL RL F1L mAPL PI RI F1I mAPI

Corel-5K JEC 67.42 74.61 70.83 68.47 62.20 84.42 71.63 71.53

TagRel 68.02 78.20 72.76 75.58 63.20 85.50 72.68 83.58

TagProp 70.23 78.25 74.02 76.27 64.60 87.50 74.33 85.42

2PKNN 71.27 83.22 76.78 83.46 65.80 89.33 75.78 87.06

SVM 66.32 81.22 73.02 83.81 65.00 88.42 74.92 86.30

ESP Game JEC 59.77 51.88 55.55 45.97 55.92 64.79 60.03 51.78

TagRel 55.46 63.50 59.21 64.05 53.91 60.96 57.22 64.49

TagProp 61.04 64.74 62.84 65.84 56.83 64.96 60.63 69.18

2PKNN 62.16 64.05 63.09 64.52 57.84 66.46 61.85 68.94

SVM 56.90 61.44 59.08 64.93 59.47 68.02 63.46 71.12

IAPR TC-12 JEC 55.24 46.62 50.56 43.10 64.27 65.57 64.92 56.84

TagRel 66.27 65.45 65.85 71.11 65.09 66.19 65.63 73.57

TagProp 68.75 67.35 68.04 76.03 65.14 66.12 65.62 76.01

2PKNN 68.22 66.27 67.23 74.18 66.26 67.02 66.63 77.09

SVM 63.57 56.74 59.96 76.24 68.50 69.55 69.02 79.78

NUS-WIDE SoftMax* 59.80 65.98 62.74 63.53 61.75 81.68 70.33 87.64

Sigmoid* 60.18 65.76 62.84 69.02 62.48 82.33 71.05 88.93

Ranking* 57.75 66.30 61.73 62.91 61.79 81.54 70.30 87.64

WARP* 58.08 67.26 62.34 62.94 61.94 81.69 70.46 87.48

LSEP* 59.23 66.77 62.77 65.60 62.51 82.38 71.08 88.86

JEC 56.54 49.29 52.67 38.02 56.55 75.62 64.71 71.22

TagRel 58.44 70.99 64.12 66.16 59.69 79.20 68.08 82.76

TagProp 65.64 71.83 68.59 68.93 60.72 80.44 69.20 85.18

2PKNN 65.26 69.97 67.53 66.94 58.74 77.97 67.00 81.63

SVM 63.90 67.79 65.79 66.67 61.57 81.16 70.02 86.95

MS-COCO SoftMax* 60.62 65.89 63.15 64.98 57.36 89.61 69.95 93.96

Sigmoid* 59.34 66.92 62.90 69.64 57.70 89.87 70.28 94.47

Ranking* 56.62 66.74 61.26 65.55 57.19 89.34 69.74 93.97

WARP* 58.15 65.86 61.77 65.30 56.89 89.01 69.41 93.71

LSEP* 60.40 67.08 63.57 66.50 57.71 89.93 70.30 94.51

JEC 60.91 56.91 58.84 44.74 52.23 83.64 64.31 78.14

TagRel 56.44 65.63 60.69 65.83 53.45 85.07 65.65 87.68

TagProp 69.09 63.50 66.18 66.14 56.27 88.23 68.72 92.13

2PKNN 66.74 65.39 66.06 66.48 54.40 86.24 66.71 91.41

SVM 69.09 63.80 66.34 65.01 56.20 88.03 68.60 91.99
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phenomenon, we identify compositionally novel as well as compositionally similar images
in the test sets of various datasets and evaluate the performance of different methods on
these subsets. To do so, we bin the images in the test set of a given dataset based on their

Table 10 Performance comparison (using ResNet) of various label prediction models (deep-learning based
models are marked by ‘*’) over the 20% most overlapping test subsets of various datasets (refer Section 4.2.2
for details)

