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Abstract

This thesis targets the problem of surrogate approximations for similarity measures to improve their
performance in various applications. We have presented surrogate approximations for popular dynamic
time warping (DTW) distance, canonical correlation analysis (CCA), Intersection-over-Union (IoU),
PCP, and PCKh measures. For DTW and CCA, our surrogate approximations are based on their corre-
sponding definitions. We presented a surrogate approximation using neural networks for IoU, PCP, and
PCKh measures.

First, we propose a linear approximation for the naive DTW distance. We try to speed up the DTW
distance computation by learning the optimal alignment from the training data. We propose a surro-
gate kernel approximation over CCA in our next contribution. It enables us to use CCA in the kernel
framework, further improving its performance. In our final contribution, we propose a surrogate ap-
proximation technique using neural networks to learn a surrogate loss function over IoU, PCP, and
PCKh measures. For IoU loss, we validated our method over semantic segmentation models. For PCP,

and PCKh loss, we validated over human pose estimation models.
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Chapter 1

Introduction

1.1 Motivation

Humans primarily differentiate two objects by measuring their similarities. The concept of similarity
is fundamentally essential in almost every scientific field. For instance, the relationship between two
topological spaces is studied using similarity concepts like congruence and isomorphism. Measuring
the similarity between a given query sample and indexed samples is an important problem in search
engines. In machine learning, similarity concepts play a fundamental role in evaluating the performance
of learned models. A similarity measure is a function that computes the degree of similarity between
two objects. Several forms of these similarity measures routinely come up in many real-world problems.

In a typical learning task, we are given access to labeled examples (z,y) drawn from some distri-
bution P over X X Y, where X is the input space, and Y is the target/output space. Here, we have
not made any assumptions on the input space X. The objective of a learning algorithm is to learn a
discriminative function » : X — Y, such that, for given an example (x,y) € P, (z, h(x)) is in some
sense similar to the training data D. In other words, we want similar inputs to lead to similar outputs.
In machine learning, to study the problem of learning, we need additional structure in input and output
space. On this front, we need a similarity measure over the input space X and the output space Y. The
discriminative function h is computed using these similarity measures. For the input space X, we need

a function,

f:XxX >R (1.1)

satisfying, Vz,z € X, f(x,2') = f(z',z). It defines a similarity measure over X. If f(z,z;) <
f(x,x;),V j #ithen h(x)(= y) should be similar to h(x;)(= ;).



In the output space Y, the similarity is usually measured in terms of a loss function. The similarity
in the output space evaluates a learned model’s performance. The loss function over the output space Y

is defined as,

L:YxY >R (1.2)

satisfying, L(yi,y;) > 0, Vy;,y; € Y. The loss function is used to evaluate the performance of

discriminative function h (learned model) for the given sample = € X.

1.1.1 Similarity Measures in Machine Learning

Comparing two images/objects is a fundamental operation in many computer vision applications
like classification, clustering, recognition, and retrieval. Comparing two images or, more generally,
two samples mainly relies on the concept of the similarity measure. Many similarity measures are
proposed in the literature for comparing different types of objects. Different similarity measures give
different types of similarities between the samples. No single similarity measure is best suited for all
types of data. For example, the standard Euclidean distance works well for comparing the samples in
R™ (samples in the n-dimensional space). However, if we consider two-time series sequences of the
same dimension, then Euclidean distance may not be able to capture all their similarities. For example,
consider the two-time series X and Y, given in figure [I.T[(a). It shows that the Euclidean distance

cannot capture their similarities for the given two-time series. In Euclidean distance, i*"

sample point
of X (X;) is mapped to ith sample point of Y (Y;). However, X; is not similar to Y; for the given
time series. On the other hand, Dynamic time warping (DTW) distance (Figure [I.I[b)) can capture the

th sample point of X (X;) is mapped to its similar

similarities between X and Y. In DTW distance, ¢
point in Y. In the figure, X; is similar to Y;;9, so X; is mapped to Y;; 2. For time-series data, DTW
distance works well compared to Euclidean distance.

The similarity measures are domain-specific. The applicability of similarity measures may differ
from one domain to another domain of data. Such as the similarity measure used to compare two
speech signals may not work well for comparing two DNA sequences. There are similarity measures
that best suit specific problems. For example, each of the similarity measures canonical correlation

analysis (ccaA) [18,[51]], Edit distance [43]], X2 Histogram distance [[14] and Earth movers distance

(EMD) [134,(135]] works well for a specific type of problems. The canonical correlation analysis



| | | | | . | | | |
tume tume

(a) Euclidean Distance (b) DTW distance

Figure 1.1: Euclidean distance and Dynamic time warping (DTW) for comparing time series data. Here,

1 corresponds to ith sample point of X (Y), i.e. X; (Y;)

(cca) [18,51] is best suited to compute the similarity between two random variables. CCA is popularly
used for comparing videos, where videos are represented as a tensor variable. CCA has applications in
action recognition [108]]. On the other hand, the similarity measure Edit distance [43]] works well for
the problem of string matching. The Edit distance between two strings is the cost of the sequence of
operations like insertion, deletion, and substitution of a symbol required to transform one string into
another. Edit distances find applications in natural language processing (NLP) and bioinformatics. x?
Histogram distance [14] is useful in comparing the histograms. For many computer vision tasks, each
object of interest can be presented as a histogram by using visual descriptors. Earth movers distance
(EMD) [134}/135] is popularly used for comparing two probability distributions. EMD is widely used in
content-based image retrieval. In general, these similarity measures work well with the nearest neighbor
(NN) classifier. NN classifier classifies the data based on the given similarity function. One advantage
of using the NN classifier is that we can use it with any similarity measure and its performance depends

on the given similarity measure.

1.1.1.1 Kernels

The objective of a similarity function is to output small values for similar samples and large values
for dissimilar samples. Consider the example given in Figure[I.2] In Figure[I.2)a), the samples marked
in red belong to class 1, and those marked in blue belong to class 2. Here, the data is non-linear, and

we cannot draw a straight line that separates the given two classes. Consider the Euclidean distance



e
.
®
L -
e % o ¢ixooM™ e e ® =
. k e N e
/ [ ] ° \ ° (f.» - o ® ‘-\\ &
L ] i ! \..\ \.\.
t 2 + o L4 » ™ N, o
i a ® g i b b
a \ / ® \"\ s J__,r' -
. ® o i, ..» [}
o e S S - L ] 0\ . e 3 b
N P
L] oy Py
s
(a) Original data (b) Projected data

Figure 1.2: Projecting the given data using feature maps. Here, 2-D data is projected into 3-D.

over this data for measuring the similarity. Ideally, the Euclidean distance between class 1 and class 2
samples should be high. However, the Euclidean distance between class 1 and 2 samples around the
circle drawn is minimal. Many similarity measures will not work over these types of data to measure
the similarity. The primary reason for this is that the given data is non-linear. One possible solution for
this problem is to project the non-linear data into a linear space and use the above similarity measures
over the projected data. Kernel functions are suitable for this task. Kernels are a class of similarity
measures that handles the non-linearities present in the given data. For a given sample z, © e X, a

kernel k : X x X — R s defined as

rlr,x) = (p(x), ¢(x ) (1.3)

where ¢ is the feature map, which projects the given data into some dot product space H (Hilbert space).
The inner product between the projected samples ¢ () and ¢(z) can be viewed as a similarity between
the given samples in the inner product space H. The inner product between the projected samples
is computed using the kernel function (Eq[I.3). Kernels project the given data into an inner product
space H using a feature map ¢, and the similarities are computed in this projected space. Consider the
example given in Figure b). Here, the original data in R? (Figure a)) is projected on to R? using
the featuremap ¢(z = (x1,72)) = 22 + 22 + 2x125. Now, the projected data is linear, and we can find

a hyperplane that separates the given two classes. The dot product in this projected space can compute



the similarities between the original samples. In general, the dimensionality of the projected space is
very high.

Many kernels proposed in the literature describe different notions of similarity between the samples
in various settings. For example, the RBF kernel is popularly applied for the samples in R™. In the
RBF kernel, the original data is projected into infinite-dimensional space and the similarities between
the given samples are computed in this projected space. For the samples x and ', the RBF kernel is
computed as kppp(z, 2 ) = exp(—y||z — z'||?). Histogram intersection kernel [14] serves as a good
measure for the histograms. It measures the degree of similarity between two histograms. Pyramid
match kernel [53]] works well for data where the samples are sets of features with different cardinalities.
Kernels are widely used as similarity measures in support vector machines (SVM) classifier. SVMs are
the most well-known learning systems based on kernel methods. For the labeled training data, SVMs
output an optimal hyperplane, which categorizes the new samples. If there is an appropriate choice of
kernel, the SVMs perform well compared to the NN classifier [32,43]]. The generalization ability of SVMs

contributes to their success.

1.1.1.2 Loss Functions

The objective of a learning algorithm is to learn a discriminative function h : X — Y accord-
ing to a similarity function f : X x X — R, such that h(z;) = y;,¢ = 1ton, where, D =
{(zi,y:;) : i =1ton} is the given training data. However, during the training, h(z;) may not give
the exact output y;. We need a similarity measure over the output space to evaluate how well the dis-
criminative function / fits the given training data. Loss function L : Y x Y — R, defines a similarity
measure over the output space Y. These are also used to evaluate the performance of given discrimina-
tive functions. For a given sample (z,y) € X x Y, if h(z) deviates from y then the loss function outputs
a higher score/error (L(h(x), y) will be high) otherwise it gives a small error or no error (L(h(z),y) will
be a small value). There are many loss functions proposed in the literature for measuring the similarity
in the output space. Few loss functions commonly used in machine learning are Lo loss (Mean squared

error), L loss, Hinge loss, cross entropy, and intersection over union (IoU).
The Lo loss or Mean squared error (MSE) is measured as the average squared difference between pre-

dictions and actual observations. For a given training sample (x,y) € X x Y, the Lo loss corresponding

to the discriminative function h is computed as



1
Lyse = ];Hy — h(=)|3 (1.4)

where, y is the target value for x and p = dim(y). It is the Euclidean distance between y and h(x).
Consider the case, where the target space Y contains probability scores ([0, 1]), i.e the discriminative
function h(x) outputs a probability value between 0 and 1 (y € [0, 1]). If there are ¢ number of classes
present in the given data, then y € [0, 1]°. In this setting, cross-entropy loss is used to measure the per-
formance of a given learning algorithm. For a given sample z € X, the cross-entropy loss corresponding

to the discriminative function h is computed as

c

Leog = — Z yilog(hi(x)) (1.5)

i=1
where, y = (y!,...,y°) € R¢is the target value for z and h(z) = (h!(x), ..., h°(x)). Similar to cross-
entropy, loU is also popularly used in measuring the performance of the given discriminative function,
where the target space Y contains probability scores.

More recently, in machine learning, neural network-based classifiers are performing well compared
to the SVM based methods. In particular, convolutional neural networks (CNN) achieve state-of-the-art
performance on a wide variety of problems. In CNNs, the features are learned along with the classifier in
an end-to-end fashion. Loss functions play an essential role in the performance of CNNs. For the given
problem, the network is trained to minimize the training error, measured using the given loss function.

The performance of the CNN network is evaluated using this training error (accuracy).

1.2 Surrogate Approximations in Machine Learning

In machine learning, surrogate approximation techniques are widely used for approximating func-
tions in various applications. It includes approximating a discriminative function using the training data,
approximating an objective function in a simpler form [[49]], and approximating similarity functions to
improve their performance [35,/79,/173|]. In mathematical programming, sometimes the objective func-
tions are approximated by one of the simpler forms to reduce the computational overhead [49]]. Few
approximation techniques estimate the decision function using the given functional data, like approxi-
mating the optimal discriminative function using SVM [31]]. For the given training data, SVM approxi-

mates its decision function by minimizing its training loss. Linear regression and SVM regressions are



used to approximate the functions whose output is a real or continuous variable. Neural networks are
popularly used to find surrogate approximations for various real-valued functions. These are widely used
in approximating the non-differentiable functions, which do not have a closed-form expression [58}66].
Differentiable similarity functions have better properties than non-differentiable similarity functions
like the computation of gradients for finding the optimal solution. For example, the similarity measure,
intersection-over-union (IoU), is popularly used as the performance measure in segmentation problems.
However, due to its non-differentiable property, it cannot be used as a loss function in CNN. The differ-
entiable similarity functions are widely used as loss functions in CNN, like Lo loss and cross-entropy.
For finding the differentiable approximation of non-differentiable similarity measures like edit distance
and intersection-over-union (IoU), a few surrogate approximation techniques [90,/127] approximate the
given similarity function using some modifications in its definition. Similar to linear techniques, non-
linear approximation techniques are also used in functional approximation [[55]]. These techniques use
Gaussian kernels in the functional approximation. Surrogate approximations are also widely used in
kernel approximations. In general positive definite kernels guarantees a unique global optimal solution
in SVM. However, many of the kernels in the literature are not positive definite, like the sigmoid ker-
nel [61]], hyperbolic tangent kernel [[149]], and edit distance kernel [90]. These kernels are converted into

positive definite kernels using surrogate approximation techniques [38},90].

In our work, we would like to focus on the problem of surrogate approximations for similarity mea-
sures. In this space, we propose approximation techniques for different similarity measures to im-
prove their performance in various applications. We introduce different approximation techniques for

(i) Speedup and (ii) Improved accuracy.

1.2.1 Problems of Interest

(a) Linear approximation of DTW distance: In general, DTW distance has quadratic complexity,
which limits its use in various applications with the nearest neighbor classifier. For a given two se-
quences of length n and m, respectively, the computational complexity for DTW distance is O(nm).
It is computationally expensive for large datasets. To compute the DTW distance for a pair of given
two sequences, we need to find the optimal alignment with the least cost from all the possible align-
ments. This is the computationally expensive operation in DTW distance. This work aims to find

a linear approximation to the DTW distance. The surrogate approximation will speed up the DTW



(b)

(©)

(d)

distance computation, which enables to use of DTW distance for various applications like the word

image retrieval over a large corpus.

Linear approximation kernel over DTW distance: The DTW distance is a popular similarity mea-
sure for comparing the time series data. In the past, there have been attempts to define kernels over
DTW distance. These kernels enable the use of DTW distance in kernel methods like SVM, which im-
proves its performance compared to NN classifier. However, these kernels have quadratic complexity
and are computationally expensive for large datasets. Also, these kernels are not definite, limiting
their applicability in kernel methods. An explicit feature map is a popular method for speedup the
non-linear kernels. It approximates the original large dimensional (infinite-dimensional) feature
map of non-linear kernels by a small finite-dimensional feature map. This small-dimensional fea-
ture map gives a linear approximation of the original non-linear kernel. The explicit feature maps
are quite popular for different non-linear kernels like intersection, Hellinger’s, x2, and RBF kernels.
However, this technique does not appear widespread in the time series community. Our second
problem of interest aims to find a linear surrogate approximation kernel over DTW distance using
explicit feature maps. The linear approximation kernel is computationally efficient compared to all

other kernels over DTW distance and can also be used with linear SVM.

Surrogate approximation kernel over canonical correlation analysis (CCA): Videos are gener-
ally represented using 3D tensors. To compare the videos in the problems like action recognition in
videos, the 3D tensors are factorized into lower-dimensional factors, and similarity measures are ap-
plied to these factors. Canonical correlation analysis (CCA) is widely used as the similarity measure
for comparing these lower-dimensional tensors. It measures the similarity using specially selected
discriminative correlation coefficients. Kernelized CCA is proposed to improve its performance in
a kernel setting. However, it cannot be applied in all the kernel methods. In this work, rather than
kernelizing the CCA, we are interested in defining a surrogate kernel over CCA, which can be applied

in many situations where the canonical correlation is used.

