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Abstract

Detecting humans in images and videos has emerged as an essential aspect of intelligent video systems
that solve pedestrian detection, tracking, crowd counting, etc. It has many real-life applications varying
from visual surveillance and sports to autonomous driving. Despite achieving high performance, the
single camera-based detection methods are susceptible to occlusions caused by humans, which drastically
degrades the performance where crowd density is very high. Therefore multi-camera setup becomes
necessary, which incorporates multiple camera views for detections by computing precise 3D locations
that can be visualized and transformed to Top View also termed as Bird’s Eye View (BEV) representation
and thus permits better occlusion reasoning in crowded scenes.

The thesis, therefore, presents a multi-camera approach that globally aggregates the multi-view
cues for detection and alleviates the impact of occlusions in a crowded environment. But it was still
primarily unknown how satisfactorily the multi-view detectors generalize to unseen data. In different
camera setups, this becomes critical because a practical multi-view detector should be usable in sce-
narios such as i) when the model trained with few camera views is deployed, and one of the cameras
fails during testing/inference or when we add more camera views to the existing setup, ii) when we
change the camera positions in the same environment and finally iii) when deploying the system on the
unseen environment; an ideal multi-camera setup system should be adaptable to such changing conditions.

While recent works using deep learning have made significant advances in the field, they have
overlooked the generalization aspect, which makes them impractical for real-world deployment. We
formalized three critical forms of generalization and outlined the experiments to evaluate them: gen-
eralization with i) a varying number of cameras, ii) varying camera positions, and finally, iii) to new
scenes. We discover that existing state-of-the-art models show poor generalization by overfitting to a
single scene and camera configuration. To address the concerns: (a) we generated a novel Generalized
MVD (GMVD) dataset, assimilating diverse scenes with changing daytime, camera configurations,
varying number of cameras, and (b) we discuss the properties essential to bring generalization to MVD
and developed a barebones model to incorporate them. We performed a series of experiments on the
WildTrack, MultiViewX, and the GMVD datasets to motivate the necessity to evaluate the generalization
abilities of MVD methods and to demonstrate the efficacy of the developed approach.
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Chapter 1

Introduction

1.1 Problem Statement

1.1.1 Context

In computer vision, humans as target objects are attracting more attention. Researchers have developed
algorithms to help detect, track, and identify humans, which benefits various applications, such as sports
analytics, robotics, machine interaction, surveillance, self-driving cars, etc. In-person tracking is achieved
by identifying the same person from every frame in video recordings; motion captured by person
tracking algorithms would aid in the detection and identification of the individual. Studies of learning
human motion can date back to the period before digital video systems and the internet were globally
commercialised. Frameworks were designed to teach computers to see a walking person or to recognise
the gestures of a person. Pedestrians were usually simply modelled using connected cylinders and sticks
representing the topology of body parts. The symmetry of the human body was employed to separate
humans from background. In recent years, imaging technology has advanced dramatically. Cameras
are now more affordable, smaller, and of higher quality than they have ever been. Simultaneously,
computational power has skyrocketed. Computing platforms such as multicore processing and graphical
processing units have been geared toward parallelization (GPU). This hardware version enables the
real-time implementation of Computer Vision algorithms for pedestrian detection and tracking. Rapid
advancements in deep learning, convolution neural network (CNN), and GPU computing power are the
primary reasons for CV-based pedestrian detection and tracking evolution.

Classification, Localization, Detection, and Segmentation are the four main types of tasks in computer
vision as shown in Figure 1.1 from [36].

• Classification : determines which object categories (such as humans, dogs, or cars) are represented
in an image or video.

• Localization : object localization i.e it gives us an information of object but also tells us with a
bounding box which is a position of the object within the image.

1



Figure 1.1: Image classification, object detection, and instance segmentation comparison figure.

• Detection : it detects semantic objects of a specific category in a image or captured video sequence.

• Segmentation : it solves the problem of ”which object or scene each pixel belongs to” also
categorized as semantic segmentation and instance segmentation.

Detecting pedestrians is the primary goal of pedestrian detection in an image and video sequence as
well as localizing their positions and sizes. The problem of pedestrian detection is approached in multiple
ways. The classical computer vision based methods use hand crafted features such as HOG [32] features
or randomly generated low level features such as Haar [48] like features. These attributed features are
being used to train the model that performs the classification. Other approaches include using several
simple classifiers to make a strong classifier, for example Ada boost. Recently the interest for CNN
has increased since this method has managed to achieve high performance in several different fields of
computer vision. The most notable results are for general classifications tasks such as the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) [43]. Deep CNNs serve as the foundation for Deep
Learning based pedestrian detection to extract featues from image or video frames and then classify as
pedestrians. These approaches are classified into two types.

• Two Stage Detectors : In two-stage detectors such as R-CNN [18], Fast R-CNN [17], Faster
R-CNN [40], initially, deep features are used to propose approximate object regions, which are
then used for classification and bounding box regression for the candidate. This results in two
stage detectors with high detection accuracy.

• One Stage Detectors : On the other hand one-stage detectors such as SSD [33], YOLO [39].
Without the region proposal step, bounding boxes are predicted over the images. This process
takes less time and can thus be used in real-time devices which achieves high speed.

Person detection is also divided into two categories based on the amount of cameras used for detection,
which are as follows:

2
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Occlusion reasoning in multi-camera based detection

Figure 1.2: Severe occlusion in monocular detection (left). Multi-camera detection resolves the difficulty

arising from high occlusion (right).

• Monocular based detection : To perform detections, monocular methods depend on the input
feed of a single camera. These methods offer a simple and straightforward setup but provide no
3D information.

• Multi-camera detection : In multi-camera setups, we have multiple cameras placed at certain
positions and orientation in the environment. The cameras are placed such that their FOV’s are
either non-overlapping or overlapping. The major benefit is we get 3D information of environment.

1.1.2 Challenges in monocular camera detection and Motivation for multi-camera detec-

tion

Since monocular approaches are based on the input of a single camera for detections. Over recent
years these methods has achieved state-of-the-art results. This class of algorithms typically proposes
potential bounding boxes candidate with scores. They then use Non-Maximum Suppression (NMS) to
generate a final set of candidates. A feature vector of random dimension can then be computed for any
variable size 2D bounding box in that image using Region Of Interest (ROI) pooling and then it is fed
to a classifier to determine whether the bounding box resembles a true detection. While this algorithm
has proven its worth on numerous benchmarks, it may fail in cluttered scenes shown in Figure 1.2. This
shows the problem of monocular detectors when people obstruct each other severely.

The multi-camera based methods use images from multiple calibrated cameras observing the same
area from different viewpoints with an overlapping field of view to take full advantage of appearance or
geometrical uniformity throughout views to resolve ambiguities in cluttered scenes and acquire accurate
3D localisation as shown in the Figure 1.2 . Basically, it globally aggregates the multi-view cues for
detections and thus motivates the need for multi-camera setup with overlapping FOV’s to resolve the
difficulties arising from high occlusion and crowdedness.

3



Figure 1.3: Camera geometry and pinhole camera model

1.2 Background

In this thesis since we are looking into Multi-Camera Detection, in subsequent sections will discuss
about few terminologies in multi-view detection literature.

1.2.1 Camera Geometry and the Pinhole Model

The pinhole camera model [20] describes the projection of points in 3D space to an image plane as
the mathematical relationship. Let the origin of a Euclidean coordinate system be the centre of projection,
the plane Z = f , which is known as the focal plane or image plane. A point in space with coordinates
(X,Y, Z)T under the pinhole camera model is mapped to the points on image plane (fXZ , fYZ , f)T as
shown in Figure 1.3. Neglecting the final image coordinate, camera geometry is the central projection
mapping from 3D world space to 2D image coordinate. The projection centre is also known as the optical
centre or the camera centre. The line perpendicular to the image plane from the camera centre is known
as the principal ray or principal axis. The principal point is the intersection of the principal axis and the
image plane. The principal plane of the camera is the plane that runs through the centre of the camera
and parallel to the image plane. Camera centre is denoted by C and principal point by p. The camera is
centred at the coordinate origin.

(X,Y, Z)T −→ (
fX

Z
,
fY

Z
)T (1.1)

Assuming homogeneous coordinates representation of the world as well as image points, central
projection can be simply expressed in terms of matrix multiplication as a linear mapping between their

4



Figure 1.4: The world coordinate and camera coordinate frames are transformed using Euclidean

geometry.

homogeneous coordinates,

fXfY
Z

 =

f 0 0 0

0 f 0 0

0 0 1 0



Xcam

Ycam

Zcam

1

 (1.2)

Principal Point : In the image plane origin of coordinates is assumed to be at the principal point in
theory. In practise, this may not be the case, therefore, the Eq. 1.2 is expressed as,

fX + Zpx

fY + Zpy

Z

 =

f 0 px 0

0 f py 0

0 0 1 0



Xcam

Ycam

Zcam

1

 (1.3)

First matrix in right side of the Eq. 1.3 is called camera calibration matrix expressed by K.
Camera Rotation and Translation : Generally, the world coordinate frame determines points in

space. Rotation and Translation connect the camera coordinate and world coordinate frames. As shown
in Figure 1.4, if the coordinate of the point in the world coordinates is Xworld = (X,Y, Z, 1)T , then
Xcam is transformed by,

Xcam =
[
R t

]
Xworld (1.4)

where R is rotation matrix of 3 X 3 and t is translation vector of 3 X 1. Accumulating together we get,

x = K
[
R t

]
Xworld (1.5)
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Camera
view 1

Camera 
view 2

Camera
view 3

Z

XY

Top View 

(Bird's Eye View)

3D coordinate system

Figure 1.5: The discretized ground plane i.e (Z = 0) and representation of presence of human in terms

of cuboid in 3D coordinate system, its corresponding human silhouette in each camera views (i.e camera

view 1, 2 and 3) and the representation of cuboid from 3D coordinates space to Top View coordinates

(Bird’s Eye View representation). Red and Green points in 3D coordinate and its corresponding 2D

points in each camera view are used for synchronized calibration of multiple cameras.

x which is the pinhole camera’s mapping in the world coordinate frame. The pinhole camera matrix, P ,
is denoted by,

x = K
[
R t

]
=

f 0 px

0 f py

0 0 1


r1 r2 r3 t1

r4 r5 r6 t2

r7 r8 r9 t3

 (1.6)

It consists of nine degrees of freedom, three from K(f, px, py); three from the rotation matrix R and
three from the translation vector t. Internal camera parameters K shows camera’s internal orientation,
which is fixed. External parameters R and t represent the camera’s orientation and position in relation to
a world coordinate system.