Method Per-label metrics Per-image metrics

PL RL F1L mAPL PI RI F1I mAPI

Corel-5K JEC 73.50 78.88 76.10 74.73 64.00 86.58 73.59 72.79

TagRel 72.38 79.02 75.55 77.48 64.20 86.83 73.82 85.70

TagProp 70.93 79.55 74.99 85.88 64.80 87.83 74.58 86.87

2PKNN 77.51 87.53 82.22 88.44 68.40 92.83 78.76 90.02

SVM 68.22 81.64 74.33 88.81 66.60 90.17 76.61 89.42

ESP Game JEC 58.54 51.67 54.89 45.86 55.68 65.63 60.25 52.94

TagRel 57.23 62.79 59.88 65.68 54.53 63.23 58.56 66.56

TagProp 62.59 64.83 63.69 67.21 56.83 66.68 61.37 69.59

2PKNN 62.03 65.87 63.89 65.90 58.18 68.39 62.87 70.44

SVM 57.26 59.61 58.41 67.73 60.09 70.90 65.05 74.60

IAPR TC-12 JEC 57.97 46.19 51.42 42.49 66.21 67.04 66.62 58.61

TagRel 65.99 62.63 64.27 71.58 67.53 67.74 67.63 75.93

TagProp 68.15 64.74 66.40 76.52 66.61 67.24 66.92 77.98

2PKNN 69.27 64.97 67.05 75.58 68.29 68.70 68.49 78.97

SVM 61.25 50.91 55.60 77.15 68.85 68.95 68.90 80.76

NUS-WIDE SoftMax* 59.96 67.45 63.49 66.84 62.87 81.68 71.05 88.51

Sigmoid* 61.95 68.61 65.11 72.55 63.93 82.69 72.11 90.30

Ranking* 60.27 68.24 64.01 67.37 63.49 82.26 71.66 89.64

WARP* 59.83 67.86 63.59 67.14 63.30 82.01 71.45 89.06

LSEP* 59.34 68.82 63.73 69.23 63.76 82.54 71.94 90.01

JEC 59.38 51.27 55.02 40.04 58.37 76.62 66.26 72.47

TagRel 61.54 73.08 66.82 70.13 61.37 79.83 69.39 84.72

TagProp 67.10 74.23 70.49 72.15 62.05 80.78 70.19 86.53

2PKNN 67.33 70.76 69.00 70.41 61.50 79.91 69.51 85.55

SVM 64.72 69.88 67.20 69.72 63.32 81.88 71.42 88.69

MS-COCO SoftMax* 55.55 66.04 60.34 66.06 57.61 89.90 70.22 94.23

Sigmoid* 55.85 66.54 60.73 71.42 57.92 90.16 70.53 94.69

Ranking* 53.86 66.07 59.34 65.44 57.55 89.77 70.14 94.26

WARP* 53.98 66.00 59.39 65.17 57.24 89.45 69.81 93.95

LSEP* 56.08 66.99 61.06 67.82 58.02 90.30 70.65 94.79

JEC 61.84 55.72 58.62 45.09 52.80 84.71 65.05 79.22

TagRel 59.11 65.26 62.03 67.08 54.25 85.96 66.52 88.57

TagProp 68.28 63.73 65.93 67.31 56.69 88.73 69.18 92.40

2PKNN 63.95 64.70 64.32 66.29 53.93 85.81 66.23 90.44

SVM 63.85 63.40 63.63 66.84 56.96 88.99 69.46 92.92
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feature similarity with the training images. For each test image, we compute its Euclidean
distance with every training image, and then take the mean of the distance with the 50 closest
images. This mean distance measures the degree of visual overlap of each test image with

Table 11 Performance comparison (using GoogLeNet) of various label prediction models (deep-learning
based models are marked by ‘*’) over the 20% least overlapping test subsets of various datasets (refer
Section 4.2.2 for details)

