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Abstract

The task of Visual Grounding is at the intersection of computer vision and natural language pro-
cessing tasks. The Visual Grounding (VG) task requires spatially localizing an entity in a visual scene
based on its linguistic description. The capability to ground language in the visual domain is of signifi-
cant importance for many real-world applications, especially for human-machine interaction. One such
application is language-guided navigation, where the navigation of autonomous vehicles is modulated
using a linguistic command. The VG task is intimately linked with the task of vision-language navi-
gation (VLN), as both the tasks require reasoning about the linguistic command and the visual scene
simultaneously. Existing approaches to VG can be divided into two categories based on the type of
localization performed: (1) bounding-box/proposal-based localization and (2) pixel-level localization.
This work focuses on pixel-level localization, where the segmentation mask corresponding to the en-
tity/region referred to by the linguistic expression is predicted. The research in this thesis focuses on a
novel modeling strategy for visual and linguistic modalities for the VG task, followed by the first-ever
visual grounding based approach to the VLN task.

We first present a novel architecture for the task of pixel-level localization, also known as Referring
Image Segmentation (RIS). The architecture is based on the hypothesis that both intra-modal (word-
word and pixel-pixel) and inter-modal (word-pixel) interactions are required to identify the referred
entity successfully. Existing methods are limited because they either compute different forms of inter-
actions sequentially (leading to error propagation) or ignore intra-modal interactions. We address this
limitation by performing all three interactions synchronously in a single step. We validate our hypothesis
empirically against existing methods and achieve State-Of-the-Art results on RIS benchmarks.

Finally, we propose the novel task of Referring Navigable Regions (RNR), i.e., grounding regions
of interest for navigation based on the linguistic command. RNR is different from RIS, which focuses
on grounding an object referred to by the natural language expression instead of grounding a navigable
region. We additionally introduce a new dataset, Talk2Car-RegSeg, which extends the existing Talk2car
dataset with segmentation masks for the regions described by the linguistic commands. We present
extensive ablations and show superior performance over baselines on multiple evaluation metrics. A
downstream path planner generating trajectories based on RNR outputs confirms the efficacy of the
proposed framework.
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Chapter 1

Introduction

Vision and language form the basis of human interaction with their environment. We are constantly
capturing and processing vast amounts of visual and linguistic data to make sense of our surroundings
and communicate ideas with other people. Humans are blessed with the innate capability of instinc-
tively processing multi-modal data from visual and linguistic modalities and then combining informa-
tion from these modalities to perform a multitude of daily tasks. For example, describing a visual scene
using linguistic expression (Image Captioning), matching a visual scene with its linguistic description
(Image-Text Retrieval), localizing an object in the visual world based on its linguistic description (Vi-
sual Grounding), and navigating in an environment based on a linguistic instruction (Vision-Language
Navigation).

With the advancements in Deep Learning and the availability of large-scale datasets over the last
decade, there has been an increasing interest in designing learning-based algorithms for various vision-
language tasks. [29, 69] were one of the first deep learning-based attempts towards the task of Image
Captioning, which requires generating a linguistic description for a given image. They trained their
deep neural network (DNN) on a large amount of image-caption pairs by generating individual words
of the caption in an auto-regressive manner for a given input image. The task of Image-Text retrieval
is concerned with matching an image with the corresponding text and vice-versa. This is achieved
by learning an alignment between the visual and linguistic modalities in a common semantic space
[63, 19] in which the distance between matching image-text pairs is smaller than that between non-
matching pairs. Similarly, every vision-language task differs in how the two modalities interact with
each other and the role of deep learning-based methods is to identify / model the relation between the
two modalities by leveraging the data statistics.

Since the introduction of AlexNet in 2012, neural-network-based architectures have become the go-
to approaches for various computer vision tasks like image classification, object detection, and semantic
segmentation. Image classification is a fundamental task that tests the ability to classify an image
by assigning a label from a list of pre-determined categories. Similarly, the tasks of object detection
and semantic segmentation involve classification based on pre-defined categories, but they additionally
require spatial localisation of the objects of interest within the image. However, using a limited set
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of categories hampers the scalability and practicality of the derivative approaches in the real world.
Consider the simple example of an image classifier trained on the famous imagenet dataset consisting
of 1000 class labels. Now, whenever we encounter a new class label not present in the 1000 category
list, the classifier needs to be re-trained on the updated category list to incorporate the new labels for
classification. Furthermore, a single label cannot be used to discriminate between instances of the same
object. For example, an object detector for pedestrian detection will detect all the pedestrians in the
scene, but it does not have the capabilities to distinguish between different pedestrians.

Moreover, learning with fixed category labels is in stark contrast with how humans learn. Instead,
humans utilise natural language descriptions to interact with objects in our surroundings. In order
to distinguish between instances belonging to the same class, natural language can provide a specific
description of the relevant object based on its relationship with the surrounding environment. The
task of visual grounding aims to design learning algorithms which imitate such human-like learning.
Specifically, it requires learning correlations between entities in the visual scene and their linguistic
counterparts.

In this thesis, we first tackle the Visual Grounding task by presenting a novel vision-language ground-
ing network. Then, we propose a novel visual-grounding-based solution for the task of Vision-Language
Navigation. Both the tasks require a joint understanding of the visual and linguistic modalities for suc-
cessful completion. We describe each task in detail in the subsequent sections.

1.1 Contributions

More formally, we make the following contributions:

1. We propose a novel architecture for the task of Referring Image Segmentation (RIS) which mod-
els the word-word and region-region (intra-modal) interactions and word-region (inter-modal)
interactions to ground the referred entity in the image.

2. We propose the novel task of Referring Navigable Regions (RNR) for Vision-Language Navi-
gation which grounds the navigable regions on the road corresponding to the natural language
command.

3. We present a new dataset, Talk2Car-RegSeg for the proposed RNR task. The dataset aids our
visual-grounding based approach to vision language navigation.

1.2 Visual Grounding

Humans have the exceptional capability of associating the natural language description with the
entities in the visual world. The goal of Visual Grounding (VG) is to design intelligent systems with
similar capabilities. At its core, the task requires learning an alignment between the entities of visual
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Figure 1.1 Referring Expression Comprehension (REC) and Referring Image Segmentation (RIS) are
two tasks for visual grounding which differ based on the type of localization used. REC uses bounding-
box-based localization while RIS uses pixel-based localization.

modality (objects, regions of an image) with the referred entities of linguistic modalities (word, sub-
phrases of textual description), followed by spatial localization of the referred entity in the visual scene.

Earlier works [30, 23, 53] first generate candidate bounding-boxes corresponding to the objects in
the image using a pre-trained object detector as the bounding-box proposal network. Then they rank
each candidate bounding box based on its similarity with the linguistic expression in a common se-
mantic space for visual and linguistic modalities. These approaches are trained using contrastive or
margin ranking loss to ensure that the proposal features for the correct referred object are closer to the
linguistic features of the natural language expression than that corresponding to the incorrect object.
Moreover, [53] add an additional supervision by reconstructing the natural language expression based
on the language conditioned ranking of the candidate bounding boxes. However, the performance of
these approaches is highly reliant on the performance of the pre-trained proposal network, i.e., if the
proposal network fails to predict a bounding-box corresponding to the correct referred object, then the
whole approach will fail.

Parallel to these works, [22] proposed an approach to ground the natural language expression in an
image through binary segmentation masks. They used an encoder-decoder architecture to first encode
the input image and the linguistic expression, followed by the fusion between the two modalities. Fi-
nally, the fused multi-modal feature is passed as an input to the decoder, which predicts a segmentation
mask as the output. Furthermore, their approach was end-end trainable as instead of using pre-trained
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object detectors, they directly utilized the spatial feature map from the last layer of the Convolutional
Neural Network (CNN) backbone.

Depending on the type of localization used, the visual grounding task can be divided into two cate-
gories. When a bounding box/proposal is used to localize the referred object, the task is formally known
as Referring Expression Comprehension (REC). In comparison, a pixel-based localization is formally
known as Referring Image Segmentation (RIS). The difference between the two tasks is illustrated in
Figure 1.1. While there is a clear distinction between the task based on the type of localization used, the
approaches for each task have certain advantages and disadvantages over the other. Approaches for REC
usually have fewer trainable parameters and, as a result, low computation costs compared to approaches
for RIS. However, they are more prone to errors because of their modular nature, where the first stage
corresponds to generating proposals, and the next stage corresponds to ranking these proposals condi-
tioned on the natural language query. In REC approaches, the proposal network serves as a bottleneck
since only the generated proposals are ranked irrespective of whether any generated proposals contain
the correct referred object.

On the other hand, approaches for RIS usually have high computation costs as they have a higher
number of trainable parameters. In terms of localization, a segmentation mask is better suited to capture
the exact shape and orientation of the referred object than a bounding box. Furthermore, in a highly
occluded scene, the bounding box may capture other overlapping objects that do not match the linguis-
tic expression. In Figure 1.1, we show examples where a bounding-box-based localization contains
multiple objects which do not satisfy the natural language description.

In this work, we tackle the task of Referring Image Segmentation by proposing a novel architec-
ture. The proposed architecture achieves state-of-the-art performance on several RIS benchmarks, and
extensive quantitative and qualitative ablations validate the effectiveness of our approach.