1.2.2 Camera Calibration and Top View Representation

To detect a person’s presence in the environment, the ground plane are discretized at Z = 0 in 3D
coordinate system and based on the assumption of average human height (i.e 1.8m) and average human
width (0.25m), the presence of a person in 3D is represented as cuboid as shown in Figure 1.5. When this
cuboid is back-projected to respective camera views, the person is localized in the camera view and is
represented using bounding box coordinates.
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Figure 1.6: Illustrating Perspective Transformation by assuming every pixels on the ground plane i.e

(Z = 0). Image(left) is projected to the ground plane(center). Similarly, feature maps can be projected to

the ground plane(right).

We require 2D-3D correspondences to calibrate camera i.e to estimate intrinsic and extrinsic pa-
rameters of camera. The cameras in WildTrack , MultiViewX and GMVD dataset are calibrated and
synchronized based on the above assumption of grid structure and obtained annotated 2D and 3D corre-
spondences. To calibrate the cameras we used the Pinhole camera model as mentioned in the section
1.2.1, due to its widespread usage and support in multiple libraries, including OpenCV.

The Top View or BEV representation of ground plane means looking to 3D scene from the top
perspective. In Figure 1.5 the discretized ground plane location observed from top view perspective is
shown. This rectangular area (Top View) can also be used for tracking. Let’s consider 3D coordinate
(X,Y, Z = 0) and Top View coordinate, where area is of dimensions (tvwidth, tvheight) and origin of top
view grid is (tvoriginx , tvoriginy) = (0, 0). Based on the defined grid in 3D system (gridwidth, gridheight)

we can obtain the top view coordinates (tvx, tvy).

Figure 1.6 shows the perspective transformation of an image to the discretized ground plane (top
view). In the same way features are being transformed to the top view, this type of projection suffers less
from spatial structure break as compared to projection of an image, because 2D spatial information in
feature maps has already been concentrated into individual pixels .

1.2.3 Probabilistic Occupancy Maps (POM)

The Probabilistic Occupancy Map is a method for estimating the marginal probabilities of individual
presence at each location in a given area of interest. In another words, given the evidence provided by the
background subtraction, it estimates the probability that someone is standing at each location. Figure 1.7
and Table 1.1 refers to some common notations and representations used in this subsection. The ground
plane of an environment is discretized and every location represents the presence of individuals.

They are written as,

P (Xo
i = 1|Bi), for every o and i (1.7)

Given such a P (Bi|Xi) model, which is the result of background subtraction provided the true
occupancy of the scene, estimating P (Xi|Bi) becomes a Bayesian Computation. This cannot be done
with the generic method because of the complexity of the non-trivial P (Bi|Xi) model and due to the
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Probabilstic Occupancy
Map

Synthetic Human
Silhouette Bounding BoxBackground SubtractedCamera View Frame

Figure 1.7: POM

dimensionality of Bi and Xi. This problem is being addressed by representing humans as rectangles,
which are then used to generate ideal synthetic images AV

i as shown in Figure 1.7 and determine whether
or not people are present at specified locations. We approximate the occupancy probabilities as the
marginals of a product law Q minimising the Kullback-Leibler divergence from the ”true” conditional
posterior distribution.

More specifically, in 1.2.3.1 two assumptions of independence are mentioned from which analytical
results are derived. In 1.2.3.2 we discuss about the generative P (B|X) model, which entails calculating
the distance between the actual images B and the synthetic image which is a function of X . Based on
the model and the assumptions, in subsection 1.2.3.3 an analytical relationship between estimates of the
marginal probabilities of occupancy P (X1

i = 1|Bi), ..., P (XL
i = 1|Bi) is been derived by minimizing

the Kullback-Leibler divergence between the corresponding true posterior and the product law.

1.2.3.1 Independence Assumptions

The two independence assumptions stated below will allow us to derive the relationship between the
optimal qos analytically:

First assumption is that people in the environment do not consider the presence of other people when
moving around while avoidance strategies are ignored. This can be formally written as,

P (X1, ..., XL) =
∏
o

P (Xo) (1.8)

Second assumption considers all statistical dependencies between bounding box views to be caused
by the presence of individuals in the environment. This is the same as defining the bounding box views
as vector functions X = (X1, ..., XL) plus some noise which is independent. This means that once the
presence of all individuals is determined, the bounding box views become independent. This is valid till
we ignore other hidden variables such as morphology or garments, which may influence multiple views
at the same time. This assumption are written as,

P (B1, ..., BV |X) =
∏
V

P (BV |X) (1.9)
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Table 1.1: POM Notations

WXH image dimension.

V total number of camera views.

L total locations when the ground plane is discretized.

T total number of bounding boxes for a frame.

t bounding box index for frames.

Q product law for approximation, the posterior distribution P (|Bi) for a fixed i,.

EQ Expectation of X ∼ Q.

qo is marginal probability for Q, i.e Q(Xo = 1).

ϵo is the prior probability at location i, P (Xo = 1)

AV
o the image of 1’s inside a rectangle for the silhouette representation at location o

observed from camera view V , and 0’s elsewhere.

Ii images from camera views Ii = (I1t , ..., I
V
i ).

Bi the background subtracted binary images Bi = (B1
i , ..., B

V
i ).

Xi is the boolean random variable vectors X1, ..., XL for occupying the location o

on the ground plane Xo
i = 1.

1.2.3.2 Generation of Image Model

Let the synthetic image AV be obtained by putting rectangles at positions where Xo = 1, hence
AV = ⊗oXoA

C
o , where ⊗ is the “union” of two images. An image like this is a function of X and thus a

random quantity. The background subtracted image BV is modelled as if it were an ideal image with
some noise. According to empirical evidence, it appears that the noise increases as the area of the AV

ideal image, pseudo-distance Ψ(B,A) is introduced to account for this asymmetry. Ψ is written as,

Ψ(B,A) =
1

σ

|B ⊗ (1−A) + (1−B)⊗A|
|A|

(1.10)

The background subtraction quality is accounted by the parameter σ. Smaller the σ more BV is picked
nearer to its ideal value A

Given the true hidden state, a conditional distribution P (BV |X) of the background subtracted images
is modelled as a density decreasing with pseudo-distance Ψ(BV , AV ) between the background subtracted
image and an synthetic image AV of rectangular shapes where people are present according to X . The
model is defined as,

P (B|X) =
∏
V

P (BV |X) =
∏
V

P (BV |AV ) =
1

Z

∏
V

e−Ψ(BV ,AV ) (1.11)
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1.2.3.3 The relationship between qos

The expectation under X ∼ Q is denoted by EQ. Because we want to minimise the Kullback-Leibler
divergence between the “true” posterior P (|B) and the approximation Q, the following form of derivative
with respect to the unknown qo is been used (see [14] for more detailed derivations).

∂

∂qo
KL(Q,P (.|B)) = log

qo(1− ϵo)

(1− qo)ϵo
+ EQ(

∑
V

Ψ(BV , AV )|Xo = 1)− EQ(
∑
V

Ψ(BV , AV )|Xo = 0)

(1.12)

Hence, if solved as,

∂

∂qo
KL(Q,P (.|B)) = 0 (1.13)

we get the following,

qo =
1

1 + exp(λo +
∑

V (EQ(Ψ(BV , AV )|Xo = 1)− EQ(Ψ(BV , AV )|Xo = 0)))
(1.14)

where, λo = log 1−ϵo
ϵo

, EQ(Ψ(BV , AV )|Xo = ξ) is the untractable computation. However, under
X ∼ Q, the image AV is focused around BV , we approximate, ∀ξ ∈ 0, 1.

