

An MRF model for Binarization of Natural Scene Text

Anand Mishra, Karteek Alahari and C. V. Jawahar IIIT Hyderabad, India

Natural Scene Text: Recent Interest

Detecting Text in Image

Natural scene text detection competitions at ICDAR 2003, 2005 and 2011

Stroke Width Transform based text detection (Boris Epshtein et al., CVPR 2010)

IIT Hyderabau

Natural Scene Text: Recent Interest

Detecting text in a street view

More challenging Street View Text (SVT) dataset

Words are treated as "objects" (Kai Wang and Serge Belongie, ECCV 2010)

T Hyderabac

Natural Scene Text: Recent Interest

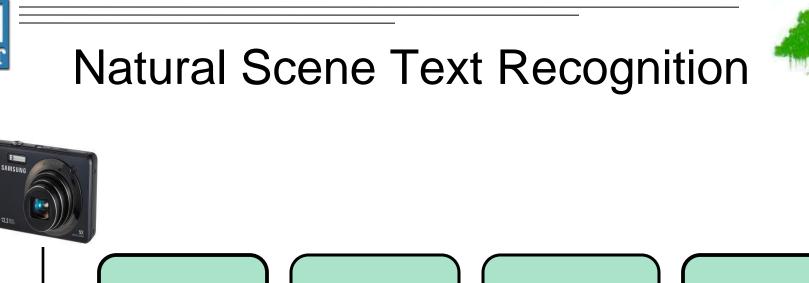
Text Recognition

Word spotting in wild (Kai Wang and Serge Belongie, ECCV 2010)

Enforcing similarity constraints for better scene text recognition (David Smith *et al.*, CVPR 2011)

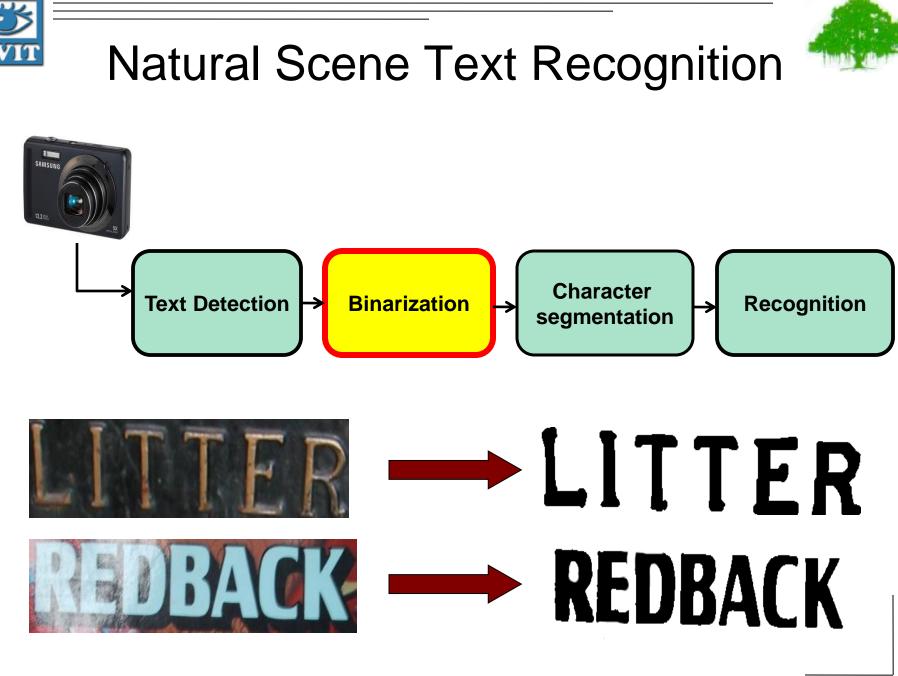
Char 74k dataset (TE de Campos *et al.,* VISSAP 2009)

Many Applications



- Help for visually impaired
- Cross lingual access through cell phones
- Multimedia indexing
- Auto navigation

