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Abstract
Our goal is to spot words in silent speech videos without explicitly recognizing the spoken words, where the lip motion of
the speaker is clearly visible and audio is absent. Existing work in this domain has mainly focused on recognizing a fixed
set of words in word-segmented lip videos, which limits the applicability of the learned model due to limited vocabulary
and high dependency on the model’s recognition performance. Our contribution is twofold: (1) we develop a pipeline for
recognition-free retrieval and show its performance against recognition-based retrieval on a large-scale dataset and another
set of out-of-vocabulary words. (2) We introduce a query expansion technique using pseudo-relevant feedback and propose
a novel re-ranking method based on maximizing the correlation between spatiotemporal landmarks of the query and the top
retrieval candidates. Our word spotting method achieves 35% higher mean average precision over recognition-based method
on large-scale LRW dataset. We also demonstrate the application of the method by word spotting in a popular speech video
(“The great dictator” by Charlie Chaplin) where we show that the word retrieval can be used to understand what was spoken
perhaps in the silent movies. Finally, we compare our model against ASR in a noisy environment and analyze the effect of
the performance of underlying lip-reader and input video quality on the proposed word spotting pipeline.

Keywords Keyword spotting · Lip-reading · Visual speech recognition · Recognition-free retrieval

1 Introduction

Parsing information fromvideos has been explored in various
ways in computer vision. Recent advances in deep learning
have facilitated many such tasks. One such parsing require-
ment is of reading lips from videos. This has applications
in surveillance or aiding improvements in speech recog-
nition in noisy outdoor settings. Solving this problem has
been attempted using methods based on recurrent neural net-
works (RNN) [34] and spatiotemporal deep convolutional
networks [36]. However, for practical applications, recog-
nizing lip motion into words is still in its nascent stages, with
state-of-the-art models [46] being limited to a constrained
vocabulary. In this paper, we adopt a recognition-free “word
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spotting” approach that does not suffer from the vocabulary
limitations.Unlike text documents,where the performance in
character recognition [56], word recognition [17] and spot-
ting research [49] has seen a great boost in the post-deep
learning era, this approach has been rarely pursued for lip-
reading task.

Training a lip-reader requires careful word-level annota-
tion, which is expensive even for a small vocabulary set.
Although progress in speech recognition [55] has resulted in
better audio-to-text prediction and can be used for annota-
tion, such methods are often prone to changes in accent and
presence of noise in the audio channel. Lip-reader’s perfor-
mance is also susceptible to similar sounding words [46]. In
recognition-based retrieval, we use a lip-reader to predict the
word spoken in a video clip. Evidently, if theword is wrongly
predicted due to variations in visual appearance, it would
never appear in the top results. In contrast, for recognition-
free retrieval, the “word spotting,” i.e., matching of words is
based on the feature representation of the target wordwithout
explicitly predicting the word itself. It intrinsically compares
the features of the target word with the query word. Hence,
even if the target word is misclassified it appears in the top
results.
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Fig. 1 Example of word spotting in black and white Charlie Chaplin
silent video: (left) target is the silent video and queries are the exemplars
spoken by different people;(right) retrieved video clip segments where
the words “together,” “million,” “power” and “chance” are present

We are motivated by the fact that for handwritten doc-
uments word spotting has shown better performance for
retrieving target words in different handwriting styles than
word recognition [42]. Likewise, we show that recognition-
free retrieval can also be useful for spotting words when
target words come from a different source than the data used
for training a lip-reader, like archaic black and white docu-
ments films in Fig. 1. We further investigate the applicability
of recognition-free pipeline for out-of-vocabularyword spot-
ting, for a different domain of data with respect to what has
been used for training the lip-reading model. Figure 1 shows
few sample results of our pipeline for spotting different query
words in the black and white video clip in four spoken sen-
tences.

We further show that the word spotting performance can
be improved by using a novel re-ranking method for top-
k retrieval candidates. We also adapt the standard pseudo-
relevance feedback query expansion method for lip-reading
task. Our pipeline takes silent speech videos as input and
retrieves a queried word that is provided again as a video clip
from the target input dataset. The target video is first densely
segmented into “word proposal clips,” where these clips may
or may not contain any word. Any “word proposal clip” is
considered a spotted word if the similarity measure between
the query and the target “word proposal clip” is greater than
a particular threshold.

We show improvement in word spotting on a standard
large-scale lip video dataset Lip-reading in the Wild (LRW)
[14], and another standard dataset GRID corpus [16] for
showing domain invariance. We also assess our pipeline’s
performance in a popular speech video by Charlie Chaplin:
“The great dictator”. Finally, we extend our work [35] with
additional experimental evaluations and comparisons. We
compare lip word spotting with word spotting using ASR
to analyze the robustness of our pipeline against noise in
the channel. We perform qualitative analysis of the retrieval

pipeline and its label assignment stage.We also show the tol-
erance of our method against lip-reader’s performance and
quality of input video.