1.3 Vision Language Navigation

The task of Vision Language Navigation (VLN) requires navigating in an environment based on nat-
ural language commands. For example, consider the example in Figure 1.2, the linguistic command is
”park next to the first white car,” the VLN task requires understanding the semantics in both the lin-
guistic and visual modalities and navigating to the target location to execute the linguistic command
successfully. For humans, scenarios similar to that depicted in Figure 1.2 are commonplace. We can
understand the contextual relations between the linguistic and visual modalities and execute a naviga-
tional manoeuvre to the desired location. The VLN task aims to progress research towards designing
autonomous agents capable of adapting to human interventions.

Existing works model the task as a sequence-to-sequence prediction problem [57, 82, 71] or as a
reinforcement learning problem [20, 44, 1]. For outdoor environments, recently proposed [57, 82, 71],
predict a sequence of actions from a fixed list of directional movements, namely, forward, right, left
and stop. These approaches utilize the TOUCHDOWN [8] dataset, which is composed of images from
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Figure 1.2 We solve the task of VLN as a visual grounding problem. Given a linguistic command, we
identify the navigable regions on the road corresponding to the manoeuvre associated with the linguistic
command.

google street view maps, and the directional actions are used to navigate between the images. Similarly,
for indoor environments, [44, 1] utilize the Matterport3D dataset proposed in [6]. Matterport dataset
consists of panoramic images from scenes inside buildings like houses, apartments, hotels, offices, and
churches. The viewpoints for panoramic images are separated by an average distance of 2.25 meters,
i.e., the floor is divided into a discrete set of navigable regions. However, discretizing the navigable
regions and the action space severely limits the type of actionable navigational maneuvers. For exam-
ple, consider the linguistic command, ”park between the red and black cars,” a discrete action space
comprising forward, left, and right directions are insufficient to execute the navigational maneuver cor-
responding to the linguistic command successfully. Similarly, an environment consisting of discrete
navigable regions limits the fine control of the car required to execute these navigational maneuvers
successfully. Furthermore, the predictions of these sequence-to-sequence approaches are non-trivial to
interpret as they lack human-understandable feedback.

We approach the task of VLN as a visual grounding problem by predicting a segmentation mask
corresponding to navigable regions on the road for a given linguistic command. Our novel approach is
called Referring Navigable Regions (RNR). The predicted navigable region is then used by an external
motion planner to navigate to the desired location. This approach allows counteracting the issues asso-
ciated with discrete environments and discrete action spaces, as any region on the road can be predicted
as a navigable region candidate. Furthermore, the proposed approach permits grounding linguistic com-
mands requiring fine control of the vehicle, such as ”park between the red and white car”, as the precise
location corresponding to the command can be directly predicted. Additionally, the proposed approach
is interpretable as the predicted segmentation masks also function as visual feedback for humans to
understand the predictions.
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1.4 Related Work

1.4.1 Semantic Segmentation

The task of semantic segmentation requires identifying the segments of different objects within an
image. It is formulated as a pixel-wise classification problem, where each pixel is assigned a semantic
label from a fixed set of object categories corresponding to the object it belongs. Introduction of Fully
Convolution Networks (FCN) [38] led to a significant breakthrough in Semantic Segmentation. FCN re-
places the fully connected layer in classification networks with convolutional layers and introduces skip
connection for generating dense predictions for pixel-wise labels. However, the major limitation of FCN
was that it did not take into account the global contextual information from the visual scene because of a
low receptive field and the predicted segmentation mask was of low resolution. Parsenet [36] introduced
global contextual information to FCNs by utilizing the average feature for a CNN layer to augment the
features at each spatial location. Later works [45, 3] employed an encoder-decoder architecture, where
the feature map representation from the penultimate CNN layer is passed through deconvolution / trans-
posed convolution layers to upsample the spatial resolution of feature maps and output a segmentation
mask at higher resolution. Similarly, U-Net [55] introduced skip-connections from the encoder to the
decoder to utilize fewer training samples for the semantic segmentation task effectively. Feature Pyra-
mid Network (FPN) [33] was introduced to effectively utilize the multi-scale hierarchical information
captured by the deep CNNs; they take a single-scale image as input, and output feature maps at mul-
tiple scales, in a fully convolutional fashion. DeepLab and its variants [9, 10, 11] introduce atrous
convolution to enlarge the receptive field of convolutional filters and aggregate multi-scale context us-
ing atrous spatial pyramid pooling. Atrous convolution introduces another parameter to convolutional
layers, the dilation rate. A 3 × 3 kernel with a dilation rate of 2 will have the same size receptive field
as a 5 × 5 kernel while using only 9 parameters, thus enlarging the receptive field with no increase in
computational cost. PSPNet [81] performs region-based context aggregation through pyramid pooling
to extract multi-scale context. DANet [21] utilizes channel and position attention to integrate local
features with their global dependencies adaptively. Recent works like ResNeSt [80] and HRNet-OCR
[67] use attention-based approaches to combine information across feature map groups and to combine
multi-scale predictions, respectively. In this work, we tackle a more generalized and natural variant of
semantic segmentation where natural language referring expressions replace the predefined set of object
categories. We utilize the DeepLabv3+ architecture (Figure 1.3) from [11], pre-trained on semantic seg-
mentation task on PASCAL-VOC dataset [17] as backbone for extracting visual features for the tasks of
referring image segmentation (RIS) and referring navigable regions (RNR).

1.4.2 Attention Mechanism

Attention Mechanism is a powerful technique in deep learning literature popularized by its widespread
use in various natural language processing tasks. The first use of the attention mechanism was proposed
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Figure 1.3 DeepLabv3+ [11] utilized an encoder-decoder architecture. The encoder module capture
multi-scale contextual information by applying atrous convolution at multiple scales.

by [4] for the task of neural machine translation (NMT). They formulate the task as a sequence-to-
sequence prediction task and utilize an encoder-decoder architecture. The encoder is an RNN that takes
the linguistic sentence in the source language as the input, and the decoder is also an RNN that out-
puts the linguistic sentence in the target language. The decoder uses an attention mechanism over the
words in the encoded input sentence to generate words in the target language in an auto-regressive man-
ner. Subsequently, works like [72, 28, 77, 41, 2, 75, 83] utilized attention-based approaches for various
multi-modal tasks in vision-language modalities. Specifically, [72, 28, 77] propose an attention-based
approach for the task of image captioning, which utilizes attention over the spatial regions of the image
while generating the individual words for the caption. Similarly, [41, 2, 75, 83] utilize attention for the
task of Visual Question Answering (VQA); they employ joint attention over the spatial regions of the
image and the words of the linguistic question to predict the answer. Concurrently, [53] tackle the task of
grounding linguistic expression in the image by employing attention between the linguistic expression
and the bounding-box proposals for the image.

Introduction of the transformer architecture [68] led to a major breakthrough in the deep learning
literature. The transformer architecture utilizes the self-attention mechanism, which relates tokens of
a single sequence with other tokens in the same sequence to compute a feature representation of the
same sequence. Additionally, they introduce a multi-head attention mechanism, which splits the input
sequence into fixed-size segments and then computes the self-attention over each segment in parallel.
The original paper presented results on the machine translation task, but since its introduction, the trans-
former architecture has become ubiquitous in the deep learning literature. [16] proposed vision trans-
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former, a pure transformer architecture without reliance on CNN for the task of image classification.
They divide the image into patches and pass the patch embeddings as input to the vision transformer.
ViLBERT [39] is a task-agnostic network for learning joint image and text representations. It utilizes
co-attentional transformer layers to model the interactions between visual and linguistic modalities for
multiple tasks like visual question answering, visual commonsense reasoning, referring expressions
and caption-based image retrieval. Videobert [66] employs BERT-like [15] architecture to model bidi-
rectional joint distribution over video and linguistic modalities for the task of video captioning. In
this work, we utilize the attention mechanism to model the intra-modal and inter-modal interactions
between the visual and linguistic modalities for the tasks of referring image segmentation (RIS) and
referring navigable regions (RNR).

1.5 Thesis Organization

The rest of the thesis is organized as follows:

• In Chapter 2, we tackle the task of Referring Image Segmentation (RIS). We describe our novel
strategy of effectively capturing intra and inter modal interactions between the visual and linguis-
tic modalities. We effectively utilize the feature hierarchy associated with the visual features to
identify the referred object and predict a refined segmentation mask corresponding to it.

• In Chapter 3, we describe our visual-grounding based approach to vision language navigation. We
motivate the benefits of the proposed RNR approach and highlight its practicality in improving
human-machine interaction by bringing interpretability to the VLN task.

• Finally in Chapter 4, we present our concluding thoughts.

8



Chapter 2

Comprehensive Multi-Modal Interactions for Referring Image

Segmentation

2.1 Introduction

Traditional computer vision tasks like detection and segmentation have dealt with a pre-defined set
of categories, limiting their scalability and practicality. Substituting the pre-defined categories with nat-
ural language expressions (NLE) is a logical extension to counteract the above problems. Indeed, this is
how humans interact with objects in their environment; for example, the phrase “the kid running after
the butterfly” requires localizing only the child running after the butterfly and not the other kids. For-
mally, the task of localizing objects based on NLE is known as Visual Grounding. Existing works either
approach the grounding problem by predicting a bounding box around the referred object or a segmen-
tation mask corresponding to the referred object. We focus on the latter approach, as a segmentation
mask can effectively pinpoint the exact location and capture the actual shape of the referred object. The
task is formally known as Referring Image Segmentation (RIS).