Learning a Surrogate Loss for Semantic Segmentation and Human Pose Estimation Semantic
segmentation is a key topic in computer vision today, and deep neural network models have emerged
as the state-of-the-art solution to this problem in recent times. Cross-entropy loss is the typical loss
function used to train deep neural networks for this task. However, the success of the learned models

is measured using Intersection-Over-Union (IoU), which is inherently non-differentiable. Similarly,



CNNs for human pose estimation typically use the regression loss for training the network. However,
the accuracy of human pose estimation methods (networks) is measured using metrics such as the
percentage of correct parts (PCP) and the percentage of correct key points (PCK). This gap between
performance measure and loss function results in a fall in performance, which few recent efforts
have also studied. This work aims to learn surrogate loss functions (networks) approximating the

IoU, PCP, and PCK loss.

1.3 Major contributions

The thesis has the following major contributions.

1. Linear approximation of DTW distance: In this work, we propose Fast Surrogate DTW dis-
tance, a linear approximation of naive DTW distance. We need to find the optimal warping path
from the possible alignments for computing the DTW distance. This is a computationally expen-
sive operation and requires quadratic complexity. We try to speed up the DTW distance by learning
the optimal alignment from the training data. We learn a small set of global principal alignments
from the training data, and the optimal alignment for the new test sequences is approximated
using these alignments. As far as we are aware, none of the previous methods have exploited
the hidden structure of the alignments. We approximate the DTW distance as a sum of multiple
weighted Euclidean distances that are known to be amenable to indexing and efficient retrieval.
The performance of the proposed Fast Surrogate DTW distance is as good as DTW distance and
computationally performs equally as simple Euclidean-based matching. The details of the Fast

Surrogate DTW distance are present in Chapter 3]

2. Linear approximation kernel over DTW distance: In this work, we have introduced the Fast
Surrogate DTW kernel, which is a linear kernel over DTW distance. We have also proposed an
explicit feature map for our Fast Surrogate DTW kernel, that enables the kernel to be applied
with linear SVM. The explicit feature map for the Fast Surrogate DTW kernel is computed using
the global principal alignments learned from the training data. In chapter 3] we present our Fast

Surrogate DTW kernel along with its evaluation studies.



3. Efficient query specific DTW distance for document retrieval: We present an application using
Fast Surrogate DTW distance in chapter ] These applications widen the scope of our work and

validate its robustness to different modalities.

* This chapter addresses the problem of faster indexing in classifier-based retrieval methods
using fast surrogate DTW distance. We introduce the query specific Fast Surrogate DTW

distance for faster indexing, which has linear time complexity.

4. Surrogate approximation kernel over canonical correlation analysis (CCA): In this work,
we have introduced a surrogate kernel over CCA. The proposed canonical correlation kernel
(CCK) enables us to compare videos in a kernel framework. The kernel function works well
for action recognition as it embeds the temporal context in the videos. It seamlessly integrates
the advantages of lower-dimensional representation of videos with a discriminative classifier like
SVM. We have also shown that multiple features can be seamlessly integrated into CCK to enhance

recognition performance further. We present the details of the proposed CCK kernel in chapter [5

5. Learning a Surrogate Loss for Semantic Segmentation and Human Pose Estimation This
work proposes a novel method to automatically learn a surrogate loss function that approximates
the IoU, PCP, and PCKh loss, and is hence better suited for providing stronger performance. To
the best of our knowledge, this is the first such work that attempts to learn a loss function for
improved performance. The proposed loss can be directly learned over any base network. For
IoU loss, we validated our method over semantic segmentation models. For PCP and PCKh loss,
we validated over human pose estimation models. The proposed approach can also be used for
other tasks evaluated using non-differentiable measures. We present the details of the proposed

method in chapter 6]

1.4 Publications

Part of the work described in this thesis has previously been presented in the following publications.

Journals:

1. G Nagendar, Viresh Ranjan, Gaurav Harit, C. V. Jawahar: Efficient Query Specific DTW Dis-

tance for Document Retrieval with Unlimited Vocabulary. J. Imaging, 2018.
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2. G Nagendar, Vineeth N. Balasubramanian, C. V. Jawahar. Surrogate Loss Networks for Discrete

and Non-Decomposable Metrics. PR, 2022 (Under Review)

Conferences:

1. G Nagendar, Sai Ganesh Bandiatmakuri, Mahesh Goud Tandarpally, C. V. Jawahar, Action
Recognition Using Canonical Correlation Kernels, ACCV 2012

2. G Nagendar, C. V. Jawahar, Efficient word image retrieval using fast DTW distance, ICDAR
2015

3. G Nagendar, C. V. Jawahar, Fast approximate dynamic warping kernels, CODS 2015

4. G Nagendar, Digvijay Singh, Vineeth N. Balasubramanian, C. V. Jawahar, Neuro-loU: Learning

a Surrogate Loss for Semantic Segmentation, BMVC 2018

Other publications during PhD which are not part of this thesis are as follows:

1. Tejaswi Kasarla, G Nagendar, Guruprasad Hegde, Vineeth N. Balasubramanian, C.V. Jawahar,
Region-Based Active Learning for Efficient Labelling in Semantic Segmentation, WACV 2019

1.5 Organization

* In Chapter 2] we provide the necessary background from the domain of computer vision and

machine learning for understanding the concepts and methods presented in this thesis.

* Chapter [3| presents our first major contribution by proposing a linear approximation of the pop-
ular DTW distance. We present a detailed analysis of the proposed approximation technique and
evaluate it over standard datasets. We also proposed a linear kernel over DTW distance. The

proposed kernel is computationally faster compared to all the kernels over DTW distance.

* In Chapter 4 we present an interesting application using the proposed linear approximation of
DTW distance. We address the problem of faster indexing in classifier-based retrieval methods

using the proposed linear approximation of naive DTW distance.

* In Chapter[5] we introduce a surrogate kernel approximation over canonical correlation analysis
(ccA). The proposed surrogate kernel reports state-of-the-art results for the task of action recog-

nition in videos. It also enables multiple feature fusion for enhancing recognition performance.
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* In Chapter [6] we present a novel method to automatically learn a surrogate loss function that
approximates discrete and non-decomposable metrics - in particular, the IoU, PCP and PCKh loss,

and is hence better suited for providing stronger performance.

* Finally, in Chapter [7|we present the summary of the thesis proposal.
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Chapter 2

Background

2.1 Introduction

This chapter provides a brief background for some of the concepts we use to design our approaches

for various tasks.

2.2 Similarity Measures

A similarity function is a real-valued function that quantifies the similarity between two objects. This

section provides a brief overview of a few popular similarity measures.

2.2.1 Canonical Correlation Analysis (CCA)

Canonical correlation analysis (CCA) [18,511/60,/75] identifies and measures the linear relationships
between two sets of random variables. It consists of finding a linear combination of variables in each
set such that the resultant linear combinations best express the correlations between the given two sets
of variables. Let X = {z1,22,...,2,} and Y = {y1,¥2, ..., Ym} be two vectors of random variables
and there exists correlations among the variables. The CCA finds a linear combination of variables in
XandV,ie, Uy = D" api®i = a1 + akaZ2 + ... + ageyn and Vi, = D7 by = bryn +
broyz + ... + bemYm such that Uy, and V), have maximum correlation with each other and best express
the correlations between X and Y. The random variables U; = a! X and V; = b7V, where a; € R"
and b; € R™, are the first pair of canonical variables. The cross covariance ) v, = cov(X,Y’) for
X and Y is an n x m matrix, whose (i, j) entry is the covariance between x; and y;. The first pair of

canonical variables (Uy, V1) is defined using the coefficient vectors a; and by, which are defined as
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(a1,b1) = argmazg, p, Corr(Uy, Vi) 2.1

where, Corr(Uy, V1) is the correlation between U and V; and defined as

T
>
Corr(Uy, Vi) == ——c LW Xl 2.2)

- VVar(U)y/var(Vi) Vol Sxan o7 Sxby

where, > = cov(X, X) and )y = cov(Y,Y). The correlation Corr(Uy, V1) between U; and V;

is the first canonical correlation p; between X and Y. Similarly, the second pair of canonical variables
(U, V) are computed using Eq subject to the constraint that they should to be uncorrelated with the
first pair of canonical variables (Uy, V). The 2"¢ canonical correlation is given by py = Corr(Us, V3).
The k" canonical correlation is the square root of the kth eigenvalue of E;?l Xxy Z;lZy X Z;?l. For a

given random vectors X and Y, we are interested in p canonical correlations, where p = min{n, m}.

The coefficient vectors ay, and by, for the k" pair of canonical variables (Uy, V) are computed as

=L -1
ar=di X2 and by = el %y (2.3)

=1 =1
where, d}, is the k" eigenvector of X ¢ Yxy Z;l YyxXy and ey is the Eth eigenvector of

For given random vectors X and Y, its CCA is given as

p
CCA(X,Y) = Z pi (2.4)
i=1

where, p; is the i*" canonical correlation between X and Y and p = min{n, m}.

CCA is often defined using the theory of subspaces. In terms of subspace concepts, canonical cor-
relations are defined as the principal angles between the linear subspaces generated from the given set
of random variables. Canonical correlations are invariant to affine transformations with respect to the

given inputs [20], i.e. for the given inputs x € R™ and y € R™
CCA(Px+q,Ry+s) =CCA(z,y)
where, P € R"*" g e R", R € R™*™ and s € R™.
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Applications of CCA CCA can be successfully applied for various visual classification tasks [[138]].
It has been successful in comparing two sets of images [45/174,/178|], where a set of linearly inde-
pendent vectors represents each image set. It has also been used as a set similarity measure for object
recognition problem [40]. Here, each image is represented as a collection of image descriptors and
these image descriptors are compared using CCA. CCA has also been applied to the problems of robot
localization [148]], underwater target classification [[120], estimation of face depth maps from color tex-

tures [[132]], and detection of neural activity in functional MRI [44].

2.2.2 Dynamic Time Warping (DTW)

For a given two time series, a naive approach for computing their similarity could be first to sample
the equal number of points from both the time series; here, the time series may have variable length.
Then, compute the Euclidean distance between the sampled points. This method may not always pro-
duce the desired results, mainly due to the variable time series length, as its results match the points that
might not correspond well. Also, it cannot capture the local dependencies between neighboring states
of the time series. Consider the example given in Figure [I.I[a). From the figure, we can observe that
Euclidean distance cannot capture their similarities for the given two-time series X and Y. In Euclidean
distance, i" sample point of X (X;) is mapped to it" sample point of Y (Y;). However, in the figure,
X; does not correspond well with Y;.

A successful method to compare time series data (sequences) is dynamic time warping (DTW) [12,
139,/146[]. The DTW is used to compute the similarity between two time series [144].DTW has been
widely used for matching the time series (1-D signals) in many areas [79], including bio-informatics [/1]],
speech recognition [[107]], and word recognition [[21}/128]]. For a given two time series, the DTW yields an
optimal alignment from all possible alignments. The optimal alignment is used to find the corresponding
points between the given time series. These correspondences are used to find the similarity between
the given time series. The example given in Figure [I.I(b) shows the DTW distance better capture the
similarities between X and Y compared to Euclidean distance In DTW distance, i sample point of X
(X;) is mapped to its similar point in Y. Since X; is similar to Y;42, X; is mapped to Y;yo. In general,
for time series data, DTW distance works well compared to Euclidean distance.

Given two time series, X = (z1,...,2y) and Y = (y1, ..., ym) of lengths n and m respectively, an

alignment 7 of length || = p is a pair of increasing p-tuples (71, 2) such that
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Figure 2.1: Two constraints for speed up the DTW

gram (right).

with unitary increments and no simultaneous repetitions. That is, for V1 < < p — 1,

m(i+1) <m@i)+1, m(i+1) <m(i)+1
(m(i+1) = m1 () + (m2(i + 1) — m2(i)) > 1.

Intuitively, an alignment 7 between X and Y describes a way to associate each element of X to one or
possibly more elements in Y, and vice-versa. Let A(X,Y") be the set of all possible alignments between

X and Y. The DTW between X and Y is given as the minimum distance over all possible alignments,

||

DTW(X,Y) = mingeacxy) > 2(Xni) Yma(i)) (2.5)
=1

where, (X, (i) Ym(i)) is the ground distance between the given sequences indexed by the align-
ment 7. In general, Euclidean distance is used as the ground distance. The resulting alignment is the
optimal alignment between the given two sequences. The DTW between the time series X and Y is the
distance between X and Y after mapped together with the optimal alignment.

For comparing two time-series X and Y of length n and m respectively, the time and space complex-
ity of DTW is O(nm). The quadratic complexity mainly involves finding the optimal alignment from
a large set of possible alignments. The quadratic complexity is particularly prohibitive for large-length
time series. The time series containing a few thousands of observations requires much memory and
is computationally unattractive. In practice, heuristic constraints are used to speed up DTW. Among

these, the most commonly used constraints are Sakoe-Chiba [139]] and Itakura constraints. These
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constraints are shown in Figure [2.1] The shaded region gives the constraint window. Instead of search-
ing in the entire space for optimal path, it restricts the search space to the constraint window. When
constraints are used, the DTW algorithm finds the optimal warp path from the constraint window. Using
constraints speed up the DTW distance by a constant factor, but the quadratic complexity remains the
same. In addition, using these methods, the global optimal path cannot be found if it does not pass
through the constraint window. The constraint windows work well if the optimal path is expected closer

to the diagonal.

2.3 Classifiers

In machine learning, a large number of problems can be posed as classification tasks. In classifica-
tion, we will be given a set of observations called "input variables" and the objective is to assign/predict
its category ("output variable") from a set of categories. For a given input space X and its corresponding
output space Y, the problem can be formulated as finding a classifier f : X — Y that can correctly

classify the given input samples. Formally, the classification problem has the following inputs
* A set of input-output pairs, called the training data D = {(x1,91),...,(Tn,yn)} € X XY
* A query sample x;
For the given query sample z;, its corresponding predicted category y, is formulated as
yt = f(we, D, P) (2.6)

where, P is the parameters for the classification algorithm. Classification has been widely used in
many vision tasks, which include semantic segmentation [92]], speaker identification [[152]], document
categorization [70], and face recognition [[116]]. Examples of few popular classification algorithms in
machine learning include k-nearest neighbor (k-NN) classifier, support vector machines (SVM), and

convolutional neural networks (CNN).

2.3.1 Nearest Neighbor Classifier

The k-nearest neighbor (k-NN) [32,/43]] is a supervised classification technique. k-NN has been stud-

ied over the past few decades and is widely used as the baseline classifier in many pattern classification
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problems [[17]]. It is a non-parametric technique [76]]. In non-parametric methods, there are no parame-
ters or a fixed number of parameters irrespective of the data size. If there is no prior knowledge available
about the data distribution, then k-NN could be the best choice for the classification. It requires labeled
training data for classifying the new samples. In k-NN, for a given new query sample, it first computes
its distance from all the training samples using the base similarity measure. The sample is classified by
a majority vote of its k-nearest neighbors. It is simply assigned to the most common class among its k
nearest neighbors. Here, k is a positive integer. If k=1, then the sample is assigned to the class of its
nearest training sample. The choice of k depends on the data. In general, a larger value for k helps to

reduce the effects of noisy samples in the training data. For a given query sample x;, k-NN classifies it

as follows,
Yyt = argmax Z D(z,c) (2.7)
c€{et et} Le NN (24,k)
where y; is the predicted category for the given query sample z, {c1, ..., ¢} are the set of categories

and N N (x4, k) is the k nearest neighbors for x; according to the given base similarity measure.