2 Related work

Research in visual speech recognition has been pursued for
at least two decades [4,7,31] with earlier approaches focus-
ing mainly on handcrafted features and HMM-based speech
recognizers [5,32,40]. Some of these approaches have been
thoroughly reviewed in [29,57]. Wand et al. [52] showed
word-level lip-reading using an LSTM [34] stacked over a
two-layered neural network on GRID corpus dataset [16].
Similarly, research in automatic speech recognition (ASR)
traditionally used HMMmodels along with hand engineered
stages for modeling acoustic speech. Before deep learning
era, recurrent neural networks [44] and deep belief networks
[43] have also been used in ASR.

DeepSpeech [28] extended thework of the first end-to-end
audio-basedASRwhich uses joint RNN-CTCmodel [27] for
large datasets. Using spatiotemporal convolutions alongwith
the joint RNN-CTC model, Assael et.al. [2] introduced the
first end-to-end lip-reading model. It uses a connectionist
temporal classification (CTC) [25], providing one of the best
results on GRID corpus [16]. Attention-based model “Lis-
ten, Attend and Spell” was introduced by Chan et.al. [8] in
2016. Subsequent attention-based models outperformed the
CTC-based models[12]. Extending the LAS model to visual
ASR, Chung et. al [14] presented lip-reading model which
surpasses human level performance. They use multiple lip-
reading models that fuses the temporal sequence at different
layers of underlying VGG-M model [9] to classify the input
video clip into 500 words.

Lip-reading involves modeling temporal sequences of lip
video clips into phonemes [48] or characters; hence, bet-
ter sequence learning models using deep networks proved
to be pivotal in lip-reading research. Earlier attempts at
sequence-to-sequence learning have been for machine trans-
lation applications [10,50] using RNN encoder-decoder, but
they lacked long-term dependencies between input and out-
put sequences. Attention mechanism [3] by Bahdanau et.
al. overcame this shortcoming by using an attention vec-
tor in the bottleneck layer between encoder and decoder to
focus on components of input sequence based on the out-
put sequence. Chung et al. [13] have proposed Watch Listen
Attend and Spell (WLAS) architecture that leverages atten-
tion model [3] for doing character level prediction of input
lip videos. They provide the best results on Lip-reading in the
Wild (LRW) dataset and GRID corpus [16]. They, however,
use a much larger Lip-reading Sentences (LRS) dataset that
is not widely available [13] for pretraining, hence making it a
data-intensive model that is not accessible. In a recent work,
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Stafylakis andTzimiropoulos [46] trained amodel entirely on
LRWdataset to give state-of-the-art result forword-level pre-
diction. This model consists of three parts: a spatiotemporal
convolutional front-end, followed by a Resnet-34 [30], and a
bidirectional LSTM[26] at the end. Since thismodel has been
trained to classify lip videos into one of 500 word classes,
it does not address out-of-vocabulary words. Our pipeline
employs recognition architectures based on [14] and [46]
as feature extractors to show how recognition-free leverages
these features spaces for improved retrieval performance.

Initial work in word spotting appeared in speech recogni-
tion community, majority relying on HMMs [24,45]. Kernel
machines and large margin classifiers introduced by Keshet
et al. [37] in discriminative supervised setting resulted in an
improvement over the previous methods. Post-deep learning,
RNNs with CTC objective functions gave a major improve-
ment over the HMMs [19] for modeling temporal audio
speech signals. Unlike audio speech, visual speech is a spa-
tiotemporal signal. Hence, our choice of feature extractors
contains VGG-M [9] and Resnet-34 [30] modules for model-
ing facial features, and uses LSTM and temporal convolution
for modeling temporal information.

Word spotting is a well-defined problem in document
analysis[33] and retrieval [23]: hand writing recognition
[20,22,42,49], word image retrieval [39], scene-text [53], etc.
In speech domain, Keshet et al. [37] improveword spotting in
audio speech by learning phrases using discriminative super-
vised learning.

Although a large corpus of work exists for word spot-
ting for documents, images and audio speech, the visual
speech domain has been largely ignored. Liu et al. [41]
employ fusion of HMM classification scores on the hand-
crafted feature of the individual modalities to spot words in
multimedia. The work that is closest to our approach is by
Wu et al. [54]. In their approach, the authors use geometric
and appearance-based features to build their word spotting
pipeline and they rely on the knowledge of optimal hand-
crafted feature. Another recent work on keyword spotting on
lip videos by Stafylakis and Tzimiropoulos [47] proposed a
two stream network: a 3D resnet followed by a RNN, and
an grapheme(or sequences of letters)-to-phoneme encoder–
decoder architecture to learn an embedding from the lip space
and keyword’s graphemes to the same phoneme space. Their
model requires an external supervisory signal in the form of
phonemeground truth fromCMUdictionary to train the com-
mon embedding, which may not be present for low resource
languages.

In our work, though we also adopt a recognition-free
retrieval approach, we do so using recognition-based fea-
tures and show that the recognition-free approach improves
on the recognition-based approach. We further also improve
the base recognition-free pipeline by using query expansion

and re-ranking extensions. We benchmark our work on stan-
dard datasets.

