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Abstract

Facial fiducial detection is a challenging problem for
several reasons like varying pose, appearance, expression,
partial occlusion and others. In the past, several ap-
proaches like mixture of trees [32], regression based meth-
ods [8], exemplar based methods [7] have been proposed
to tackle this challenge.

In this paper, we propose an exemplar based approach
to select the best solution from among outputs of regression
and mixture of trees based algorithms (which we call can-
didate algorithms). We show that by using a very simple
SIFT and HOG based descriptor, it is possible to identify
the most accurate fiducial outputs from a set of results pro-
duced by candidate algorithms on any given test image. Our
approach manifests as two algorithms, one based on opti-
mizing an objective function with quadratic terms and the
other based on simple kNN. Both algorithms take as input
fiducial locations produced by running state-of-the-art can-
didate algorithms on an input image, and output accurate
fiducials using a set of automatically selected exemplar im-
ages with annotations. Our surprising result is that in this
case, a simple algorithm like kNN is able to take advantage
of the seemingly huge complementarity of these candidate
algorithms, better than optimization based algorithms.

We do extensive experiments on several datasets, and
show that our approach outperforms state-of-the-art con-
sistently. In some cases, we report as much as a 10% im-
provement in accuracy. We also extensively analyze each
component of our approach, to illustrate its efficacy.

An implementation and extended tech-
nical report of our approach is available
www.sites.google.com/site/wacv2016facefiducialexemplars.

1. Introduction
Facial fiducial detection is an important problem with

applications in facial expression recognition, gaze identi-
fication, face recognition etc. The task of identifying sev-
eral locations for different components of a face in an im-
age like ears, nose, mouth etc. becomes very daunting

Figure 1: Fiducial detection of Chehra [3](red points), Zhu
et al. [32](green points), Intraface [24](magenta points) and
RCPR [8](cyan points) can be observed in column 1, 2, 3
and 4 respectively. Output selection by kNN is highlighted
in green boxes. Last column shows the output selection by
optimization highlighted in blue box. Best viewed in color.

considering that each part might have a much more non-
distinctive appearance profile than an entire face, and could
also be subject to complete occlusion (Figure 1, second row,
eyes), drastic appearance and illumination variation (Fig-
ure 1, third row, pose) or expression variation (Figure 1,
first row, mouth). Though there is no consensus yet on
even the number of fiducial points assigned to a face [21],
there is a broad realization among recent papers for the ne-
cessity to reduce failure rates and increase the accuracy of
fiducial detection in a wide variety of challenging exam-
ples [7, 8, 14, 21, 27, 31], since it automatically lends to
better performance of systems that rely on fiducial detec-
tion.

While a number of different approaches like active shape
models [15], regression based methods [27], cascaded neu-
ral networks [28], tree based methods [32] and exemplar
based approaches [7] have been proposed in the recent past,
many of these algorithms only address part of the problems
in this area. Since datasets available today like COFW [8] ,
LFPW [7] (Figure 4) and AFLW [14] offer images vary-



ing widely in appearance, pose, expression, illumination
and occlusion, each of these algorithms demonstrate their
strengths in specific areas like occlusion handling [8], or ro-
bust performance in the case of profile views [32]. Indeed,
while regression based approaches are better suited to per-
form well on metrics that measure pixel-wise accuracy of
detection [15, 27], exemplar or mixture-of-trees based ap-
proaches [7, 32] are better suited to be more robust to pose
change.

The surprising finding of our work is that many of these
algorithms show decent complementarity in performance,
which could be identified and exploited. In this paper, we
present two algorithms that build on top of recent results
in this space. Our kNN based algorithm is simple and ef-
fective, while our optimization algorithm provides a flexi-
ble framework to incorporate complicated models. Specif-
ically, our algorithms use several state-of-the-art candidate
algorithms [3, 8, 22, 24, 32] to generate fiducial points on
a given image, and pose the detection problem as one of
selecting the best result from the obtained outputs. By us-
ing several candidate algorithms, we ensure that we have
access to the output of different approaches to fiducial de-
tection, and thus reduce our problem to that of classifying
between accurate and inaccurate fit to the data.

