

Text is important

- Information rich
- Useful cues
- Viewers fixate on text more [ICCV'09]

The Goal

Datasets

Sign Evaluation [Weinman *et al*. PAMI'09]

Lexicons

ICDAR 2003

Recognize a cropped word

CAPOGIRO

Street View Text [Wang et al., ECCV'10]

- State-of-the-art commercial OCR : low accuracy
- Sign Evaluation (60.5%), ICDAR (56%), Street View Text (35%)

Challenges

Inter and intra character confusion

- Large number of classes
- Poor isolated character recognition

Need strong cues

Top-down and Bottom-up Cues for Scene Text Recognition Anand Mishra¹, Karteek Alahari² and C.V. Jawahar¹

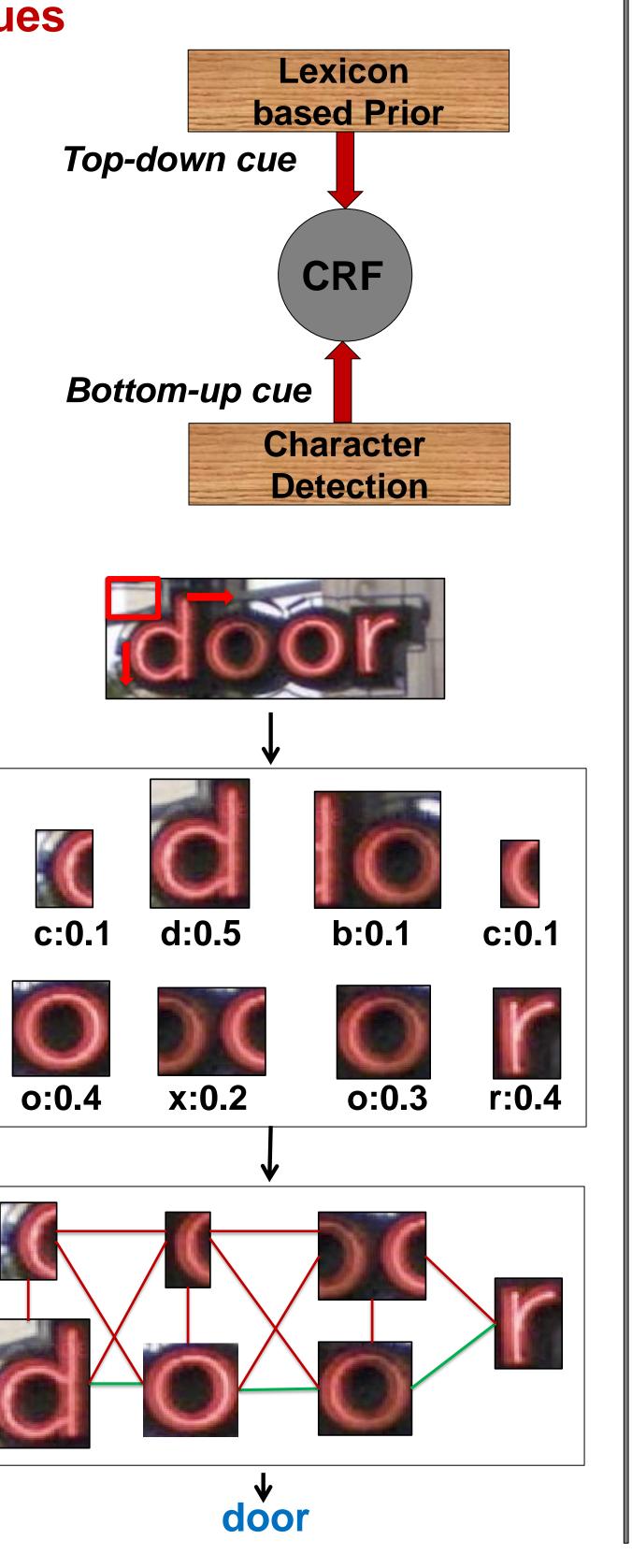
¹CVIT, IIIT Hyderabad, India

xt Detection

- Adaboost based [CVPR'04, ICDAR'11]
- SWT (CVPR'09)
- Multi-oriented text
- detection [CVPR'12]

Top-down and Bottom-up cues

- **Top-Down:** Prior computed from lexicon
- **Bottom-up:** Sliding window based character detections
- The CRF model infers the true characters and the word as a whole.