3 Proposedmethod

In this section, we will discuss the individual components
of our proposed word spotting pipeline and move along to
develop a holistic overview of the method.

3.1 Recognition-free retrieval

Recognition-based retrieval relies on recognizing words in
lip videos by completely depending on the lip-readingmodel.
During testing a video clip containing a word is classified as
one of the word in the vocabulary it is trained on. Moreover,
modeling a lip-reader with open vocabulary is an active area
of research.

Retrieving a word from a set of candidate silent videos
without directly recognizing each candidatewords being spo-
ken is recognition-free retrieval or word spotting. This opens
up an opportunity to use a sub-performing lip-reader with
incorrect word recognition.

In a recognition-free setup, the user formulates a query
and a rank list is computed based on its distance from all the
clips in the target corpus (retrieval set), such that most sim-
ilar candidate is given the highest rank. Since word spotting
systems rely heavily on computing similarity, the quality of
the feature representation is more important than the classi-
fication of input clips.

Word spotting based on the modality of query is of two
types: query by string (QbS) where the input query is a string
and the retrieval is a video, and query by exemplar (QbE),
where query is a video and retrieval is also a video. In this
work, our query will be through exemplar.

3.2 Preprocessing

We use the recognition models as described in [13] and [46]
as feature extractors. These models take inputs as a fixed
length input of spatial dimension 225× 225 and 112× 112,
respectively,with a sequence length of 29 frames. The feature
extractors are trained on LRW [14] dataset which consists of
fixed length video clips of 29 frames and 1.16 s duration, with
actual word at the center. Hence, it is required to preprocess
the input videos (other than that of LRW) before feeding
them to the feature extractors. As shown in Fig. 2, the pre-
processing step proceeds by just sampling the input video at
25 frames per second, then converting the sampled frames
to gray scale. Since words can be of different length we cir-
cular pad gray-scaled sequence of frames on both the sides
such that the actual content is at the center of the sequence.
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Fig. 2 Preprocessing: the pipeline which takes a variable length word clip and converts it into a fixed length sequence of frames

Circular padding of length 2 for a sequence: {1, 2, 3, 4, 5} on
both sides gives {4, 5, 1, 2, 3, 4, 5, 1, 2}.

3.3 Video features

Our first feature extractor only uses the visual stream of the
WLASarchitecture andhence calledWatch,Attend andSpell
(WAS) model [13]. Chung et al. [13] train WLAS model on
LRS dataset [13] and fine-tune it on LRW dataset [14]. As
LRS dataset [13] is not yet publicly available, we trained
ourWASmodel entirely on LRW dataset. WAS contains two
modules: a VGG-M convolution module and an attention-
based sequence-to-sequence LSTM module, followed by 28
neurons with softmax nonlinearity. Our output sequence for
a lip video clip is maximum 20 character long, 28 dimen-
sional(D) (A to Z, eos, padding) ground truth (GT) word
label. Using early stopping, we achieve a word accuracy of
53%.

We also employ another network “N3” as described by
Stafylakis and Tzimiropoulos [46] for feature extraction.
This network is composed of three modules: A layer of 3D
convolutions followed by three dense layers (fully connected
layers), and finally a temporal convolution layer. The final
layer has 500 neurons with softmax nonlinearity. The clas-
sification accuracy of this model is 69.7%. We will address
this model as CMT in this paper.

In both the feature extractors, the choice of features is the
softmax scores or the probabilities of a lip videos belong-
ing to different words in the vocabulary, instead of sparsely
belonging to only one word. We also experimented with the
output of the last dense layer as feature representation for
the input video and found softmax scores to be empirically
better.

3.4 Overall pipeline

In this section, we propose a pipeline for spotting words in
silent lip videos. In order to demonstrate generic nature of
our pipeline, we first train our two different feature extrac-
tors on LRW dataset. We project the query set, consisting of
preprocessed annotated video clips, and retrieval set video

Fig. 3 Overall pipeline: first a string is searched in an annotated cor-
pus to formulate an exemplar which is then preprocessed, and projected
into feature space. Target video is then segmented into word clips, either
using given time-stamp or dense segmentation, preprocessed and pro-
jected in the same feature space. A ranking is computed based on the
cosine similarity between query exemplar and the word proposal clips.
Label is transferred based on majority voting, as discussed later in Sect.
3.4

clips which do not have any labels into the feature space.
The label of the query is assigned to a particular candidate
clip in the retrieval set, only if the mean similarity score of
that candidate with all the same label queries is greater than
a threshold; otherwise, it is assumed the candidate word pro-
posal clip does not contain a full word. In Fig. 3, we show
our overall pipeline.