RIS requires understanding both visual and linguistic modalities at an individual level, specifically
word-word and region-region interactions. Additionally, a mutual understanding of both modalities is
required to identify the referred object from the linguistic expression and localize it in the image. For
instance, to ground a sentence “whatever is on the truck”, it is necessary to understand the relation-
ship between words as grounding just the individual words will not work. Similarly, region-to-region
interactions in visual modality help group semantically similar regions, e.g., all regions belonging to
the truck. Finally, to identify the referent regions, we need to transfer the distinctive information about
the referent from the linguistic modality to the visual modality; this is taken care of by the cross-modal
word-region interactions. The current SOTA methods [74, 18, 25, 27, 24] take a modular approach,
where these interactions happen in parts, sequentially.

Different methods differ in how they model these interactions. [25] first perform a region-word
alignment (cross-modal interaction). The second stage takes these alignments as input to select relevant
image regions corresponding to the referent. [74] and [27] use the dependency tree structure of the
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Figure 2.1 Unlike existing methods which model interactions in a sequential manner, we synchronously
model the Intra-Modal and Inter-Modal interactions across visual and linguistic modalities. Here, Mv

and Mt represent Visual and Linguistic Modalities, and {-} represents interactions between them.

referring expression for the reasoning stage instead. [24] select a suitable combination of words for
each region, followed by selecting the relevant regions corresponding to referent based on the affinities
with other regions. The performance of the initial stages bounds these approaches. Furthermore, they
ignore the crucial intra-modal interactions for RIS.

2.2 Contributions

In this work, we perform all three forms of interactions simultaneously. We propose a Synchronous
Multi-Modal Fusion Module (SFM) which captures the inter-modal and intra-modal interactions be-
tween visual and linguistic modalities in a single step. Intra-modal interactions handle the cases for
identifying the relevant set of words and semantically similar image regions. Inter-modal interactions
transfer contextual information across modalities. Additionally, we propose a novel Hierarchical Cross-
Modal Aggregation Module (HCAM) to exchange contextual information relevant to referent across
visual hierarchies and refine the referred object’s segmentation mask.

We motivate the benefits of simultaneous interactions over sequential in Figure 2.1 by presenting a
failure case of the latter. For the given referring expression ”anywhere, not on the people”, sequential
approaches fail to identify the correct word to be grounded, and the error gets propagated till the end.
CMPC [25] which predicts the referent word from the expression in the first stage, identifies ”people” as
the referent (middle image in Figure 2.1) and completely misses ”anywhere” which is the correct entity
to ground. Similarly, [74], and [27], which utilize dependency tree structure to govern their reasoning
process, identify the referred entity ”anywhere” as an adverb from the dependency tree. However,
considering the expression in context with the image, the word ”anywhere” should be perceived as a
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”pronoun”. The proposed SFM module successfully addresses the aforementioned limitations. Overall,
our work makes the following contributions:-

1. We propose SFM to reason over regions, words, and region-word features in a synchronous man-
ner, allowing each modality to focus on relevant semantic information to identify the referred
object.

2. We propose a novel HCAM module, which routes hierarchical visual information through lin-
guistic features to produce a refined segmentation mask.

3. We present thorough quantitative and qualitative experiments to demonstrate the efficacy of our
approach and show notable performance gains on four RIS benchmarks.

2.3 Related Work

Referring Expression Comprehension: Localizing a bounding box/proposals based on an NLE is
a task commonly referred to as Referring Expression Comprehension (REC). The majority of methods
for REC learn a joint embedding space for visual and linguistic modalities and differ in how joint space
is computed and how it is used. Earlier methods, [23, 54, 49] used joint embedding space as a metric
space to rank proposal features with linguistic features. Later methods like [73, 13, 37] utilized attention
over the proposals to select the appropriate one. More Recent Methods like [40, 12] utilize transformer-
based architecture to project multi-modal features to common semantic space. Specifically, they utilize
a self-attention mechanism to align proposal-level features with linguistic features. In our work, we
utilize pixel-level image features which are crucial for the task of RIS. Additionally, compared to [40],
we explicitly capture inter-modal and intra-modal interactions between visual and linguistic modalities.

Referring Image Segmentation: Bounding Box-based methods in REC are limited in their capabil-
ities to capture the inherent shape of the referred object, which led to the proposal of the RIS task. It was
first introduced in [22], where they generate the referent’s segmentation mask by directly concatenating
visual features from CNN with tiled language features from LSTM. [32] generates refined segmentation
masks by incorporating multi-scale semantic information from the image. Since each word in expres-
sion makes a different contribution in identifying the desired object, [59] model visual context for each
word separately using query attention. [76] uses a self-attention mechanism to capture long-range cor-
relations between visual and textual modalities. Recent works [24, 25, 27] utilize cross-modal attention
to model multi-modal context, [27, 74] use dependency tree structure and [25] use coarse labelling for
each word in the expression for selective context modelling. Most of the existing works capture Inter
and Intra modal interactions separately to model the context for referent. In this work, we concurrently
model the comprehensive interactions across visual and linguistic modalities.
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Figure 2.2 The proposed network architecture. Synchronous Multi-Modal Fusion captures pixel-pixel,
word-word and pixel-word interaction. Hierarchical Cross-Modal Aggregation exchanges information

across modalities and hierarchies to selectively aggregate context relevant to the referent.

2.4 Approach

Given an image and a natural language referring expression, the goal is to predict a pixel-level seg-
mentation mask corresponding to the referred entity described by the expression. The overall archi-
tecture of the network is illustrated in Figure 3.2. Visual features for the image are extracted using a
CNN backbone, and linguistic features for the referring expression are extracted using a LSTM. A Syn-
chronous Multi-Modal Fusion Module (SFM) simultaneously aligns visual regions with textual words
and jointly reasons about both modalities to identify the multi-modal context relevant to the referent.
SFM is applied to hierarchical visual features extracted from CNN backbone since hierarchical features
are better suited for segmentation tasks [76, 7, 24]. A novel Hierarchical Cross-Modal Aggregation
module (HCAM) is applied to effectively fuse SFM’s multi-level output and produce a refined segmen-
tation mask for the referent. We describe the feature extraction process in the next section, and both
SFM and HCAM modules are described in the subsequent sections.

2.4.1 Feature Extraction

Our network takes an image and a natural language expression as input. We extract hierarchical
visual features for an image from a CNN backbone. Through pooling and convolution operations,
all hierarchical visual features are transformed to the same spatial resolution and channel dimension.
Final visual features for each level are of shape RCv×H×W , with H , W and Cv being the height,
width, and channel dimension of the visual features. Final visual features are denoted as {V2, V3, V4},
corresponding to layers 2, 3 and 4 of the CNN backbone. For ease of readability, we denote the visual
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features as V . GloVe embeddings for each word in the referring expression are then passed as input to
LSTM. The hidden feature of LSTM at ith time step li ∈ RCl , is used to denote the word feature for the
ith word in the expression. The final linguistic feature of the expression is denoted asL = {l1, l2, ..., lT },
where T is the number of words in the referring expression.

2.4.2 Synchronous Multi-Modal Fusion

In this section, we describe the Synchronous Multi-Modal Fusion Module (SFM). To successfully
segment the referent, we need to identify the semantic information relevant to it in both the visual and
linguistic modalities. We capture comprehensive intra-modal and inter-modal interactions explicitly
in a synchronous manner, allowing us to jointly reason about visual and linguistic modalities while
considering the contextual information from both.

Hierarchical visual features V ∈ RCv×H×W and linguistic word-level features L ∈ RCl×T are
passed as input to SFM, with Cv = Cl = C. We flatten the spatial dimensions of visual features
and perform a lengthwise concatenation with linguistic feature, followed by layer normalization to get
multi-modal feature X of shape RC×(HW+T ). We then add separate positional embedding Pv and
Pl to visual Xv ∈ RC×HW and linguistic Xl ∈ RC×T part of X to distinguish between visual and
linguistic part. Finally, we apply multi-head attention over X to capture the inter-modal and intra-
modal interactions between visual and linguistic modalities. Specifically, pixel-pixel, word-word and
word-pixel interactions are captured. Pixel-pixel and word-word interactions help in independently
identifying semantically similar pixels and words in their respective modalities, pixel-word interaction
helps in identifying corresponding pixels and words with similar contextual semantics across modalities.

X = LayerNorm(V � L)

X = X + (Pv � Pl)

F = MultiHead(X)

(2.1)

Here,� is length-wise concatenation, F is the final output of SFM module having same shape asX . We
process all hierarchical visual features {V2, V3, V4} individually through SFM, resulting in hierarchical
cross-modal output {F2, F3, F4}.

2.4.3 Hierarchical Cross-Modal Aggregation

Hierarchical visual features of CNN capture different aspects of images. As a result, depending on
the hierarchy, visual features can focus on different aspects of the linguistic expression. In order to
predict a refined segmentation mask, different hierarchies should be in agreement regarding the image
regions to focus on. Therefore, all visual hierarchical features should also focus on image regions
corresponding to linguistic context from other hierarchies. This will ensure that all hierarchical features
are focusing on common regions. We propose a novel Hierarchical Cross-Modal Aggregation (HCAM)
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Figure 2.3 Our Novel Hierarchical Cross-Modal Aggregation Module consisting of Hierarchical Cross-
Modal Exchange and Hierarchical Aggregation steps.

module for this purpose. HCAM includes two key steps: (1) Hierarchical Cross-Modal Exchange,
and (2) Hierarchical Aggregation. Both steps are illustrated in Figure 2.3.