Method Overview

Character detection

- Sliding window
- SVM classifier trained on ICDAR'03
- HoG features
- Some windows are pruned based on aspect ratio

Graph construction

- Character windows = nodes
- Unary cost = $-f(SVM \ Score)$
- Pairwise cost = Lexicon + overlap based

Center for Visual Information Technology International Institute of Information Technology, Hyderabad, INDIA

http://cvit.iiit.ac.in/projects/SceneTextUnderstanding

²INRIA-WILLOW, ENS, Paris, France

Word Recognition

IP based [CVPR'11] Sparse BP [TPAMI'09] PLEX and PICT [ECCV'10, ICCV'11]

- **Detection and Recognition**
- Real time text localization and recognition [CVPR'12]
- PLEX [ICCV'11]

The CRF Energy

Set of labels $L = \{0, 1, ..., 9, a, b, ..., Z, A, B, ..., Z, \epsilon\}$

• Minimize an energy of following form:

$$E(X) = \sum_{i=1}^{n} E_i(x_i) + \sum_{\mathcal{E}} E_{ij}(x_i, x_j)$$

Unary cost: $E_i(x_i = c_i) = 1 - P(c_i|x_i)$

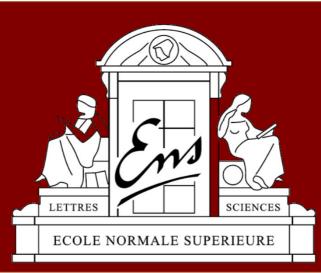
Unary cost of ϵ is computed from SVM score and aspect ratio prior.

Pairwise cost:

- Lexicon based: $E_{ij}(x_i = c_i, x_j = c_j) = \lambda_l(1 P(c_i, c_j))$
- Overlap based: $E_{ii}(x_i = c_i, x_i = c_i) = \lambda_o exp(-(100 overlap(x_i, x_i)))$

Prior Computation

Toy example: Bi-gram prior v/s node specific prior


	CV,	, IC	VP, C		PR, PR	
P(CV)	1/6	1/2	1/6	0	1/6 0	
P(IC)	1/6	1/2	1/6	0	1/6 0	Lexi
P(VP)	1/6	0	1/6	1/2	1/6 0	Poss
P(CP)	1/6	0	1/6	1/2	1/6 0	= {C
P(PR)	1/3	0	1/3	0	1/3 1	

$kicon = \{CVPR, ICPR\}$

ssible character pairs {CV, IC, VP, CP, PR, PR}

Implementation Details

- **Descriptor:** Dense HOG, cell size = 4×4 , bins = 10 bins, after resizing image to a 22×20 .
- **Inference:** Tree-reweighted message passing (TRW-S) [Kolmogorov, TPAMI'06].
- The method is as it is applicable to near frontal text datasets like Sign Evaluation data too.

Many Applications

- Multi-media indexing
- Mobile apps
- Auto navigation
- Help for visually impaired

Results

Method	SVT-Word	ICDAR(50)
PICT	59	-
PLEX+ICDAR	56	72
ABBYY 9.0	35	56
Proposed (bi-gram)	70.03	76.96
Proposed (node specific)	73.26	81.78

Summary

- A general framework for scene text recognition
- Improves accuracies significantly on ICDAR and SVT
- Joint Probabilistic inference with lexicon priors unlike [ICCV'11]
- The method deals with poor character detections unlike [TPAMI'09]

Travel grant supported by Google Inc. India