More precisely, if qci is the feature representation of i th
query belonging to label c and r j is feature representation of
the j th word proposal clip, the similarity score between the
two is given by nci j in Eq. 1.

nci j = (qci )
T · r j

‖qci ‖ · ‖r j‖ (1)

The average similarity between all the queries qc belong-
ing to label c and the candidate r j is given by scj in the below
Eq. 2.

scj =

∑

|qc|
nci j

|qc| (2)
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Finally, the label assignment for the candidate r j is c if
the mean similarity score between all the queries belonging
to label c, i.e., scj , is greater than ρ. Otherwise, we consider
the word proposal clip is either noise or does not contain the
whole word, as represented by φ.

labelr j =
{
c if scj > ρ

φ otherwise
(3)

Hence, these word proposal clips are spotted as word c
using the queries qci in the target video. We can further use
enhancements over this pipeline to improve the retrieval per-
formance, which we will discuss in the next section.

4 Enhancements

In this section, we discuss a query expansion technique to
search videos with semantic relevance to the given query,
followed by re-ranking method to improve ordering of top-k
results.

4.1 Query expansion and re-ranking

Query expansion, in image retrieval [1], has beenwidely used
to improve retrieval performance by increasing the recall and
obtain additional documents which might get missed with
the original query. Similar to documents, we first feed a seed
query to our retrieval system which gives us a ranked list of
all the candidates from the retrieval set. From this set, top-k
candidates are selected to construct a new query based on the
weighted sum of the query and top-k candidates feature vec-
tors as the pseudo-relevance feedback to improve the retrieval
results.

Re-ranking is used to improve the ranking of top retrieval
results for a given query. Some of the prominent re-ranking
method [18,51] relies on geometrical consistency between
query and its top retrieval candidates. Fergus et al. [18]
uses RANSAC [21] to re-rank top results from Google
Image search engine. Unlike images, lip videos are tempo-
ral in nature with each word consisting of a specific set of
phonemes. To adapt such a method for lip videos, we extract
spatiotemporal features.Out of total 68 facial landmarks [38],
we first compute the distance between all the 20 landmarks
associated with lip and the lip-central landmark (landmark
no. 63), as shown by “red” color landmark in Fig. 4a. Both
landmarks no. 63 and 67, being in the center, are clearly vis-
ible for different head poses and hence can be chosen for
computing distances. However, on an average, the motion
of the upper lip is lesser than the lower lip for most of the
word utterances, makes landmark 63more stable and a better
choice.

Fig. 4 Re-ranking using geometric cues of lip video: a shows method
of extracting spatiotemporal feature using lip landmarks of each frame
of the video clip; b shows re-ranking of top-5 retrieved candidates based
on the correlation between spatiotemporal features of top-5 candidates
and that of the query

This geometric feature extraction results in a 20D spatial
feature for each frame, or 20 × 29D spatiotemporal feature
for the video clip. We then re-rank our candidate using their
temporal lip landmark correlation with the query lip video,
as shown in Fig. 4b. Using recognition-free retrieval, top-
k candidates are selected for a given query. Spatiotemporal
features for both top-k candidates and query are extracted.
The correlation of landmark of the lip region of these top-k
candidates with the query is computed; the re-ranking is done
in the order of decreasing correlation.

5 Experiments

5.1 Datasets

Lip-reading in the Wild (LRW) [14] has 500 words classes
with 1000 clips for training, 50 for testing and 50 for vali-
dation for each of the words, which has been curated from
BBC news videos. Each word clip is of length 1.16 s duration
containing 29 frames. We use the LRW to train both feature
extractors. The proposed retrieval pipeline only uses the test
set for querying and validation set for retrieval, since training
set has been used to train feature extractors.

GRID corpus [16] contains 1000 phrases, spoken by each
of 33 speakers. Each phrase has a fixed syntax contain-
ing 6 words: command(4) + color(4) + preposi tion(4) +
let ter(25) + digi t(10) + adverb(4); an example of which
is “put red at G 9 now.” We use speakers 10–19, similar to
[52], in our experiment. For showing domain invariance, we
randomly sample 1000 phrases from these speakers to cre-
ate our query set. Similarly, we sample another 1000 phrases
from the same speakers to create our retrieval set. All the
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Fig. 5 Random frames from LRW dataset (top row), GRID corpus
(middle row) and Charlie Chaplin “The great dictator” speech video
(bottom row)

speech videos are word segmented and preprocessed before
feeding to feature extractors.

For qualitative results, we show lip-reading on Charlie
Chaplin’s famous “The great dictator” speech video. We
only use the video, without audio cues for our experiment.
The video is segmented into sentence level video clips using
the time-stamps provided by YouTube subtitles, which also
gives the ground truth annotations. The retrieval corpus is
made by densely segmenting these sentence videos intoword
proposal clips. Randomly selected frames from these three
datasets are shown in Fig. 5.

5.2 Implementation

For WAS, we use the pretrained VGG-Mmodel from Chung
and Zisserman [15], and only train attention sequence-to-
sequence LSTM module, while freezing the weights of
VGG-M module. We use the LRW training set for training
ourmodel, with validation set used for parameter tuning. The
network has been trained with batch size 64, cross-entropy
loss and SGD optimizer. Initial learning rate was set to 0.1
with a decay of 0.01% every two iterations. No data augmen-
tation was used.