Hierarchical Cross-Modal Exchange: During the HCME step, we calculate the affinity weights
Λij between the jth layer’s linguistic context f lj and the spatial regions for ith layer’s visual features fvi ,
where fvi and f li are the visual and linguistic part of ith layer’s output of SFM Fi.

Λij = σ(Conv([fvi ; f
lavg
j ])) (2.2)

Here Λij ∈ RC×H×W , f lavgj ∈ RC is the global linguistic context for jth layer and is computed as
length-wise average of linguistic features f lj , σ is the sigmoid function. Here, f lavgj act as a bridge to
route linguistic context from jth layer to spatial regions of ith layer’s visual hierarchy. Similarly, Λik is
computed with i 6= j 6= k, allowing for cross-modal exchange between all permutations of visual and
linguistic hierarchical features.

Hierarchical Aggregation: After computing the affinity weights Λij , we perform a layer-wise con-
textual aggregation. For each layer, visual context from other hierarchies is aggregated in the following
way:

gi = fvi +
∑
j 6=i

Λij ◦ fvj

G = Conv3D([g2; g3; g4])

(2.3)

Here, ◦ is element-wise product and [; ] represents stacking features along length dimension, ie:- R3×C×H×W

dimensional feature. gi ∈ RC×H×W contains the relevant regions corresponding to the linguistic con-
text from the other two hierarchies. Finally, we use 3D convolution to aggregate gi’s to include the
common regions corresponding to the linguistic context from all visual hierarchies. G is the final multi-
modal context for referent.
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2.4.4 Mask Generation

Finally, G is passed through Atrous Spatial Pyramid Pooling (ASPP) decoder [11] and Up-sampling
convolution to predict final segmentation mask S. Pixel-level binary cross-entropy loss is applied to
predicted segmentation map S and the ground truth segmentation mask Y to train the entire network
end-to-end.

2.5 Experiments

2.5.1 Experimental Setup

Datasets: We conduct experiments on four Referring Image Segmentation datasets. UNC [78]
contains 19,994 images taken from MS-COCO [34] with 142,209 referring expressions corresponding
to 50,000 objects. Referring Expressions for this dataset contain words indicating the location of the
object. UNC+ [78] is also based on images from MS-COCO. It contains 19,992 images, with 141,564
referring expressions corresponding to 50,000 objects. In UNC+, the expression describes the object
based on their appearance and context within the scene without using spatial words. G-Ref [43] is also
curated using images from MS-COCO. It contains 26,711 images, with 104,560 referring expressions
for 50,000 objects. G-Ref contains longer sentences with an average length of 8.4 words; compared to
other datasets which have an average sentence length of less than 4 words. Referit [31] comprises of
19,894 images collected from IAPR TC-12 dataset. It includes 130,525 expressions for 96,654 objects.
It contains unstructured regions (e.g., sky, mountains, and ground) as ground truth segmentations.

Implementation Details:: We experiment with two backbones, DeepLabv3+ [11] and Resnet-101
for image feature extraction. Like previous works [76, 7, 24], DeepLabv3+ is pre-trained on Pascal
VOC semantic segmentation task while Resnet-101 is pre-trained on Imagenet Classification task, and
both backbone’s parameters are fixed during training. For multi-level features, we extract features from
the last three blocks of CNN backbone. We conduct experiments at two different image resolutions,
320×320 and 448×448 with H = W = 18. We use GLoVe embeddings [48] pre-trained on Common
Crawl 840B tokens to initialize word embedding for words in the expressions. The maximum number of
words in the linguistic expression is set to 25. We use LSTM for extracting textual features. The network
is trained using AdamW optimizer with batch size set to 50; the initial learning rate is set to 1.2e−4 and
weight decay of 9e−5 is used. The initial learning rate is gradually decreased using polynomial decay
with a power of 0.7. We train our network on each dataset separately.

Evaluation Metrics: Following previous works [76, 7, 24], we evaluate the performance of our
model using overall Intersection-over-Union (overall IoU) and Precision@X as metrics. Overall IoU
metric calculates the ratio of the intersection and the union computed between the predicted segmenta-
tion mask and the ground truth mask over all test samples. Precision@X metric calculates the percent-
age of test samples having IoU greater than the threshold X , with X ∈ {0.5, 0.6, 0.7, 0.8, 0.9}.
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Method UNC UNC+ G-Ref Referit
val testA testB val testA testB val test

RRN [32] 55.33 57.26 53.95 39.75 42.15 36.11 36.45 63.63
CMSA [76] 58.32 60.61 55.09 43.76 47.60 37.89 39.98 63.80

STEP [7] 60.04 63.46 57.97 48.19 52.33 40.41 46.40 64.13
BRIN [24] 61.35 63.37 59.57 48.57 52.87 42.13 48.04 63.46
LSCM [27] 61.47 64.99 59.55 49.34 53.12 43.50 48.05 66.57
CMPC [25] 61.36 64.53 59.64 49.56 53.44 43.23 49.05 65.53
MCN* [42] 62.44 64.20 59.71 50.62 54.99 44.69 - -

BUSNet* [74] 62.56 65.61 60.38 50.98 56.14 43.51 49.98 -
EFN* [18] 62.76 65.69 59.67 51.50 55.24 43.01 51.93 66.70

SHNet( (320× 320) 63.98 67.51 60.48 51.79 56.49 43.83 48.95 68.38
SHNet* (448× 448) 65.32 68.56 62.04 52.75 58.46 44.12 49.90 69.19

Table 2.1 Comparison with State-Of-the-Arts on Overall IoU metric, ∗ indicates results without using
DenseCRF post processing. Best scores are shown in bold and the second best are shown in italics. Our
method uses DeepLabv3+ backbone for both resolutions.

2.5.2 Comparison with State of the Art

We evaluate our method’s performance on four benchmark datasets and present the results in Table
2.1. Since three of the datasets are derived from MS-COCO and have significant overlap with each
other, pre-training on MS-COCO can give misleading results and should be avoided. Hence, we only
compare against methods for which the backbone is pre-trained on Pascal VOC. Unless specified, all
the approaches in Table 2.1 are at 320×320 resolution. Our approach, SHNet (SFM+HCAM), achieves
state-of-the-art performance on three datasets without post-processing. In contrast, most previous meth-
ods present results after post-processing through a Dense Conditional Random Field (Dense CRF). The
expressions in UNC+ avoid using positional words while referring to objects; instead, they are more
descriptive about their attributes and relationships. Consistent performance gains on the UNC+ dataset
at all splits showcases the effectiveness of utilizing comprehensive interactions simultaneously across
visual and linguistic modalities. Similarly, our approach gains 1.68% over the next best performing
method EFN [18] on the Referit dataset, reflecting its ability to ground unstructured regions (e.g., the
sky, free space). We also achieve solid performance gains on the UNC dataset at both resolutions, in-
dicating that our method can effectively utilize the positional words to localize the correct instance of
an object from multiple ones. EFN [18] (underlined in Table 2.1) gives the best performance on G-
Ref dataset; however, it is fine-tuned on the UNC pre-trained model. With similar fine-tuning, SHNet
achieves 56.44% overall IoU, surpassing EFN by a large margin. However, such an experimental setup
is incorrect, as there is a significant overlap between G-Ref test and UNC training set. Hence, in Ta-
ble 2.1 we report performance on a model trained on G-Ref from scratch. Performance of SHNet is
marginally below BusNet on the G-Ref dataset. Feature maps in SHNet have a lower resolution of
18 × 18 compared to 40 × 40 resolution used by other methods and that possibly leads to a drop in
performance on G-Ref, which has extremely small target objects. We could not train SHNet on higher
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Method prec@0.5 prec@0.6 prec@0.7 prec@0.8 prec@0.9 Overall IoU
1 Baseline 61.47 54.01 43.74 27.47 7.21 54.70
2 Only HCAM 68.44 61.58 52.10 35.63 9.71 59.53
3 Only SFM 72.56 66.58 57.91 40.73 12.82 62.16
4 SFM+ConvLSTM 74.34 68.89 60.67 42.95 13.35 63.30
5 SFM+Conv3D 74.07 68.74 60.50 43.14 13.58 63.16
6 SHNet w/o Glove 74.23 68.42 59.77 42.47 13.66 62.19
7 SHNet w/o P.E 74.0 68.36 59.71 43.15 13.36 63.07
8 SHNet 75.18 69.36 61.21 46.16 16.23 63.98

Table 2.2 Ablation Studies on Validation set of UNC, SHNet is the full architecture with both SFM and
HCAM modules. The input image resolution is 320× 320 in each case.

resolution feature maps due to memory limits induced by multi-head attention (on RTX 2080Ti GPU);
however, training on higher resolution input improves results.

2.5.3 Ablation Studies

Figure 2.4 Qualitative results comparing the baseline against SHNet.

We perform ablation studies on the UNC dataset’s validation split. All methods are evaluated on
Precision@X and Overall IoU metrics, and the results are illustrated in Table 2.2. Unless specified,
the backbone used for ablations is DeepLabv3+ trained at 320× 320 resolution. The feature extraction
process described in Section 3.1 is used for all ablation studies. ASPP + ConvUpsample decoder is also
common to all the experiments.

Baseline: The baseline model involves direct concatenation of visual features with the tiled textual
feature to result in multi-modal feature of shape R(Cv+Cl)×H×W . This multi-modal feature is passed as
input to ASPP + ConvUpsample decoder.
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HCAM without SFM: “Only HCAM” network differs with baseline method only on the fusion
process of hierarchical multi-modal features. Introducing the HCAM module over baseline results in
4.83 % improvement on the Overall IoU metric and an improvement of 2.5 % on the prec@0.9 metric
(illustrated in Table 2.2), indicating that the HCAM module results in refined segmentation masks.