More formally, we propose an initialization-insensitive,
pose/occlusion and expression-robust approach to face fidu-
cial detection with the following characteristics

• Our approach attempts the problem of fiducial detec-
tion as a classification problem of differentiating be-
tween the best vs the rest among fiducial detection
outputs of state-of-the-art algorithms. To our knowl-
edge, this is the first time such an approach has been
attempted.

• Since we only focus on selecting from a variety of so-
lution candidates, this allows our pre-processing rou-
tine to generate outputs corresponding to a variety
of face detector initialization, thus rendering our al-
gorithm insensitive to initialization unlike other ap-
proaches.

• Combining approaches better geared for sub-pixel ac-
curacy and algorithms designed for robustness leads
to our approach outperforming state-of-the-art in both
accuracy and robustness.

The outline of our paper is as follows. In section 2, we
review related work with a perspective to distill out compli-
mentary advantages of different approaches to fiducial de-
tection. This is followed in section 3 by the formulation in
section 3.1 and outline of our approach with focus on ex-
emplar selection (section 3.3), output selection (section 3.4
for the kNN algorithm, section 3.5 for the optimization al-
gorithm) and implementation details (section 3.6). We then
follow up with an extensive experimental section 4, where

we first show results on all the popular datasets like AFLW,
COFW, LFPW and in each case present both mean part-
wise pixel accuracy and failure-rate comparisons of our ap-
proach with the state-of-the-art. We finally conclude with a
summary of our approach and future extensions in section 5.

2. Related Work
In this section, we categorize recent facial fiducial detec-

tion algorithms and discuss their advantages in brief.

Active Appearance Models (AAM): The AAM frame-
work has existed for almost two decades [6, 12] and the
traditional AAM based methods have not been suitable for
fiducial detection in the wild [13, 17]. However, some re-
cent methods that deviate from the traditional pixel-value
based texture model have shown new promise [1, 5].

Constrained Local Models (CLMs): The CLM frame-
work has existed for a decade [11, 18] and has been shown
to be more capable of handling in the wild settings. In
short, CLM is a part-based approach that relies on the lo-
cally trained detectors to generate response maps for each
fiducial point followed by a simple Gauss-Newton method
based optimization [18] for facial shape estimation. A re-
gression based strategy for CLM optimization has also been
proposed recently [2].

Exemplar Methods: Exemplar based approaches have
been popular since Belhumeur et al.’s work [7]. Zhao et
al. [30] use gray scale pixel values and HOG features to se-
lect k-nearest neighbor training faces, from which they con-
struct a target-specific AAM at runtime. Smith et al. [20]
and Shen et al. [19] perform Hough voting using k-NN ex-
emplar faces, which provides robustness to variations in ap-
pearance due to occlusion, illumination and expression. Fi-
nally, Zhou et al. [31] combine an exemplar-based approach
with graph-matching for robust facial fiducial localization.
Since, we build upon outputs of candidate algorithms, we
take inherent advantage of the shape based regularization
schemes employed by individual approaches and thus either
side-step this problem (section 3.4) or smoothen candidate
outputs using optimization (Figure 5) in our algorithms.

Cascaded Regression Based Methods: Cascaded re-
gression based methods are considered to be the current
state-of-the-art for facial fiducial detection [4, 9, 16, 22, 25].
All these methods are capable for robustly handling in the
wild settings in real-time. In general, the training strategy is
to synthetically perturb each of the ground truth shapes and
extract robust image features (SIFT or HOGs) around each
of the perturbed fiducial points. The regression is then used
to learn a mapping from these features to the shape pertur-
bation w.r.t the ground truth shape. Generally, a cascaded



(a) Input Image (b) Distance from Exemplars (c) Output of Fiducials (d) Constrained Distance (e) Final Result

Figure 2: An example of fiducial detection of eye corner in a test image. Best viewed in color.

regression based strategy is adopted to learn this mapping
and has been shown to converge in 4-5 iterations [4, 25].