EQ(Ψ(BV , AV )|Xo = ξ) ≃ Ψ(BV , EQ(A
V |Xo = ξ)) (1.15)

leading to,

qo =
1

1 + exp(λo +
∑

V (Ψ(BV , EQ(AV |Xo = 1))−Ψ(BV , EQ(AV |Xo = 0))))
(1.16)

1.2.4 Evaluation Metrics

The standard evaluation metrics used for Multi-View Pedestrian Detection proposed in [26, 8] are as
follows:

1.2.4.1 Multi Object Detection Accuracy (MODA)

To evaluate system performance accuracy, it is the primary performance indicator that accounts
for missed detection and false positive counts i.e. it considers both false positives and false negatives.
Assuming mt denotes the number of misses and fpt the number of false positives for each frame t, the
Multiple Object Detection Accuracy (MODA) is computed as,

MODA(t) = 1−
cm(mt) + cf (fpt)

N t
G

(1.17)

where cf and cm are the cost functions for the false positives and the missed detections and N t
G is the

number of ground truth in the tth frame; cf and cm are used as scalar weights that can be changed
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depending on the application. For example, if missed detections are more important than false positives,
we can raise cm and reduce cf . cf and cm are both equal(= 1) in this evaluation. We compute Normalized
MODA (N-MODA) as,

MODA(t) = 1−
∑Nf rames

t=1 (cm(mt) + cf (fpt))∑Nf rames
t=1 N t

G

(1.18)

1.2.4.2 Multi Object Detection Precision (MODP )

To evaluate the localization precision the spatial overlap information between the ground truth and the
system output was used. The Mapped Overlap Ratio is computed as,

Mapped Overlap Ratio =

Nt
mapped∑
i=1

|Gt
i ∩Dt

i |
|Gt

i ∪Dt
i |

(1.19)

where ith ground-truth object in the tth frame is denoted by Gt
i, for Gt

i the Dt
i denotes the detected

object, and the number of mapped object pairs in the frame t is denoted by N t
mapped. The Multiple Object

Detection Precision (MODP ) for frame t is computed as,

MODP (t) =
Mapped Overlap Ratio

N
(t)
mapped

(1.20)

This gives us the detection precision in any given frame and by considering total number of relevant
evaluation frames the measure is being normalized. If N t

mapped = 0, then MODP is forced to zero for
that frame. We compute the Normalized MODP (N-MODP) that gives the precision of detection for the
entire sequence,

N -MODP (t) =

∑Nframes

t=1 MODP (t)

Nframes
(1.21)

1.2.4.3 Precision and Recall

Precision refers to the proportion of your results that are relevant. Recall, on the other hand, is the
percentage of total relevant results correctly classified by the algorithm . They both are calculated as
follows.

Precision =
True Positive

True Positive + False Positive
(1.22)

Recall =
True Positive

True Positive + False Negative
(1.23)
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1.3 Contributions

A multi-camera approach aggregates the multi-view cues for detections and alleviates the impact of
occlusions in the crowded environment. But it was still unknown how well the multi-view detectors
generalize to unseen data and in different camera setups, this becomes significant because a practical
multi-view detector should be ready to use in a variety of scenarios. Therefore, in this thesis the following
contributions are:

1. Conceptualizing and emphasizing the importance of generalization in Multi-View Detection and
developed a novel GMVD (Generalized Multi-View Detection) dataset using GTA-V and Unity
game engines for the same.

2. Highlighting the shortcomings of the current evaluation methodology and propose novel experi-
mental setup on existing datasets such as WildTrack and MultiviewX.

3. Adapting the baseline architecture to bring generalization to deep MVD. Showing that permutation
invariance of multiple-cameras as an input to the model is crucial for multi-view detection and
average pooling is one minimal way to achieve it. We developed a novel drop view regularization,
where one of the camera view is dropped randomly while training. Usage of the more effective
loss function like KLdiv (KL Divergence) and Cross Correlation (CC).

4. Demonstrated extensive set of experiments and ablation studies. Showing staggering improvements
in scene and configuration generalization, paving the way for a practicable Multi-View Detection.

1.4 Thesis outline

The rest of the thesis is organized as follows: In Chapter 2 we investigate and formulate the general-
ization settings required for real-time or deployabale multi-view detection systems. In addition to this,
propose a method and evaluation strategies to incorporate the generalization aspects. In Chapter 3 we
identify the shortcomings of the benchmarking datasets and generate a generic and diverse synthetic
dataset for multi-view pedestrian detection task using game engines.
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Chapter 2

Generalization in Deep Multi-view Pedestrian Detection

2.1 Related Work

The first step in multiview pedestrian detection is to aggregate information from multiple RGB camera
views. In 2.1.1 and 2.1.2, given a fixed assumption of human height and width, researchers fused multiple
sources of information for multi-view 2D anchors. The corresponding multi-view 2D anchor boxes and
all the ground plane locations are calculated first. In 2.1.3, anchor-free approach is been used which
replaces inaccurate anchor boxes by sampling feature vectors from feature maps at corresponding points
to represent ground plane locations.

2.1.1 Classical Methods

Seminal work by Fleuret [14] cast MVD as predicting occupancy probabilities over a discrete grid, an
idea which has stood the test of time. The classical methods in MVD rely on background subtraction to
compute likelihood over a fixed set of anchor boxes derived using scene geometry, project them on the top
view and use mean-field inference or conditional random field (CRF) for spatial aggregration [14, 5, 2].
The classical methods, however observe a gradual degradation in detection performance with increased
crowds, as the background subtraction becomes less effective with increase in crowds and clutter. Some
methods do away with background subtraction and rely on handcrafted classifiers [42] instead.

2.1.2 Anchor based MVD

Anchor based MVD methods replace background subtraction with anchor-based deep pedestrian
detectors like Faster R-CNN [40], SSD [33] and YOLO [39]. Some of these methods process each view
separately [49] and some process them simultaneously [4, 9]. The inaccuracies in the pre-defined anchor
boxes [28] limit the performance of these methods. Even if the boxes are correct, locating the exact
ground point to project in each 2D bounding box presents a challenge and leads to a significant amount
of errors. Moreover, some of the Anchor based methods still rely on operations outside of Convolutional
Neural Networks (CNNs), requiring to work out a balance between different potential terms [4].
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Figure 2.1: Three forms of generalization required in MVD: (a) varying number of cameras, (b) different

camera configurations, and (c) generalizing to new scenes.

2.1.3 End-to-end Deep MVD

MVDet [23] is a recent anchor-free approach that aggregates multi-view information by perspective
transformation and concatenating multi-view feature map onto the ground plane and then performs
large kernel convolution for spatial aggregation. It overcomes limitations of manual tuning of CRF
potentials, reliance on pre-defined 3D anchor boxes and projection errors from monocular detectors. It
aggregates projected features from a ResNet [21] backbone using three convolutional layers to predict the
final occupancy map. MVDet achieves notable improvement over the preceding anchor based methods
(over 14% improvement on the WildTrack dataset [8]). The idea from [23] was further enhanced by
using deformable transformers [52] to improve the feature aggregation in MVDeTr [22]. More recently,
SHOT [44] introduced a combination of homographies at multiple heights to improve the quality of the
projections.

2.2 Generalization in Multi-View Pedestrian Detection

The solutions of Multi-View Detection (MVD) has evolved from classical methods to hybrid ap-
proaches and finally to end-to-end trainable deep learning architectures. Expectedly, the current landscape
of MVD is dominated by end-to-end trainable deep learning methods. By training and testing on ho-
mogeneous data, current deep MVD methods have overlooked critical fundamental concerns, and to
render them useful, the focus should shift towards their generalization abilities. Ideally, three forms of
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generalization abilities are essential for the practical scalability and deployment of MVD methods, which
is illustrated in Figure 2.1.

• Varying number of cameras : The model should adapt to a varying number of cameras (a
network trained on six camera views, should work on a setup with five cameras). The model need
not to be re-trained again in such situations.

• Varying camera configuration : The model should not overfit to the specific camera postion and
orientation. The performance should be similar even with altered camera positions, as long as they
span the same dedicated ROI in the environment.

• Scene Generalization : Models trained on one scene should work on another scene (eg:- model
trained on a traffic signal should work on a setup inside a university).

The most important property to be considered for generalization in an end-to-end trainable model of
multi-camera system is Permutation Invariance property. The solutions proposed in the entire Section
2.1 from classical to End-to-end Deep MVD did not consider the permutation invariance property while
designing the multi-view detection models. We need to understand, why permutation invariance is
important for generalization? The simple anwer to this is, the order in which camera views are given as
an input to the model should have this property of permutation invariance. If we provide camera inputs
in the same sequence every time, the model learns the sequence of inputs, thus we need to change the
sequence of inputs every time and make the model to be invariant to the order in which the inputs are
given . This property also ensures the above mentioned three generalization aspects i.e varying number
of cameras, varying camera configuration and scene generalization.

2.3 Our Developed Method

We developed an anchor free deep MVD method along the lines of [23, 22, 44] specifically tailored
to improve the generalization abilities by modifying the training objective and making use of an average
pooling strategy on the projected feature maps. The overall architecture of model is shown in Fig. 2.2.
The input to our pipeline are multiple calibrated RGB cameras with overlapping fields of view, and the
expected output is the occupancy map for pedestrians.

2.3.1 Feature Extraction and Perspective Transformation

Feature Extractor: We use a ResNet18 [21] backbone as a feature extractor replacing last three
strided convolutions with dilated convolutions to have a high spatial resolution of the feature maps. Given
N camera views of image size (3, Hi,Wi), where Hi and Wi corresponds to height and width of images,
C-channel features are extracted for N camera views which corresponds to size (N,C,Hf ,Wf ), where
Hf and Wf represents the height and width of the extracted features.
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Figure 2.2: Our developed architecture: ResNet features are extracted from the input views, which are

then projected to the top view. Following this, the projected features across views are pooled and then the

final occupancy map is predicted. The use of average pooling across views is crucial in ensuring that our

architecture can work for an arbitrary number of views.

Perspective Transformation: The extracted features from the feature extractor are then projected
to the ground plane using a perspective transformation, where (Hg,Wg) corresponds to the height and
width of the ground plane grid. Considering the calibrated cameras, K represents the intrinsic camera
parameters and [R|t] represents the extrinsic camera parameters (R is the rotation matrix and t is the
translation vector).

In the world coordinate system, the ground plane corresponds to Z = 0, i.e., W = (X,Y, 0, 1)T . A
pixel of an image I = (x, y)T is transformed to the ground plane as follows:

I = s

x

y

1

 = K[R|t]


X

Y

Z

1

 = P


X

Y

Z

1

 (2.1)

where perspective transformation matrix is denoted by P and scaling factor by s.