SFM without HCAM: Similarly, the “Only SFM” network differs from the baseline method in how
different types of visual-linguistic interactions are captured. We observe significant performance gains
of 7.46 % over the baseline, indicating that simultaneous interactions help identify the referent.

SFM + X: We replace HCAM module with other multi-level fusion techniques like ConvLSTM
and Conv3D. Comparing the performance of SFM+ConvLSTM with SHNet (SFM+HCAM), we ob-
serve that HCAM is indeed effective at fusing hierarchical multi-modal features (Table 2.2). For
SFM+Conv3D, we stack multi-level features along a new depth dimension resulting in 3D features,
and perform 3D convolution on them. The same filter is applied to different level features that result
in each level feature converging on a common region in the image. SFM+Conv3D achieves a simi-
lar performance as SFM+ConvLSTM while using fewer parameters. Using Conv3D achieves higher
Precision@0.8 and Precision@0.9 than ConvLSTM, suggesting that it leads to more refined maps. It
is worth noting that HCAM also uses Conv3D at the end, and the additional gains of SHNet over
SFM+Conv3D suggest the benefits of hierarchical information exchange in HCAM.

Glove and Positional Embeddings: We verify Glove embeddings’ significance by replacing it with
one hot embedding. We also validate the usefulness of Positional Embeddings (P.E.) by training a
model without them. Both variants observe a drop in performance (Table 2.2), with the drop being
more significant in the variant without Glove embeddings. These ablations suggest the importance of
capturing word-level semantics and positional-aware features.

In Table 2.3, we present ablations with different backbones at different resolution. The results
demonstrate that our approach does not heavily rely on backbone for its performance gains, as even with
a vanilla Imagenet pre-trained Resnet101 backbone, not fine-tuned on segmentation task, we outperform
existing methods at both resolutions. Predictably, using a backbone fine-tuned on a segmentation task
gives further performance gain.

backbone resolution val testA testB

Resnet101 320 x 320 63.76 67.05 60.15
448 x 448 64.88 68.08 60.82

DeepLabv3+ 320 x 320 63.98 67.51 60.48
448 x 448 65.29 68.56 62.04

Table 2.3 Result with different backbone at different input resolutions on UNC dataset.

We also present ablations with different aggregation modules in Table 2.4. We use the modules
presented in MGATE [76], TGFE [25] and GBFM [27], for which codes were publicly available. HCAM
consistently outperforms other methods by clear margins at both resolution.
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Aggregation Module Overall IOU
320x320 448x448

MGATE [76] 62.59 63.35
TGFE [25] 62.94 63.72
GBFM [27] 62.72 63.83

HCAM 63.98 65.32

Table 2.4 Comparing performance of recent Aggregation Modules on the UNC val dataset at different
input resolutions

2.5.4 Qualitative Results

“the right half of the sandwich on the left”

(a) Original Image (b) Only HCAM module (c) Only SFM module (d) SHNet (e) Ground Truth

Figure 2.5 Qualitative results corresponding to combinations of proposed modules. In (b) we show
results when only HCAM module is used, (c) result with only SFM module being used, (d) output mask
when both SFM and HCAM modules are used

“top bowl” “left plate on top” “left plate on

bottom”

“front bowl” “right bowl” “empty plates in

center”

Figure 2.6 Output predictions of SHNet for an anchored image with varying linguistic expressions.

Figure 2.4 presents qualitative results comparing SHNet against the baseline model. SHNet localizes
heavily occluded objects (Figure 2.4 (a) and (b)); reasons on the overall essence of the highly ambiguous
sentences (e.g. “person you cannot see”, “right photo not left photo”) and; distinguishes among multiple
instances of the same type of object based on attributes and appearance cues (Figure 2.4 (b), (c), and
(e)). While, without any reasoning stage, the baseline model struggles to segment the correct instance
and confuse it with similar objects. Figure 2.4 (d) and (f) illustrate the ability of SHNet to localize
unstructured non-explicit objects like “dark area” and “blue thing”. The potential of SHNet to perform
relative positional reasoning is highlighted in Figure 2.4 (b), (e), and (f).
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Figure 2.7 Visualization of Inter-modal and Intra-modal interactions in SFM.

We outline the contributions of both SFM and HCAM modules in Figure 2.5. “Only HCAM” net-
work does not involve any reasoning, however, it manages to predict the left sandwich with refined
boundaries. “Only SFM” network understands the concept of “the right half of the sandwich” and leads
to much better output; however, the output mask bleeds around the boundaries, and an extra small noisy
segment is visible. The full model benefits from the reasoning in “SFM,” and when combined with
HCAM facilitates information exchange across hierarchies to predict correct refined mask as output.
In Figure 3.5, we anchor an image and vary the linguistic expression. SHNet is able to reason about
different linguistic expressions successfully and ground them. Inter-modal and Intra-modal interactions
captured by SFM are illustrated in Figure 2.7. Pixel-pixel interactions highlight image regions corre-
sponding to the referent. For the given expression, “squares” contains the differentiating information
and is assigned high importance for different words. Additionally, for each word appropriate region in
the image is attended.

In Figure 2.8, we present results where our approach successfully grounded the referring expression
in the image. The network is able to identify fine grained distinctive information about the referent
from the referring expression, and utilize it to correctly localize the referent in complex visual scenes
in (c), (d), (f) and (j). Specifically in (c), (d) and (j), we are able to identify the correct person from
large group of people based on the combination of person’s attribute (“dark hair”), attributes of person’s
clothing (“green sleeves”, “no shirt” etc) and its location with respect to other objects in the image (“by
the wall”). Additionally, SHNet localizes objects which are out of focus and are partially visible, ex:
(b), (e), (g) and (h). We would like to point out that in these cases, rather than merely picking the
most prominent objects, our network effectively incorporates the information from textual expression in
visual domain to identify the less prominent correct object. In (a) and (i), the referring expressions refer
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to unstructured regions in image, our network predicts these regions with refined boundaries. In (k) and
(l) of Figure 2.8, the referred objects occupy extremely small region in the image space and SHNet is
able to accurately locate them.

In Figure 2.9, we present some failure cases of our approach. Our approach mostly fails in cases
when either the referring expression or the visual scene is ambiguous in (a), (c) and (e), the visual scene
is heavily cluttered in (b) and (d), or when common sense reasoning is required like (f). For example:
the expression in (a), “chair at the end of table on the left” is itself ambiguous and non-specific, as there
are two chairs at the end of table on left side. Similarly, in (b) their are multiple keyboards with a mouse
on top and our method predicts one of the keyboards on the left with a partial black mouse on the top.
In (d), the plant branch on the left is barely visible and also a lot of clutter is present. It is noteworthy,
that in each case, our approach predicts a well segmented and refined output and the class predictions
are also correct (an umbrella, a chair, a bottle, a keyboard etc.).

2.6 Conclusion

In this work, we tackled the task of Referring Image Segmentation. We proposed a simple yet
effective SFM to capture comprehensive interactions between modalities in a single step, allowing us to
simultaneously consider the contextual information from both modalities. Furthermore, we introduced
a novel HCAM module to aggregate multi-modal context across hierarchies. Our approach achieves
strong performance on RIS benchmarks without any post-processing. We present thorough quantitative
and qualitative experiments to demonstrate the efficacy of all the proposed components.
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(a) “the wall behind the second boy from left” (b) “the blurry image of a person walking behind a man eating a hotdog”

(c) “guy wearing green long sleeves and blue denim pants” (d) “guy with blue shirt and red shorts with dark hair standing by wall”

(e) “next to the baby eating is a person wearing pants and boots” (f) “monitor that does not have black sticker but still has stickers everywhere else”

(g) “elephant that you can see most of its back” (h) “the reflection in the mirror of the person taking a picture of the donut”

(i) “court not net” (j) “person without a shirt on, sitting down by the old man in blue”

(k) “the towel on the counter to the right of the man’s head” (l) “tiny spot, plant hanging from the ceiling”

Image Prediction Ground Truth Image Prediction Ground Truth

Figure 2.8 Qualitative examples where our approach successfully localized the referred object.
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(a) “chair at the end of table on the left” (b) “the keyboard on left with the black mouse on top”

(c) “the umbrella over the man wearing glasses on his head” (d) “most visible bottle closest to the little piece of plant”

(e) “yellow cake with chocolate triangle out of it, not closest to edge” (f) “chair that the person at the computer would be sitting at”

Image Prediction Ground Truth Image Prediction Ground Truth

Figure 2.9 Qualitative examples where our approach failed to localize the referred object.
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Chapter 3

Grounding Linguistic Commands to Navigable Regions

3.1 Introduction

Autonomous Driving (AD) is concerned with providing machines with driving capabilities with-
out human intervention. Much of the existing work on autonomous driving has focused on modular
pipelines, with each module specializing in a separate task like detection, localization, segmentation
and tracking. Collectively, these tasks form the vehicle’s active perception module, enabling it to per-
form driver-less navigation with some additional help from prior generated detailed high definition maps
of the route. However, the current setup does not allow the capability to intervene and augment the ve-
hicle’s decision-making process. For example, post reaching the destination, the rider may want to give
specific guidance on the place to park the car suiting his/her convenience, e.g. “park between the yellow
and the red car on the left”.