Method Per-label metrics Per-image metrics

PL RL F1L mAPL PI RI F1I mAPI

Corel-5K JEC 27.32 30.82 28.96 27.84 32.40 48.92 38.98 37.74

TagRel 25.74 32.03 28.54 31.34 31.60 47.67 38.01 45.44

TagProp 25.02 31.41 27.85 34.74 33.60 51.92 40.80 44.67

2PKNN 26.51 34.97 30.16 51.54 30.40 47.25 37.00 38.99

SVM 24.88 37.27 29.84 49.67 36.80 56.17 44.47 53.21

ESP Game JEC 17.97 14.61 16.12 12.15 27.34 31.36 29.21 23.36

TagRel 21.14 22.18 21.65 22.18 31.22 35.77 33.34 34.51

TagProp 20.57 19.87 20.22 22.09 31.51 35.99 33.60 34.97

2PKNN 21.25 20.60 20.92 24.14 29.93 33.64 31.68 34.12

SVM 18.60 15.69 17.02 23.39 33.67 38.13 35.76 39.18

IAPR TC-12 JEC 16.21 11.65 13.56 10.70 33.28 31.46 32.34 22.77

TagRel 24.24 22.16 23.16 22.80 36.03 34.48 35.24 34.67

TagProp 23.45 19.88 21.52 27.43 36.95 36.40 36.67 38.79

2PKNN 22.06 16.52 18.89 29.33 35.06 33.60 34.32 38.50

SVM 15.99 11.83 13.60 28.93 39.64 38.26 38.94 43.46

NUS-WIDE SoftMax* 23.32 25.14 24.19 18.86 42.30 67.14 51.90 67.45

Sigmoid* 23.02 26.17 24.49 22.49 42.86 67.72 52.49 68.26

Ranking* 20.40 24.06 22.08 16.86 41.31 64.89 50.48 65.15

WARP* 20.94 25.80 23.11 17.74 41.59 65.53 50.89 65.76

LSEP* 21.95 27.31 24.34 19.79 42.68 67.53 52.30 67.88

JEC 16.91 24.06 19.86 10.10 37.29 58.77 45.63 48.18

TagRel 17.53 35.18 23.40 20.07 38.12 60.38 46.74 58.92

TagProp 25.17 27.97 26.50 22.78 41.72 66.01 51.12 65.02

2PKNN 29.08 19.87 23.61 21.02 34.02 53.66 41.64 50.03

SVM 21.41 24.16 22.70 20.90 42.53 66.96 52.02 67.17

MS-COCO SoftMax* 39.52 35.72 37.52 32.87 48.57 54.17 51.21 62.78

Sigmoid* 42.50 38.53 40.42 39.44 51.17 56.38 53.65 65.58

Ranking* 39.35 33.93 36.44 32.67 48.22 52.49 50.26 61.33

WARP* 38.69 33.19 35.73 32.70 47.75 51.70 49.65 60.79

LSEP* 42.17 39.32 40.69 37.04 50.61 56.03 53.18 64.90

JEC 34.46 27.82 30.79 17.23 43.14 47.25 45.13 45.01

TagRel 36.95 41.32 39.01 37.27 46.90 52.40 49.49 56.81

TagProp 42.77 38.42 40.48 37.18 49.69 54.76 52.10 61.56

2PKNN 49.74 34.05 40.43 39.15 46.03 50.42 48.13 58.22

SVM 42.37 37.32 39.69 39.13 51.00 55.83 53.31 63.93
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the training images, with larger mean distance denoting less overlap and vice-versa. Using
this, we pick the 20% most overlapping and 20% least overlapping images from the test set
of each dataset.

Table 12 Performance comparison (using ResNet) of various label prediction models (deep-learning based
models are marked by ‘*’) over the 20% least overlapping test subsets of various datasets (refer Section 4.2.2
for details)