2.3.2 Spatial Aggregation

Average Pooling: We first project the ResNet feature maps from each viewpoint on to the bird’s
eye view using the perspective transformation to obtain the projected feature maps fmi (where, i =
1, 2, ..., N). Following this, we average pool the projected feature maps fmi to obtain the final bird’s
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Figure 2.3: An illustration of DropView regularization

eye view feature representation F of size (C,Hg,Wg), which is written as,

F =

∑N
i=1 fmi

N
. (2.2)

While there can be many other alternatives to average pooling, we opt for this solution, primarily
because it is permutation invariant. Unlike MVDet, where the camera views ideally need to be input in
the same order as training during inference, the developed solution can accept arbitrary number of views
in an arbitrary order. Furthermore, the average pooling solution is free from any learnable parameters
which ensures that there is no overfitting introduced due to this operation. The projected feature maps
for N cameras of size (N,C,Hg,Wg) after average pooling, reduces to (C,Hg,Wg), thus removing the
dependency over the number of camera views thereby allowing the model to take an arbitrary number of
views as input.

DropView Regularization: Inspired by Dropout [45] as well as work on self-supervised learning
which drops color channels to prevent the model from memorization [25, 29], we use the DropView
regularization technique. For each sample, we randomly select one view to discard during training
iterations, as illustrated in Fig 2.3. The occupancy map prediction step is done with all the remaining
views. We provide a detailed analysis of the effect of this regularization strategy in our experiments.

Occupancy Map Prediction: Similar to MVDet [23], we use 3 dilated convolutional layers to predict
the occupancy map of size (Hg,Wg).

2.3.3 Loss Function

The loss function is the comparison of the output probabilistic occupancy map (p) and the ground-
truth (g). Inspired by the work on saliency estimation in images and vidoes [7, 38, 24], the combination
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of Kullback–Leibler Divergence (KLDiv) and Pearson Cross-Correlation (CC) metrics is used as a loss
function. The combined loss function can be written as:

L(p, g) =
σ(p, g)

σ(p)× σ(g)
−
∑
i

gi log

(
gi
pi

)
, (2.3)

where the covariance of p and g is given by σ(p, g), the standard deviation of p as σ(p) and the standard
deviation of g as σ(g). The loss function was selected empirically using the scene generalization
experiment, i.e. training on MultiViewX and testing on WildTrack , where using KLDiv+CC gave best
results (compared with MSE, CC or KLDiv alone).

2.4 Experiments

2.4.1 Experimental setup

Datasets: In addition to our GMVD dataset, we use the WildTrack and MultiViewX datasets. The
WildTrack dataset consists of 7 static calibrated cameras with overlapping fields of view, covering an
area of 12× 36m2. The dataset comprises a single 200 second sequence annotated at 2 fps. The image
resolution is 1080 × 1920 pixels. The ground plane grid is discretized into a 480 × 1440 grid, where
each grid cell is 2.5 cm square. On average, the dataset captures 23.8 persons per frame. The synthetic
dataset MultiViewX has similar configurations as the WildTrack dataset. However, it consists of 6 static
calibrated cameras with overlapping fields of view and 400 synchronized frames of resolution 1080
× 1920 annotated at 2 fps for ground-truth covering an area of 16× 25 m2. The ground plane grid is
discretized into a 640×1000 grid, where each grid cell is 2.5 cm square. On average, the dataset captures
40 persons per frame. For both datasets, 90% frames are used in training and the last 10% frames for
testing, as done in previous work [23, 8].

Evaluation metrics: We use the standard evaluation metrics proposed in [8]. Multiple Object
Detection Accuracy (MODA) is the primary performance indicator that accounts for normalized missed
detections and false positives, i.e., it considers both false negatives and false positives. Multiple Object
Detection Precision (MODP) assesses the localization precision [26]. Precision and Recall is calculated
as shown in Chapter 1 and subsection 1.2.4. A 0.5 meters threshold is used to determine the true positives.

State of the Art comparisons: We compare against nine different methods. The set includes one
monocular object detection baseline (referred to as RCNN clustering [49]); a classical probabilistic
occupancy map method [14]; four anchor based methods [30, 4, 9, 34] and three recent end-to-end
trainable deep MVD approaches [23, 22, 44]. For generalization experiments, we only compare against
the recent state-of-the-art methods MVDet [23], MVDetr [22] and SHOT [44].

2.4.2 Implementation Details

Down sampled images of 720× 1, 280 pixels serve as an input to the model. The feature extracted
from ResNet-18 has C = 512 channel features, which is bilinearly interpolated to get the shape of
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Table 2.1: Comparison against the state-of-the-art methods. Our method refers to the developed model

in Section 2.3. We made five runs for some of the experiments and the variances are presented in the

bracket.

Method
ImageNet

(pre-train)

WildTrack MultiViewX

MODA MODP Prec Recall MODA MODP Prec Recall

RCNN Clustering [49] × 11.3 18.4 68.0 43.0 18.7 46.4 63.5 43.9

POM-CNN [14] × 23.2 30.5 75.0 55.0 - - - -

Lopez-Cifuentes [34] × 39.0 55.0 - - - - - -

Lima [30] × 56.9 67.3 80.8 74.6 - - - -

DeepMCD [9] × 67.8 64.2 85.0 82.0 70.0 73.0 85.7 83.3

Deep-Occlusion [4] × 74.1 53.8 95.0 80.0 75.2 54.7 97.8 80.2

MVDet [23] × 88.2 75.7 94.7 93.6 83.9 79.6 96.8 86.7

MVDeTr [22] ✓ 91.5 82.1 97.4 94.0 93.7 91.3 99.5 94.2

SHOT [44] × 90.2 76.5 96.1 94.0 88.3 82.0 96.6 91.5

Ours × 87.2(±0.6) 74.5(±0.4) 93.8(±1.6) 93.4(±1.8) 78.6(±0.9) 78.1(±0.4) 96.8(±0.5) 81.3(±0.9)

Ours ✓ 85.4(±0.4) 76.7(±0.2) 95.2(±0.4) 89.9(±0.8) 86.9(±0.2) 79.8(±0.1) 97.2(±0.2) 89.6(±0.2)

Ours (DropView) ✓ 86.7(±0.4) 76.2(±0.2) 95.1(±0.3) 91.4(±0.6) 88.2(±0.1) 79.9(±0.0) 96.8(±0.2) 91.2(±0.1)

270× 480. These (N,C = 512, Hf = 270,Wf = 480) extracted features are projected onto top view to
obtain (N, 512, Hg,Wg) sized features for N viewpoints, which are average pooled to obtain the ground
plane grid shape of (512, Hg,Wg). Hg and Wg vary from scene-to-scene, depending on the area of
ground plane.

The spatial aggregation has three layers of dilated convolution with a 3× 3 kernel size and dilation
factor of 1, 2, and 4. Training is done for ten epochs with early stopping; we set batch size as 1, SGD
optimizer with momentum = 0.9 has been used with one-cycle learning rate scheduler. A probability of τ
or more on the occupancy grid is considered a detection. For GMVD experiments, τ is determined using
MultiViewX as a validation set, and for other experiments, we use τ = 0.4 in alignment with the previous
works. Non-Maximal Suppression (NMS) is applied with a spatial resolution of 0.5m. All training and
testing have been performed on a single Nvidia GTX 1080 Ti GPU. Unless specifically mentioned, we
always use pre-trained ImageNet [11] weights while training our model.

2.4.3 Results

Like prior works, we evaluate our approach on the WildTrack and MultiViewX datasets in Table 2.1.
We find that our developed models attains satisfactory performance on the test sets of both WildTrack
(best MODA score of 87.2) and MultiViewX (best MODA score of 88.2). This is slightly worse than
the recently proposed methods [22, 44], but is far superior to the performance of the classical and
the anchor-based MVD methods. However, we would like to highlight that the traditional evaluation
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Table 2.2: Results for evaluating with a varying number of cameras. The model is trained on all 7 cameras

on WildTrack, and is tested on 2 different sets of 4 cameras each.

Inference on {1,3,5,7} Inference on {2,4,5,6}

Method MODA MODP Prec Recall MODA MODP Prec Recall

MVDet 38.9 71.5 93.8 41.6 16.2 47.6 80.3 21.4

MVDeTr 55.8 76.7 80.8 73.2 34.6 69.2 68.6 63.8

SHOT 66.6 75.1 91.0 73.9 46.3 67.8 88.2 53.5

Ours 76.5 74.0 91.7 84.0 79.3 71.4 91.1 87.9

Ours (DropView) 77.0 74.5 90.3 86.2 79.2 72.5 88.6 90.9

protocol is highly misleading since the train and test sets have significant overlap, thereby encouraging
overfitting. Therefore, we emphasize the evaluation across a varying number of cameras, changing
camera configurations, and on new scenes.

Generalization to Varying Number of Cameras: An interesting scenario that can potentially occur
in practical scenarios is the loss of some camera feeds due to various issues. In this case, a model trained
with 7 cameras, may need to be able to perform inference with just 4 cameras. To simulate this setting,
we train all the models (MVDet, MVDeTr, SHOT and Ours) on all 7 cameras and test them on 2 different
sets of 4 cameras ({1,3,5,7},{2,4,5,6}) in Table 2.2. Our model is able to naturally work in this
setting without any issues. For MVDet, MVDeTr, and SHOT, we randomly duplicate 3 of these views
to ensure that 7 views are available. We observe that the performance of MVDet, MVDeTr, and SHOT
degrades drastically when evaluated in this setting. When trained with the DropView regularization,
our model outperforms these methods by a huge margin (MODA of 77.0 vs 66.6 and 79.2 vs 46.3).
This experiment clearly illustrates the need for the architectures to automatically work with an arbitrary
number of views. Furthermore, since MVDet, MVDeTr, and SHOT learn a separate spatial aggregation
module for each view, the spatial aggregation module overfits to the order of input cameras (indicated by
the significant performance variations across the two sets). Future works should ensure that the model
has permutation invariance to the order of input views in addition to working with an arbitrary number of
views.