Similarly, sometimes the rider may wish to intervene to resolve ambiguities or to perform the desired
action, e.g. “the road appears to be blocked, please move to the left lane” or “I see my friend walking
on the left, please slow down and pick him up”. In a chauffeur-driven car, the above scenarios are
commonplace, as a human can easily understand the natural language commands and manoeuvre the
car accordingly. In this work, we aim to extend similar abilities to a self-driving vehicle, i.e. the vehicle
takes the natural language command and the current scene as input and predicts the region of interest
where the car must navigate to execute the command. A downstream planner can take this region as
input and predict the trajectory or set of manoeuvres to perform the desired navigation.

One of the fundamental tasks necessary to attain the above capabilities is comprehending the natural
language command and localising it in the visual domain. The problem is formally known as visual
grounding, and it has seen a surge of interest in the recent past. The interest is primarily driven by
the success of deep learning models in computer vision and natural language processing. Most of
the current literature in visual grounding focuses on localising an object of interest. The object of
interest can be grounded either using bounding boxes (Referring Expression Comprehension) or using
segmentation masks (Referring Image Segmentation). We focus on the latter type of grounding, but
instead of grounding objects, we ground regions of interest on the road. Grounding regions of interest
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Command: “Turn in the direction where the man is pointing.”

Figure 3.1 Given a natural language command, REC (top image) predicts a bounding box (cyan box)
around the referred object and RIS (the middle image) predicts a segmentation map around the referred
object. In the context of an AD application, such predictions are not immediately amenable to down-
stream tasks like planning. E.g. predicting the man in the above example does not indicate where the
car should go. In contrast, our work aims to directly predict regions on the road given a natural language
command (green colour annotation, bottom image).

are more natural from a navigation point of view for self-driving vehicles than the grounding of objects.
Even if the referred object is correctly grounded, it leaves ambiguity on where to take the vehicle. In
contrast, the task of Referring Navigable Regions proposed in our work provides feasible areas as a goal
point. A motivating example is illustrated in Figure 3.1.

3.2 Contributions

To this end, we introduce a novel multi-modal task of Referring Navigable Regions (RNR), intending
to ground navigable regions on the road based on natural language command in the vehicle’s front
camera view. Compared to RIS task, RNR task involves two-level understanding of the scene. In the first
level, the referring object has to be identified and in second level the appropriate region for navigation
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has to be identified based on the referred object. For instance, consider the command “park beside
the white car near the tree”, in addition to locating the “white car” near the “tree”, the RNR task also
has to predict an appropriate region where the command can be executed. Consequently, we propose
a new dataset, Talk2Car-RegSeg, for the proposed task. This dataset is built on top of the existing
Talk2car [14] dataset. In addition to the existing image-command pairs, we provide segmentation masks
for the regions on the road where the vehicle could navigate to execute the command. We benchmark the
proposed dataset with a transformer-based grounding model that can capture correlations between visual
and linguistic features through the self-attention mechanism. We compare the proposed model against
a set of baselines and present thorough ablation studies. We highlight the proposed task’s practicability
through a downstream planning module that computes a navigation trajectory to the grounded region.
To summarize, the main contributions of this paper are the following:

• We introduce the novel task of RNR for applications in autonomous navigation.

• We present a new Dataset, Talk2Car-RegSeg, for this task. Here, we augment the existing
Talk2car dataset with segmentation masks for navigable regions corresponding to the command.

• We benchmark the dataset using a novel transformer based model and a set of baseline approaches.
We present thorough ablations and analysis studies on the proposed dataset (e.g. action type of
commands, the length of commands) to assess its applicability in realistic scenarios.

3.3 Related Work

Referring Expression Comprehension: Referring Expression Comprehension (REC) predicts a
rectangular bounding box in an image corresponding to the input phrase or the sentence. While object
detection [52, 51] predicts bounding boxes for a pre-defined set of categories, REC does not limit on
a category list. Nonetheless, the task of REC does take inspiration from the object detection pipeline.
In the most commonly used framework, a set of bounding box region proposals are first generated and
then evaluated against the input sentence [50, 53]. In the robotics community, significant progress has
been made on using REC in Human-Computer Interactions [61, 62]. REC has also been explored on
autonomous driving applications, following the introduction of the Talk2Car dataset [14]. Rufus et
al. [56] use softmax on cosine similarity between region-phrase pairs and employ a cross-entropy loss.
Ou et al. [46] employ multimodal attention using individual keywords and regions. Despite significant
progress in REC, bounding box based localization is not accurate enough to capture the shape of the
referred object and struggle with objects at a small scale. Furthermore, just predicting the bounding box
is insufficient for the task of navigation (as illustrated in Figure 3.1).

Referring Image Segmentation: Referring Image Segmentation (RIS) task was introduced in [22]
to alleviate the problems associated with REC by predicting a pixel-level segmentation mask for the
referring object based on the referring expression. [35] propose convolutional multimodal LSTM to
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encode the sequential interactions between individual words and pixel-level visual information. [60]
utilize query attention and key-word-aware visual context to model relationships among different image
regions, according to the corresponding query. More recent works, [27] model multimodal context by
cross-modal interaction and guided through a dependency tree structure, [26] progressively exploits
various types of words in the expression to segment the referent in a graph-based structure. In contrast
to existing works on RIS that directly refer to objects in an image, we ground the region adjacent to
the object to provide navigational guidance to a self-driving vehicle. To the best of our knowledge, our
work is the first paper to explore the referring image segmentation in the context of autonomous driving
and propose the task of Referring Navigable Region.

Language Based Navigation: Most of the literature on language-based navigation has focused on
indoor navigation [58, 79, 70]. Typically the input to these approaches is a longer text (a paragraph), and
the goal is to reach the required destination in an indoor 3D environment (long trajectory prediction).
Shah et al.[58] utilized attention over linguistic instructions conditioned on the multi-modal sensory
observations to focus on the relevant parts of the command during navigation task. [79] approach the
language-based navigation task as a sequence prediction problem. They translate navigation instructions
into a sequence of behaviours that a robot can execute to reach the desired destination. Wang et al. [70]
enforces cross-modal grounding both locally and globally via reinforcement learning.

Sriram et al. [65] attempt language-based navigation in an autonomous driving scenario. They gener-
ate trajectory based on natural language command by predicting local waypoints. However, their work
limits to eight specific behaviours like take left, take right, not left, etc. The only object considered
in their work is a traffic signal. Our work considers much richer language instructions encompassing
many objects. Furthermore, RNR predicts a segmentation map instead of a single local waypoint or a
trajectory corresponding to a set of sentences. Segmentation masks unlike single waypoint encourage
multiple trajectory possibilities and options to navigate into that region for a downstream planning or
navigation task.

3.4 Dataset

The proposed Talk2Car-RegSeg dataset is built on top of the Talk2Car dataset, an object referral
dataset containing commands written in natural language for self-driving cars. The original dataset had
textual command with a specific action, referring to an object in the image, and the object of interest
was referred to using a bounding box. However, for AD applications, as referring directly to objects
is not amenable for downstream tasks like planning, we augmented the original dataset with segmenta-
tion masks corresponding to navigable regions. The newly created Talk2Car-RegSeg dataset has 8349
training and 1163 validation image-command pairs, similar to those used in the original dataset. We
observed that the commands in Talk2Car’s validation set are very complex as they are verbose, and in
a significant number of cases, there were more than one actions in a single command ex: ”we need to
turn right instead of left, as soon as this truck pulls forward, move over to the right lane behind it.”
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We first present results on the full validation set; however, to evaluate the performance in a controlled
setting, we also curated a novel test split (Test-RegSeg). Test-RegSeg contains 500 randomly selected
images from the validation set with newly created commands. The commands in the Test-RegSeg split
are simplified and straightforward. We present results, baseline comparisons, and ablations on both the
complex instruction validation set and the curated simpler instruction set (Test-RegSeg). In the rest of
the paper, we consider Test-RegSeg as our test set. The dataset and the code-base will be released at
(rnr-t2c.github.io). In the next section, we describe the dataset creation process.

3.4.1 Dataset Curation

The authors of the paper manually annotated the navigable regions in each image based on the
linguistic command. A simple Graphical User Interface (GUI) was created to make the annotation
process straightforward. In the GUI, each annotator sees the image, the linguistic command, and the
bounding box for the referred object in the scene. We used ground truth bounding boxes from the
original Talk2Car dataset as a reference to identify the referred object in the scene to resolve ambiguities
and only focus on annotating regions of interest.

To verify the quality of annotations, we hired a group of three students from the institute for the role
of annotation reviewers. All the reviewers were briefed on the task and were asked to ensure that all
feasible regions for navigation were annotated in the image. Depending on the reviewers’ assessment,
each annotation could be either accepted or sent for re-annotation. An annotation was accepted if at
least two reviewers concurred on it. In the other cases, images were sent for re-annotation with reviewer
comments for annotation refinement. This process was repeated iteratively until all annotations were
qualitatively and logically acceptable.

Since navigation is a flexible activity in terms of different ways of performing it, we involved multiple
people as annotators and reviewers to capture different perspectives and incorporate those in our dataset.

3.5 Approach

Given an image I from a front-facing camera on the autonomous vehicle and a natural language
command Q, the goal is to predict the segmentation mask of the region in the image where the vehicle
should navigate to fulfil the command. Here, the command Q corresponds to a navigable action in the
image. Compared to the traditional task of Referring Image Segmentation, the proposed task is more
involved as the ground truth masks are unstructured. To correctly identify the regions of interest, the
model should be able to learn correlations between words in commands and regions in the image. We
propose two models for this task, a baseline model and another transformer-based model. The feature
extraction process is the same for both models. They only differ in multi-modal fusion and context
modelling. We describe the feature extraction process in the next section and describe each model in the
subsequent sections.
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Figure 3.2 Network architecture for the Transformer Based Model (TBM).