Method Per-label metrics Per-image metrics

PL RL F1L mAPL PI RI F1I mAPI

Corel-5K JEC 19.68 25.69 22.29 23.31 27.80 45.75 34.58 35.15

TagRel 19.25 28.24 22.89 25.59 27.80 45.42 34.49 37.62

TagProp 20.32 29.35 24.01 38.17 32.20 52.58 39.94 44.31

2PKNN 21.03 28.24 24.11 47.12 25.80 43.08 32.27 38.44

SVM 18.86 29.40 22.98 43.29 32.60 53.25 40.44 49.64

ESP Game JEC 20.91 16.11 18.20 12.92 29.21 33.06 31.02 24.32

TagRel 21.26 23.29 22.22 22.90 31.99 36.29 34.01 35.52

TagProp 22.31 22.36 22.34 25.18 33.91 38.43 36.03 38.19

2PKNN 24.00 25.22 24.60 27.36 32.76 37.27 34.86 38.23

SVM 18.39 16.86 17.59 26.54 37.27 42.65 39.78 43.39

IAPR TC-12 JEC 20.12 14.44 16.81 11.89 36.39 35.86 36.12 26.43

TagRel 25.81 24.19 24.97 25.35 38.78 38.66 38.72 38.40

TagProp 24.59 20.78 22.52 29.85 39.39 39.55 39.47 41.42

2PKNN 28.58 22.01 24.87 31.80 38.68 38.06 38.36 42.39

SVM 16.72 12.12 14.05 31.01 39.95 39.49 39.72 44.75

NUS-WIDE SoftMax* 20.33 25.84 22.76 18.37 41.82 67.57 51.66 67.38

Sigmoid* 23.46 27.01 25.11 22.96 42.71 68.74 52.69 68.73

Ranking* 21.84 25.99 23.73 18.90 41.94 67.32 51.69 67.12

WARP* 21.78 27.21 24.20 19.18 41.45 66.26 51.00 66.03

LSEP* 20.79 28.89 24.18 20.17 42.22 68.07 52.12 68.02

JEC 16.96 24.82 20.15 11.24 37.25 59.87 45.93 48.28

TagRel 17.62 37.71 24.02 20.05 38.07 61.19 46.94 59.21

TagProp 24.16 30.37 26.91 22.11 41.25 66.42 50.90 65.01

2PKNN 22.63 28.05 25.05 20.10 40.14 63.74 49.26 63.75

SVM 19.31 24.40 21.56 20.70 42.17 67.39 51.88 67.41

MS-COCO SoftMax* 38.04 34.46 36.16 30.70 47.43 52.92 50.02 61.57

Sigmoid* 41.22 37.91 39.50 38.28 50.13 55.20 52.54 64.32

Ranking* 38.82 33.03 35.69 31.06 46.81 50.93 48.78 60.05

WARP* 39.82 31.65 35.27 30.53 46.13 49.85 47.92 59.09

LSEP* 40.18 39.50 39.83 34.87 49.66 55.27 52.32 63.92

JEC 42.37 37.32 39.69 39.13 51.00 55.83 53.31 63.93

TagRel 36.46 42.08 39.07 37.19 45.97 51.47 48.56 56.02

TagProp 42.18 39.15 40.61 37.06 48.59 53.68 51.01 60.65

2PKNN 45.89 33.71 38.87 36.59 43.76 48.35 45.94 56.09

SVM 41.01 37.98 39.44 39.19 49.82 54.83 52.20 63.32
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Performances of various methods on these two sets are shown in Tables 9, 10, 11 and 12.
From these results, we can make following observations: (i) The performances of all the
methods significantly improve on the “20% most” set, and significantly reduce on the “20%
least” set compared to that on the full test set. While this is the case in all the datasets,
the degree of relative variations in performance is minimum in the ESP Game dataset. This
indicates that though all the datasets lack compositional diversity in their images, the ESP
Game dataset seems to suffer the least from this. However, since it is an order of magnitude
smaller than the NUS-WIDE dataset, this also motivates to create new large-scale datasets
that would contain compositionally novel images in their test sets. (ii) The reduction in per-
formance corresponding to per-image metrics on the “20% least” set is much less compared

Fig. 2 Examples from the “most” overlapping images (top) and the “least” overlapping images (bottom)
from the NUS-WIDE dataset. For each image, its ground-truth labels (GT) and the labels predicted using
TagProp and Sigmoid methods are shown. The labels in blue are the ones that match with the ground-truth
labels (best viewed in color)
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to per-label metrics. This again demonstrates that per-label metrics may be more informative
than per-image metrics for evaluation in the image annotation task. Figure 2 some exam-
ple images from the NUS-WIDE dataset along with their ground-truth and predicted labels.
Here, we observe that for the images that are more similar to training images, the number of
predicted labels that match with the ground-truth labels is higher than those for the images
that are less similar.

5 Discussion and conclusions

While it is close to two decades since the problem of image annotation has been studied
[30], improving upon the quantitative results has always remained the key focus. In this
paper, through detailed experimental analyzes on five popular image annotation datasets,
we have made an attempt to highlight some of the core yet mostly overlooked issues related
to dataset construction and popularly used evaluation metrics in this domain. Our two key
observations are: (i) among all the datasets, the ESP Game dataset offers the maximum
label and image diversity, and and is least influenced by the impact of frequent labels on the
performance, and (ii) per-label metrics should be preferred over per-image metrics for com-
paring image annotation techniques in general. Based on these observations, we would like
to emphasize the importance of taking careful considerations with respect to these aspects
when developing new datasets and techniques for the image annotation task in the future.
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