Generalization to New Camera Configurations: Another practical scenario that we explore is when
the camera positions are varied between the train and test sets. We train all the models on two sets of
camera views and then test the trained models on both sets. The results are provided in Table 2.4. When
the models are evaluated on the same camera configuration, all the models have satisfactory performance.
However, when evaluated on the different camera configuration, MVDet, MVDeTr, and SHOT see a huge
degradation in performance. Our model is fairly robust to the changing camera configuration. Especially
when trained with DropView regularization, the resulting model outperforms all other models by over 20
percentage points.
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Table 2.3: Scene Generalization : Evaluation of our method while training on synthetic dataset (Multi-

ViewX) and testing on real dataset (WildTrack). Camera 7 of the WildTrack dataset was discarded for

the experiments in the first five rows.

Method
Inference on

total cameras

ImageNet

(pre-train)
MODA MODP Prec Recall

MVDet 6 × 17.0 65.8 60.5 48.8

MVDeTr 6 ✓ 50.2 69.1 74.0 77.3

SHOT 6 × 53.6 72.0 75.2 79.8

Ours 6 ✓ 60.1 72.1 75.6 88.7

Ours (DropView) 6 ✓ 66.1 72.2 82.0 84.7

Ours 7 ✓ 69.4 72.96 83.7 86.14

Ours (DropView) 7 ✓ 70.7 73.8 89.1 80.6

5

26

4
1

5

37

Camera set {2,4,5,6} Camera set {1,3,5,7}

Figure 2.4: Camera splits of WildTrack dataset for changing camera configuration experiment.

Scene Generalization: Finally, an important concern with the practical utility of MVD methods is
that since real-world data is scarce, a trained model should be able to generalize to new scenes. We first
evaluate the scene generalization abilities of the MVD methods by training them on MultiViewX and
evaluating them on WildTrack in Table 2.3. Our model is able to utilize the extra camera present in
the WildTrack dataset and achieves a MODA score of 70.7. This further highlights the benefits of an
architecture that works with arbitrary number of views, since the performance during inference can be
enhanced by adding more view. However, even without the additional view, our model achieves a MODA
score of 66.1, which is much higher than SHOT which only achieves a MODA score of 53.6.

In addition to this, we perform the scene generalization experiment proposed in [44] where the
MultiViewX scene is split into two halves, and each half is covered using 3 cameras each. In this setting
as well (Table 2.5), our approach with DropView regularization has a MODA score of 66.1, which is
significantly higher than both SHOT (49.1) and MVDeTr (56.5).
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Table 2.4: Experiments on the WildTrack dataset with changing camera configurations

Inference on {2,4,5,6} Inference on {1,3,5,7}

Method MODA MODP Prec Recall MODA MODP Prec Recall
Tr

ai
ne

d
on

ca
m

er
a

se
t

{2
,4

,5
,6
}

MVDet 85.2 72.2 92.6 92.5 43.2 68.2 94.6 45.8

MVDeTr 75.4 79.5 96.9 77.9 41.7 73.7 92 45.7

SHOT 81.9 74.1 94.1 87.4 51.4 72.5 94.4 54.6

Ours 81.8 73.5 93.5 87.9 66.5 71.4 94.3 70.8

Ours (DropView) 84 72.9 92.4 91.6 75.1 71.1 94.3 79.9

{1
,3

,5
,7
}

MVDet 27.8 68.7 90.8 31.0 78.2 73.6 89.5 88.6

MVDeTr 5.6 65.5 62.4 14.0 72.5 78.9 95 76.5

SHOT 15.3 62.9 89.2 17.4 79.7 76.4 95.7 83.5

Ours 52.4 67.4 81 68.5 76.4 74.6 91.5 84.1

Ours (DropView) 62.6 67.4 86.7 73.9 80.8 74.0 94.2 86

Table 2.5: Changing configuration and scene generalization experiment on the setting introduced in [44]

Method MODA MODP Prec Recall

MVDet 33.0 76.5 64.5 73.4

MVDeTr 56.5 70.8 85.0 68.6

SHOT 49.1 77.0 73.3 77.1

Ours 57.8 76.5 88.7 66.3

Ours (DropView) 66.1 75.8 89.3 75.2

2.5 Choice of Loss Function

We ablate the choice of the loss function in Table 2.6 for the scene generalization experiment. We
consider the Mean Squared Error (MSE), KL-Divergence(KL), Pearson Cross-Correlation (CC), as well
as our chosen loss function (KL+CC). We find that the combination of KL-Divergence and Pearson
Cross-Correlation achieves significantly better results than any other loss function.

2.6 Qualitative results

First we show the predicted occupancy maps of MVDet, MVDeTr, SHOT and our method and
compare them with the ground truth, in the traditional setting. Subsequently, qualitative results are shown
w.r.t to three generalization abilities obtained from both the WildTrack and MultiViewX datasets.
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RGB N Camera View Input Ground Truth MVDet OursMVDeTr SHOT

Widltrack

MultiviewX

Figure 2.5: Sample frames from WildTrack and MultiViewX dataset with corresponding occupancy maps

of ground truth, our result MVDet, MVDeTr and SHOT for comparison. We can see the clusters forming

in the MVDet predictions, in contrast our method gives much sharper and distinct predictions.

Ground Truth View {1,2,3,4}View {1,2,3}

MODA : 46.3%

View {1,2,3,4,5,6}View {1,2,3,4,5}

MODA : 66.8% MODA : 81.9% MODA : 84.1%

Figure 2.6: Occupancy maps for varying number of cameras on WildTrack dataset when trained on seven

cameras and tested on varying subsets of the cameras.

Method
ImageNet

(pre-train)
MODA MODP Prec Recall

MSE ✓ 57.3(±0.2) 72.6(±0.0) 75.6(±0.1) 84.5(±0.05)

CC ✓ 55.5(±5.5) 74.2(±0.4) 72.1(±4.4) 89.5(±2.6)

KL ✓ 62.5(±0.1) 73.4(±0.04) 89.1(±0.0) 71.3(±0.0)

KLCC ✓ 69.4(±0.6) 72.96(±0.2) 83.74(±0.5) 86.14(±0.3)

Table 2.6: Choice of Loss Function: we present an ablation study for our method on the scene generaliza-

tion experiment. Overall, the model trained with both KL-Divergence and Cross-Correlation achieves the

best performance.

2.6.1 WildTrack Dataset

The traditionally evaluated results which contains occupancy maps of ground truth, our method,
MVDet, MVDeTr and SHOT are shown in Fig. 2.5. The occupancy map from our method which uses
average pooling, KLCC loss function and ImageNet pretraining gives us more accurate localization as
compared to the base MVDet architecture. The results (maps) are competitive when compared to SHOT
and MVDeTr. The maps obtained using MVDeTr are sharper and focused, however, it also has more
false positives.
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Train on
camset

Test on
camset

{2,4,5,6}

{1,3,5,7}

{1,3,5,7}

{2,4,5,6}

OursMVDet MVDeTr SHOT

Figure 2.7: Result occupancy maps for cross subset evaluation from WildTrack dataset.

Varying number of cameras: The output occupancy map for varying number of cameras are shown
in Fig. 2.6. WildTrack consists of seven cameras, we show the results inferred with three cameras upto
six cameras. As the number of views are increasing, we get an accurately localized occupancy map.

Changing camera configurations: The output occupancy map for cross subset evaluation are shown
in Fig. 2.7. Here, we have the occupancy maps for a model trained on one set and tested on other set. For
example, trained on camera views one, three, five and seven and tested on cameras two, four, five and six
or vice-versa like the camera splits shown in Figure 2.4. Clearly the pre-training is improving localization
in both the methods. Furthermore, our method with average pooling is better at disambiguating the
occlusions and also giving brighter outputs (resulting in sharp maxima’s).

2.6.2 MultiViewX Dataset

In this subsection the qualitative results for MultiViewX dataset are been shown. We consider similar
configurations as in the Wildtrack dataset. The obtained results clearly indicates the improvements our
method brings over the MVDet, MVDeTr and SHOT model and observations are similar to that of the
Wildtrack dataset. Fig. 2.5 shows the traditionally evaluated results.

Varying number of cameras: The output occupancy map for varying number of cameras are shown
in Fig. 2.9. MultiViewX consists of six cameras, we show the results inferred with three cameras upto
five cameras. As the number of views are increasing, we get an accurately localized occupancy map.

Changing camera configurations: The output occupancy map for cross subset evaluation are shown
in Fig. 2.10. Here, we have the occupancy maps for a model trained on one set and tested on other set.
For example, trained on camera views one, three, and four and tested on cameras two, five and six or
vice-versa, the camera splits are shown in Figure 2.8 and their results are shown in Table 2.7.