3.5.1 Feature Extraction

We extract visual features from image using a DeepLabV3+ [9] backbone pre-trained on semantic
segmentation task. Since hierarchical features are beneficial for semantic segmentation, we derive hi-
erarchical features Vi of size Ci×Hi×Wi with i ∈ {2, 3, 4}, corresponding to last 3 layers, namely
layer2, layer3 and layer4 of CNN backbone. Here Hi,Wi and Ci correspond to height, width and
channel dimension of visual features corresponding to each level. Each Vi’s are transformed to same
spatial resolution Hi = H , Wi = W and channel dimension Ci = Cv using 3 × 3 convolutional
layers. We initialize each word in the linguistic command with the GloVe word embedding, which are
then passed as input to LSTM encoder, to generate linguistic feature for the command. We denote the
linguistic feature as L = {l1, l2, ..., lT }, where T is the number of words in the command and li ∈ RCl ,
i ∈ {1, 2, ..T} is the linguistic feature for the i-th word. In all our experiments, Cv = Cl = C and
H = W = 14.

3.5.2 Baseline Model

Our baseline model is inspired from [22], we first compute the command feature Lavg ∈ RCl by
averaging all the word features li in L. In order to fuse visual features with linguistic features, we repeat
the command feature Lavg along each spatial location in the visual feature map and then concatenate
the features from both modalities along channel dimension to get a multi-modal feature Mi of shape
R(Cv+Cl)×H×W . Since the number of channels, Cv + Cl can be large, we apply 1 × 1 convolution to
Mi reduce the channel dimension to C, resulting in final multi-modal feature Xfinal

i ∈ RC×H×W .

3.5.3 Transformer Based Model

Our baseline model has few shortcomings: (1) the word-level information is lost when all word
features are averaged to get the command feature. (2) multi-modal context is not captured effectively
with a concatenation of visual and linguistic features. To address these shortcomings, we propose a
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transformer-based model (TBM). We borrow from the architecture of DETR [5] for our transformer
based model. Specifically, we adopt their transformer encoder, and along with image features Vi, we
also pass textual feature L as input by concatenating features from both modalities along length dimen-
sion, resulting in multi-modal feature Mi of shape RC×(HW+T ), T is the number of words in the input
command. Mi is passed as input to the transformer encoder, where self-attention enables cross-modal
interaction between word-level and pixel-level features, resulting in multi-modal contextual feature Xi

of the same shape as Mi. Since all word features are utilized during the computation of Xi, the word
-level information is preserved, and because of inter-modal and intra-modal interactions in the trans-
former encoder, the multi-modal context is captured effectively. To predict a segmentation mask from
Xi, we need to reshape it to the same spatial resolution as Vi, i.e., H ×W . So, Xi is separated into
attended visual features, Xv

i and attended linguistic features, X l
i of dimensions RHW×C and RT×C ,

respectively. X l
i is averaged across length dimension and concatenated with Xv

i along the channel di-
mension and reshaped to result in a feature vector of shape R2C×H×W . Finally, 1 × 1 convolution is
applied to give final multi-modal feature Xfinal

i ∈ RC×H×W .

3.5.4 Mask Generation

To generate the final segmentation mask, we stackXfinal
i for all levels and pass them through Atrous

Spatial Pyramid Pooling (ASPP) Decoder from [11]. We use 3× 3 convolution kernels followed by bi-
linear upsampling to predict the segmentation mask at a higher resolution. Finally, sigmoid non-linearity
is applied to generate pixel-wise labels for segmentation mask Y . Both baseline and transformer-based
models are trained end-to-end using binary cross-entropy loss between predicted segmentation mask Y ,
and the ground truth segmentation mask G.

3.6 Experiments

Implementation Details: We use DeepLabV3+ [9] with ResNet-101 as backbone for visual feature
extraction. Our backbone is pre-trained on the Pascal VOC-12 dataset with the semantic segmentation
task. Input images are resized to 448 × 448 spatial resolution. We use 300d GloVe embeddings pre-
trained on Common Crawl 840B tokens [47]. The maximum length of commands is set to T = 40 and
for both visual and linguistic features, channel dimension C = 512. Batch size is set to 64, and our
models are trained using AdamW optimizer with weight decay of 5e−4, the initial learning rate is set to
1e−4 and gradually decreased using polynomial decay by a factor 0.5.

Evaluation Metrics: In the proposed dataset, the ground truth segmentation masks incorporate all
viable regions of interest for navigation, so any point inside the annotated region can be used as a
target destination. Considering this aspect of our dataset, we evaluate our models’ performance on three
metrics, namely, Pointing Game, Recall@k and Overall IOU. Pointing Game Metric (PGM) indicates
the per cent of examples where the highest activated point lies inside the ground truth mask. It is
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calculated in the following way:

PGM Score =
# of hits

total examples
(3.1)

A hit occurs when the highest activated pixel lies inside the ground truth segmentation mask. It is possi-
ble that in some cases, the point with the highest activation is slightly outside the annotated ground truth
region. However, the overall prediction is almost correct. Recall@k metric is used to underscore the
performance of models in such scenarios. Recall@k metric is calculated as the proportion of examples
where at least one of the top-k points lies inside the ground truth mask. Finally, we also show results
with the Overall IOU metic. Previous works commonly use the Overall IOU metric [22, 27, 26] for RIS
task, it is calculated as the ratio of total intersection and total union between the predicted and ground
truth segmentation masks across all examples in the dataset.

Method
Recall @k for PGM

k = 5 k = 10 k = 50 k = 100 k = 500 k = 1000
Val Set Test Set Val Set Test Set Val Set Test Set Val Set Test Set Val Set Test Set Val Set Test Set

Baseline 51.84 69.80 52.71 69.80 55.29 72.20 56.92 73.80 64.49 79.60 69.64 83.80
TBM 59.67 77.00 60.53 78.20 63.19 79.60 64.91 81.80 72.65 86.60 78.07 90.20

Table 3.1 Recall@k metric for the validation and test set

3.6.1 Experimental Results

In this section, we present the experimental results on different evaluation metrics. For all metrics,
we compute the results on both validation and test split.

Pointing Game: Results on pointing game metric are presented in Table 3.6.1. First, we compare
against a centre baseline to showcase the diversity of localization of annotated regions and ensuring that
our dataset is free of centre-bias. In this baseline, the image’s centre point is considered as the point with
the highest activation for the pointing game metric. PGM score is 5.07%, and 6.61% for this baseline
on validation and test splits, respectively, thus clearing our dataset for centre-bias. Next, we compare
against the baseline model presented in Section 3.5.2. Our baseline model gives a PGM score of 49.78%
and 66.80% on validation and test split, respectively. The test split score is high as the commands for
the test split are simple and concise compared to those in the validation split. The Transformer-Based
Model (TBM) gives higher numbers than both the baselines on both splits. We observe an improvement
of 8% and 10% over the baseline model for validation and test split, respectively. This improvement
indicates the benefits of using the proposed multi-modal attention in the transformer-based approach,
which can effectively model word-region interactions.

Recall@k: Since our model mostly predicts connected and contiguous segmentation masks, Recall@k

metric indicates if we can approximately locate the correct area (where the highest activation point is
near the ground truth region). Results for this metric are tabulated in Table 3.6, we consider values of
k={5, 10, 50, 100, 500, 1000}. Recall@1 is the same as pointing game metric as in both cases, we pick
the point with the highest activation. As expected, the metric performance increases with the value of
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k. For transformer-based model, at k = 1000, metric score is 78.07% and 90.20% for validation and
test splits, respectively. 1000 pixels account for ∼ 0.5% of the overall pixels at the considered resolu-
tion. Hence, Recall@1000 metric suggests that we can approximately locate the correct area 90.20% of
the time when using simpler and straightforward commands. This demonstrates the effectiveness of our
approach and how we are able to reduce the search space for feasible regions for navigation significantly.

“Pull over by the white van” “Park on the right by the

green bin”

“Follow the yellow car that is

in the left lane”

“pick up the woman on your

left”

Figure 3.3 Qualitative Results for Successful Groundings. Our TBM network is able to ground the
appropriate regions even in cases where the referred objects are barely visible. Red arrow is used to
indicate the location of these referred objects.

“Do not turn right as I said,

carry on straight so I can talk

to that person”

“Continue straight so I can

talk to that person”.

“Wait for the moped to

continue before we turn left”

“Wait for the moped to leave”

Figure 3.4 Differences between the network performance on the original Validation set and the newly
created Test split. For each image pair, example on the left is from the Validation split and one on the
right is from the Test split with simplified commands. The “person” in left pair of images is indicated
using a red arrow.