For training CMT, we follow the similar procedure as
mentioned in Stafylakis and Tzimiropoulos [46] to train our
model end to end. Again, the batch size of 64 was taken
with cross-entropy loss and SGD optimizer was used. Ini-
tial learning rate was set to 3e−3 with exponential decay in
learning rate when the validation loss does not decrease for
2 epochs. We also perform data augmentation with random
cropping of 4 pixels around the lip region of interest (ROI),
and horizontally flipping all frames of randomly chosen input
clips. For both the networks, WAS and CMT, early stopping
was employed if validation accuracy failed to improve over
3 consecutive epochs. We implement both the networks in
Keras deep learning library [11].

Word spotting on LRW dataset has been shown consid-
ering LRW test set as query set and LRW validation set as

retrieval set. Here, we want to assign label to the query video
clips, considering we know the GT label for retrieval set.
Both the query and retrieval set are first preprocessed, as dis-
cussed in Sect. 3.2. Since all the video clips are 29 frames
long, circular padding is not required during preprocessing.
After feature extraction, the query is searched in the retrieval
set; the candidate with highest cosine similarity is ranked
highest. To transfer word label from retrieval set the query,
we take the majority vote of top-5 candidates in the retrieval
set.

During query expansion, we first search a seed query in
the retrieval set to get top-5 candidates. The “New query” is
the weighted sum of the top-5 candidates with weights 0.1
each and seed query with weight 0.5, as shown in Fig. 7. This
query is then used to retrieve a new set of candidates which
becomes our final retrieval for the seed query.

For each query video coming from LRW test set, we
retrieve top-10 candidates from LRW validation set using
recognition-free retrieval. For Re-ranking, we then extract
spatiotemporal feature for both query video and its top-
10 retrieval candidates using DLib [38] and OpenCV [6]
libraries. Correlation between spatiotemporal features of
query and candidates was computed and was used to re-rank
the top-10 candidates. This method proves to be effective in
refining the search results for our retrieval pipeline.

For showing word spotting in Charlie Chaplin video, as
shown in Fig. 6, the sentence videos are densely segmented
into fixed length (29 frames) word proposal clips by taking
stride of 3 frames. We spot the words in retrieval corpus
consisting of these clips. Since the segmentation is dense
there will be very fewword proposal clips whichwill entirely
cover actual words spoken in the video. As discussed in Sect.
3.4, we calculate the average similarity score between all the
query exemplars coming from LRWvalidation set belonging
to a particular word label and a word proposal clip from
Charlie Chaplin video. If the average similarity is more than
a threshold (ρ), we assign theword label to theword proposal
clip. We empirically selected the value of ρ = 0.3 for this
experiment.

5.3 Baselines

We compare our pipeline with recognition-based retrieval.
WAS [13], in the original paper, was first pretrained on LRS
dataset, and later fine-tuned on LRW dataset, gives a word
accuracy of 76.2%. Our WAS model trained solely on LRW
dataset gives the word accuracy of 53%. The recognition-
based baseline of our WAS is given in Table 1, column 1.
Another lip-reader CMT gives the word accuracy of 69.7%.
The recognition-based baseline is given in Table 1 column 3.

For GRID corpus, we do not fine-tune our LRW trained
base feature extractors on GRID corpus. The recognition-
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Fig. 6 Word spotting in Charlie Chaplin video: (left) a query exemplar
with known annotation is preprocessed into fixed length input and fed
to the feature extractor; (right) the Charlie Chaplin video is first densely
segmented into word proposal clips and fed to the feature extractor. All
the word proposal clips and query exemplar are projected into feature
space, and ranking is computed based on cosine similarity

Fig. 7 Formulation of new query: the weighted sum of the feature
representation of seed query and its top-5 retrieved candidates becomes
the new query

based baseline for the domain invariance out-of-vocabulary
retrieval is shown in Table 3, columns 1 and 3.

5.4 Evaluationmetric

For search-based applications, the most important perfor-
mance factor is: how many good results are in the top search
results. Hence, Precision@K, which measures the precision
at fixed lower levels of retrieval results, makes sense as an
important performance metric. It considers the number of
desirable results out of the top-k retrieval results without

Table 1 Retrieval performance for LRW dataset: Left two columns
show recognition-based (RB) baseline and recognition-free (RF) per-
formances forWAS features; right two columns show the similar results
for CMT features. Across columns (first row)mAP ismean average pre-
cision, (second row) P@10 is precision at 10, (third row) R@10 is recall
at 10, and (last row) % imp.in mAP is percentage mAP improvement
of recognition-free retrieval over baseline

WAS CMT

RB (BL) RF (ours) RB (BL) RF (ours)

mAP 0.2317 0.3149 0.3807 0.5698

P@10 0.2928 0.4566 0.3253 0.6519

R@10 0.0586 0.0913 0.0651 0.1304

% imp.in mAP – 35.90 – 49.67

Fig. 8 a Number of words below a certain mAP for WAS and CMT-
based pipeline: y-axis is the number of words, and x-axis is the mAP; b
variation of mean average precision (mAP) with the length of the word
for CMT- and WAS-based pipeline: y-axis is average mAP, and x-axis
is word length in LRW vocabulary

taking into account the overall rank ordering of the search
results.