A recent work of Smith et al. [21] addresses the prob-
lem of analyzing the quality of facial fiducial results us-
ing an exemplars based approach. However, several differ-
ence exist between our approaches. Firstly, they work on a
completely different problem of aggregating fiducials from
different datasets and transferring them to a target dataset
through Hough based feature detection [19], while the goal
of the work presented in this paper is to select the best lo-
cations for each fiducial among the candidate locations pro-
vided by various candidate algorithms on every image. Sec-
ondly, they use algorithms like graph matching to ensure
that the detected fiducials resemble a face [31], while we
either side-step such issues (section 3.4) or handle them us-
ing optimization (section 3.5).

Recently, some promising attempts have also been made
to approach the problem of facial fiducial detection in the
deep-learning framework [28]. However, most of the pro-
posed deep-learning based models work on low resolution
images [28, 29]. This prevents us from getting accurate
fiducials on actual data. In this paper, we present a fully-
automatic and principled approach for selecting the best
fiducial location by combining results from multiple can-
didate algorithms for every image.

3. Face Fiducial Detection
In this section, we first outline our formulation in sec-

tion 3.1, followed by our algorithm for fiducial detection.
Briefly, given an input image, candidate algorithms return
vectors of locations of various fiducials for that image.
Given the output of each of the candidate algorithms, our
task is to identify a set of fiducials that best represent the
face in the input image. This can be done by either select-
ing the entire output of one of the candidate algorithms, or
by selecting individual fiducials from the various outputs of
candidate algorithms to form a facial structure of our own.
In order to do this, we first identify a set of exemplars from
the training dataset, that serve as guidelines on how a face
should look like, both in shape and appearance. Our ap-
proach is to then match candidate algorithm outputs to ex-
emplars from the training dataset, in order to select the best
output for the given image. Our algorithm has two main
components: exemplar selection (section 3.3) and output

selection (section 3.4, section 3.5). A flowchart of our ap-
proach is illustrated in Figure 3.

3.1. Formulation
Let X = {x1, . . . ,xn} be a variable that represents the

n locations of a set of fiducials. Let X̂ denote the true
locations of fiducial features in any given image I , while
Xk refer to ground truth fiducials in the exemplar set used
in our algorithm, where k = 1 . . .K indexes into the set
of exemplars in consideration. In this paper, we consider
K = 20, & n = 20 since that is the set of common
fiducials detected by algorithms presented in recent liter-
ature [3, 8, 22, 24, 32]. Note that recent approaches [21]
offer a way to increase the number of common fiducial
locations, and thus our assumption is not restrictive. Let
R = {r1, . . . , rm} represent features extracted at m pix-
els on the image. We would like to optimize the following
function to obtain the fiducial locations at the current image

X∗ = arg max
X̃

P (X | R) (1)

Note that X̃ is the space of all possible sets of fiducial lo-
cations. It is a huge (40 dimensional) space, and sampling
all of it is impractical. Instead, let us assume that we have
been given some candidate locations where probability of
a correct result is higher, and assume we will pick X from
one of these locations. Let us depict these locations with
the variable X = {X̄1, . . . , X̄l}, where X̄i, i = 1 . . . l are
the number of candidates we have selected. We can now
re-write equation 1 as

X∗ = arg max
X̃

P (X | R,X ) = arg max
i
P (X̄i|R) (2)

where we assume that the probability of selecting fiducials
not represented by candidate algorithms is negligible. Us-
ing Bayes rule, and adopting a similar strategy of marginal-
izing over exemplars used in [7], equation 2 can now be
elaborated as