2.6.3 Scene Generalization

The qualitative results of output occupancy map for cross-dataset evaluation are shown in Fig. 2.11,
when we train on synthetic dataset (MultiViewX ) and test on real dataset (WildTrack ). First four
occupancy maps are the outputs of MVDet, MVDeTr, SHOT and our method when tested on only 6
views of WildTrack dataset for having a fair comparison with other methods. We also show the output

24



Inference on {1,3,4} Inference on {2,5,6}

Method MODA MODP Prec Recall MODA MODP Prec Recall

Tr
ai

ne
d

on
ca

m
er

a
se

t

{1
,3

,4
}

MVDet 72 76.1 93.5 77.4 46.3 66.4 94.5 49.1

MVDeTr 77.4 85.1 97.9 79 60.4 71.3 95.4 63.5

SHOT 74.3 76.3 94.1 79.3 37.3 67 67.5 72.1

Ours 67.7 76.4 96.2 70.5 59.6 73.4 94.7 63.2

Ours (DropView) 67.3 75.3 98.4 68.5 62.9 73.6 96.3 65.4

{2
,5

,6
}

MVDet 34.3 66.2 93.8 36.7 77.6 77.4 93.8 83.1

MVDeTr 51.1 72.1 94.9 54 83.1 87.1 97.8 85

SHOT 47.3 73 94.2 50.3 80.7 78.7 96.1 84.1

Ours 45.8 71.8 94.5 48.6 76.1 78.7 95.9 79.5

Ours (DropView) 53.4 71.6 88.2 61.6 75.2 77.4 92.8 81.5

Table 2.7: Experiments on the MultiViewX dataset with changing camera configurations

1

4

3

56

2

Camera set {1,3,4} Camera set {2,5,6}

Figure 2.8: Camera splits of MultiViewX dataset for changing camera configuration experiment shown

in Table 2.7.

occupancy map when tested on all the views of WildTrack dataset. Our method provides accurately
localized occupancy maps and disambiguate the occlusions as compared to other methods.
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Ground Truth View{1,2,3} View{1,2,3,4} View{1,2,3,4,5}

MODA : 48.7% MODA : 72% MODA : 81.8%

Figure 2.9: Occupancy maps for varying number of cameras on MultiViewX dataset when trained on

seven cameras and tested on varying subsets of the cameras.

{1,3,4}

{2,5,6}

{2,5,6}

{1,3,4}

OursMVDetTrain on
camset

Test on
camset SHOTMVDeTr

Figure 2.10: Result occupancy maps for cross subset evaluation from MultiViewX dataset.

Trained on
MultiViewX Ground Truth Ours  (All views)Ours  (6 views)MVDet  (6 views)Tested on

WildtTrack MVDeTr  (6 views) SHOT (6 views)

Figure 2.11: Occupancy maps obtained on inference from WildTrack dataset where the models where

trained on the synthetic dataset (MultiViewX ).
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Chapter 3

Multi-View Detection Dataset

3.1 Introduction

In recent years, AI and ML have had a significant impact on a wide range of applications ranging
from images, videos to text understanding and speech recognition. Many of the recent successes can be
attributed to improved computation and a large amount of training data. Data collection has emerged as
a critical bottleneck amongst many challenges in machine learning. It is well known that the majority
of the time spent on running machine learning end-to-end is spent on data preparation, which includes
collecting, cleaning, visualising, analysing and feature engineering. While all of these steps take time and
because of insufficient training data, data collection becomes very important and has recently become
a challenge in newer applications. Furthermore, as deep learning has grown in popularity, there is an
increased demand for training data. Feature engineering is one of the most difficult steps in traditional
machine learning because the user must understand the application and provide features used for training
the models. On the other hand, Deep learning can generate features automatically, saving us from the
need for feature engineering, which is an essential part of data preparation. But deep learning requires
more training data to perform well. As a result, accurate, scalable, and large amounts of data for training
AI models have become the necessity. Figure 3.1. shows an overview of the data collection research
landscape for machine learning and AI tasks. Labeling data has traditionally been a natural topic of
research for machine learning problems. Semi-supervised learning, for example, is a classic problem
where model training is performed on a small amount of labeled data and significantly high amount of
unlabeled data. However, because AI models must be trained on massive volumes of training data, data
management issues such as acquiring large datasets, performing data labeling at scale, and improving the
quality of huge amounts of existing data become increasingly important.

While traditional computer vision methods did not require any training data, making them unsuper-
vised techniques, the performance of methods based on the supervised learning paradigm heavily depends
on the size and quality of training datasets. Deep learning’s enormous potential, in particular, can only be
fully realised with large datasets. Significant research effort has gone into developing such datasets, for
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Figure 3.1: Research landscape of data collection for ML and AI tasks

example some famous datasets are ImageNet [11], MNIST [12], MS COCO [31], CityScapes [10], or
the NYU dataset [35]. These datasets have enabled the majority of recent advances in computer vision.
But there are various challenges to collect such large scale real datasets and there becomes a need for
synthetic dataset. In subsequent subsections 3.1.1 and 3.1.2 will discuss about the key challenges for
collecting real dataset and the importance of synthetic dataset.

3.1.1 Key Challenges of collecting Real Dataset

3.1.1.1 Biased Data

The undesirable patterns or behaviors that learned from data are termined as bias, these are highly
influential in the model decisions but are not aligned with the ideal decision of the society in which
they operate. Bias in models can occur due to a variety of factors, including age, gender, race, or even
the intersection of these and other characteristics. Such bias occurs when model is deployed and when
training data underrepresents some subset of the population as input.

3.1.1.2 Consent and Privacy

These are the concepts that computer vision practitioners do not adequately address in data collection.
Human subjects research is exempt from the review of Research Ethics Board when it is based on publicly
available information and the recognized individuals who have no expectation of privacy. To what extent
do people give up their right to privacy when they post content online or when others post content about
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them without their permission?. For example, in face recognition, researchers frequently rationalise data
collection by restricting datasets to identities of celebrities, assuming that these individuals have lower
privacy expectations. Some researchers allow individuals, celebrity or not, to opt-out of being included
in face datasets, indicating an appreciation for the collection’s non-consensual nature.

3.1.1.3 Annotation and Labelling Cost and Time

Labels or annotations in are often termed as “ground truth”. To label the data, the annotation and
labelling process for computer vision requires a great deal of skill, knowledge, and effort. While labelling
various problems are been encountered which makes the labelling tasks more time taking and ineffective.
The challenges which are faced during this process are; first, to manually annotate label data images,
we require a large workforce capable of producing a large volume of training data; second, it is not
enough to simply generate data; maintaining high quality is also necessary; otherwise, the models will
not be trained with the appropriate inputs, therefore, requires labelers to have domain expertise; third, to
generate high quality data selection of right tools and techniques is also vital; fourth, the most important
part in annotation and labelling process is the cost involved for generation of such massive data.

3.1.1.4 Other Challenges

Recently, because of COVID-19 pandemic and restictions in place, collecting real data was a bigger
challenge which involves humans, other living beings, vehicles, other non-living objects for applications
such as multi-object detection and tracking, sports, self-driving cars, surveillance, etc. Hardware setup
in computer vision applications such as, placements and positions of multiple cameras in multi-camera
setup, camera calibrations, etc. are also one of the critical challenges faced in real data collection process.

3.1.2 Importance of Synthetic Dataset

Synthetic data is validated information generated by computer simulations or algorithms in place
of real-world data. For decades, synthetic data has existed in some form or another. It can be found in
computer games such as flight simulators and scientific simulations. Gartner 3.2 predicted in a June
2021 report on synthetic data that by 2030, most of the data used in AI will be generated artificially by
rules, statistical models, simulations, or other techniques. In dealing with privacy concerns and reducing
bias; synthetic data are important by ensuring information diversity to accurately represent the real world.
Everything in a synthetic data simulations can be controlled, i.e they are fully user controlled. They are
perfectly annotated, a variety of annotations are generated automatically, which is one of the main reasons
why synthetic data is so inexpensive when compared to real data. The primary cost of synthetic data is
the initial investment in developing the simulation. Following that, generating data is exponentially less
expensive than real data. Multi-spectral data can be generated from synthetic data, i.e autonomous vehicle
manufacturers have realized that collection and annotation of non-visible or real data is more difficult.
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Figure 3.2: Gartner prediction for synthetic dataset usage in AI tasks.

This is the reason they have been among the most vocal supporters of synthetic data. Simulations are
used by companies such as Alphabet’s Waymo and General Motors’ Cruise to generate synthetic LiDAR
data. Because this data is synthetic, the ground truth is known, and the data is labelled automatically.
Similarly, synthetic data works well in computer vision applications involving infrared or radar imagery,
where humans cannot fully understand the imagery.

Given the challenges of collecting real dataset and benefits for generating synthetic dataset. The
formulation and evaluation strategies of three generalization settings discussed in previous Chapter 2
and the shortcomings of current benchmark datasets from Figure 3.3 motivates to curate the generic and
diverse dataset. So, in thesis, we are focussing our work on curating a synthetic multi-view pedestrian
detection dataset which is generic and diverse and can be used for evaluating the generalization capabilities
of the MVD methods. In section 3.2 we will discuss about the multi-camera pedestrian detection datasets
been used in the literature. In Section 3.3, the steps involved in dataset generation and in Section 3.4
we define the charachterisitcs of the curated dataset and finally in Section 3.5 we show the epxeriments
performed and the state-of-the art results.

3.2 Related Work

We list the commonly used pedestrian datasets with a focus on the multi-camera ones. As overlapping
we refer to multi-camera datasets whose camera’s have strictly overlapping fields of view.
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Table 3.1: Commonly used multi-camera person detection and tracking datasets.