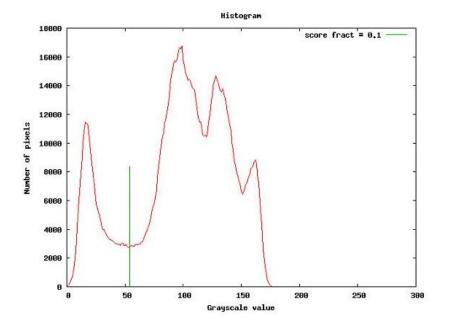
Binarization


Text Detection

Character

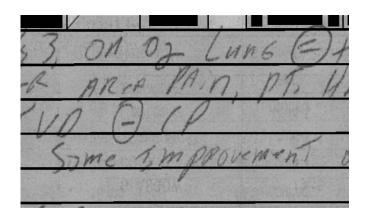
segmentation

Recognition



Long History of Binarization

- Global Methods:
 - Otsu (1979)
 - Kittler (1985)
- Local Methods:
 - Niblack (1986),
 - Sauvola (2000)
- Uses local or global statistics
- Works satisfactorily well for scanned documents



Long History of Binarization

 K-means and SVM based method

- Kita and Wakahara (ICPR 2010)
- MRF model:
 - Cao and Govindraju (CVPR 2007)
 - Kuk and Cho (ICDAR 2009)
 - Peng et al. (ICVGIP 2010)
- Many recent works: more suitable for scanned or handwritten documents

inques are then assumed to be inton, 1999), i.e. products of (with a parameter α_f) of the o the image patch \mathbf{x}_c :

$$\prod_{f=1}^{F} \phi_f(\mathbf{x}_c; J_f, \alpha_f).$$
(1)

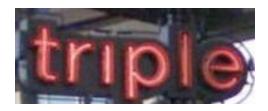
 Similar text-background colours

- Similar text-background colours
- Variable Illumination

- Similar text-background colours
- Variable Illumination
- Noise



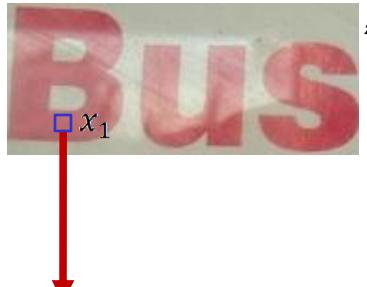
- Similar text-background colours
- Variable Illumination
- Noise
- Low contrast



- Similar text-background colours
- Variable Illumination
- Noise
- Low contrast
- Non-uniform background

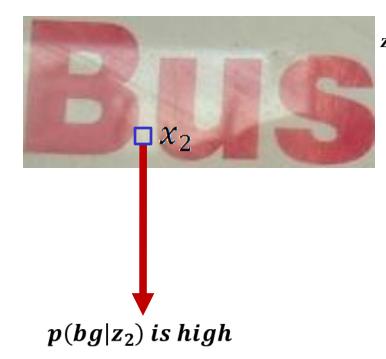
- Similar text-background colours
- Variable Illumination
- Noise
- Low contrast
- Non-uniform background
- Imaging problems