P (X̄i | R) ∝ P (R | X̄i) (3)

∝
∑
k∈K

P (R | Xk, X̄i)P (Xk | X̄i) (4)

where we marginalize over all exemplars Xk. Note that
equation 4 splits the probability into comparison between



Figure 3: Left box pictorially represents exemplars selection. Right box represents our two algorithms for output selection.
One by using kNN approach and other using optimization. Best viewed in color.

appearances of our candidates and exemplars (first term),
and comparison between their shapes (term 2). Further,
given structure is preserved in the way these two sets of can-
didates are generated, we can breakdown the above equa-
tion into parts

P (X̄i | R) ∝
∑
k∈K

∏
j

P (R | xj
k, x̄

j
i )P (xj

k | x̄
j
i ) (5)

We denote individual probabilities for shape and appear-
ance using the following functions

P (R | xj
k, x̄

j
i ) = (1/α) exp(−‖F j

k − F
j
i ‖

2) (6)

P (xj
k | x̄

j
i ) = (1/β) dist(xj

k, x̄
j
i ) (7)

where F denotes concatenation SIFT and HOG features,
while dist is a scaled inverse Euclidean distance func-
tion and α, β are normalization constants to ensure both
equations represent valid probabilities. Note that evaluat-
ing equation 5 entails summing over SIFT and HOG dis-
tances between candidate and exemplar fiducials. Finally,
one could alternatively choose to optimize equation 2 us-
ing an optimization function as outlined in section 3.5. In
this work, candidates are generated using algorithms of Zhu
et al. [32], Xiong et al. [24], Asthana et al. [3], Artizzu et
al. [8], and Tzimiropouluos et al. [22].

Example In equation 5, the term P (R | xj
k, x̄

j
i ) can be

seen as the term that selects appropriate exemplars given
fiducial candidates using a shape/appearance constraint
represented by equation 6. This is better illustrated with
an example. In Figure 2, we show an input image for which
the minimum distance in SIFT+HOG space from a set of ex-
emplars is shown in Figure 2b, for a single fiducial (eye cor-
ner). Note how there are several minima in the distance map
(marked by bounding boxes). Running candidate detection
algorithms, however, generates eye fiducial candidates only
in a specific region (Figure 2c, with bounding box), which

is then selected and isolated using equation 7 (Figure 2d),
leading to a correct location of the eye fiducial in the final
output (Figure 2e).

3.2. Algorithm Outline
As explained earlier, our algorithm is divided into two

main sub-parts: exemplar selection and output selection.
The task in exemplar selection is to select a subset of
face images with ground truth annotations from the training
dataset, that are representative of the variation of pose, ap-
pearance including occlusion, expression etc. of the dataset
in consideration. Algorithm 1 gives an outline of our ap-
proach to exemplar selection. Note that while, we could use
the entire training dataset annotations as exemplars, it suf-
fices to have this limited set, as we will show in section 4.2.

This subset of annotated images then serve as our basis
for differentiating between the various candidate algorithm
outputs on any test image. The process of selecting the best
fitting fiducials on any test image, given the exemplars, is
called output selection.

3.3. Exemplar Selection
Exemplar selection is the process of selecting a subset of

the training images along with fiducial annotations that rep-
resent the range of variations in pose/expression/occlusion
in the dataset. We term the set of images selected eventu-
ally as the exemplar set. Ideally we would like the exemplar
set to be representative of the training set in that we would
like to be able to describe the pose/appearance of all images
in the training set as some combinations of images in the
exemplar set, in a specific representation space. For exam-
ple, given annotations of fiducial locations in the training
set, we would like have an exemplar set such that the shape
of any training image annotation (represented as an ordered
list of pixel coordinates of various fiducial points) is a linear
combination of the annotations in the exemplar set.