Dataset Resolution Overlapping IDs # Cameras Ground Truth

Duke MTMC 1920×1080 × 2000 8 -

PETS 2009 S2.L1 720×576 ✓ 19 7 2D

Laboratory 320×240 ✓ 6 4 3D

Terrace 320×240 ✓ 9 4 3D

Passageway 320×240 ✓ 13 4 3D

SALSA 1024×768 ✓ 18 4 3D

Campus 1920×1080 ✓ 25 4 2D

EPFL-RLC 1920×1080 ✓ - 3 3D

WildTrack 1920x1080 ✓ 313 7 2D, 3D

MultiViewX 1920x1080 ✓ 350 6 2D, 3D

GMVD (Ours) 1920x1080 ✓ 2800 3, 5, 6, 7, 8 2D, 3D

Duke MTMC Duke MTMC [41] dataset does not belong to this category, as only 2 of its camera’s
fields of view slightly overlap. Being a real dataset, in 2019 original authors have terminated the Duke
MTMC dataset.

PETS 2009 S2.L1 The most widely used dataset with an overlapping camera setup is the PETS
2009 S2.L1 [13] sequence. In part due to the slope in the scene, the provided calibration poses large
homography mapping deterioration and inconsistencies in the projection of 3D points across views (as
noted also in [[37], p. 10], [[16], p. 10], [[9], p. 3]). Besides being a small scale dataset, the PETS
2009 S2.L1 is acquired in an actor setup. Hence it does not allow for good generalization and fair
benchmarking of appearance based methods. Recently PETS 2009 dataset also has been taken down.

EPFL campus The three sequences which are been shot at the EPFL campus [14]: Laboratory, Terrace
and Passageway is overlapping multi-camera datasets, they have a small total number of identities and
are relatively sparsely populated. From Table 3.1 we can see that, Laboratory, Terrace and Passageway
are of very small size and has low image quality.

SALSA The SALSA [3] also has overlapping multi-camera setup, a cocktail party of 30 minutes is
recorded, where the people are not moving most of the time i.e static, making this dataset less difficult.

Campus The Campus [49, 50] has multi-camera setup with overlapping fields of view, but does not
provide 3D annotations to localize people.

EPFL-RLC The EPFL-RLC [9] dataset outperforms PETS in terms of joint-calibration accuracy
and synchronisation. However, rather than providing a complete groundtruth, this dataset represents a
collection of a balanced set of positive and negative multi-view annotations and is used for classification
of a position as occupied by a pedestrian. Entire ground-truth annotations are provided for a small subset
of the last 300 of the total 8000 frames, originally used for testing [12]. Moreover, it is acquired with only
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three cameras which have a much more limited field of view. This results in a approx. 10-fold smaller
number of detections on average per frame.

Wildtrack The Wildtrack [8] improves upon other multi-camera person datasets because of (i)
the high precision calibration and synchronisation between the cameras; and (ii) the large number of
annotations that allows for developing deep learning based multi-view detectors. It exceeds the total
number of annotations and the regions of interest (ROI’s) are of significantly larger resolution. It consists
of 7 static cameras with overlap FOV’s and 400 synchronized frames. Wildtrack being a real dataset
is highly acceptable dataset for benchmarking the multi-camera pedestrian detection models. But the
dataset have only one camera configuration, with same scene and using same number of cameras. Even
the environmental conditions (time, weather, etc.) are similar across train and test splits i.e its comprises
of single short sequence.

MultiviewX The synthetic dataset MultiviewX [23] is curated using Unity engine [1] and which
uses models of human from PersonX [46]. It has 6 cameras and slighlty smaller ROI’s and rest it has
same configuration as Wildtrack dataset such only one camera configuration, wih same scene, with same
number of cameras and same environment conditions across train and test splits.

Given the absence of diverse dataset and shortcomings of benchmark dataset such as Wildtrack (real)
and MultiviewX (synthetic). From Figure 3.3 it shows that the evaluation strategy in both these datasets
is unreliable and prone to overfitting. Therefore in this thesis, we have curated a diverse synthetic
dataset known as Generalized Multi-View Detection (GMVD) dataset to exploit and benchmark the
generalization abilities of the multi-view detection systems.

3.3 Generalized Multi-View Detection Dataset Generation

In the thesis, using Grand theft Auto V (GTA V) and Unity Game Engine we are curating a synthetic
dataset for multi-view detection task and to support our generalization claims as mentioned in Chapter 2.
Figure 3.4 demonstrates general data collection pipeline adopted in this thesis.

3.3.1 GTA V

Grand Theft Auto V (GTA V) [15] is a 2013 action-adventure game developed by Rockstar North
and published by Rockstar Games. Which is made up state of San Andreas i.e it is fictional. The
commercial video game Grand Theft Auto V (GTA V) has detailed all aspects of the world with realistic
graphics, and provides a diverse environment for data collection. Grand Theft Auto V’s publisher allows
non-commercial usage of the frames and video sequences of the game with certain restrictions such as
spoilers should not be distributed.
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Figure 3.3: Shortcomings of benchmark datasets : The train and test sets of Wildtrack (first row) and

MultiViewX datasets (second row) have significant overlap. We show the last image of the training set

(left) and the first image of the test set (right). In both datasets, the appearance of several pedestrians is

already seen in the training set. In Wildtrack, there are many static pedestrians as well. The MultiviewX

dataset contains frames which shows the collision of two human models as highlighted with green in the

(last row) sample frame.
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Figure 3.4: Data collection flowchart

3.3.2 Scripthook V

Script Hook V [6] is a free utility for the video game which allows you to use script native functions
for GTA V with custom ASI plugins. This mod, created by Alexander Blade, is a plugin library that also
includes the most recent Native Trainer and ASI Loader. This allows your mods to function and interact
properly with the popular game Grand Theft Auto V. The tool doesn’t work for online version of Grand
Theft Auto.

3.3.3 Unity Engine

Unity [1] is a game engine which can be created on multiple platforms. In 2005, Unity Technologies
released Unity engine. Unity’s primary focus is the creation of 3D and 2D games, as well as interactive
content. It is used as a framework that allows you to create once and publish everywhere. Time and cost
are reduced when we use some Unity features such as asset tracking, rendering, and scripting. Recently
unity has developed a toolkit for generating computer vision dataset on a large scale using Perception
package [47]. It is currently focused on a few camera-based use cases, but will eventually expand to
other types of machine learning tasks.

3.3.4 Data Acquisition using GTA V and Unity game engines

We used Script Hook V library to interface with the GTA V environment and used MTA-Mod [27],
this repository contains two Grand Theft Auto V Mods which were used for creating the GMVD Dataset.
In Unity environment, we used PersonX [46] 3D human models to create the pedestrians. Below are the
the common steps required in curating Multi-view dataset either using GTA or Unity engine.

1. Identifying scene : Exploration of the GTA V game manually to identify the locations where
actual pedestrians movement happens; indoor locations such as subways, and outdoor locations
such as malls, parks, railway station compounds, the airport area, etc. In Unity, the scene is
manually created by putting together 3D models for street, buildings and other props.
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2. Camera positioning and orientation : Once the location is identified, we need to understand the
scene to where we can place the cameras and what would be its orientation, since we want the
cameras to be strictly overlapping.

3. Identifying the ground plane origin and ROI : As we are discretizing the ground plane, we need
to identify the origin of the ground plane and define the Region of Interest (ROI) where we need to
perform detections.

4. Spawning Pedestrians : We can spawn pedestrians at random positions in the scene after placing
cameras and identifying the ROI and origin.

5. Changing time and weather : GTA V provides the control to change the time to morning,
afternoon, night, evening, etc and similarly we can change weather to sunny, cloudy, rainy, snowy,
etc. In Unity, we did not had any time and weather changes.

6. Assigning Tasks to Pedestrians : We can assign tasks/actions to be performed by spawned
pedestrians in the given scene. Tasks such as wander in an area of certain radius, move from one
location to another at certain speed, etc. We require these task to capture random movements of
the pedestrians in the scene.

7. Recording the sequences : We can start recording the sequences once everything is set for a
particular scene. Recording will capture the frames at 41 fps in GTA V and Unity we capture at 30
fps and we store the 2D and 3D positions of the pedestrians at each frame for every camera view
for post-processing step.

8. Camera Calibration : Calibration of cameras to compute intrinsic and extrinsic parameters
need to be performed based on 2D and 3D locations we obtain from the GTA V game and Unity
for obtaining proper annotations w.r.t synchronized multiple cameras. If we don’t get proper
calibrations in post-processing step we need to repeat again the steps 2,4,6 and 7.

In GTA V, all the cameras were positioned above the humans’ average height. Due to hardware
limitation, it is commonplace to have a small synchronization delay in real world multi-camera setups.
To emulate such realistic scenario, we induce a small synchronization error (20-100 ms) between
different camera views [27]. A ground plane was defined for each location, partially overlapping with
each camera’s field of view. Only pedestrians inside the ground plane were considered for multi-view
detection. We relied on the GTA’s navigational AI engine to avoid collision and to obtain realistic
pedestrian behavior. In Unity, just to avoid collision errors (which are present in MultiViewX 3.3 dataset),
pedestrians were spawned at random locations within the region of interest. Steps 1, 2, 3 and 8 being
the most time consuming process since there is no proper documentation for scripthook to obtain the
desired location and its corresponding co-ordinates, placement of camera on the ROI and changing its
orientation. We need to re-verify by calibration process, if desired calibration and annotations are not
generated then need to repeat the steps the above steps.
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Camera View's Occupancy Maps

Figure 3.5: Synchronized camera calibration and sample ground truth annotations generated after post-

processing step are shown in terms of bounding boxes in respective camera view’s and the top view

occupancy maps for GMVD Dataset.