1 ify=c
D(z,c) =

0 else

where ¥ is the given category/output for the sample z. The performance of k-NN algorithm mainly de-
pends on the given base similarity measure used for measuring the similarity between the query sample
and the training samples [4]]. This raises the importance of the similarity measure (distance function)
used in k-NN algorithm. Several studies have been conducted to analyze the effect of similarity/distance
measures on k-NN classifier performance [4,[291/62,[123]]. In [[62]], Hu et.al. analyzed the effect of four
distance measures, including Euclidean, Cosine, Chi square, and Minkowski distances on k-NN perfor-
mance over four medical domain datasets (Blood, Breast cancer, Ecoli, and Pima) which are chosen
from the UCI machine learning repository. The results of this comparative study are given in figure [2.2]
From the results, we can observe that the performance of the k-NN classifier depends on the distance
function and the choice of distance function depends on the given dataset. Minkowski distance is per-
forming well on Breast cancer and Ecoli datasets, whereas, Chi-square is performing well on Blood and
Pima datasets.

k-NN is one of the simplest classification algorithms, however, it has some limitations. It needs to

store all the training data to classify a given sample, which results in memory overhead. For problems
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Figure 2.2: Effect of similarity measures on k-NN performance. Here, the similarity measures Eu-
clidean, Cosine, Chi square, and Minkowski are compared over Blood, Breast cancer, Ecoli, and Pima

datasets.
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Figure 2.3: Role of k value on k-NN performance. Here, the results are given for k=1 and k=7.
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where the training set is large, the k-NN classifier is computationally expensive, and testing is imprac-
tical. For classification, the k-NN classifier gives equal weightage to all the features. It may result in
undesirable performance for problems where only a subset of features are important. The value for k
also plays an important role in k-NN performance. Consider the example in figure[2.3] In the figure, the
samples marked in blue belong to category 1, and samples marked in green belong to category 2. For
a given query sample (marked in red), the regions for k=1 and k=7 are marked in dotted circles. From
the figure, we can observe that if k=1, the query sample belongs to category 1, and if k=7, it belongs to
category 2. Also, while computing the nearest neighbors during the testing phase, it does not consider

their class distribution. It may not always produce desirable results on imbalanced data.

2.3.2 Support Vector Machines (SVM)

Support vector machines (SVM) are introduced by Vapnik [31]] ez al. It is a popular learning method
for binary and multiclass classification [[22,|165]]. The basic idea is to find the hyperplanes that separate
the given data classes. It finds a hyperplane that separates the data into two classes for binary classifica-
tion. This subsection presents an overview of support vector machines, starting with hard margin SVM

and followed by soft margin SVM.

2.3.2.1 Hard margin SVM (Separable Case)

In a binary classification setting, let D = {(z;,v;);7 = 1 to n} be the given training data, where x;(€
R%)s are the data samples and y;(= {+1, —1})s are their corresponding labels. Linear classification is
the problem of finding a linear hyper plane, which separates the given two classes. All the hyper planes

in R? can be characterized by the two parameters w € R? and b € R, and expressed as

wlz+b=0 (2.8)

This gives a decision function

f(z) = sign(w?z + b) (2.9)

However, a given hyperplane characterized by the parameters (w, b) is equivalently expressed as
(Aw, Ab), YA € R*. Thus we define the hyperplane (w, b) as the one which separates the two classes

by a distance of at least one. This can be expressed as
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Figure 2.4: Two separating hyperplanes for a linearly separable data. The hyperplane in the right hand

side has maximum margin compared to the other hyperplane.

wai—i—bZ lify;, =+1
(2.10)
wle; +b< —1ify; = —1

or in a compact way

yi(wlz; +b) > 1 (2.11)

Consider a binary classification problem given in Figure [2.4] In the figure, both the hyperplanes
correctly separate the given two classes of data. The margin of a hyperplane is defined as its distance
from the closest data sample. In figure the hyperplane on the right-hand side has the maximum
margin compared to the other hyperplane. In general, the samples around the decision hyperplane have
high uncertainty. They represent very uncertain classification decisions. A hyperplane with a maximum
margin has very few uncertain samples, which results in minimal uncertain classification decisions. It
also guarantees minimal test error compared to other hyperplanes. The maximum margin hyperplane
is less sensitive to the noise in the data. For a given classification problem, support vector machines

find a hyperplane that separates the given classes with the maximum margin. The maximum margin

hyperplane is computed by minimizing the norm of w, i.e., ||w||. The SVM problem for classification is

formulated as

min ||w2H (2.12)

subject to

yi(wlz; +0) > 1 Vi=1ton ;y € {+1,-1}
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The above optimization problem is solved using the concept of Lagrangian dual. The Lagrangian for
the above problem is given as
n

1
L(w,b,a) = inw — Zai [yi(wai +b)—1 (2.13)
i=1

where «;s are the Lagrangian multiplier.
To get the Lagrangian dual, the Lagrangian has to be minimized with respect to w and b. Thus,

differentiating L(w, b, &) w.r.to w and b, and setting it to zero gives the following expressions

OL(w, b, a) -
S0 0 = w ;:1 QY T ( )
OL(w, b, @) -
e 0 = ;:1 ay; =0 (2.15)

Substituting (2.14)) and (2.13)) in (2.13)) gives the following lagrangian dual

Qa) = Z o — % Z Z oziozjyiijisz (2.16)
i=1

i=1 j=1
The lagrangian dual Q)(«) has to be maximized w.r.to the lagrangian multiplier «, this gives the

following lagrangian dual formulation for the SVM primal problem (2.12).

n n n
1
max, E a¢—§ E E aiozjyiij?a?j 2.17)
i=1

i=1 j=1

subject to
n
Zaz‘yz’ =0
i=1
a; >0 for i=1,2,....n

This is a quadratic programming (QP) problem, and many techniques are available for solving this
formulation. After the computation of Lagrangian multipliers «;, the expression (2.14) is used to find

the optimal hyperplane.

2.3.2.2 Soft margin SVM (Non-Separable case)

In the previous section, we discussed the case where the data is linearly separable. Consider the data

given in Figure [2.5] For this data, we cannot find a separating hyperplane using hard margin SVM as
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Figure 2.5: Example of a non-linear data. Here, we cannot find a hyperplane, which separates the two

classes.

discussed in Section[2.3.2.1] Even for the linearly separable data, an outlier may cause a hard margin
SVM to overfit the training data in its search for a separating hyperplane. One solution to this problem is
to allow some training error during the training. It prompted the development of soft margin SvMm [31]],
which can handle non-separable data. It introduces a positive slack variable £ in the constraints and
allows some misclassification error during the training. The resulting problem is solved by minimizing

the misclassification error. This approach gives the following soft margin SVM formulation

. 1 7 .
minge  cw'w+C z; & (2.18)
subject to
yi(w¢(zi) +b) > 1= ¢
E>0Ve=1,...,n

Here C' is a regularization parameter. It controls the tradeoff between the complexity of the machine
and the number of non-separable points. If the value of C' is large, it leads to overfitting, and if it is
very small, it allows many misclassifications, leading to underfitting. The value for C is chosen using

cross-validation techniques.

2.3.3 Convolutional Neural Networks (CNN)

Over the past few years, there has been increasing interest in feature learning for various tasks like
object detection, recognition, segmentation, etc, using machine learning methods. Deep learning models

offer a solution to this problem. These are based on multi-layer neural networks. In these networks,
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Figure 2.6: Typical architecture of a convolutional neural network for image classification.

each layer learns a set of features for the given problem. A feedforward neural network involves an
input layer, multiple hidden layers, and an output layer. Each neuron in the hidden layer contains an
activation function. Input to a neuron in the k" layer is the linear mapping of the output of & — 1- layer
neurons. Given an input 2y € R?, it maps to an output z,,, € R? through a sequence of functions f;
called layers. The output at j** layer is given as fj(zj—1,w;), where wj; is the 4% layer parameters
and x;_1 is input to the 4 layer. In general, feed-forward neural networks are trained using the back
propagation technique. These are susceptible to the vanishing gradient problem. The gradient of the loss
with respect to the network parameters becomes increasingly smaller in the initial layers. Since these
gradients become increasingly smaller in each iteration, the weights and biases in the initial layers will
not be updated effectively. It is the main limitation of neural networks in terms of the number of layers.
In fully connected networks, neurons are connected to all the input dimensions. If we consider a typical
image classification problem using fully connected networks with images of size 128 x 128. It results in
an input dimension of 16384. Training the network for this higher dimensional data is practically very

difficult.

A Convolutional Neural Network (CNN) is a multi-layer feed-forward neural network that can learn
multiple layers of non-linear features. CNNs are particularly useful for image data. In CNN, instead of
connecting all the input image pixels to the neurons in the next layers, each neuron in the immediate
layer only connects to the pixels in a small patch of the image using receptive fields. This makes training
simpler compared to fully connected models. Given an image I € R¥”*"*¢, where w, h, c are the width,

height and number of channels (for RGB image ¢ = 3), the output at j** layer of CNN is given as a

24



T — 1

1 et — e " y =maz(0, z) . <0
V=17 ez y=——- y = _

€ e te 0.01z if otherwise
(a) Sigmoid {b) Tanh (c) ReLU {d) Leaky ReLU

Figure 2.7: Popular activation functions used in convolutional neural networks

spatial map x; € RWi*hix¢;  where wj, h; are the spatial resolution of x; and c¢; is the number of

feature channels in j** layer.

2.3.3.1 Layers of CNNs

The CNN contains different functional layers, and each of these layers performs different types of
tasks. Some important functional layers in CNN are the convolutional layer, pooling layer, and fully
connected layer. A typical CNN network is given in figure 2.6 Here we show five convolutional layers

and one pooling layer.

Convolutional Layer: In convolutional neural networks, convolutional layer is the most important

layer. A convolutional layer computes the convolution between an input z € R¥*"*¢ and a set of k
/ / " "

filters f € R %/ X¢ to produce an output y € R% ** **_ The convolutional operation is performed as

follows

y?:f(zxg‘*l*w%),j: 1.,k (2.19)

where, n indicates the layer index, ¢ is the input channel index, w% are the filter weights, * denotes
convolution operation, f() is the activation function and y; is the 4% output featuremap. Each of the
filters is applied as a sliding window over the input. It acts as the local feature detector for images. As
the layers go deeper, it computes more complex features. The parameters (weights) are shared among

all the neurons in a convolutional layer. These features do not change according to spatial positions.

Convolution is a translation invariant operator. After each convolution operation, non-linear activation
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functions are applied to learn complex transformations in the input space. Few popular activation func-
tions are sigmoid, tan hyperbolic, rectified linear units (ReLU)s [111]], and leakyReLLU. These activation
functions are shown figure[2.7] Here both the sigmoid and tanh functions suffer from vanishing gradient
problem. This is mainly due to its smoothness towards the lower and higher domain values. This leads to
slower training. The activation function ReLLU solves this problem by having non-saturating gradients.
The hyper-parameters of a convolutional layer are weights in the filters (w, k), the number of filters (k),

the step size (s), and the padding width (p). Padding is used to preserve spatial dimensionality.

Pooling Layer: In CNN architecture, a pooling layer is followed by a convolution layer. The pooling
layers are used to progressively reduce the spatial size of feature maps obtained from the convolutional
layer. The pooling layers play an important role in CNN architecture. In general, the convolutional
layers preserve the spatial dimension of the feature maps. If the input image is of size w x h x 3, then
convolutional operation produces an output w’ x h' x (number of filters). For large images, it results in
a huge number of features. Training on such a huge number of features is very difficult and may also
result in overfitting. Many pooling techniques are available for reducing the feature dimensions, such as
max pooling and average pooling. The most popular technique is max pooling, as it extracts the most
dominant features from its corresponding region. As we go further down from the input layer, pooling

layers reduce the featuremap resolution and thereby capture the rich semantic features.

Fully Connected Layer: In atypical CNN architecture, after a set of convolutional and pooling layers,
a set of fully connected (FC) layers are applied. These are treated as a classifier in the form of a multi-
layer perceptron. It maps the convolution features to an output space. For a classification problem, its
output space dimension is equal to the number of classes. Neurons in a fully connected layer have full
connections to all activations in the previous layer. In figure [2.6] we show 3 fully connected layers.
After the fully connected layers, a softmax layer is applied to convert the FC layer scores in the range
(0,1). The nodes in the softmax layer generally contain different activation functions. In general, the
softmax function is used as the activation function, which is given as,

eti

yizw

The output from this softmax function can be treated as the probability values for each label.

(2.20)
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Figure 2.8: The 4 nearest neighbors for an interpolated sample in bilinear interpolation.

Upsampling Layer: In the classification task, the spatial dimension of the featuremaps is reduced
using the above layers. In the final layer, the number of neurons equals the number of classes. In
general, downsampling is needed for the classification task. However, downsampling is not always
needed in CNN. For the problems like semantic segmentation, where the objective is to classify each
pixel in the image, we also need an upsampling layer. Here we need to construct an output with the exact
spatial dimensions of the input. Upsampling layers are needed for increasing the spatial dimension of
the deep features in the later layers. Many upsampling techniques are available for increasing the spatial
dimensions in CNN. A few popular upsampling techniques are bilinear interpolation and deconvolution.

Bilinear interpolation is the simplest upsampling technique and is an extension of linear interpolation
for functions of two variables. In bilinear interpolation, interpolation is performed using the nearby
values. To interpolate at a location, it needs four nearest neighbors. The weighted average of these four
nearest neighbor values is assigned to the new location. These weights are calculated using the distance
from the nearest neighbors. Suppose if we want to interpolate at a location (z,y) using the bilinear
interpolation and we know its 4 nearest neighbors (x1,¥1), (%1,92), (z2,y1) and (z2, y2). The location

of interpolation is given in figure The bilinear interpolation is given as

po @Dy o @)@ —y) o @)y -y) g @) )

(@2 —a0) (e —y1) (@ —x)(y2—y1) o (z2—a)(yz—y1) o (x2—21) (2 — 1)
(2.21)

Deconvolution is the inverse function of the convolution operation. The deconvolutional layer is
used for upsampling the down-sampled featuremaps obtained from the CNN. In CNN, the deconvolution

term is generally referred to as convolution operation for upsampling or transposed convolution. The
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Figure 2.9: Deconvolution operation over a 33 image (blue squares). Here the 33 image is upsam-

pled to a 5x5 image (green).

deconvolution operation performed over a 3x3 image is explained in figure [2.9] Here the 3x3 image
is upsampled to a 5x5 image. The white boxes denote the zero-padding around each pixel. In general,
the deconvolution for an input image is the convolution operation over the padded image. In [113]], the
authors proposed a DeconvNet, where zeros padding around each pixel can be avoided with an unpool-
ing layer. The convolution operation is directly applied over the unpooled images. Deconvolution gives
better results compared to bilinear interpolation. This is mainly due to the learning process involved in

the deconvolutional layer.

2.3.3.2 Training

Training a CNN network requires finding the optimal weights for each learnable parameter in the net-
work. These are filter weights (W) and biases (b), which correspond to the convolutional and fully con-
nected layers. The most popular optimization algorithm used for finding the optimal parameters is the
mini-batch stochastic gradient descent (SGD) with momentum. The backpropagation algorithm is
used for updating the parameters of each layer in CNN network.

For finding the optimal weights, we formulate the learning process in terms of an optimization prob-

lem with the following objective function

N
0* = argming Z Lz y") + N|W |3 (2.22)
i=1

where L(.) denotes the loss function which is parameterized by § and 6 = (w, b). Here 2,  denotes

the input sample and the ground truth label vector for the i** sample, respectively. The second part of the
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equation minimizes the Ly norm of the weight coefficients, also referred to as the weight decay, which
prevents over-fitting by reducing the complexity of the network. This is also known as the regularization
process.

In general, the loss function for a deep convolutional network with non-linear activation functions
is highly complex and non-convex. The most popular optimization algorithm used is the mini-batch
stochastic gradient descent (SGD) with momentum. SGD is a first-order iterative optimization method
that computes the gradient of the loss and iteratively update the weights in the direction where the loss

decreases as given below:

Ont1 = O —nA (2.23)
oL

where 7 is the learning rate that decides the step size of the update. p is the momentum factor that
determines how much gradient direction from the previous step should be considered in the current

update. Note that there exist many weight initialization schemes for better learning the optimal weights.

2.3.3.3 Regularization

The goal of any machine learning model is to generalize well on unseen examples and prevent over-
fitting of the training data. The same is applicable in the context of deep learning. In this section, we

discuss a few regularization techniques from the literature,

Dropouts: Dropouts [[153] is a regularization technique proposed in [[153]]. In dropouts, at each it-
eration of training, a few neurons are selected randomly with a probability p and dropped out during
training. All the connections to the selected neurons are made zero in the forward pass, and in the
backward pass, the weights are not updated. It makes each neuron learn individually during the train-
ing, which avoids overfitting. It is similar to the concept of learning an ensemble of networks. Now, the
learned network is less sensitive to specific neurons, which results in a generalized network. All neurons

are preserved but scaled during testing with a factor of p.