Algorithm 1 illustrates our basic exemplar selection al-
gorithm. The function ComputeClusters performs the



Algorithm 1 Algorithm for Exemplar Selection
(ComputeDatasetExemplars)

input Training image data D, fiducials Fd.
E = ∅,R = ∅, S = ∅, F = Fd

Cntrs = ComputeClusters( F , Nclus )
for Each center Ck ∈ Cntrs do

[Ii, Fi] = ClosestFiducial( F , D, Ck )
Feati = ComputeFeatures(Ii, Fi)
E = E ∪ {Ii, Fi, Feati}
F = F \ Fi

end for
for Each image-fiducial pair (Ii, Fi) in (D,Fd) do
Feati = ComputeFeatures(Ii, Fi)
R =R∪ Feati

end for
F = Fd

Cntrsapp = ComputeClusters(R, Nclus )
for Each center Ck in Cntrsapp do

[Ii, Fi, F eati] = ClosestFeat(R, F , D, Ck )
S = S ∪ {Ii, Fi, Feati}
R =R \ Feati, F = F \ Fi

end for
output E ,S

operation of kmeans clustering in the vector space of fidu-
cials, or feature vectors depending upon its input arguments.
While the algorithm outputs two datasets for shape based
and appearance based exemplars, note that shape based ex-
emplars can be further divided into pose and expression
classes and appearance based exemplars can also be tuned
to include some examples of occlusion. However, we found
that kmeans inadvertently does this since it clusters fidu-
cials of the same pose but varying expression (shape clus-
tering) or occlusion (appearance clustering) into one cluster.

(a) LFPW Exemplars

Figure 4: Examples automatically selected by our clustering
approach in Section 3.3. Best viewed in color.

3.4. Output Selection by kNN
Once the fiducial detection of the state-of-the-art candi-

date algorithms are obtained for an input image, we com-
pute appearance vectors for an image patch around each
fiducial location. Appearance vectors are represented in
HOG and SIFT space. We concatenate these features them

Figure 5: From left to right, we observe input test image,
output selection by kNN, output selection by optimization
without structural costs and output selection by optimiza-
tion with structural costs. Observe that the left eye predic-
tion suffers in third image because of not considering struc-
tural costs for optimization.

to form the feature vector.
We then compare these candidate algorithm feature vec-

tors to the exemplars chosen from the previous approach,
and choose the candidate algorithm-exemplar image output
that minimizes the sum of euclidean distance between com-
mon features (equation 5). Note that this is a simple kNN
based approach, where k=1. Alternatively, we also consider
the idea of selecting individual fiducials from various can-
didate algorithm outputs, to form our own facial structure
that minimizes an objective function. This is explained in
the following section.

3.5. Output Selection by Optimization

Instead of selecting fiducals from one method for all
the parts as explained in earlier section, here we propose
a method which selects fiducials for each part from best
performing method. We first collect fiducials from all the
candidate algorithms on an input image. Our task is now to
select a subset of these fiducials for our output.

We propose an optimization framework based on equa-
tion 2, where we minimize a function based on appearence
and structural costs. The appearance cost forces the areas
around the fiducial locations in the input image to “look”
like a face, while the structural cost ensures that the outline
of fiducial locations resembles a facial structure. We define
a quadratic objective function with unary and binary terms
that enforce these constraints. Unary terms enforce appear-
ance costs, while binary terms enforce structural costs.

The selection of the jth fiducial from the ith method is
represented by the binary variable xji . Let uji be its ap-
pearence cost. Let yabcd be the selection variable which will
be 1 when both xac and xbd are 1. And, pabcd define the struc-
tural cost when yabcd is 1. Thus yabcd is the binary variable
that represents joint selection of fiducials corresponding to
unary variables xac and xbd.