Assign a label to each pixel from $L = {Text (0), Background(1)}$



Assign a label to each pixel from $L = \{Text (0), Background(1)\}$

Many labelings possible, we are interested in "the optimal" one

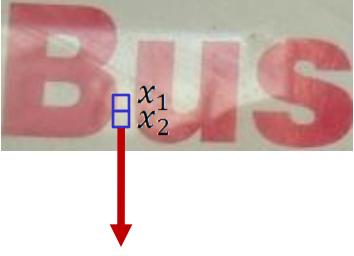


z_i: Pixel colour at pixel position i fg: foreground (text) bg: background

 $p(fg|z_1)$ is high

z_i: Pixel colour at pixel position i fg: foreground (text) bg: background

z_i: Pixel colour at pixel position i fg: foreground (text) bg: background

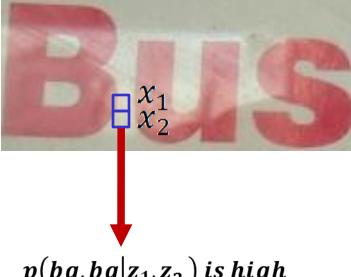

Minimize

 $E(x) = -\sum_i \log p(x_i | z_i)$

Unary (data) Term

z_i: Pixel colour at pixel position i fg: foreground (text) bg: background

 $p(bg, bg|z_1, z_2)$ is high


Minimize

 $E(x) = -\sum_i \log p(x_i | z_i)$

Unary (data) Term

z_i: *Pixel colour at pixel position i* fg: foreground (text) bg: background

 $p(bg, bg|z_1, z_2)$ is high

Minimize

$$E(x) = -\sum_{i} \log p(x_{i}|z_{i}) + \lambda_{1} \sum_{i,j \in N} \exp(-\beta ||z_{i} - z_{j}||^{2})$$

Unary (data) Term Pair wise (smoothness) Term

Gradient magnitude at pixel position i

Pair wise term =
$$\lambda_1 \sum_{i,j \in N} \exp(-\beta ||z_i - z_j||^2) + \lambda_2 \sum_{i,j \in N} \exp(-\beta ||w_i - w_j||^2)$$

Edginess Term

The problem is to minimize following energy (MRF energy):

E(x) = Unary term + Pairwise term

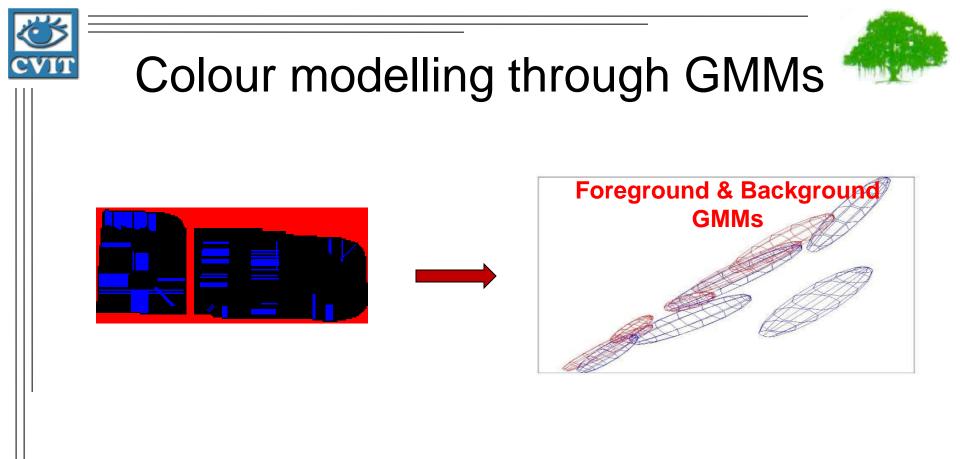
The problem is to minimize following energy (MRF energy):

E(x) = Unary term + Pairwise term

Two questions:

- 1) How to learn the probabilities $p(x_i|z_i)$ used to compute the unary term?
- **2)** How to find the minima of above energy?