Recall@K is another important evaluation metric that we
show, which is the number of desired results retrieved among
top-k search results, with respect to the total number of avail-
able positive results.

While Precision@K and Recall@K give specific insights
into the performance of the retrieval system, both measure
performance for a fixed number of retrievals (K) and are
insensitive to the overall rank ordering of the search results.
We therefore also report the mean average precision (mAP)
for our retrieval system.mAP provides ameasure of the qual-
ity of retrieval across different recall levels. mAP has been
shown to have especially good discrimination and stability,
and is one of the most standard evaluation measures for word
spotting.

6 Results

6.1 Comparison with baselinemethods

Recognition-free retrieval or word spotting on LRW dataset
when the base lip-reader is WAS gives an absolute improve-
ment of 35.9% over the recognition-based baseline of mAP
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Fig. 9 Qualitative results on LRW dataset: each image depicts the cen-
tral frame of the query video clip (left) and a sequence of lip ROIs of 6
consecutive frames around central frame, shown in raster order (right);
(middle) blue boxes are the ground truths; (bottom) green boxes are

correct predictions, while the red ones are incorrect predictions. Label
is propagated to a query based on the majority label present in the top-5
retrieval candidates (color figure online)

0.23; Table 1, column 2. Similarly, for recognition-free
retrieval using CMT lip-reader there is an improvement
of 49.67% over the recognition-based baseline of mAP
0.38; Table 1, column 4. For recognition-free retrieval
using WAS (in red) and CMT (in blue) feature extractor,
Fig. 8a shows the number of words below a certain mAP
value. The variation of average mAP with the length of
the words in the LRW vocabulary is shown in Fig. 8b. It
can be seen that the average mAP value increases with the
increase inword length. The qualitative results for word spot-
ting on LRW dataset using CMT features can be seen in
Fig. 9.

Query expansion on LRW dataset using two lip-readers:
WAS and CMT give a mAP of 0.3146 and 0.5722, respec-
tively; Table 2, columns 2 and 5. Although the mAP results
are comparative to the recognition-free method, we see an
overall increase in Recall@10. Also, re-ranking using spa-
tiotemporal cues improves the retrieval performance forWAS
and CMT, giving a mAP of 0.3179 and 0.5709, respectively,
Table 2, columns 3 and 6.

Charlie Chaplin “The great dictator” speech video, con-
tains 39 words from LRW vocabulary. It has a total of 54
spoken sentences, out of which 33 sentences actually con-
tain LRW vocabulary words. Hence, the query set contains
50 exemplars, from LRW validation set, belonging to each
of these 39 common vocabulary words. Using our CMT-
based recognition-free pipeline, we were able to correctly
spot instances of 13 instances of the common vocabulary
words in 11 sentences, whereas on using recognition-based
pipeline, only 6 instances of common vocabulary words in
6 sentences are correctly predicted. The qualitative results

Table 2 Different recognition-free performance for LRW dataset: Left
three columns are recognition-free (RF), query expansion (QExp) and
re-ranking (ReR) performances for WAS features; right three columns
show similar results for CMT features. Across columns (first row) mAP
is mean average precision, (second row) P@10 is precision at 10, and
(last row) R@10 is recall at 10

WAS CMT

RF QExp ReR RF QExp ReR

mAP 0.3149 0.3146 0.3179 0.5698 0.5722 0.5709

P@10 0.4566 0.4591 0.4566 0.6519 0.6572 0.6519

R@10 0.0913 0.0918 0.0913 0.1304 0.1314 0.1304

can be seen in Fig. 10, where we spot the sentences which
contain the query words.

6.2 Domain invariance

Domain invariance provides us the robustness of the pipeline
for target data distribution different from the one it is trained
on. GRID corpus contains 51 words with only 1 common
word available inLRWdataset vocabulary.Hence, this exper-
iment also shows out-of-vocabulary retrieval performance of
the proposed pipeline.

On GRID corpus, the recognition-based baseline is 0.033
(mAP) for WAS features and 0.06 (mAP) for CMT features,
while the recognition-free performance is 0.068 (mAP)for
WAS and 0.177 (mAP) for CMT, Table 3, column 2.
This signifies the utility of recognition-free retrieval for
out-of-vocabulary words when the underlying lip-reader is
constrained by vocabulary size.
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Fig. 10 Qualitative results on Charlie Chaplin “The great dictator
video”: each image is one of the frames in the sentence clips extracted
from the speech video. The top text box in blue color contains the subti-

tles with bold text showing the common LRW vocabulary word present
in the subtitle. The bottom text box shows the correctly spotted word
(color figure online)

Table 3 Domain invariance results on Grid corpus dataset (for both
WAS and CMT): Left column has recognition-based (RB) baseline per-
formance and right has our recognition-free (RF) performance where
(first row) mAP is mean average precision, (second row) P@10 is pre-
cision at 10, (third row) R@10 is recall at 10, and (last row) % imp.in
mAP is the percentage mAP improvement of our proposed method over
baseline