Appearance Costs: We would want the fiducial predic-
tion for each part to look similar to the corresponding fidu-
cial of one of the exemplars. To do this, we compare the
appearance feature vectors (using SIFT and HOG) between
the fiducial xji and that of the corresponding fiducials in the



exemplar database. Let f(xji ) represent the appearance fea-
ture vector corresponding to the jth fiducial produced by
the ith method. We define the unary costs as

uji = arg min
k
‖f(xji )− f(Ejk)‖2 (8)

where Ejk denotes the jth part of the kth exemplar. Let
m(j, i) represent the exemplar index that has the fiducial
closest in appearance to that of xji . That is, let uji =

‖f(xji )− f(Ejm(j,i))‖
2.

Structural Costs: We would also want to preserve the fa-
cial structure while selecting fiducials. This is most natu-
rally enforced in the binary variable cost pabcd. The impor-
tance of this cost is depicted in Figure 5. We enforce struc-
tural consistency by ensuring that if two fiducials xac and xbd
are selected, their corresponding closest exemplars (given
by indices m(a, c) and m(b, d) as mentioned above) are as
close to each other in shape as possible. Thus, we define
the structural cost pabcd as the euclidean distance between the
shape of exemplars Em(a,c) and Em(b,d). Note that the struc-
tural cost is only defined between two variables that do not
represent the same fiducial. That is

pabcd = ‖s(Em(a,c))− s(Em(b,d))‖2, a 6= b (9)

where s(·) is the function that denotes the shape of a set
of fiducials (represented as a vector of fiducial locations).
Additionally, we also want to enforce the constraint that the
same fiducial from different methods should not be simul-
taneously selected. This is easily enforced by the constraint∑

i

xji = 1 (10)

Combining all the above, we want to minimize the follow-
ing function function,

O(X,Y ) =

5∑
i=1

20∑
j=1

(xji×u
j
i )+

20∑
c=1

20∑
d=c+1

5∑
a=1

5∑
b=1

(yabcd×pabcd)

(11)
subjected to constraints, xji ∈ {0, 1}, yabcd ∈ {0, 1},∑5

i=1 x
j
i = 1, yabcd = xac × xbd

Since the above problem has quadratic constraints and
can not be solved in polynomial time, as the solutions are in
integers, we relax the constraints [10] to get: 0 ≤ xji ≤ 1,
0 ≤ yabcd ≤ 1, xac ≥ yabcd , xbd ≥ yabcd , xac + xbd ≤ yabcd + 1.
Thus, we obtain the final linear optimization problem as

O(X,Y ) =

5∑
i=1

20∑
j=1

(xji × u
j
i ) +

20∑
c=1

20∑
d=c+1

5∑
a=1

5∑
b=1

(yabcd × pabcd)

0 ≤ xji , y
ab
cd ≤ 1, xac ≥ yabcd , xbd ≥ yabcd

xac + xbd ≤ yabcd + 1 (12)

Figure 6: Results with varying pose (Row 1), expression
(Row 2) and occlusion (Row 3). Best viewed in color.

We use MOSEKwrapper in MATLAB to solve the above op-
timization problem. Sometimes, because of the non-linear
nature of the problem, we get non-integer solutions for xji .
In such cases, we take our fiducial location to be the average
position of the top two selected outputs for the jth part.

3.6. Implementation Details

In this section, we present some implementation details
of the paper along with threshold values.

To compute the appearance vector around each fiducial
part, we take 10x10 pixel patches and extract HOG features
with a cell size of 3. We also compute the SIFT features
around facial fiducial locations at two different scales of
5 and 8 pixels. After concatenating both the features, we
obtain a vector of dimension 535 for each part. This is
repeated for all the fiducial parts for both candidate algo-
rithms and exemplars. For the experimentation, we used 20
clusters in k-means algorithm to automatically choose the
trainnig samples to be used for kNN selection.

We took the author released code for candidate algo-
rithms [3, 8, 22, 24, 32] along with the trained models. Ex-
periments were conducted on the same test split for candi-
date and our algorithms for all the datasets.