Learning Probabilities



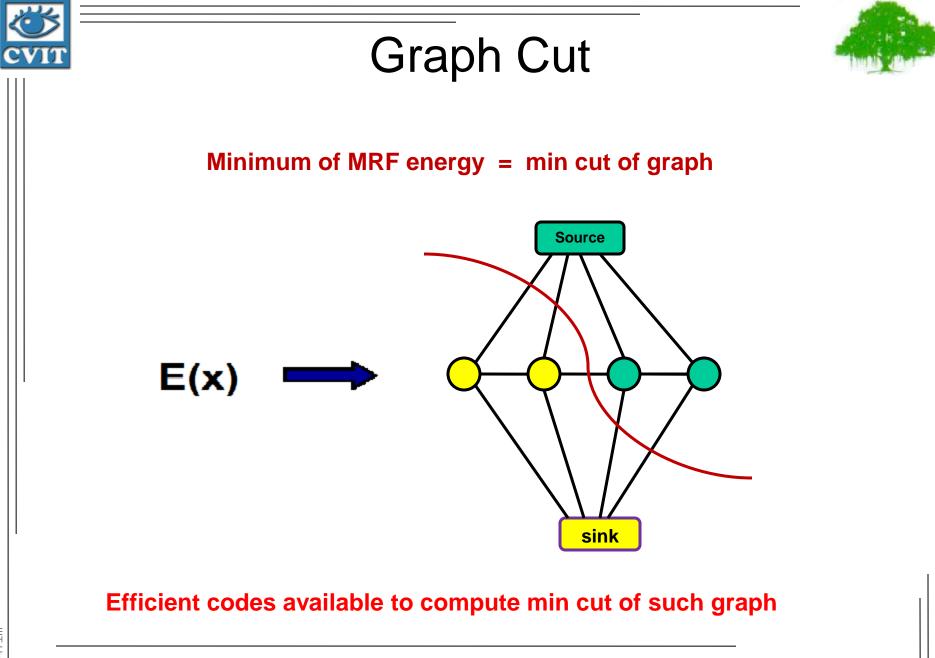
Canny Edge operator

Find foreground background seeds

Blue colour: Foreground Red colour: Background

Unary term is calculated based on the probability of a pixel colour belonging to one of the GMM components

GrabCut (Carsten Rother et al., SIGGRAPH 2004) uses similar modelling for object segmentation problems



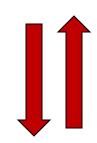
The problem is to minimize following energy (MRF energy):

E(x) = Unary term + Pair wise term

Two questions:

- 1) How to learn the probabilities $p(x_i|z_i)$ used to compute the unary term?
- **2)** How to find the minima of above energy?

Vladimir Kolmogorov and Ramin Zabih, "What Energy Functions can be minimized via Graph Cut", PAMI 2004