Data Augmentation: Convolutional neural networks have been performing well on many computer
vision problems. However, their success depends on the amount of training data. In practical scenarios,

sometimes collecting the labeled data is very expensive. If the network is trained on small datasets,
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it may not generalize well on test data, leading to poor generalization. Data augmentation provides
a solution to these problems. It extracts more information from the training data using augmentation
techniques. Few popularly used augmentation techniques are translation, rotation, cropping, and scaling.

All of these techniques are affine transformation over given training images, which can be expressed as,
y=Wx+b

Here x is the original image. However, during these transformations, one must be careful in preserving

the label information.

2.3.3.4 Loss functions in CNN

In convolutional neural networks, the goal is to minimize or maximize a function with respect to
the network parameters. Minimization is the most common case in CNN. The function that is mini-
mized/maximized in CNN is typically called the objective function. It can also be called a loss, error, or
cost function. In CNN, the loss function measures how far the network output is from the target/desired
output. It is essential to choose the correct loss function in CNN. Since the gradient of the loss function
is used for updating the network parameters during the training, the loss function plays an essential role
in CNN. In CNN, if an appropriate loss function is not used, it directly affects the convergence of the
network. Loss functions can be broadly divided into two categories depending on the learning task,

classification loss and regression loss. In this section, we discuss a few loss functions in each category.
2.3.3.4.1 Classification Loss: For classification, we generally use cross-entropy and hinge loss.

Cross Entropy Loss: Cross entropy is widely used as the loss function in classification models, where
the model output is a probability value between O and 1. In CNN, a softmax layer is applied before com-
puting the cross entropy loss for converting the network scores in to probability values. For multiclass

classification, cross entropy loss for a sample x; is calculated as,

L==> yilog(y;) (2.24)

where, y; is the ground truth, y; is the network output for the sample x; and c is the number of classes.

For binary classification problem, the cross-entropy is calculated as
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Figure 2.10: The behaviour of cross entropy loss over the predicted probability scores. Here, X- axis
contains the predicted probability scores and their corresponding cross entropy loss values are plotted

on Y-axis.

L = —(yilog(y;) + (1 — y:)(1 — log(y;)) (2.25)

The behavior of cross-entropy loss is shown in figure As the predicted probability of the true

class gets closer to one, the loss becomes small. If it reaches closer to zero, the loss increases rapidly.

Hinge loss Hinge loss is used for maximum margin classification. It is popularly used in support
vector machines. Hinge loss is not a differentiable function, however, due to its convex nature, it is
widely used in the machine learning community. For binary classification, where the class labels are

either +1 or -1, the hinge loss is given as,

L= Z maz(0,1 — y;h(z;)) (2.26)

where, y; is the ground truth and h(z;) is the network output.
2.3.3.4.2 Regression Loss For regression, we generally use mean square or Lo loss.

Mean Square Loss/Ly loss For a given problem, the mean square loss/error (MSE) is measured as
the average of squared difference between predictions and actual observations. The mean square loss is

defined as,
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1o :
L=—> lvi—ull3 (227)
1=1

where y; is the ground truth and y;- is the predicted value for the i*" training example. 7 is the number of
training samples. The mean square loss is only concerned with its magnitude and does not look into its
direction. Due to the squaring operation involved in the definition, the predictions far from the ground
truth are more penalized compared to the near ones.

In addition to these loss functions, other loss functions exist, such as KL divergence, margin-based
raking loss, negative log-likelihood, cosine embedding, and others. These loss functions are problem-
specific and suit well for a certain class of problems. Also, note that, except hinge loss, all these loss
functions are continuous and differentiable. In CNN, the loss function must be differentiable for training

the network.

2.3.3.4.3 Loss functions in Generative Adversarial Networks (GAN) Generative adversarial net-
works (GAN) is a deep learning architecture consisting of two neural networks competing with each
other to improve their prediction accuracy. The two neural networks are generally referred to as the
generator and the discriminator. Min-max loss is the standard loss function used in GAN, which is given

as

L = Eylog(D(x))] + E:[log(1 — D(G(2)))] (2.28)

where, D(x) represents the discriminator estimate of the probability when x come from the real training
data and G(z) is the generator output when given noise z. F, and E, are the expected values respec-
tively over the real data and generated fake instances G(z). The generator tries to minimize the above
loss function while the discriminator tries to maximize it. The min-max loss function is derived from

the cross entropy loss over actual and generated fake (noise) data distributions.

2.4 Kernel Methods in Machine Learning

Linear models can be computed efficiently and are well understood compared to non-linear models.
However, many real-world problems are inherently non-linear, and these problems are difficult to inter-
pret using linear models. One solution to visualize the non-linear data using linear models is to project

the data into a linear space. Now, all the linear models can be used to interpret the projected data.
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A input space feature space

Figure 2.11: Projecting the data using a feature map. Here the projected data is linearly separable.

The projection has to preserve all the similarities in the original space to get a better interpretation. In
machine learning, feature maps offer a solution to this problem. Feature maps are based on the idea of
cover’s theorem, which states that a "complex pattern classification problem cast in a high dimensional

space non linearly is more likely to be linearly separable than in a low dimensional space".

2.4.1 Kernels and Feature maps

Feature map It is a mapping function ¢ : X — V, which maps the input data X into some higher
dimensional vector space V' so that the data is linearly separable in the projected space and the projected
space is equivalent to the original input space. Here V is called the feature space. A feature map over

non-linear data is shown in figure [2.T1] Here the projected data is linearly separable.

Kernel of a Function The kernel of a function F' is an equivalence relation on the function’s domain
that roughly expresses the idea of "equivalent as far as the function F' can tell". Let X and Y be two
sets and F' be a function from X to Y. The elements x; and x5 of X are said to be equivalent if F'(x)
and F'(x9) are equal, i.e. they mapped to the same element in Y. Formally, if F': X — Y is a function

then kernel of F' is defined as
ker(F) ={(x1,22) € X x X : F(z1) = F(x2)}

Kernels are used to find a similarity between the elements of a set with respect to a function defined

over that set.

Kernel Function A kernel is a function from X x X to R. A kernel function x : X x X — R which is
either continuous or has a finite domain is said to be a valid kernel (positive definite) if it is symmetric

and can be decomposed as
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K(x1,22) = (d(21), P(22)) (2.29)

where ¢ : X — F is a feature map from X to some higher dimensional feature space F and (.) is the

inner product in F'.
or

It is a (i) Symmetric function (ii) Kernel matrix corresponds to any finite subset of X is a positive
definite matrix, i.e, VS = {z1,..., 1:|5|} C X, |S| < oo; the kernel matrix kg g is a positive definite
matrix, where kg5 € M)g|x|5/(R) and kg 5(7, ) = Kz, 75).

The kernel generally corresponds to a feature map over its input space. In feature maps, the similari-
ties in the projected space are computed using the associated kernel function. Since the dimension of the
feature space is usually high, the operations in the feature space require a huge computational cost. The
kernel trick allows us to do the computations in the feature space using kernel functions, which depend
on the dimension of the original space. Consider the problem of distance computation (Euclidean) in

the feature space F'. It can be computed as

d(p(x1), $(22))* = ((w1) — P(x2)) (¢(21) — P(2))
= ¢(x1)p(x1)T — 26(21)p(x2)" + B(22)p(2)T

= k(x1,21) — 26(21, 2) + K(T2, 72)

Here, 21,22 € X and ¢(z1), ¢(x2) € F. The computational cost of Euclidean distance in F' depends
on the dimension of the projected samples (dim(F’)). Using the kernel trick, now it only depends on the
dimension of original space (dim(X)).

Examples of Kernels
» Polynomial Kernel : x(z1,22) = (x1,22)¢ + ¢

—H»’61—$2H2)
2 2

* Gaussian Kernel : k(z1,x2) = exp( =

* Tan hyperbolic Kernel : k(x1,z2) = tanh(aziz2 + )
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Figure 2.12: Projection of the data into its corresponding Reproducing kernel Hilbert space.

2.4.2 Reproducing Kernel Hilbert Space (RKHS)

Let X be an arbitrary set and H be a Hilbert space of real or complex valued functions over X then
H is said to be a reproducing kernel Hilbert space (RKHS) if the linear map F, : H — R defined as,
F, : f — f(z) is continuous Yz € X.

Let H* be a dual space of H, consisting set of all continuous linear functions from H to R/C. For

every element g € H, we can define a function ¢, : H — R as

Ye(f) =g, IVf € H (2.30)

The functions 1,4, Vg € H are elements of H*. From Riesz representation theorem, every element in
H* can be uniquely expressed in the above form (2.30). Since F; is a continuous function over H, it

belongs to H*. Thus it can be expressed as

F(x) = Fy(f) = (f, K.),Vf € H where K, € H (2.31)

This implies that Vo € X, there exists a function K, € H, such that f(z) can be evaluated by taking
its inner product with K. Since K, is a function over X, it can be written as K, (y). The space of all

these functions can be encoded into a single function x : X x X — R, which is defined as

Kz, y) = Ke(y) (2.32)

This function is called the reproducing kernel for the Hilbert space H. It is completely determined
by the Hilbert space H. Since K, (y) = r(x,y), K,(y) is a valid kernel. Every reproducing kernel

Hilbert space is associated with a unique valid kernel. Also, given a valid kernel x, we can construct a
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feature space H (RKHS), such that £ computes the dot product in H. In figure[2.12] we show a sample’s

projection into its corresponding reproducing kernel Hilbert space.

2.4.3 Kernels in Machine Learning

In Section [2.4.1] we have presented some examples of kernels over R", but kernels can also be
applied over other domains such as sets, text, strings, and graphs. This section presents examples of a

few popular kernels over different domains.

Kernels over Histograms The simplest way to represent the images is by using histograms. The
histogram intersection kernel is one of the popular kernels applied over histograms. Histogram inter-
section is a technique proposed in [[157] for color indexing and successfully applied for object recog-
nition. It measures the degree of similarity between two histograms. For a given two histograms

Hy = (h11,-..,h1n) and Hy = (ha1, ..., ha,), the histogram kernel is defined as

H(Hl, HQ) = Z min{hu, hQZ‘} (2.33)
i=1

Kernels over Sets Let D be any set and P (D) is its corresponding power set. For A1, A2 € P(D), a

kernel over D can be defined as follows

k(A7 Ay) = 214N (2.34)

where |A; N Ag| is the cardinality of A; N As.
Its corresponding feature map ¢ is defined as
1 fUCA
P(A)u =
0 otherwise

Here, the elements of ¢(A)y are enumerated using the elements of P(D) and the dimension of

¢(A)v is [P(D)].

Kernels over Text Let D be the set of documents, consider a dictionary which is the set of all words

in the documents. For a given document d € D define a feature map as follows
o(d) = (f(t1,d), f(t2,d), ..., f(tn,d)) (2.35)
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where N is the size of the dictionary and f(t;, d) is the frequency of i*" word in the document d.

The corresponding kernel is defined as

k(d1, d2) = (¢(d1), ¢(d2))
N
=Y flti,di)f(ti,da)

=1

Kernels over Strings Consider an alphabet . consisting of m symbols. A string s = s1.....5|5 over

. is a finite sequence of symbols from 3 and > is the set of all strings of length n.

p-Spectrum Kernel For a given string s, the featuremap for the p-Spectrum kernel is defined as

P (s) = (0 Juese; &b = [{(v1,v2) : s = viuva}| (2.36)

Here X7 is the feature space. The associated p-Spectrum kernel is defined as

kip(s,t) = (¢¥(s), (1))

ueXP

Fisher Kernel Let X be the given data, for a data sample =, P(x/60) be a probability model where
6 is a vector of model parameter. §6 is the gradient operator with respect to 6, log. P(x/6) is the log-
likelihood of x with respect to the model over the given set of parameters 6. The Fisher score for the

given data sample x is its gradient of the log-likelihood with respect to the set of model parameters 6.

E, = dglogeP(x/0) (2.37)

The Fisher score gives an embedding into the feature space. The Fisher kernel [[68,(118]] over this

feature space is defined as

(21, 20) = Fp, I ' Fy, (2.38)

where [ is the Fisher information matrix. All the above kernels are standard kernels over different

domains. These kernels are problem dependent, a single kernel may not work well for all the problems.
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Figure 2.13: Projecting the data using non linear feature map. Here the projected data is linearly sepa-

rable.

2.4.4 Kernelsin SVM

Kernels play an essential role in support vector machines (SVM). In SVM, the non-linearities present
in the data are handled using kernels and their associated feature maps. Since, for the non-linear sep-
arable data (figure 2.13(a)), it is not possible to find a separable hyperplane, SVM uses the concept of
a kernel induced feature space. In this, the data is projected into a higher dimensional feature space
where it is linearly separable. The projection is performed using the feature map associated with the
given kernel. In figure 2.13[b), we can observe that the projected data is linearly separable. The SVM
finds a separating hyperplane in the kernel induced projected space. One such separating hyperplane is
shown in figure 2.13(b). The computational problems arising from the high dimensional feature space
are handled using the kernel trick. The SVM formulation using kernels is given as

miny,

]l
N (2.39)

subject to

yi(w ¢(z;) +0) >1—§& Vi=1ton ;y; € {+1,-1}

The main difference between the above formulation and the formulation given in Eq[2.12]is the usage

of the feature map. In the above formulation, the data is first projected using the feature map ¢, then,
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the SVM formulation given in Eq[2.12]is applied over the projected data. The Lagrangian dual for this

formulation is given as

n n n
1
max, g o — 3 g g a0 yyik(zix ;) (2.40)
i=1

i=1 j=1
subje:t to the constraints
(1) Z a;y; =0
(2)621 o; <C fori=1,2,...,n
In this formulation, the inner product between the feature maps ¢(z;) and ¢(x;) is replaced using its

corresponding kernel function x(x;, ;). This avoids the computations in the higher dimensional feature

space. It is called kernel trick.

importance of positive definite kernels in SVM If the kernel is not a positive definite, then the
Lagrangian formulation given in [2.40] will not be convex, which does not guarantee a unique global
optimal solution [28]]. The uniqueness of the solution gives the superiority of SVM over other classifiers

like nearest neighbor classifier and neural networks.

2.4.5 Indefinite kernels

In machine learning, there is a large class of kernels that are not positive semidefinite (indefinite),
such as sigmoid kernel [61]] and hyperbolic tangent kernels [149]]. Also, the kernels induced from sim-
ilarity measures like edit distance [90]], canonical correlation analysis (CCA) [18]], and dynamic time
warping (DTW) [146] are not positive definite. Even though these kernels are indefinite, their corre-
sponding similarity measures found applications in many problems. For example, the kernel computed
using the edit distance, (s, s’) = edit(s, s ), where edit(s, s') is the edit distance between the strings
s ands’ is not positive definite. However, edit distance is a widely used similarity measure for classi-
fying biological sequences. It is successfully used with the nearest neighbor classifier. Although these
similarity measures have applications in many problems, they can not be used as kernels in SVM (as dis-
cussed in Section [2.4.4), which limits their applicability. This is mainly due to their indefinite property.
The positive definite kernels over similarity measures allow us to explore the non-linearities in the given

data. Since these kernels can be used with SVM, it guarantees a unique global optimal solution for the
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given problem compared to the nearest neighbor classifier. For a given problem, these kernels with SvM
perform well compared to its corresponding similarity measure with the nearest neighbor classifier.

Indefinite kernels are previously explored in SvMs [38L/61,(90,/169]. Lin and Lin [[61]] converted the
indefinite sigmoid kernel into a conditionally positive definite kernel using some restrictions on kernel
parameters. They solved the resultant non-convex dual problem using SMO type decomposition meth-
ods. Cheng et al. [[115] represented the indefinite kernels in reproducing kernel Krein spaces. Due
to its non-positivity, they stabilize the loss function instead of minimizing it. Some previous meth-
ods [38,/169], directly used the indefinite kernels with SVM. Although these methods perform well, the
convergence of SVM with these kernels to the unique global optimal solution is not guaranteed. This is
mainly due to the non-convexity of SVM with indefinite kernels.