Overall IOU: Since any point inside the annotated region can be considered as a target destination,
computing the overall IOU metric that is normally used in segmentation literature cannot serve as an
adequate performance measure and is only an indicative measure. For example. if there are three
parking slots available, even if the model predicts one of them, the prediction is correct, however, the
IOU might be low. The results presented in Table 3.6.1 illustrate this aspect. For the transformer-based
model, the IOU metric is 22.17% for validation split and 30.61% for the test split. The numbers for test
split are significantly better than those in validation split because of the simplicity of commands in test
split. This metric illustrates the differences between RNR and RIS task and shows that the same metric
cannot be used to judge the performance across these tasks.
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Method PGM Overall IOU
Val set Test set Val set Test set

Baseline 49.78 66.80 19.88 29.28
TBM 58.03 76.60 22.17 30.61

Table 3.2 PGM and Overall IOU for the validation and test set

3.6.2 Ablation Studies

In this section, we elaborate on the ablation and analysis studies performed on the proposed dataset
and transformer-based model. We study various aspects of linguistic commands in the proposed Talk2car-
RefSeg dataset on model performance. Specifically, we analyse the grounding performance of our model
based on (1) the length of command and (2) the action specified in the command. As the commands
in the test split are shorter than those in validation split, we conduct experiment (2) on the test split.
Whereas based on the verbose nature of commands in the validation split, experiment (1) is conducted
on the validation split. We used both baseline and transformer-based models and the pointing game
metric for all the ablation studies.

Method
PGM score on the Val set

T < 10 10 ≤ T < 20 T ≥ 20

Baseline 52.09 48.55 44.00
TBM 60.00 57.06 52.00

Table 3.3 PGM for the validation data w.r.t. command length where T = number of words in a command

Based on Command Length: We categorise the commands based on their length and present the
ablation experiments in Table ??. All commands are grouped into three buckets, {0-10, 10-20, ≥20}
based on their length. We observed that as the command length increases, the performance on the
pointing game metric decreases. The performance gap between the first two buckets is ∼3% , and
that between the last two buckets is ∼5% in TBM. Since the commands in the validation split are
long and complex, the network faces difficulties in grounding navigable regions for them. Some of the
original talk2car dataset’s commands contain unnecessary information from a grounding perspective,
like addressing people using proper nouns. Because of this reason, we proposed a separate test split
with concise commands. Length based grouping of commands in test split is not possible as the majority
(∼78%) of them are less than 10 words long.

Based on Action type: Next, we classify each command to fixed basic action/manoeuvre categories
and present the results on the pointing game metric in Table ??. For “lane change” and “turning” type
of commands, our network can correctly predict the navigable region with high accuracy of 84.62%
and 86.59%, respectively. For “parking” based commands, we get a pointing game score of 75.12%.
Parking is a challenging action to evaluate based on the Pointing game metric. In our dataset, the
annotation mask is often relatively small for these cases, especially so when referring to a far away
parking slot. The highest performance is observed on “follow” type commands, where the metric is
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Method
PGM score on the test set

Stop/ Park Follow Turn Maintain Course Go Slow/Fast Change lanes
Baseline 62.83 72.91 74.19 50.00 76.31 68.74
TBM 75.12 88.23 86.59 83.34 77.15 84.62

Table 3.4 PGM on the test set with commands for various maneuvers

88.23%. Commands with “follow” action is easier to ground as in most cases, the navigable region is
just behind the referred object (hence are less ambiguous). Results on these basic action/manoeuvre
specific commands indicate the generality and practicality of our approach in realistic scenarios.

3.6.3 Qualitative Results

“Get into the next lane behind the

car”

“Park in between the black cars on

right”

“Switch to the middle lane” “Continue straight”

Figure 3.5 Qualitative Results for same image with different linguistic commands. Our network can
successfully predict the correct navigable regions for new commands, highlighting its effectiveness in
adapting to new commands flexibly.

In this section, we present the Qualitative results of our transformer-based approach. For all the
example images in this section, Green, Red and Yellow signify the ground truth mask, the predicted
mask and their intersection, respectively. Success cases of our approach are demonstrated in Figure 3.3.
The model successfully correlates textual words with regions in the image, ex: in the leftmost image, the
model can successfully ground the region beside the white van, which is barely visible. Similarly, in the
second image from the left, there are two green bins, the model can successfully resolve the ambiguity.
The last two images demonstrate the performance of our model during night-time. In these cases, the
referred object is barely visible, but the model can still infer the correct region.

Next, we showcase the differences between the original validation split and the newly created test
split in Figure 3.4. For the leftmost image, the command is a bit confusing as there is a subtle negation
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“Pull over near the first trailer on the

right”

“Park next to the white truck on the left

side of the road”

Figure 3.6 Qualitative Results for Failure Cases. Even though the network fails to identify correct
regions, it predicts a reasonable region near the referred object without knowing the parking rules.

involved. In order to resolve these issues, the model should be trained on training data with a large num-
ber of such instances. However, with the simplified command, the model predicts the correct region.
Similarly, for the second image, the model gets confused when there are multiple action words in the
linguistic command. In this particular case, the model correctly predicted two regions corresponding to
both actions “wait” and “turn left” despite the ambiguity in the command. This underscores our net-
work’s capability in effectively modeling the word-region interactions. After simplifying the command
to include only one action “wait”, the model correctly predicted the corresponding navigable region.

In Figure 3.5, we further scrutinize our network by fixing an image and modifying the commands to
correspond to different actions. Our network is able to incorporate the changes in command and suc-
cessfully reflect them in the predicted map, highlighting the network’s versatility in understanding the
intent of various textual commands for the same visual scene. This result showcases the controllability
aspect of our network, which is highly valuable for AD applications.

Some failure cases of our approach are shown in Figure 3.6. The results suggest that our model is
able to locate the “trailer” (in the first image) and the “white truck” (in the second image). However,
it fails to predict the navigable regions accurately. Looking closely, in the first case, the model is also
able to understand the sub-phrases “left side of the road” and “next to white truck”; however, it predicts
a place that is not appropriate for parking. The results clearly indicate the difficulty in RNR, even after
correctly grounding the referred object.

3.7 Navigation and Planning

We show a downstream application wherein the navigable region output by the network is made
use of by a planner to navigate to the centre of the region. While there are many potential ways of
interpreting the navigable region by a downstream task, for example, one could use this as an input
to a waypoint prediction network similar to [64], in this effort, we proceed with the straightforward
interpretation of choosing the region centre as the goal location.
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“Turn in the direction that man is

pointing to.”

“Park across from the white truck on

the left”

“Turn right before the first car on the left”

Figure 3.7 The first row corresponds to the original image and command pairs. The second row corre-
sponds to the predicted segmentation masks (in red) overlaid onto the images. The third row shows a
feasible sample trajectory to the centre point in the predicted navigable region as a goal point

First, we extract the ground plane from the LiDAR scan. Then we use LiDAR camera calibration to
project the pixels corresponding to the grounded area in the image to the ground plane in the LiDAR
scan. Finally, we use an RRT based sampling algorithm to construct a path to the point in 3D corre-
sponding to the centre pixel of the region. This results in executable trajectories that appear visibly
acceptable, as shown in the planned trajectories of Figure 3.7 for a few samples from our dataset. More
involved integration to an AD application is a natural extension of this effort which will be tackled in
future work.

3.8 Conclusion

This paper introduced the novel task of Referring Navigable Regions (RNR) based on linguistic com-
mands to provide navigational guidance to autonomous vehicles. We proposed the Talk2Car-RegSeg
dataset, which incorporates binary masks for regions on the road as navigational guidance for linguistic
commands. This dataset is the first of its kind to enable control of autonomous vehicle’s navigation
based on linguistic commands. Furthermore, we propose a novel transformer-based model and present
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thorough experiments and ablation studies to demonstrate the efficacy of our approach. Through a
downstream planner, we showed how RNR task is apt for autonomous driving applications like trajec-
tory planning compared to the RIS task. This is the first such work which has proposed RNR and show-
cased its direct relevance to AD applications. In this work, we focused on single frames for grounding;
future work should focus on grounding at the video-level, as it is a more realistic setting for commands
with temporal constraints.
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Chapter 4

Conclusion

In this thesis, we tackled the problem of visual grounding and explored its utility for the task of vision
language navigation. In particular, we propose a novel architecture for the Referring Image Segmenta-
tion (RIS) task, which requires predicting a segmentation mask corresponding to the object referred to
by the linguistic expression. We find that both intra-modal (word-pixel) and inter-modal (word-word
and pixel-pixel) interactions are needed to model the relationship between visual and linguistic modal-
ities. Further, these multi-modal interactions are captured in a synchronous manner to avoid semantic
errors encountered by existing approaches that either miss some of the interactions or capture them se-
quentially, resulting in error propagation. Additionally, we effectively utilise the hierarchy associated
with the visual features to enable features at each hierarchy to focus on spatial regions corresponding
to the referred object and predict a refined segmentation mask. We benchmark the proposed approach
on multiple RIS datasets, achieving considerable performance gains over the existing state-of-the-art
(SOTA) methods.

We then turn to the Vision-Language Navigation (VLN) task, which requires performing autonomous
navigation based on the language commands. Existing approaches to VLN treat the task as a sequence-
to-sequence prediction or a reinforcement learning problem; further, they suffer from a major limitation
of interpretability as their networks are essentially a black box. Instead, we propose a paradigm shift
towards visual-grounding-based solutions, which by virtue of their design, provide interpretability by
localising the linguistic command in the visual scene, thus improving human-machine interaction. We
propose the novel task of Referring Navigable Regions (RNR) for language-based autonomous driving,
which grounds regions of interest on the road based on the language command. Further, we introduce a
novel Talk2Car-RegSeg dataset, which incorporates segmented regions on the road corresponding to the
linguistic command. To perform navigation, we utilised an external motion planner, which takes a point
on the road sampled from the predicted navigable region as input. Finally, through extensive qualitative
and quantitative ablations, we showcase the effectiveness and practicality of the proposed approach.
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