An Iterative Graph Cut based Approach

Learn GMMs to model foreground and background colours

Graph cuts to refine binarization

Learn GMMs to model foreground and background colours

Graph cuts to refine binarization

Qualitative Results

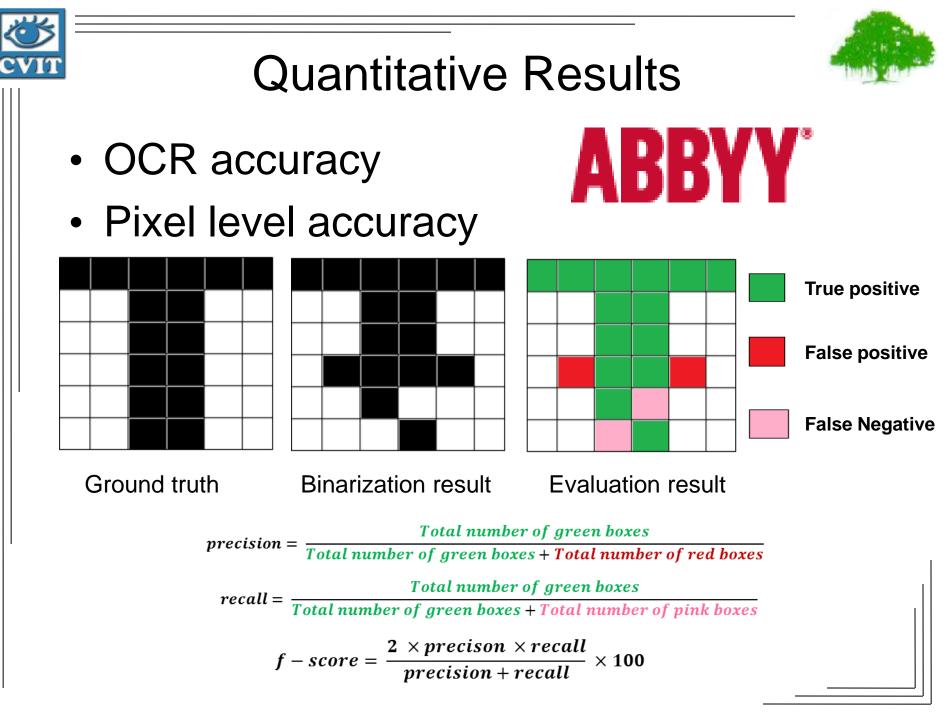
Bus LIFE HOWARD

Memorex

IIIT Hyderabad

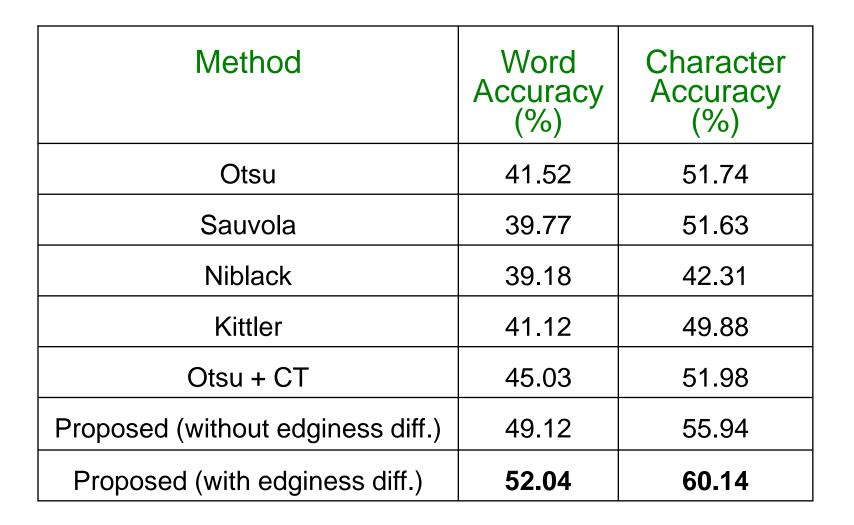
Qualitative Results

1600 22 BOROUCH **CD-R**



Quantitative Results

• OCR accuracy



IIIT Hyderabad

Results (Pixel Level Accuracy)

Method	f-score (%)	
Otsu	79.32	
Sauvola	73.87	
Niblack	76.86	
Kittler	72.89	
Otsu + CT	78.12	
Proposed (without edginess diff.)	87.84	
Proposed (with edginess diff.)	88.64	

More Results

Results based on Street View Text Dataset

Method	Word Recognition accuracy (%)
ABBYY	32.61%
Our Binarization + ABBYY	42.81%

Kai Wang and Serge Belongie (ECCV 2010) have introduced a challenging Street View Text (SVT) dataset

Where we fail?

- Colour is not everything!! (At-least not always)
- Severe failure in learning text -background probabilities

Conclusions and Future Work

- A principled framework for challenging scene text Binarization
- Nearly 10 % improvement in accuracy
- Future work: Incorporating shape priors

Thank You

Supported by Microsoft Research India Travel Grant

Supplementary Slide

MRF based Methods in Literature

Method	Key points	Datasets
Cao and Govindraju (CVPR 2007)	 Probability of character like patches are learnt Does not handle intense illumination variation, complicated background, and blurring 	Carbon copy handwritten images
Kuk and Cho (ICDAR 2009)	 Text, Background and Near Text Regions are decided based on some local statistics Graph cut is used for relabeling 	Printed documents with uneven lighting
Peng <i>et al.</i> (<i>ICVGIP 2010</i>)	 Graph cut is used to smooth initial binarization obtained by thresholding based methods Along with intensity features, Stroke features are also used 	Camera captured printed document