WAS CMT

RB (BL) RF(ours) RB (BL) RF(ours)

mAP 0.033 0.068 0.060 0.177

P@10 0.034 0.219 0.224 0.322

R@10 0.002 0.016 0.019 0.020

% imp.in mAP – 106 – 195

6.3 ASR versus lip word spotting

One of the major applications of word spotting in lip domain
can be spotting keywords in a noisy environment. This is
particularly useful in present-day scenario as voice assisted
technology is emerging as a new way of human–computer
interface (HCI). For this technology to work effectively in
an ambient noise environment, like inside cars, public tran-
sit, industries, streets, etc., one could exploit visual cues by
observing the lip motion. Here, we compare the performance
of automatic speech recognition (ASR) system in the noisy
environment, against the lip word spotting pipeline. We use
a pretrained ASR system called DeepSpeech [28], and gen-
erate predictions for all the samples in the LRW test set. We
first extract the audio from the samples and generate predic-
tions, we repeat the experiment while introducing the same
amount of white noise in each test sample, simulating the
ambient noise. The ASR mAP scores can be seen in Fig. 11,
in blue curve, while the mAP for our lip recognition-free

Fig. 11 ASR performance with respect to lip word spotting: (blue)
shows mAP of ASR prediction for different SNR on LRW test set,
while (red) shows the mAP of WAS-based recognition-based (RB)
retrieval on corresponding lip videos. Similarly, (green) denoted the
WAS recognition-free (RB) performance (color figure online)

word spotting pipeline is in green linewith recognition-based
counterpart in red line. We find that initially the ASR per-
forms better than lip word spotting, when the introduced
noise is minimum, but decreases drastically in the presence
of noise. It should be noted that, the introduced noise in this
scenario is ambient, while during cross talk and crowd sit-
uation the noise can be intelligible speech, thereby further
degrading the ASR performance.

7 Analysis

7.1 Qualitative analysis of the retrieval pipeline

We performed a qualitative analysis of the label assignment
stage, to complement the results shown in Table 1 and Fig. 8.
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Fig. 12 Qualitative performance of the pipeline: for each image, (top)
depicts a randomly sampled frame from the query video clip and its lip
ROI; (middle) blue boxes are the ground truths with (.) denoting number
of the top-10 candidates in the retrieval set having the same label as the
ground truth(GT) of the input query exemplar; (bottom) green boxes are

correct predictions, while the red ones are incorrect predictions, with (.)
denoting number of the top-10 candidates in the retrieval set having the
predicted label. Label is propagated to a query based on the majority
label present in the top-10 retrieval candidates (color figure online)

For each video clip in LRW test set as a query sample,
we retrieved top-10 candidates from the retrieval set whose
ground truth was known, using recognition-free retrieval.
Based on the majority voting, we assigned a label to the
query. We also calculated the number of samples in top-10
retrieval candidates belonging to the true class of the query.
This allowed us to investigate the failure cases, as shown in
Fig. 12. We found numerous cases where the failure in the
prediction is due to prediction of a visemically similar word
or same root word as that of the ground truth of the query
(see for example Fig. 12 (bottom row). Hence, the number
of retrieval candidate considered for label assignment is an
important hyperparameter. The precision curve and recall
curve for different value of k can be seen in Fig. 13.

7.2 Dependence on quality of lip-reader

Ourword spotting pipeline uses recognition-based networks:
CMT and WAS as the feature extractor. Hence, the perfor-
mance of the proposed pipeline is intrinsically dependent on
the quality of underlying lip-reading architecture. Therefore,
we investigate this dependence on feature extractor with dif-
ferent lip-reader quality. Moreover, a detailed analysis of our
pipeline with different quality of feature extractors can give
us the performance trend of the word spotting pipeline. This
trend enables us to predict the performance of the proposed
pipeline if a better lip-reader is used for feature extraction.

To obtain this relationship between the performance of
the recognition-based and the recognition-free pipeline, we

Fig. 13 Precision and Recall at k on LRW test set: a shows precision
at k (P@k), on y-axis, for different values of k, on x-axis. Similarly, b
shows recall at k (R@k), on y-axis, for different values of k, on x-axis

require different feature extractors with varying lip-reading
performance. Hence, we train our CMT lip-reader [46] till
different epochs to get lip-reading models with validation
accuracy ranging from 10 to 70% word accuracy on LRW
dataset [14]. This acts as a proxy for using lip-reader with
different quality as a feature extractor in our word spotting
pipeline. The graph showing word spotting performance of
recognition-based and the recognition-free pipeline for dif-
ferent quality of CMT feature extractor can be seen in Fig. 11.