4. Results
Thus far, we have outlined our approaches to fiducial de-

tection in the previous sections. In this sections, we evalu-
ate our algorithms on three state of the art datasets LFPW,
COFW and AFLW. Before we present the quantitative result
(produced in Table 1) in the remaining part of this section,
we describe the 3 datasets in brief below.

We have chosen 3 popular datasets to test the perfor-
mance of our algorithm for several reasons.

LFPW is the oldest dataset we consider [7], and contains
faces of several people in “wild” settings, with lots of oc-
clusions and pose / expression variation. It contains 1035
images, out of which 811 are used for training and 224 are
used for testing purposes. Ground truth annotation of train-
ing images in the form of 68 fiducial locations for each face
is available to us. This dataset has been standard for some



time, but current algorithms give very good performance on
it.

COFW is a dataset released by Burgos-Artizzu et al. [8],
and is specialzed to highlight situations where faces are oc-
cluded in a manner that hinders accurate fiducial detection
by state-of-the-art algorithms. It contains 1852 images, out
of which 1345 are used for training and 507 are used for
testing purposes. Ground truth annotation of training im-
ages in the form of 29 fiducial locations for each face is
available to us. This dataset is relatively new, and moderate
performances have been reported on it.

AFLW is a dataset released by [14], and contains sev-
eral annotated face images in extreme settings. It is consid-
ered one of the toughest datasets in fiducial detection liter-
ature [21, 28], as it has larger pose variations, partial occlu-
sions and illumination variation compared to other datasets.
Like [28], we sample 1000 training images and 3000 test-
ing images randomly from the dataset, while ensuring no
overlap between the two sets.

4.1. Quantitative Results

In this section, we outline the basis for future experi-
ments detailed in the next sections. Table 1 shows results
of our approach on LFPW, COFW and AFLW datasets. To
produce these results, we first resize all images (training and
testing) to a size of 300× 300, and compute a set of 20 ex-
emplars for each dataset using Algorithm 1, equally divided
between shape and appearance. Figure 4 illustrates our re-
sults of exemplar selection on the LFPW dataset. SIFT fea-
tures for each fiducial are calculated at the scale of 5 and 8
pixels, which roughly translates to 4% and and 6% of the
interocular distance. Once this is done, we proceed to the
output selection by kNN and optimization based algorithms.

For each test dataset in Table 1, mean errors and failure
rates in locating fiducials over the entire dataset are shown.
For each fiducial, we first compute the ratio of its Euclidean
distance from the ground truth and the interocular distance
for that image. We then average this ratio over the entire
image and over the entire dataset. Thus the first table rep-
resents the average ratio of fiducial error and interocular
distance over the entire dataset. The failure rate is the frac-
tion of images in the entire dataset, for which this ratio is
more than 0.1 (10% error). Thus, while mean error gives an
idea of the accuracy of our algorithm, the failure rate gives
an idea of its robustness.

A more detailed quantitative comparison of our approach
with candidate algorithms is presented in Figure 7. Each
point on the x-axis of this figure represents a cut-off thresh-
old, and each corresponding point on the y-axis of this fig-
ure represents the fraction of images that have mean nor-
malized error greater than this cut-off. Thus, graphs that
dip quickly are more accurate. The mean normalized er-

(a) (b)

Figure 8: Comparison of mean error and failure rate for
SIFT vs HOG experiment. Best viewed in color.

ror is the mean of all interocular distance normalized errors
over the entire dataset. We notice that both of our algo-
rithms consistently perform better compared to other five
algorithms at almost all cut-off ranges. Figure 6 illustrates
some qualitative results using our approach.

4.2. Experimental Analysis
In the previous section, we outlined our basic algorithm

and illustrated its results that show superior performance
compared to state-of-the-art on three datasets. In this sec-
tion we analyze various components of our algorithm to il-
lustrate how our approach performs under different settings.
Detailed results are provided in the website.