The kernel over edit distance, x(s,s ) = edit(s,s ) is not positive definite. However, Haifeng et

al. [90]] converted this indefinite kernel in to a positive definite kernel by defining it as,

K(s, s ) = e~f edit(ss)) (2.41)

The positive definiteness depends on the value of 3, which is data dependent. In general, the DTW
distance does not yield a positive definite kernel. This is mainly due to its non-metric property. However,
few kernels are defined over DTW distance using different techniques [[12}/54}(146,/183[]. In [54]], the
authors corrected the negative definite kernel matrix by its square. There are also some attempts where
minor changes are incorporated in the definition of DTW distance for defining a positive definite kernel.
Hayashi et al. [56] projected the time series into a Euclidean space such that the resulting representation

approximates the DTW distance.
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Chapter 3

Fast Surrogate DTW: A Surrogate Approximation of DTW Distance

This chapter presents a surrogate approximation for dynamic time warping (DTW). The proposed
surrogate approximation is a linear approximation of the DTW distance. The main goal of this chapter
is to speed up the computation of DTW using its surrogate approximation. This is achieved by intro-
ducing the global principal alignments, which avoids the computation of optimal alignments for new
query images. These pre-computed global principal alignments capture all the correlations in the given
dataset. The proposed linear approximation technique makes the DTW based document image retrieval
computationally feasible. The performance of the proposed method is as good as naive DTW distance
and computationally performs equally as simple Euclidean-based matching. Using the proposed surro-
gate approximation technique, we also present a linear approximation kernel over DTW, which can be

used with linear SVM.

3.1 Introduction

Distance (Similarity) functions play an important role in a wide variety of problems, including re-
gression, classification, and clustering. They are used to find the similarity/dissimilarity between the
samples. There are several distance functions available in machine learning literature like Euclidean,
Geodesic, Earth Movers Distance (EMD) [135]], dynamic time warping (DTW) [[12,/16,/146], and so on.
Each of these distance functions computes different types of similarity and is useful for different prob-
lems. For example, Euclidean distance is widely used to compare the sequences in the same dimensional
space. The main limitation of using Euclidean distance for time series data is that it does not capture
the local dependencies between neighboring states of the time series and is sensitive to distortion in the

time axis. For a given pair of sequences, it finds the optimal alignment by ignoring both global and
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local shifts in the time dimension. DTW distance is popularly used for comparing word image represen-
tations [130]]. This is mainly due to its ability to capture local dependencies and handle variable-length
representations. DTW is often used in speech recognition [[107] to determine the similarity between two
speech signals representing similar spoken words. In speech recognition, the length of the signals is
permitted to vary for a given same spoken word, but the overall speech signals are similar. In addition
to speech recognition, DTW has also been found useful in many other disciplines [79], including word
recognition [21}/128]], bioinformatics [1]], data mining and gesture recognition. DTW is commonly used

in data mining as a distance measure between time series.

For a pair of given two sequences, to compute their DTW distance, we need to find the optimal
alignment which has the least cost of all the possible alignments. This is the computationally expensive
operation in DTW distance. For a given two sequences of length n and m respectively, the computational
complexity for DTW is O(nm). The Euclidean distance can be computed in linear time, however its
main limitation is that it does not capture the local dependencies. In the first part of this work, we try
to speed up the DTW distance by learning the optimal alignment from the given training data. As far
as we know, none of the previous methods have exploited the hidden structure of the alignments. We
approximate the DTW distance as a sum of multiple weighted Euclidean distances, which are known
to be amenable to indexing and efficient retrieval. We call this approximated DTW distance as Fast
Surrogate DTW distance.

For a given set of sequences, there are similarities between the top alignments (least cost alignments)
of different pairs of sequences. This work explores these similarities by learning a small set of global
principal alignments from the training data. To compute the global principal alignments, first, we com-
pute the top alignments for all pairs of samples from the given training data. Then the global principal
alignments are computed from these top alignments. We use 2D-PCA for computing the global principal
alignments from the training data. In our experiments, we observe that we can represent the internal
structure of the alignments using these global principal alignments. Instead of computing the optimal
alignments for a given new query, we use only these precomputed global principal alignments for com-
puting the Fast Surrogate DTW distance. Since we avoid the computation of alignments, the proposed
Fast Surrogate DTW is computationally efficient compared to naive DTW distance.

Over the last decade, SVM has emerged as the most popular approach in classification. This is
mainly due to its state-of-the-art performance on a wide variety of computer vision problems [57,(73}

80] like image classification, recognition and retrieval. In SVM, kernels act as the similarity measure.
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A wide variety of similarity measures are available in the literature for computing various types of
similarities. Unfortunately, most of these similarity measures may not yield positive definite kernels
and thus cannot be used along with SVM. Positive definiteness of the kernels guarantees global optima
in SVMs. Although these similarity measures do not yield positive definite kernels, they have popular
applications in many fields. For example, DTW distance does not yield a positive definite kernel, but it
works well on many time series classification problems with Nearest Neighbour (NN) classifier [175].
In general, SVM performs well compared to NN classifier if the appropriate choice of kernel exists [167]].
Due to its superiority, it is reasonable to use DTW distance with SVM. However, due to its non-metric

property, DTW distance does not yield a positive definite kernel.

Non-positive definite (indefinite) kernels are previously used in SVM [38L/169]] using different tech-
niques. Even though the kernel over DTW distance is indefinite, few kernels are defined over DTW
distance [[12},/54,/146}[183)]. In [54], the authors corrected the negative definite kernel matrix by its
square. There are also some attempts where minor changes are incorporated in the definition of DTW
distance for defining a positive definite kernel [33[]. Hayashi er al. [56]] projected the time series into a
Euclidean space such that the resulting representation approximates the DTW distance. Although we can
define the kernels over DTW distance [|12,[54}/146}/183]] with some approximations/modifications in the
original formulation, the resulting kernels are computationally expensive. This limits the use of kernels
over DTW distance for large datasets. Since the computational complexity of computing the DTW dis-
tance between two time series of length n and m respectively is O(nm), the resulting kernels over DTW
distance have quadratic complexity. This is computationally prohibitive for large time series containing
thousands of data points. Note that such large length time series commonly arises in many domains like
speech, bioinformatics, and text processing. We propose a linear kernel over DTW distance in the next
part of this work. The proposed kernel is defined using Gaussian functions over Fast Surrogate DTW

distance.

Since the Gaussian is a non-linear function, the kernel defined over Fast Surrogate DTW distance is
also a non-linear kernel. We compute its linear approximation using explicit feature maps [98],125]126|
166] and we refer to the proposed linear approximation kernel as Fast Surrogate DTW kernel. An explicit
feature map is a popular technique for speeding up the non-linear kernels. It approximates the original
large dimensional (infinite-dimensional) feature map of non-linear kernels by a small finite-dimensional
feature map. This small dimensional feature map gives a linear approximation of the original non-linear

kernel. These linear kernels can be used with linear SVM, which are computationally faster and can
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be computed in linear time compared to non-linear SVMs. Explicit feature maps are quite popular for
different non-linear kernels like intersection [98]], Hellinger’s, X2 and RBF kernels [126l/166]. However,
this technique is not widely used in the time series community. In this work, we follow this line of
work and propose a novel approximate explicit feature map for the Fast Surrogate DTW kernel. We
compute its explicit feature map using the global principal alignments. In [[140], the authors proposed a
dynamic time warping algorithm for the computation of DTW distance, which is linear in both time and
space. The algorithm finds a nearly optimal warp path between two time series. However, it cannot be
transformed into a valid kernel. Our proposed Fast Surrogate DTW kernel is computationally efficient
compared to other kernels over DTW distance.

We evaluate the proposed Fast Surrogate DTW distance and Fast Surrogate DTW kernel over a wide
variety of problems. For Fast Surrogate DTW distance, we demonstrate its utility for retrieving word
images from the popular George Washington database and Indian language datasets. We show its supe-
riority by comparing it with naive DTW distance, Euclidean distance, and metric DTW. The proposed
Fast Surrogate DTW distance makes DTW based document image retrieval computationally feasible. The
proposed technique is computationally efficient compared to DTW distance and metric DTW with a mi-
nor drop in retrieval performance. On multi-language datasets, we show a speed-up of more than 40x
compared to DTW distance and metric DTW. The performance of Fast Surrogate DTW distance is as
good as DTW distance and computationally performs equally as simple Euclidean based matching. For
Fast Surrogate DTW kernel, we compare our proposed kernel with the GA kernel [33]] and Gaussian DTW
kernel [12] over popular machine learning datasets. The Fast Surrogate DTW kernel is computationally
efficient compared to GA kernel [33]] and Gaussian DTW kernel [[12]] with a minor drop in classification
performance.

The major contributions of this chapter are: (i) A novel framework for approximating the optimal
alignment for given sequences using a set of global principal alignments computed from the training
data, (i1) A Fast Surrogate DTW distance using global principal alignments, which is a linear approx-
imation of the popular DTW distance, (iii) In addition, we also propose a Fast Surrogate DTW kernel

using Fast Surrogate DTW distance, which is a linear kernel over DTW distance.
3.2 Related Works

Euclidean distance is an efficient similarity measure for computing the similarity between time series

or sequences. However, the main limitation of Euclidean distance is that it cannot be applied if the
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sequences have variable lengths. Also, it cannot capture the local dependencies between neighboring
states of the sequences. A successful method to compare time series or sequences is dynamic time
warping (DTW) [[12}[139}/146]]. For a given two sequences, the DTW yields an optimal alignment from
all possible alignments. This optimal alignment is being used to find the corresponding regions between
the given sequences. It can also be used to find the similarity between the given sequences. The DTW
measure is the difference between the two sequences after they have been mapped together with the
optimal alignment.

Given two sequences, X = (z1,...,x,) and Y = (y1,...,ym) of lengths n and m respectively, an

alignment 7 of length || = p is a pair of increasing p-tuples (71, 72) such that

with unitary increments and no simultaneous repetitions. That is, for V1 < i < p — 1,

7T1(’i—|— 1) < 7T1(i) —+ 1, 772(i + 1) < 7T2(i) +1
(mu(i 4+ 1) — m (i) + (ma(i + 1) — ma(i)) = L.

Intuitively, an alignment 7 between X and Y describes a way to associate each element of X to one or
possibly more elements in Y, and vice-versa. Let A(X,Y") be the set of possible alignments between
X and Y. The DTW distance between the sequences X and Y is given as the minimum distance over all

possible alignments.

||

DTW(X,Y) = mingzca(x,y) Z (X1 (i) Yra(i)) (3.1
=1

where, ©(Xr, (5), Yr,(i)) is the ground distance between the given sequences indexed by the alignment
7. In general, Euclidean distance is used for computing the ground distance. The resulting alignment is
the optimal path between the given two sequences. The DTW algorithm computes the optimal alignment
as follows: For a given pair of sequences X = {z1,...,2,}and Y = {y1,...,ym}, where z;, y; € R¥,
of length n and m respectively, it first constructs a cost matrix C' of dimension n x m. The (i, j)"
element of the cost matrix C' is the Euclidean distance between the elements z; and y;. The X-axis

and Y-axis of the matrix C' represent time domain for the sequences X and Y. Each warp path in the

cost matrix represents an alignment between the sequences X and Y. The sum of elements through the
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alignment gives the cost of the alignment. The DTW finds an optimal warp path that has the minimum
cost.

For comparing two sequences X and Y of length n and m, respectively, the time and space com-
plexity of DTW is O(nm). The quadratic complexity mainly involves finding the optimal alignment
from a large set of possible alignments. The quadratic complexity is particularly prohibitive for large
length time series. The time series containing a few thousand measurements requires much memory
and is computationally unattractive. In practice, heuristic constraints speed up DTW [65}/139], instead
of searching the entire space for the optimal path, they restrict the search space into a constraint win-
dow. If constraints are used, the DTW algorithm finds the optimal path, which passes only through the
constraint window. It speeds up the DTW computation by a constant factor, but the quadratic complexity
remains. In addition, using these methods, the optimal path cannot be found if it does not pass through
the constraint window. The constraints work well only if the optimal path is expected closer to the
diagonal.

DTW distance is popularly used with nearest neighbor (NN) classifier. Since SVMs often outperforms
NN classifiers [167], it is desirable to use DTW distance with SVMs. For using DTW in SVMs, we need
to define a valid kernel over DTW distance. Several kernels have been proposed over DTW distance [[12}
541/146,/183]]. For example, in [[12]], the authors proposed the Gaussian DTW (GDTW) kernel based on

DTW distance and defined as,

||

garw = exp(_—min |ZH )= Yo I3) (32)

rEAXY) |

Similar to Gaussian kernel, in [[146], the authors defined another kernel over DTW, which is given as

||

1 =1 o 2
KpTw, = max —g 052 [Km ()~ Ymy0 12 (3.3)
reAX,Y) || —

n [335]], Cuturi ef al. proposed Group Alignment (GA) kernel. The kernel is not based on the optimal
alignment but takes advantage of the scores obtained from all the possible alignments. The GA kernel is

defined as,

||

kaa(X,Y) = > [ Xm@) Yrw) (3.4)

TEA(X)Y) =1
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where, k(X;,Y)) = e~?(Xi:Y3)  GA kernel becomes positive definite if 747 1s positive definite. Rather
than considering the optimal alignment (simple minimum of the objective function), the kernel considers
softmax of the scores of all possible alignments. Intuitively, the kernel considers the optimal alignment
and all the alignments closer to it. In the paper, the authors argue that two sequences are similar if they
have a single common alignment with a high score and share a wide set of other alignments. Since the
GA kernel considers all the alignments or alignments near the diagonal, it performs well compared to
other DTW kernels. Using the constraint windows [[124]] for DTW distance, Triangular Global Alignment
(TGA) kernel is proposed in [33]] for speeding up the GA kernel. This reduces the computational cost
by a constant factor and the resulting path may be suboptimal. All the above kernels [33}[35}/146] are
non-linear kernels and have quadratic complexity. Its quadratic complexity mainly involves finding the
optimal alignment or near-optimal alignments.

In general, SVMs with non-linear kernels over large data sets are computationally slower compared to
linear kernels. It requires efficient solvers to optimize the given problem. A linear SVM (SVM with linear
kernel) is given by the inner product F'(X) = (w, X) between the data sample X and a weight vector
w. On the other hand, a non-linear SVM is given by the expansion F'(X ) = Zf\il a;ik(X, X;), where k
is the given non-linear kernel, X;s are support vectors and M is the number of support vectors. In most
of the cases, evaluating the inner product (w, X) is more efficient than evaluating the kernel (X, X;).
This makes the linear SVM atleast M times faster compared to non-linear SVM, which is a significant
gain especially on large datasets. The training time is also effected in the similar way. A successful way
to speed up the non-linear SVM is with the help of explicit feature maps [[166|]. For a given non-linear
kernel «, there exists a feature map ¢ such that k(X,Y) = (¢(X),¢(Y)). However, in most of the
cases, the feature map ¢ is of infinite dimension. In explicit feature map, it finds a finite dimension
approximation ¢ of the feature map ¢ such that (X, Y) ~ (¢ (X),¢ (Y)). Given a positive definite
kernel (X, Y) and a data density p(X'), where X, Y € AP for some input space X, the approximation

finds the feature map ¢, which minimizes the following functional

!’

PO = [ (Y = (6 (0,0 )R )X Y (33)

where, the components ¢;€(X ) (k = 1,2,...) are eigenfunctions of the kernel . In general, the data
density p(X') is approximated by a finite sample set and correspondingly eigenfunctions are replaced
with eigenvectors. The eigenfunctions (vectors) play an important role in the approximation of the

kernels.
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Metric DTW distance DTW distance computes all the linear and non-linear similarities between the
given sequences; however, it is not a metric. There is a widely used metric DTW distance, which is used
in kernel settings, especially with SVM. The metric DTW considers all the possible alignments compared
to DTW distance, which uses only optimal alignment. Since it uses all the alignments to compute the
distance, it performs better than DTW distance. However, it is computationally costly. The metric DTW

is defined as follows

|l

KpTW = eﬂ?ﬁ( - > |1| > Nry i) — ym(i)H%) (3.6)
1

reAXx,y) M=

where A(X,Y) is the set of all alignments between X and Y.