We observed that the recognition-free retrieval, shown
by red, Fig. 14 (top), always gives better performance than
recognition-based retrieval, shownbyblue, for different qual-
ity of lip-readers used as feature extractors. A second-order
polynomial extrapolation , shown by translucent trend line
of the different performance curves, shows that our proposed
recognition-free word spotting pipeline may perform better
than its recognition-based counterpart in case we find a bet-

123



Spotting words in silent speech videos: a retrieval-based approach

Fig. 14 (Top)Dependence of word spotting pipeline on the quality of
feature extractor(lip-reader): a shows change in mean average preci-
sion(mAP), b shows change in precision at 10 (P@10), and c shows the
change in recall at 10 (R@10) for different quality of lip-reader (x-axis).
Blue line-dot is the empirical data for recognition-based (RB) recog-
nition also the baseline (BL), translucent blue line is its second-order

polynomial extrapolation. Similarly, red is for our proposed recognition-
free pipeline. (Bottom)Dependence of word spotting pipeline on quality
of input video: d shows change in mean average precision (mAP), e
shows change in precision at 10 (P@10), and f shows change in recall
at 10 (R@10) for different quality of input video(x-axis), subjected to
successive blurring as discussed in Fig. 15 (color figure online)

ter lip-reader. This shows that the proposed pipeline is robust
against the quality of lip-reader.

7.3 Dependence on quality of input video

Ubiquity of cellular phone cameras has made it one of the
major video capturing devices nowadays. In real-life sce-
nario, videos taken from these devicesmay not be face centric
and regionof interest (ROI) canbe small or blurreddue to lack
of focus or motion. Hence, robustness against input video
quality is desirable for any word spotting pipeline.

Wecompare the performance of our proposed recognition-
free pipeline against the recognition-based counterpart for
different quality of input videos. We blur the frames of input
video using 3 × 3 averaging kernel, as shown in Fig. 15.
To degrade the quality of input video, this blurring opera-
tion is applied recursively. In each blurring cycle, the blurred
video is fed to the word spotting pipeline. We, then, compare
the recognition-free retrieval with our baseline recognition-
based counterpart for three different evaluation metrics. The
results are shown in Fig. 14 (bottom).

We observe that the performance of both recognition-free
retrieval and recognition-based retrieval degrades monotoni-
cally. Recognition-free performance is steadily better than
the recognition-based counterpart for different passes of

averaging kernel on input video. Our proposed pipeline out-
performs the baseline even when the input video quality gets
severely degraded, i.e., after successive 9 blurs as shown in
Fig. 14a–c. After 9 blurring cycles the drop in the mAP of
recognition-free was 22.49%, while for recognition-based it
was 28.11%, implying the proposed pipeline is more robust
to the degradation in the quality of input video. Hence, our
pipeline may be useful for spotting lips for distant speaker
or for surveillance purposes.

7.4 Discussions

Many conclusions can be drawn from the result presented
in Sect. 6.1. Recognition-free retrieval performed better than
the recognition-based counterpart for spottingwords in LRW
dataset. From Fig. 8b, we see that the quality of retrieval
improves when the length of word increases, as longer the
word is more the number of phonemes it contains, and less
is the chance of it being similar to other words. Errors in
similar sounding words are more likely, as can also be seen
in Fig. 9. Failure in word spotting can also occur due to
presence of similar root word in the retrieval set, as shown in
Fig. 12.Many suchwords can be toleratedwhen task-in-hand
requires coarser word perception.
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Fig. 15 Blurring operation: (top) showsblurring of the regionof interest
(ROI) of a frame of the input video clip, (bottom shows successive
blurring operation on the ROI of the input video clip; (bottom) The
number below theROI of the frames shows the number of times blurring
filter/kernel has been applied on the original input video

The performance of recognition-based retrieval on GRID
corpus is inferior to that on LRW dataset, the reason being
neither of the two feature extractors in our experiments
were fine-tuned on GRID corpus. Still, the recognition-free
retrieval showed an improvement over recognition-based.
Quality of lip video is also important, as somewords in Char-
lie Chaplin videoswere not spotted, due to lower contrast and
quality of the lip ROI, as shown in Fig. 10.

In thepresenceofwhite noise,ASRperformancedecreases
drastically, while lip word spotting being independent of
audio, shows consistent performance. Hence, complimen-
tary use of visual modality can enhance the performance of
ASR in noisy environment.

8 Conclusion

Weproposed a recognition-free retrieval pipeline and showed
its precedence over recognition-based retrieval for the task
of word spotting. The base features from WAS and CMT
lip-reading models have been used to spot words in LRW
dataset with an improvement of about 36% and 50% over the
recognition-based counterpart. Pseudo-relevance feedback
and re-ranking techniques, using spatiotemporal geometri-
cal cues available in the lip videos, has been incorporated
in the pipeline to further improve the retrieval results. We
also showed domain invariance of our pipeline through out-
of-vocabulary word spotting on GRID corpus dataset with
an improvement of 106% and 195% over the baseline using
WAS andCMT features, respectively.We presented the prac-
tical applicability of our proposed pipeline by spotting words
in 11 out of 33 sentences in the “Charlie Chaplin, The great
dictator” speech video. We showed that in the presence of
noise our method performs better than ASR. We analyzed
how the selection of number of retrieved candidates can
be crucial for retrieval performance. Finally, we empirically

showed the robustness of our pipeline against the perfor-
mance of the underlying lip-reader and the quality of input
videos.
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