3.3.4.1 Post-processing

Once we get 2D and 3D matchings from the game engines, we do a post-processing step to convert
the 3D game coordinates to a common coordinate system i.e 3D game coordinate of grid plane origin
(-800, -900, 0) gets converted to (0, 0, 0) as the origin which can be further used for re-calibration and
generating annotations. After that, we use similar procedure as mentioned in [23] for synchronised
camera calibrations and generating annotations as a post-processing step. Some of the samples of
annotations in terms of bounding boxes and ground truth occupancy map is being shown in Figure 3.5

3.4 Generalized Multi-view Detection Dataset Characteristics

We generated a new MVD dataset incorporating the three forms of generalization discussed above
(Figure 2.1). Some example frames from the generated Generalized Multi-View Detection (GMVD)
dataset are illustrated in Figure 3.6. The GMVD dataset contains diverse non-overlapping scenes within
and across training and test sets. In contrast, the existing MVD datasets Wildtrack and MultiViewX
include noticeable overlap across train and test splits (single scene, pedestrians appearance, and location),
encouraging existing MVD methods to overfit the dataset-specific aspects and thus hindering their
practicality. The GMVD dataset, by its design, prevents overfitting from happening by keeping a clear
separation in train and test splits.

Capturing a real-world MVD dataset is difficult, primarily because of privacy concerns. The COVID
restrictions also restrict crowded human capture. Moreover, such a dataset requires significant manual
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Training Set Testing Set

GTAV Scenes Unity Scenes GTAV Scenes

Figure 3.6: The generated GMVD Dataset includes seven scenes. Each column illustrates frames from

one of the views from two different sequences of the same scene. The first six scenes are used for training

and the last scene with two configurations are reserved for testing. Additionally, there are noticeable

lighting and weather variations within each scene.

Table 3.2: Dataset Statistics for various MVD datasets. Our proposed GMVD dataset is the largest and

most diverse dataset on a variety of metrics. Avg. coverage refers to the average number of cameras that

cover each point on the ground plane.

Dataset Track Labels IDs # Scenes # Training Frames # Testing Frames # Cameras # Sequences Avg. Coverage

WildTrack ✓ 313 1 360 40 7 1 3.74

MultiViewX ✓ 350 1 360 40 6 1 4.41

GMVD (Ours) ✓ 2800 7 4983 1012 3, 5, 6, 7, 8 53 2.76 - 6.4

annotation effort. Consequently, we curate the GMVD dataset using synthetic environments. The GMVD
dataset is curated using Grand theft Auto V (GTAV) and Unity Game Engine. We employ two different
environments to avoid overfitting to a single synthetic data generation source. This reasoning is aligned
with recent works [19, 51] which utilize multi-source datasets to improve generalization performance.
The GMVD dataset includes seven distinct scenes, one indoor (subway) and six outdoors. One of the
scenes are reserved for the test split. We vary the number of total cameras in each scene and provide
different camera configurations within a scene.

Additional salient features of GMVD include daytime variations (morning, afternoon, evening, night)
and weather variations (sunny, cloudy, rainy, snowy). We generate multiple short sequences for each
scene while randomly varying the daytime and the weather. The generation of multiple random sequences
ensures diversity, as different pedestrians (with different clothing and appearance) are picked in each
case, there are approximately 2800 person indentities as shown in Figure 3.7. The dataset also includes
significant variations in lighting conditions. Local illumination sources come into play due to the presence
of indoor and night scenes. We compare our dataset with the existing ones in Table 3.2. Avg. Coverage
represents the average amount of cameras observing each location. For GMVD, avg. coverage varies
from 2.76-6.4 cameras depending on the scene. In addition to the discussed variations, GMVD is
advantageous due to the dataset size, especially in terms of the total number of individual sequences.
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Unity

GTA V

Figure 3.7: Samples of various person identities are shown from both Unity and GTA V, which are

included in GMVD Dataset.

Table 3.3 shows the comparison of our dataset with exisiting ones based on the ground plane grid area
(ROI) in meters being used for multi-camera detection, the dimensions to generate Top View (Bird’s Eye
View ) represenation of the ROI and the density of the pedestrians in the scene per frame basis (defined
by crowdedness).

Our work focuses on a comprehensive analysis of the problem of Multi-View Detection. However, the
dataset can also be useful for the task of multi-view pedestrian tracking. To this end, for the sequences
generated from the GTAV environment, we collect the track labels while capturing the data. While we
do not use track labels in this work, we provide them with the dataset, which will be beneficial for the
community in the future. We provide a total of 125000 frames with track labels. The GTAV frames for
the GMVD dataset are regularly sampled from these densely annotated sequences.

Thereby, we propose the GMVD dataset as a new benchmark for MVD. We further encourage future
methods to train on the GMVD dataset and test their performance on sparsely available, difficult to
capture real-world datasets like WildTrack .

3.5 Experiments and Results

Having shown in 2 that our model is capable of comprehensive generalization abilities, we show
comparison with other methods and benchmark our developed approach on the GMVD dataset (Table 3.4).
We train our model on the training set of the GMVD dataset and use MultiViewX dataset for validation.
Since each sequence in the training set has a different number of cameras, none of the existing methods
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Table 3.3: Region of Interest (top view area) for various scenes of GMVD Dataset compared with

Wildtrack and MultiviewX

Dataset Grid Area Top View Dimensions Crowdedness

WildTrack 12 × 36 m2 480 × 1440 20 person/frame

MultiViewX 16 × 25 m2 640 × 1000 40 person/frame

GMVD(ours)

GTA scene 1 20 × 30 m2 800 × 1200 20-50 person/frame

GTA scene 2 30 × 12 m2 1200 × 480 20-50 person/frame

GTA scene 3 25 × 25 m2 1000 × 1000 20-50 person/frame

GTA scene 4 29 × 19 m2 1160 × 760 20-50 person/frame

GTA scene 5 28 × 27 m2 1120 × 1080 20-50 person/frame

GTA scene 6 33 × 31 m2 1320 × 1240 20-50 person/frame

Unity scene 1 16 × 25 m2 640 × 1000 40 person/frame

Unity scene 2 16 × 25 m2 640 × 1000 40 person/frame

Table 3.4: Comparison and evaluation of our method when trained on GMVD training set: first column

shows the result on GMVD test set and second column is when tested on WildTrack dataset.

Method
GMVD WildTrack

MODA MODP Prec Recall MODA MODP Prec Recall

MVDet 50.5 72.8 83.6 64.7 69.0 71.1 88.4 79.5

Ours 68.2 76.3 91.5 75.5 80.1 75.6 90.9 89.1

can be adapted to this setting, since they can be trained only on a fixed set of cameras. We stack dummy
top view map to the existing methods to be adapted on our generalization settings and can be trained
on our GMVD dataset. MVDet method was easily adaptable and trained on GMVD dataset by adding
dummy top view map but SHOT and MVDeTr cannot be trained on our GMVD dataset due to their single
view dependency for computation and their significant impact on the loss function. When evaluated on
WildTrack, our model is able to achieve a MODA score of 80.1, which is a significant improvement
over the results from training on MultiViewX. Notably, this shows that training on our synthetic dataset,
we can nearly attain the same performance as training on WildTrack itself. When evaluated on GMVD
test set, our model achieves a MODA score of 68.2. The results empirically suggest the difficulty of the
GMVD test set, compared to WildTrack and MultiViewX, resulting from a distinct train-test split and the
presence of extensive variations. We believe that our dataset can serve two important purposes. The first
is as a diverse, synthetic dataset from which a model can be adapted to real-world data. The second is
that the GMVD dataset itself can be a challenging benchmark to evaluate the generalization capabilities
of MVD methods. In this setting, MultiViewX being used for validation is ideal, since this ensures that
no information from the test set is leaked during training.
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3.6 Discussion and Future work

The biggest limitation in the field of Multi-View Detection is that real-world capture of data is
extremely challenging due to the difficulty in collecting a dataset with people in addition to the challenges
involved in the hardware setup and annotations. The absence of a large, diverse benchmark significantly
hampers the progress of this topic. Therefore, the existing WildTrack dataset is extremely valuable for
the community. However, due to its limited size and variety, it is not suitable for training and should
only be used to evaluate the generalization abilities of the models. In this regard, we hope that our
curated dataset and our barebone model serves as a useful tool in bridging the gap between the theory
and real-world application of MVD methods. In our work, we have not explored the use of unsupervised
domain adaptation techniques to bridge the gap between the feature distributions of the synthetic and real
datasets and the direction is left for exploration in the future work.
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Chapter 4

Conclusions

In this thesis, we explored alleviating some challenges in practical scenarios in the Multi-View
Detection system. In particular, much emphasis is on the generalization and evaluation strategies of the
MVD systems, which need to be adopted for benchmarking.

We find that the existing Multi-View Detection setup are severely limited and encourages models to
overfit the training configuration. We identified and showed the importance of Permutation Invariance
property to be considered for MVD systems. Therefore, we conceptualized and formalized three
critical forms of generalization and outlined the experiments to evaluate them in more practical settings:
generalization with i) a varying number of cameras, ii) varying camera positions, and finally, iii) to new
scenes. We find the state-of-the-art models to have poor generalization capabilities and on this evaluation
setups. To alleviate this issue, we introduce changes to the feature aggregation strategy, loss function, as
well as a novel regularization strategy. With the help of comprehensive experiments, we demonstrate the
benefits of our architecture.

In addition to this, we show the shortcomings of the existing multi-view detection datasets and the
challenges of curating the real dataset. Therefore, we generated a synthetic but diverse and realistic
dataset using GTA-V and Unity game engines that can be used for both evaluations as well as training
MVD methods. We demonstrated our developed method and benchmarked the state-of-the-art results
on our GMVD Dataset and on a real dataset i.e. WildTrack , which gives comparable results when
performing synthetic to real transfer. Overall, we hope our work plays a crucial role in steering the
community towards more practical Multi-View Detection systems.
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