3.3 Approximation of DTW distance

In general, DTW distance has quadratic complexity in the sequence length. This section presents a
novel framework for computing the linear approximation to the DTW distance. We refer to this proposed

linear approximation as Fast Surrogate DTW distance.

For a given data, there are similarities between the optimal alignments of different pairs of sequences.
For example, if we take two different classes, the top alignments (least cost alignments) between the
samples from these classes always have some similarities. We plot 3 top alignments between two se-
quences in Figure [3.1(a); these are the top 3 least-cost alignments. We show the similarity between
the top alignments over a subset of samples from the Libra dataset in Figure [3.1(b). Here, we plot the
top alignments between the samples from two classes. The figure shows that all the top alignments are
passing through a small window. There is no single alignment that is completely different from other top
alignments. Since the top alignments follow some structure, for a given new pair of sequences, we can
approximate their optimal alignment using these alignments. Based on this idea, we compute a set of
candidate top alignments from the training data and use these alignments to approximating the optimal
alignment between new test sequences. This avoids the computation of optimal alignments. We call
these candidate top alignments as global principal alignments. For the new test sequences, we use these
global principal alignments for computing their DTW distance. Now, the DTW distance becomes the
sum of the Euclidean distances over the global principal alignments. This gives a linear approximation

of the DTW distance. These alignments capture all the similarities in the sequential data.
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Figure 3.1: (a) The top 3 alignments between two time series X and Y of length 90 and 140 respectively.
These alignments have least cost compared to other alignments. These alignments are not completely

different from each other. (b) Optimal warp paths between the sequences of a subset of Libra dataset.

This work introduces two methods for computing the global principal alignments from the given
data. In the first method, we compute the global principal alignments from the top alignments of the
given data. For a given pair of sequences, their top alignments are computed from the cost matrix. Since
there are similarities between the top alignments for different pairs of sequences, there exist similarities
between their corresponding cost matrices. Instead of computing global principal alignments from the
top alignments, we compute a representative cost matrix for the given data in the second method, and

global principal alignments are computed from this cost matrix.

3.3.1 Approximation using Top Alignments (ATA)

We use principal component analysis (PCA) for modeling the global principal alignments for the
given data. The objective of our work is to compute the global principal alignments using the set of
all alignments such that the computed alignments should be well enough for approximating the DTW
distance between any new pair of sequences. This is similar to the concept of PCA, where for a given
data, it finds the principal directions in which the variance is maximum. PCA explores the dependencies
between the variables in the given data. Using these dependencies, it converts the set of correlated vari-

ables into a set of uncorrelated variables called principal components (eigenvectors). These principal
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components capture the maximum variability in the given data. It better represents the given data. The
global principal alignments in our work resemble the principal components in PCA. The alignments are
better represented in 2D space. Since PCA works only on one-dimensional (1D) data, so we cannot
directly apply it over top alignments to compute the global principal alignments. If we want to apply it
over two-dimensional (2D) data, it must be transformed into 1D data. This creates a large dimensional
covariance matrix, and computing the eigenvalues and eigenvectors for this matrix will be computa-
tionally expensive. Similar to PCA, a two-dimensional principal component analysis (2DPCA) [179] is
proposed to overcome these issues. 2DPCA is based on 2D matrices rather than 1D vectors. In this work,
we use 2DPCA for computing the global principal alignments. To compute the global principal align-
ments for a given data, we first represent each alignment using a 2D matrix and then global principal
alignments are computed by applying 2DPCA over these matrices.

To apply 2DPCA, we need to represent each alignment using a 2D matrix. An alignment 7 between
two time series of lengths n and m can be represented using an n X m grid. Equivalently, it can also
be represented using an n X m binary matrix (alignment matrix), where the elements are either O or 1.
This representation is given in Figure[3.2] The entries in the matrix through which the alignment passes
are 1, and for other entries, it is 0. Since for every pair of sequences there exist many alignments, it
corresponds to many binary matrices. For a given pair of sequences X and Y, denote their possible
alignments as 7,72, ..., 7, where [ is the total possible number of alignments. Assume that these
alignments are arranged according to their cost, i.e., 71 is the optimal alignment with the least cost and
7, is the top k" alignment between X and Y. For the sequences X and Y, we define their alignment

matrices as follows

! k
Bxy = U1 Bxy

where, B§(,Y is the alignment matrix correspond to the top k" alignment for the time series X and Y,
and [ is the total number of possible alignments.

For a given dataset, we first construct these alignment matrices for every pair of sequences. Since
there exist possibly many alignments for every pair of sequences and only top alignments have sig-
nificance in approximating the DTW distance, we take only top ¢ alignments for computing the global

principal alignments. For a given dataset D, we construct its alignment matrices as follows,

P = UX,YeD(UE':lB_]X,Y)
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Figure 3.2: Alignment matrix representation. The entries in the matrix where the alignment passes is 1,

and for others entries it is O.

It contains only top ¢ alignment matrices between every pair of sequences. The set P; contains the best
possible alignment matrices for the given dataset. We compute the global principal alignments from
this set of alignment matrices using 2DPCA. If the dataset contains alignments of variable length, the
set P, contains matrices of variable dimension. In this case, we cannot apply the above procedure for
computing the global principal alignments. To overcome this, we first scale the alignments to a fixed
size. Then, the alignment matrices are computed from these scaled alignments. Now, the resulting
alignment matrices have the same dimension. Finally, we apply 2DPCA over these matrices and find the

eigenvectors. These eigenvectors give the global principal alignments for the given dataset.

3.3.2 Approximation using Cost Matrix (ACM)

For computing the global principal alignments in ATA, we need to compute the top alignments for
every pair of samples. It is computationally unattractive for large datasets. To avoid this, we propose
another technique that computes a global cost matrix from the given data, from which we derive the
global principal alignments.

We construct the global cost matrix for the given data as follows. We first compute the cost matrix
for every pair of sequences from the given data and normalize each cost matrix by the maximum cost
of that matrix. The mean of all these cost matrices is taken as the global cost matrix for the given data.
If the dataset contains alignments of variable length, the cost matrices will have variable dimensions.
In this case, we cannot compute the global cost matrix as discussed above. To overcome this, we first
scale the alignments to a fixed size and then cost matrices are computed from these scaled alignments.

Now, the resulting cost matrices will have the same dimension. The top alignments computed from
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the global cost matrix give the global principal alignments for the given data. These alignments are
sufficient enough for comparing any two given sequences.

Since we avoid learning the global principal alignments from a large set of top alignments, the
approximation technique ACM is computationally faster than the approximation ATA. However, as we
are computing the global principal alignments from the single global cost matrix, it may not capture
all the correlations in the given data. Due to this, the approximation ACM performs slightly inferior
compared to the ATA in terms of accuracy.

Let G'p be the set of all global principal alignments computed from the given dataset D. For the

sequences X and Y, the Fast Surrogate DTW distance over Gp is defined as

||

Fastprw (X,Y) = Z Z(Xw(k) — Yo)?
m€Gp k=1 (37)

= Y Eudid(X,Y)

TEGD
where |7| is the length of the alignment 7. Fuclid;(X,Y) is the Euclidean distance between X and
Y over the alignment 7. Notice that, the DTW distance between two samples is the Euclidean distance
(ground distance) over the optimal alignment.

Computational time: From the Eq[3.7] we can observe that Fast Surrogate DTW distance is the sum
of the Euclidean distances over the global principal alignments. It means Fast Surrogate DTW distance
can be computed in a linear time compared to the quadratic complexity of naive DTW distance. In
summary, the performance of the proposed method is as good as DTW distance and computationally is

on par with simple Euclidean distance.

3.4 Dynamic Time Warping Kernels

This section presents our proposed Fast Surrogate DTW kernel, which is a linear approximation of the
non-linear DTW kernel. Like Fast Surrogate DTW distance, the Fast Surrogate DTW kernel is also defined
over the global principal alignments. Let Gp be the set of all global principal alignments computed from

the given dataset D. For the sequences X and Y, the Fast Surrogate DTW kernel over Gp is defined as

7]
KFastdtw(X, Y) = Z e—ﬁzkzl(Xﬁ(k)_yﬂk)y 48)

TeGp
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The Fast Surrogate DTW kernel defined in Eq[3.8]is the sum of RBF kernels over the global principal
alignments. Since it is the sum of RBF kernels, the resulting kernel is non-linear. We compute its linear
approximation using explicit feature maps. From the work on explicit feature map for RBF kernel [[166],

the explicit feature map of dimension n for RBF kernel is given as follows

drpr(X) = —=[e /WX | emHwn X (3.9)

where wy, . . . ,wy, are sampled from the Gaussian density. Since the Fast Surrogate DTW kernel defined

in Eq[3.8]is the sum of RBF kernels over the global principal alignments, its explicit feature map is given

as follows,
1 —i(w1,Xnq) —i{wn, X )
SrastpTw (X) = 7[6 LXmy) e e X))
" (3.10)
e—i(wLme)’ o ’e—i<wn,X7rm>]
where 7y, ..., T, are the global principal alignments and m is the total number of global principal
alignments. The linear approximation of the Fast Surrogate DTW kernel is given as
K4 o (X, Y) = (brastprw (X)), drastorw (V) (3.11)

3.5 Experiments

This portion evaluates various components of the proposed Fast Surrogate DTW distance and Fast
Surrogate DTW kernel. We demonstrate the utility of the Fast Surrogate DTW distance for document
word image retrieval problem. For Fast Surrogate DTW kernel, we evaluate using SVM classifier over

popular machine learning datasets.

3.5.1 Efficient Word Image Retrieval using Fast Surrogate DTW Distance
3.5.1.1 Datasets and Evaluation Protocols

In this sub-section, we discuss the datasets and the experimental settings we follow in our experi-
ments. We show the results on the popular George Washington (GW) database. In the experimental
section, to demonstrate the utility of the proposed method across different languages, we also exem-

plify the results on various Indian language datasets. These datasets contain two other Indian languages
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Dataset # Classes | # Images
D1 125 16145
D2 268 30164
D3 100 14306
George Washington Database (GW) 1471 4894

Table 3.1: Details of the datasets considered in the experiments.

(Hindi (D1) and Telugu (D2)), and English (D3) with a significant change in structure. One of the
Indian languages have a headline and the other does not. One of them is an Aryan language, while the
other is Dravidian. Details of the dataset are given in Table @ For the datasets D1, D2 and D3, the

ground truth is created using the methodology discussed in [69].

Multiple query images are generated to evaluate the quantitative performance. The criteria for the
selection of query images are (i) query images need to occur multiple times in the database, (ii) are
mostly functional words (iii) also should have no stop words. The performance is measured by mean
Average Precision (mAP). The mAP is the mean of the area under the precision-recall curve for all the
queries. For every pair of sequences, we take ¢ = 10, i.e., we choose the top 10 alignments. We take
the number of global principal alignments for all the datasets based on their size. The number of global
principal alignments for each of the datasets is given in Table[3.5] Since we compute the global principal
alignments using 2D-PCA, we need fixed-size alignment matrices. Since the size of the images is not
fixed in our datasets, we scale each word image into a fixed size. All experiments were carried out on a

single core of a 2.1 GHz AMD 6172 processor with 12 GB RAM.

3.5.1.2 Feature Extraction

In this work, we use the split profile features [[131] for representing the word images. We first di-
vide the image horizontally into two parts for computing these features. From these images, we extract
the following features, (i) vertical profile i.e., the number of ink pixels in each column, (ii) location of
lowermost ink pixel, (ii) location of uppermost ink pixel, and (iv) number of ink to background transi-
tions. The profile features are calculated on binarized word images obtained using the Otsu thresholding

algorithm.
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D1 D2 D3 GW
# Samples 16145 | 30164 | 14306 | 4894
# Global Alignments 60 100 60 40

Table 3.2: Number of global principal alignments for the datasets used in the experiments. Here, the

number of global alignments are based on the size of the dataset.
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Figure 3.3: Few sample results. Top-5 retrieval results for given query images. First column shows the

query image. For each query, its top 5 retrieval images are shown from left to right. In each row, query

image is marked in green colour and its corresponding wrong retrieval images are marked in red colour.
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DTW distance | Proposed | Metric DTW | Euclidean
Dl 0.9038 0.8927 0.9127 0.8059
D2 0.8382 0.8204 0.8438 0.7123
D3 0.8193 0.8072 0.8319 0.7329
GW 0.5173 0.5019 0.5361 0.3271

Table 3.3: Performance of the proposed technique as compared to the DTW distance, metric DTW and

Euclidean distance. Here, the mAP score is compared for all the methods.

In the first experiment, we evaluate the performance of the proposed Fast Surrogate DTW distance by
comparing it with naive DTW distance, Euclidean distance, and metric DTW. The comparative results
over the given datasets are given in Table [3.3] We compare the mAP score over all the datasets. The
results show that the Fast Surrogate DTW distance is comparable with naive DTW distance over all
the datasets. It performs significantly better compared to Euclidean distance. Metric DTW performs
well compared to other methods over all the datasets as it considers all the alignments to compute the
distance. Sometimes, only optimal alignment may not be sufficient for computing the similarity. In that
case, considering all the alignments or a few top alignments enhances the performance. The minor drop
in performance of Fast Surrogate DTW distance compared to DTW distance is due to the scaling involved

in resizing the images and the approximation of optimal alignments using global principal alignment

To explore the speed up of the proposed Fast Surrogate DTW distance, we compare its retrieval time
with naive DTW distance, Euclidean distance, and metric DTW over all the datasets. The results are given
in Figure Here, the retrieval time is shown over a log scale. Fast surrogate DTW distance is signifi-
cantly faster than DTW distance and metric DTW and is comparable to Euclidean distance. This is mainly
due to the length of the final feature representations obtained from the global principal alignments. We
project the feature vectors into more than one principal direction in the Fast Surrogate DTW distance.
This results in larger dimensional feature representations compared to the original representation. The
speed-up of our proposed technique mainly comes from the global principal alignments, which avoids
the computation of optimal alignments. In DTW distance, for a given query, we need to compute the
optimal alignments for all the images in the database to retrieve its similar images. In the Fast Surrogate

DTW distance, we use precomputed global principal alignments for computing the distance. Due to
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Figure 3.4: Retrieval time for a given query image for all the four methods over the given datasets. Here,

the retrieval time is shown over log scale.

this, the Fast Surrogate DTW is computationally efficient compared to other methods. Note that being

computationally attractive, our method achieves comparable performance to DTW based retrieval.

To evaluate the applicability of Fast Surrogate DTW distance across various languages, we show
experimental results on printed Indian language datasets, namely D1 and D2. In general, these languages
need rich features for better representation. However, in this experiment, we use only simple profile
features and do not apply any learning techniques to obtain better representation. The results are given
in Table @ From the results, we can observe that, the Fast Surrogate DTW distance for the two
Indian language datasets is comparable with the DTW distance. The proposed approach is language-

independent as it performs equally well in other Indian languages.

3.5.1.3 Qualitative Results

We show the qualitative performance of Fast Surrogate DTW distance on the George Washington
database in Figure 3.3] Here, we show some of the example queries and their top-5 retrieved word
images. We have marked the query image in green and incorrect retrieval images in red. Note that the
current work does not use any learning feature models or any other post-processing techniques, and the

main aim of this work is to show the scalability of DTW-based retrieval methods.
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Database | dimension | length | classes | # samples
Libra 2 45 15 945
Auslan 22 45-136 95 2465
IV 12 7-29 9 640
HC 3 60-182 20 2858
PEMS 963 144 7 440

Table 3.4: Details of the datasets considered in the experiments Libra, Auslan, Japanese Vowels (JV)
and Handwritten Characters (HC). Here, Libra dataset contains fixed length time series, whereas all

other datasets describes multivariate time series.