Runtime For both approaches, candidate algorithms can
be run in parallel and hence the total time taken by them
on an input image is the maximum time of any algorithm.
As an overhead, we compute SIFT/HOG based features on
the output of these algorithms, which measures in millisec-
onds since fast GPU based approaches are available for such
computations. On top of that, the output selection part uses
Euclidean distance computation for kNN, which amounts
to 5 (candidate algorithms) x 20 (exemplars) distance com-
putations between 535 dimensional vectors (of SIFT/HOG
features). Finally, the optimization algorithm takes 0.4 sec-
onds to converge for a single input image on a Intel(R)
Xeon(R) CPU E5-2640 0 @ 2.50GHz system.

SIFT vs HoG In this experiment, we contrast the con-
tribution of SIFT and HOG features for the task of output
selection. Results of our experiment comparing mean er-
rors and failure rates on all datasets are shown in Figure 8b.
Note that SIFT outperforms HOG, and understandably so
since SIFT captures appearance details lost to HOG. We get
an improvement of 6% using SIFT and 2% using HOG over
competing methods.

Varying Number of Exemplars Varying the number of
exemplars ideally affects the accuracy of fiducial location,
since more exemplars should typically mean that the nearest
neighbor should be more similar to the test image. However



Mean Error Failure Rate
Dataset Chehra Zhu Intraface RCPR PO Ours Ours Chehra Zhu Intraface RCPR PO Ours Ours

(kNN) (Opt) (kNN) (Opt)

LFPW 7.21 7.60 7.79 9.28 4.82 4.31 4.83 20.98 15.62 17.41 17.41 3.57 3.57 5.8
COFW 7.95 15.76 7.22 7.30 6.73 5.98 6.28 21.89 49.70 18.15 14.20 9.27 7.49 7.88
AFLW 40.44 25.88 47.98 39.78 46.67 19.93 32.08 80.52 71.28 79.80 82.12 75.20 59.03 76.30

Table 1: Table shows the mean error and failure rate for three datasets. In each row, top two algorithms are highlighted
for both mean error and failure rate. Opt in the table represents output selection by optimization. Observe that both of our
algorithms consistently perform better than state-of-the-art algorithms.

(a) (b) (c)

Figure 7: Results of our approach on (a) LFPW, (b) COFW, and (c) AFLW datasets. Drop in failure rate with the change in
cut-off threshold of mean error normalized with interocular distance. Lower curve means more accurate results. Best viewed
in color.

Figure 9: Comparison of mean error and failure rate when
the number of exemplars is increased. Results O1-O5 cor-
respond to our algorithm with number of exemplars (20, 30,
40, 50, 60) respectively. Best viewed in color.

if most variations in pose, expression, partial occlusion have
been already captured, increasing the number of exemplars
will have minimal effect on accuracy. This is precisely what
we observe in Figure 9.

Optimization with structural costs In this experiment,
we show qualitative result of output selection by optimiza-
tion with and without structural costs. Structural costs help
in optimizing to a solution which looks like face. If only
appearance costs are used, it leads to just selecting best
looking fiducials individually leading to distortion in facial
structure which can be observed in third image of Figure 5.

5. Summary and Conclusion
Facial fiducial detection is challenging in case of severe

pose, expression and occlusion variation. We propose two
robust algorithms which take care of these conditions with
help of consensus of exemplars. We consistently outper-
form considered state-of-the art algorithms.

Optimization vs kNN Note that one of the major advan-
tages of using optimization is that one could select each
fiducial separately, and enforce a global shape constraint
on the final output. Such a task is not obvious in the kNN
based approach, and thus the optimization based approach
gives us lot of flexibility. In addition, other models of er-
rors in candidate algorithms or explicit occlusion / expres-
sion based constraints can also be included in the optimiza-
tion framework mentioned above. Finally, note that even
with simple global constraints, our optimization algorithm
is mostly able to perform as well as the kNN algorithm (Ta-
ble 1) and better than almost all state-of-the-art algorithms.
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