3.5.2 Evaluation of Fast Surrogate DTW kernel

3.5.2.1 Datasets and Evaluation Protocols

This evaluation aims to demonstrate the efficiency of the proposed Fast Surrogate DTW kernel on
a wide range of time-series datasets. We evaluate our proposed kernel over popular machine learning
datasets Libra, Auslan, Japanese vowels, handwritten Characters, and PEMS database of freeway traffic.
Except for Libra dataset, all the other datasets contain multivariate time series of variable length. In
addition to these small datasets, we also evaluate our Fast Surrogate DTW kernel on large-scale time-
series datasets obtained from UCR Time Series Data Mining Archive. Since the proposed method is only
applicable for fixed-length sequences, we scale the variable-length sequences to a fixed length using
standard scaling techniques. We compare the proposed Fast Surrogate DTW kernel with GDTW [12]

kernel and GA kernel [33] for all these datasets. The details of these datasets are given in Table[3.4]

In our proposed approximation kernel, for every pair of time series, we take ¢ = 10, i.e., we choose
the top 10 alignments. In both the proposed approximation techniques ATA and ACM, we consider an
equal number of global principal alignments, and it is based on the size of the dataset. The number of
global principal alignments for the given datasets is given in Table[3.5] For both the techniques ATA and
ACM the kernel computational time is the same. In all our experiments, for comparing computational
time with other kernels, we refer to our proposed kernel as the Fast Surrogate DTW kernel. All the

kernels are implemented in Matlab. All experiments are carried out on a single core of a 2.1 GHz AMD
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Libra | Auslan | PEMS | HC | JV
# Samples 945 2465 440 | 2858 | 640
# Global Principal Alignments 14 24 8 24 12

Table 3.5: Number of global principal alignments for the datasets used in the experiments. Here, the

number of global principal alignments are based on size of the dataset.

Libra Auslan PEMS HC JV
ATA | 12.2+0.29 | 43.14+2.3 | 25.2+0.8 | 45.24+2.8 | 17.1£0.3
ACM | 7.740.21 | 28.9+1.2 | 19.5+0.3 | 36.3+1.8 | 12.31+0.2

Table 3.6: Training time (Hrs) for ATA and ACM over the given datasets. Only top 1 alignment is

considered in this experiment.

6172 processor with 12 GB RAM. For comparison, the runtime is measured using the system clock with

minimal background processes running.

3.5.2.2 Accuracy of Fast Surrogate DTW Kernel

We compare the accuracy of the Fast Surrogate DTW kernel with GA kernel and GDTW kernel
over the given datasets in Figure[3.5] For the Fast Surrogate DTW kernel, we present the results obtained
from both the approximation techniques ATA (Method-1) and ACM (Method-2). We present the results
for both the equal length time-series data (Libra) and variable-length time series data (Auslan, PEMS,
HC, JV). Our proposed methods achieve better accuracy on the Libra dataset than the GDTW kernel and
perform equally well compared to the GA kernel. Our results are superior to the GDTW kernel on other
datasets and comparable to the GA kernel. This shows that our proposed kernel performs equally well,
if not better than GA kernel over equal length time series. The drop in the performance for variable-
length time series is due to the scaling step we are performing for converting the data to equal length.
In the scaling step, we lose some information from the data, which causes the degraded performance.
However, our proposed kernel performs well compared to GDTW kernel, which is exponential of DTW

distance over all the datasets.
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Figure 3.5: Comparison of the proposed approximation methods (Method- 1 and Method- 2) with
the GA kernel and GDTW kernel over Libra, Auslan, PEMS, HC (Hand written Characters) and JV

(Japanese Vowels) datasets.

3.5.2.3 Computation Time

This section explores the efficiency of the Fast Surrogate DTW kernel over small and large datasets.
We compare Fast Surrogate DTW kernel with GA kernel and GDTW kernel in all the experi-
ments. The first experiment compares the training time for the approximations, ATA, and ACM over the
given datasets. The results are given in Table[3.6] It shows that the approximation ACM is computation-
ally faster compared to ATA over all the datasets. In ATA, we must compute the top alignments for every
pair of sequences. As a result, ATA is computationally slower than ACM in training. We compare the
computational time of the proposed Fast Surrogate DTW kernel with the GA kernel and GDTW kernel
over all the datasets in Figure[3.6] The results show that the Fast Surrogate DTW kernel is computation-
ally faster than the GA kernel and GDTW kernel over all the datasets. For the Libra dataset, the smallest
dataset in our experiments, both the Fast Surrogate DTW kernel and GA kernel are performing equally
well. However, for other datasets, which have more sequences than to Libra, Fast Surrogate DTW kernel
has a significant gain in performance compared to GA kernel. Also, the proposed Fast Surrogate DTW
kernel outperforms GDTW kernel over all the datasets. On the handwritten characters dataset, the Fast
Surrogate DTW kernel is nearly ten times faster than GDTW kernel. The speed-up of our proposed kernel
mainly comes from the explicit feature maps, which give the linear approximation for the Fast Surrogate

DTW kernel.
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Figure 3.6: Comparison of computational time for proposed Fast Surrogate DTW kernel with GA kernel

and GDTW kernel over the given datasets. Here, computational time is given seconds.

Libra Auslan PEMS HC 1A%

Unimodal | Bimodal | Unimodal | Bimodal | Unimodal | Bimodal | Unimodal | Bimodal | Unimodal | Bimodal

ATA | 83.5+0.9 | 83.6+0.8 | 85.3£1.0 | 86.9+1.2 | 72.1+0.4 | 72.5+£0.5 | 87.1+1.3 | 87.4+1.5 | 86.1+0.7 | 87.1£0.9

ACM | 83.5+0.8 | 83.6+0.7 | 84.5+0.9 | 86.2+1.1 | 71.4+0.3 | 72.1+0.5 | 86.2+1.0 | 87+0.9 | 84.9+0.6 | 86.9+0.9

Table 3.7: Comparison between Unimodal and Bimodal distributions over Libra, Auslan, PEMS, HC
(Handwritten Characters) and JV (Japanese Vowels) datasets. GA kernel does not use Bimodal distri-

bution.

We test the proposed kernel over the UCR time series data mining archive to further explore the
Fast Surrogate DTW kernel over large length sequences. This dataset contains time series of lengths
from 1000 to 0.1 Million. In Figure we compare the computational time of the Fast Surrogate
DTW kernel with the GA kernel over a varying length of time series. For better comparison, we show
the computational time on a log scale. Both Fast Surrogate DTW kernel and GA kernel are performing
equally well for small-length sequences. The Fast Surrogate DTW kernel’s performance is least affected
by the increased length of sequences. On the other hand, for the GA kernel, the computational time
increases significantly with the increase in the length of sequences. For time series of length 0.1 Million,
the Fast Surrogate DTW kernel can be computed in around one minute, whereas for GA kernel, it took
nearly one hour. This suggests that the Fast Surrogate DTW kernel is more computationally efficient

than the GA kernel and is suitable for large datasets and large time series.
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Figure 3.7: Comparison of Fast Surrogate DTW kernel with GA kernel over a varying length of time

series. Here, the computational time is given in minutes and is shown on log scale.

3.5.2.4 Ablation Studies

The alignments may not always follow the unimodal distribution. PCA works well if the data fol-
lows the unimodal distribution. If the data does not follow unimodal distribution, then the principal
components may not capture the maximal variance in the data. In such cases, if we directly apply PCA
over the alignments, we may not get the best candidate global principal alignments. The results of these
studies are given in Table We present the results for both unimodal and bimodal distribution. We
apply the PCA over each distribution separately in bimodal distribution, and global principal alignments
are computed from these distributions. From the results, we can observe that global principal align-
ments computed from the bimodal distribution perform better compared to unimodal distribution. In
unimodal, the resulting global principal alignments cannot capture all the correlations in the given data.
This suggests that we get better performance if the global principal alignments are computed based on
the given data distribution. The global principal alignments computed from the unimodal and bimodal
distributions are performing equally well for the Libra dataset. In this case, the global principal align-
ments computed from the unimodal distribution are sufficient enough for encoding the correlations in

the data.

Role of the number of Global Principal Alignments Since we select the number of global prin-
cipal alignments based on the size of the dataset, we show the effect of the number of global principal

alignments on the accuracy in Table[3.8] To show the role of the number of global principal alignments,
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Libras Auslan PEMS HC v
Accuracy | Test time | Accuracy | Test time | Accuracy | Testtime | Accuracy | Test time | Accuracy | Test time
Top 1 Alignment 82.2 0.9 83.8 2.3 71.0 2.2 86.2 3.1 84.9 2.4
Top 3 Alignments 82.5 0.9 84.1 2.3 715 2.2 86.1 31 85.5 24
Top 5 Alignments 83.1 0.9 84.4 2.3 71.8 2.2 86.3 3.1 85.6 24
Top 8 Alignments 83.4 0.9 85.0 2.3 72.1 2.2 86.7 3.1 85.8 2.4
Top 15 Alignments 83.5 0.9 85.1 2.3 72.1 2.2 87.0 31 86.1 24
GDTW Kernel 83.4 2.4 84.6 13.2 71.6 14.7 86.1 29.3 85.4 132
GA Kernel 83.6 1.1 87.3 5.1 73.8 5.2 89.3 11.2 88.7 4.8

Table 3.8: Performance of the Fast Surrogate DTW kernel over varying number of global principal
alignments. Here, the performance is measured in-terms of accuracy (%) and test time (seconds). Fast

Surrogate DTW kernel is compared with GA kernel and GDTW kernel.

we compare Fast Surrogate DTW kernel with the GA kernel and GDTW kernel over a varying number of
global principal alignments. From the results, we can observe that the accuracy improves as we increase
the number of alignments. This suggests that we need to consider more global principal alignments to
get better results. The results also show that if we further increase the number of alignments, there is no

improvement in accuracy.

3.6 Summary

In this work, we proposed a linear surrogate approximation to the non-linear DTW distance. The main
aim of this work is to explore the hidden structure of the alignments for approximating the non-linear
DTW kernel by a linear kernel. In addition, we also propose an explicit feature map for the proposed
approximation kernel. For computing the explicit feature map, we exploit the hidden internal structure
of the alignments. The optimal alignment between the given time series is represented using global
top alignments. The proposed representation reduces the computational cost of DTW kernel by a huge

factor.
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Chapter 4

Efficient Query Specific DTW Distance for Document Retrieval

In this chapter, we present a novel application built using the Fast Surrogate DTW distance proposed
in Chapter 3] These applications widen the scope of our work and also validates the robustness of the
proposed Fast Surrogate DTW distance. In this chapter, we address the problem of faster indexing in
classifier-based retrieval methods using Fast Surrogate DTW distance. We introduce the Query specific
Fast Surrogate DTW distance for faster indexing, which has linear time complexity. We validate the
proposed Query specific Fast Surrogate DTW on Direct Query Classifier (DQC) [[128] for faster indexing
in document image datasets. In addition to this, we also present an application built using the Fast
Surrogate DTW distance in the deep learning framework. In this chapter, we propose, FastDTWNet,

where the Fast Surrogate DTW distance is applied as a feature extractor in CNN.

4.1 Document Retrieval

Retrieving relevant documents (pages, paragraphs, or words) is a critical component in information
retrieval solutions associated with digital libraries. The problem has been looked at in two settings:
recognition based [[110,[147] like OCR and recognition free [131,|177]. Most present day digital li-
braries use optical character recognizers (OCR) to recognize digitized documents and thereafter employ
a text-based solution for information retrieval. Though OCRs have become the de facto preprocess-
ing for the retrieval, they are realized as insufficient for degraded books [[160], incompatible for older
print styles [47]], unavailable for specialized scripts [74] and very hard for handwritten documents [72].
Commercial OCRs may provide highly unacceptable results in practice even for printed books. The
best commercial OCRs can only give word accuracy of 90% on printed books [177] in modern digital

libraries. This means that every 10th word in a book is not searchable. Recall of retrieval systems built
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on such erroneous text is thus limited. Recognition-free approaches have gained interest in recent years.
Word spotting [131] is a promising method for recognition free retrieval. In this method, word images
are represented using different features (eg. Profile, SIFT-BOW), and the features are compared with
the help of appropriate distance measures (Euclidean, Earth Movers [[135]], DTW [[117]]). Word spotting
has the advantage that it does not require prior learning due to its appearance-based matching. These

techniques have been popularly used in document image retrieval.

Konidaris et al. [[160] retrieve words from an extensive collection of printed historical documents.
A search keyword typed by the user is converted into a synthetic word image which is used as a query
image. Word matching is based on computing the L; distance metric between the query feature and
all the features in the database. Here the features are calculated using the density of the character
pixels and the area that is formed from the projections of the upper and lower profile of the word. The
ranked results are further improved by relevance feedback. Sankar and Jawahar [74] have suggested a
framework of probabilistic reverse annotation for annotating a large collection of images. Word images
were segmented from 500 Telugu books. The word images are matched using the DTW approach [[130].
Hierarchical agglomerative clustering was used to cluster the word images. Exemplars for the keywords
are generated by rendering the word to form a keyword image. Annotation involved identifying the
closest word cluster to each keyword cluster. This involves estimating the probability that each cluster
belongs to the keyword. Yalniz and Manmatha [177] have applied word spotting to scanned English
and Telugu books. They can handle noise in the document text using SIFT features extracted on salient
corner points. Rath and Manmatha [130] used projection profile and word profile features in a DTW

based matching technique.

Recognition-free retrieval was attempted in the past for printed and handwritten document collec-
tions [63,/74,(99,177]. Since most of these methods were designed for smaller collections (few hand-
written documents as in [99]]), computational time was not a major concern. Methods that extended this
to a larger collection [|6,/13],162] used primarily (approximate) nearest neighbor retrieval. For searching
complex objects in large databases, SVMs have emerged as the most popular and accurate solution in the
recent past [99]]. For linear SVMs, training and testing have become very fast with the introduction of ef-
ficient algorithms and excellent implementations [145]]. However, there are two fundamental challenges
in using a classifier based solution for word retrieval (i) A classifier needs a good amount of annotated

training data (both positive and negative) for training. Obtaining annotated data for every word in every
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style is practically impossible. (ii) One could train a set of classifiers for a given set of frequent queries.

However, they are not applicable for rare queries.

In [[128]], Ranjan et al. proposed a one-shot classifier learning scheme (Direct query classifier). The
proposed one-shot learning scheme enables the direct design of a classifier for novel queries without
having access to the annotated training data, i.e., classifiers are trained for a set of frequent queries and
seamlessly extended for the rare and arbitrary queries, as and when required. The authors hypothesize
that word images, even if degraded, can be matched and retrieved effectively with a classifier based
solution. A properly trained classifier can yield an accurate ranked list of words since the classifier
looks at the word as a whole and uses a larger context (say multiple examples) for matching. The
results for this method are significant since (i) It does not use any language specific post-processing for
improving the accuracy. (ii) Even for a language like English, where OCRs are relatively advanced and
engineering solutions were perfected, the classifier based solution is as good, if not superior to the best

available commercial OCRs .

In the direct query classifier (DQC) scheme [128]], the authors used DTW distance for indexing the
frequent mean vectors. Since the DTW distance is computationally slow, the authors do not use all the
frequent mean vectors for indexing. For comparing two word images, DTW distance typically takes one
second [131]]. This limits the efficiency of DQC. To overcome this limitation, the authors used Euclidean
distance for indexing. The authors use the top 10 (closest in terms of Euclidean distance) frequent mean
vectors for indexing. Since the DTW distance better captures the similarities compared to Euclidean

distance for word image retrieval, this restricts the performance of DQC.

The Fast Surrogate DTW [[109] distance can be used for efficient indexing in DQC classifier. However,
it gives sub-optimal results. For best results, it needs query specific global principal alignments. In this
work, we introduce query specific DTW distance, which enables the direct design of global principal
alignments for novel queries. Global principal alignments are computed for a set of frequent classes and
seamlessly extended for the rare and arbitrary queries, as and when required, without using language
specific knowledge. This is a distinct advantage over an OCR engine, which is challenging to adapt to
varied fonts and noisy images and requires language-specific knowledge to generate possible hypotheses
for out-of-vocabulary words. Moreover, an OCR engine can respond to a word image query only by first
converting it into text, which is prone to recognition errors. In [85,(155]], deep learning frameworks are
used for word spotting. In [5], an attribute based learning model PHOC is presented for word spotting.

In the training phase, each word image is to be given with its transcription. Both word image feature
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vectors and its transcriptions are used to create the PHOC representation. An SVM is learned for each
attribute in this representation. Our approach bears similarities with the PHOC representation based
word spotting [5]]. In the sense that both the approaches are designed for handling out-of-vocabulary
queries. Our work takes advantage of granular description at ngrams (cut-portion) level. This somewhat
resembles the arrangement of characters used in the PHOC encoding. However, training efforts for PHOC
are substantial, with a large number of classifiers (604 classifiers) being trained and require complete
data for training, which is huge for large datasets. In our work, the amount of training data is restricted
to only frequent classes, which is very less compared to PHOC. Further, PHOC requires labels in the form
of transcriptions, whereas in our work, the labels need not be transcriptions. Also, PHOC is language-
dependent [50], and challenging to apply in different languages. The method proposed in this work is

language independent, it can be applied to any language.

4.2 Direct Query Classifier (DQC)

In [128]], Ranjan ef al. proposed Direct Query Classifier (DQC), a one-shot learning scheme for
dynamically synthesizing classifiers for novel queries. The main idea is to compute an SVM classifier
for the query class using the classifiers obtained from the frequent classes of the database. The number
of possible words in a language could be huge and it would be difficult to build a classifier for each word.
However, all these words come from a small set of ngrams. The words corresponding to the frequent
queries are expected to contain the n-grams that cover the full vocabulary. Exemplar SVM classifiers are
computed for the frequent queries (word classes) and then appropriately concatenated to create novel

classifiers for the rare queries. However, this process has its challenges due to
(i) Variations due to nature of script and writing style,
(i1) Classifiers for smaller ngrams could be noisy.

The authors address these limitations by building the SVM classifiers for most frequent queries and
using classifier synthesis only for rare queries. This improves its overall performance. They use Query
Expansion (QE) for further improving the performance. An overview of the direct query classifier is

given in the following sections.
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4.2.1 DP DQC: Design of DQC using Dynamic Programming

Given a set of classifiers for frequent classes W,, = {w1, w2, ..., wx} and a query vector X, the
query classifier w, is designed as a piecewise fusion of parts (n grams) from the available classifiers
from W,,. Let p be the number of portions to be selected for computing the query classifier w,. These
portions are characterized by the sequence of indices a1, ...,apy1. The classifier synthesis problem
is formulated as that of picking up the optimal set of classifiers {¢;} and the set of segment indices

{a;} such that {a;} form a monotonically increasing sequence of indices. This involves the following

optimization:
P Qi1
maz 33wk X (4.1)
{ai}{ci} i=1 k=a; Z

where w,, corresponds to the weight vector of the ct” classifier that we choose and the inner summation
applies the index k in the range (a;, a;; 1) to use the k™ component wffi from the classifier ¢;. The index
7 in the outer summation refers to the cut portions, and p is the total number of portions we need to
consider.

In [99]], Malisiewicz et al. proposed the idea of exemplar SVM (ESVM), where a separate SVM
is learnt for each example. Almazan et al. [[67]] use ESVMs for retrieving word images. ESVMs are
inherently highly tuned to their corresponding example. Given a query, it can retrieve highly similar
word images. This constrains the recall unless one has significant variations of the query word. Another
demerit of ESVM is the large overall training time since a separate SVM needs to be trained for each
exemplar. One way to reduce training time is to make the negative example mining step offline and
select a common set of negative examples [100]]. Gharbi et al. [[104] provide another alternative for fast
training of exemplar SVM in which the hyperplane between a single positive point and a set of negative
points can be seen as finding the tangent to the manifold of images at the positive point.

Given a query g, the similar vectors in the dataset are identified by adopting the ESVM formulation
proposed by Gharbi et al. [[104], which yields an approach equivalent to Linear Discriminant Analysis. It
involves a fast computation of the weight vector by adopting a parametric representation of the negative
examples approximated as a Gaussian modeled on the complete set of training points. The normal to
the Gaussian at the query point ¢ is computed using the covariance matrix to yield the weight vector wy

as follows:

wy =X (g — o) 4.2)
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where ¥ and pg are the covariance and mean computed over the entire dataset. Since Y and o are
common for entire data, finding w, requires finding the mean vector 1, of the class to which the query ¢
belongs to. Let us define the set of class mean vectors for the frequent classes as W,, = {1, ..., v }-
The mean vector y, for the class of the query ¢ is computed by making use of appropriate cut portions
from the mean vectors of the frequent classes. Optimizing for variable length cut portions entails
high computational complexity. Therefore, instead of matching variable-length n grams the method

divides X, into p number of fixed length portions.

1. The class mean vectors of the most frequent 1000 classes are concatenated.

2. Now, each query cut portion X f; is searched in the concatenated mean vector using subsequence

dynamic time warping [[106]

3. The most similar segment in the concatenated mean vector is taken as the corresponding portion

of the query class mean /ﬂg.

4. The concatenation of these query class mean cut portions ,u’; synthesizes the query class mean

Hq = [Hgs - - 1.

Since DTW is computationally slow, applying subsequence DTW in this case is computationally expen-

sive.

4.2.2 NN DQC: Design of DQC using Approximate Nearest Neighbour

A speed-up is obtained using approximate nearest neighbor search instead of DTW.

* Instead of concatenating the class mean vectors, each class mean vector is now divided into the
same p number of fixed length portions. An index is built over frequent class means cut portions

using FLANN.

* Each cut portion of X is compared with frequent class means cut portions using nearest neighbor

search with Euclidean distance.

» The best matching cut portions of the mean vectors are used to synthesize the mean vector for the

query class.

69



Retrieved Results
Rank 2 Rank 3 Rank 4 Rank 5

oot but | weee) but  but  but  but  but
DP DQC bllt but bUt but but

e, IMONEY | ™rec money Mmoney every money makes
veoec mMoONEy money money month lovely
whoc | TIONEY Money money Mmoney money.

NN DQC

Query Method Rank 1

Figure 4.1: The figure shows a few query words and their corresponding retrieval results. The first
column shows the query image, and the corresponding images in each row are its retrieval results. The
first two rows show frequent query results. The first row show the results for NN DQC, and the second
row show the results for DP DQC. Row 3 to Row 5 show the retrieval results for a rare query. Row 3
shows the results for NN DQC and, row 4 show the results for DP DQC and Row 5 show the results for

query expansion.

However, using nearest neighbour (NN DQC) instead of subsequence DTW based scheme (DP DQC)

compromises the optimality of the classifier synthesis.

Few qualitative examples for the two versions of DQC are given in Figure 4.1 We have shown the
retrieval results for frequent queries and rare queries. For each case, we have compared the retrieval

results for NN DQC and DP DQC. For rare queries, we have also shown the results for Query expansion

(QE).

4.3 Query Specific Fast DTW Distance

In Fast Surrogate DTW distance (section [3.3), the global principal alignments are computed from the
given data. Here, no class information is used while computing the alignments, and also, these align-
ments are query independent, i.e., query information is not used while computing the global principal
alignments. In this section, we introduce Query specific DTW distance, which is computed using query
specific (global) principal alignments. The proposed query specific DTW distance has been found to

perform much better when used with the direct query classifier.
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Let X be the given data and all the samples are scaled to a fixed size. Let {C1,C5,...,Cn} be

the most frequent /V classes from the data and pq, ..., uy be their corresponding class means. The

matching process using the query specific principal alignments is as follows:

(1)

(i)

(iii)

Divide each sample from the frequent classes into a fixed number p of equal size portions. Let
Tigy ooy Ty be the samples (sequences) from the it class ¢;, where || is the number of samples
in class ¢;. The cut portions for the class means y’ are denoted as !, ... ,,u;, where each cut
portion is of length d. Similarly, divide the query X, into the same number p of fixed length

portions.

For each class, compute the global principal alignments for each cut portion separately. These
alignments corresponds to the cut specific principal alignments for the class. For i*" class and j*"

J

cut portion the cut specific principal alignments are computed from {x“, -

.27} and these are
ijcil

denoted as Gg . These alignments are computed for all the cut portions for each class.

The final step computes the cut specific principal alignments for the given query X, as follows.
For each cut portion of X, we compute the DTW distance (Euclidean distance over the cut spe-
cific principal alignments) with the corresponding cut portions of all the class means using their
corresponding cut specific principal alignments. The distance between the 5 cut portion of Xy

ie., Xg and the j*" cut portion of the i class mean i.e., ,u{ is denoted as

Dis] = Y Euclid.(X], 1)) (4.3)

reGd
For each cut portion of X, we compute the minimum distance mean cut portion over all the class
mean vectors. The corresponding cut specific principal alignments of the closest matching mean
cut portions are taken as the cut specific principal alignments of the query cut portion. Also, the
corresponding class mean cut portion is taken as the matching cut portion for constructing the
query mean. Let the 7 cut portion of the query best match with the j® cut-portion of the class

with index c.

¢ = arg min Disg (4.4)

7

Here the minimum distance is computed over all the frequent classes. We thus have
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Gk, «—Gi  and ph — (4.5)

Here G%(q is the cut specific principal alignments for the 5" cut portion of X q-

Together, all these query mean cut portions give the query class mean. The query class mean i,
is given as pg = (ué, ug, ..., ph). This query class mean i, is then used as in Equation to

compute the LDA weight w, (query classifier weight).

The query specific (qs) DTW distance between the query X, and a sample X from the data is

given as

dtw (Xq, X) Z dthz (X5, X7 (4.6)
where p is the number of cut portions.

Fig shows all the processing stages of the nearest neighbour DQC. To summarize, we generate
query specific principal alignments on the fly by selecting and concatenating the global principal align-
ments corresponding to the smaller n grams (cut portions). Our strategy is to build cut-specific principal
alignments for the most frequent classes; these are the word classes that will be queried more frequently.
These cut-specific principal alignments are then used to synthesize the query specific principal align-
ments (see Figure 4.3). The results demonstrate that our strategy gives good performance for queries
from both the frequent word classes and rare word classes.

In general, the alignments trained on one dataset may not work well on another dataset. This is
mainly due to the print and style variations. To adapt to different styles, we use query expansion (QE),
a popular approach in the information retrieval domain in which the query is reformulated to improve
the retrieval performance further. An index is built over the given sample vectors from the database,
and using an approximate nearest neighbor search, the top 10 similar vectors to the given query are
computed. These top 10 similar vectors are then averaged to get the new reformulated query. This
reformulated query is expected to capture the variations in the query class better. In our experiments,
this further improves the retrieval performance. Approximate nearest neighbors are obtained using

FLANN [96]].
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Figure 4.2: Overall Scheme for NN DQC. In an offline phase, the mean vectors for the frequent word
classes are computed and their cut-specific principal alignments are computed. To process a query word
image, it is divided into cut portions and Fast Surrogate DTW matching is used to get the best matching
cut-portions from the frequent class mean vectors with the cut-portions of the query image. These best
matching cut-portions are used to construct the mean vector for the query class and the query specific
principal alignments. Fast SurrogateDTW [[109] matching between the query image and the database

images is done using the query specific principal alignments.

4.4 Results and Discussions

In this section we validate the DQC classifier using query specific Fast Surrogate DTW distance for ef-
ficient indexing on multiple word image collections and also demonstrate its quantitative and qualitative

performance.

4.4.1 Datasets and Evaluation Protocols

In this subsection we discuss datasets and the experimental settings that we follow in the experiments.
Our datasets, given in Table[d.1] comprise scanned English books from a digital library collection. We
manually created ground truth at the word level for the quantitative evaluation of the methods. The first
collection (D1) of words is from a reasonably clean book. The Second dataset (D2) is larger in size
and is used to demonstrate the performance in the case of heterogeneous print styles. The third data
set (D3) is a noisy book and is used to demonstrate the utility of the performance of our method in
degraded collections. We have also given the results over the popular George Washington dataset. For
the experiments, we extract profile features [130] for each of the word images. In this, we divide the

image horizontally into two parts, and the following features are computed: (i) vertical profile i.e., the
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Figure 4.3: Synthesis of query specific principal alignments. (a) Cut specific principal alignments corre-
sponding to "ground" and "leather" are joined to form the principal alignments for "great". Note that the
appropriate cut portions are automatically found. (b) In a general setting, query specific principal align-
ments gets formed from multiple constituent cut specific principal alignments computed for frequent

classes.

number of ink pixels in each column, (ii) location of lowermost ink pixel, (ii) location of uppermost ink
pixel and (iv) number of ink to background transitions. The profile features are calculated on binarized
word images obtained using the Otsu thresholding algorithm. The features are normalized to [0, 1] so

as to avoid dominance of any specific feature.

To evaluate the quantitative performance, multiple query images were generated. The query images
are selected to have multiple occurrences in the database are mostly functional words and do not include
the stop words. The performance is measured by mean Average Precision (mAP), which is the mean of

the area under the precision-recall curve for all the queries.

4.4.2 Experimental Settings

For representing word images, we prefer a fixed length sequence representation of the visual content,
i.e., each word image is represented as a fixed length sequence of vertical strips. A set of features fi,. . .,
fr are extracted, where f; € RM is the feature representation of the i*" vertical strip and L is the
number of vertical strips. This can be considered as a single feature vector ' € R? of size d = LM.

We implement the query specific alignment based solution as discussed in Section [4.3] For the query
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Dataset | Source | Type | #Images | # Queries
D1 1 Book | Clean | 14510 100
D2 2 Books | Clean | 32180 100
D3 1 Book | Noisy 4100 100

Table 4.1: Details of the datasets considered in the experiments. The first collection (D1) of words is
from a book which is reasonably clean. The second dataset (D2) is obtained from 2 books and is used

to demonstrate the performance in case of heterogeneous print styles. The third data set (D3) is a noisy

book.

expansion based solution, we identify the five most similar samples to the query using an approximate

nearest neighbor search and compute their mean.

Each dataset contains certain words which are more frequent than others. The number of samples
in the frequent word classes are more compared to the rare classes. The retrieval results for frequent
queries give better performance because the number of relevant samples available in the dataset are
more. It is worth emphasizing that for the method proposed in this work (QS DTW), the degradation in

the performance for rare queries is much less compared to other methods.

4.4.3 Results for Frequent Queries

Table {.2] compares the retrieval performance of the direct query classifier DQC with the nearest
neighbour classifier using different options for distance measures. The performance is shown in terms
of mean average precision (mAP) values on three datasets. For the nearest neighbour classifier, we
experimented with five distance measures: naive DTW distance, Fast Surrogate DTW distance [[109],
query specific DTW (QS DTW) distance, Salvador et al. [140] and Euclidean distance. We see that QS
DTW performs comparably with DTW for all the datasets. It performs superior compared to Salvador et

al.. Fast Surrogate DTW distance [[109] performs significantly better than Euclidean distance.

For DQC, we experimented with four options for indexing the frequent class mean vectors: subse-
quence DTW [128]] (sDTW), approximate nearest neighbour NN DQC [[128]] (aNN), Fast Surrogate DTW,
and QS DTW. We use the cut-portions obtained from the mean vectors of the most frequent 1000 word

classes for (i) computing the cut-specific principal alignments in case of QS DTW, (ii) computing the
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Retrieval Results (mAP) for Frequent Queries

Dataset Using Nearest Neighbour Classifier Using DQC (Exemplar SVM)

DTW | Fast Surrogate DTW [[109] | QS DTW | Euclidean | Salvador et al. [140] | sDTW | aNN | Fast Surr DTW | QS DTW
D1 0.94 0.92 0.92 0.81 0.91 0.98 | 0.98 1 1
D2 0.91 0.89 0.9 0.75 0.87 0.96 | 0.95 0.97 0.99
D3 0.83 0.79 0.81 0.67 0.76 091 | 0.92 0.93 0.96

Table 4.2: Retrieval performance of various methods for frequent queries.

closest matching cut-portion (i.e., one with the smallest distance, which can be Euclidean or DTW) with
a cut-portion from the query vector, in case of aNNor Fast Surrogate DTW.

However, since SDTW has computational complexity O(n?), we restrict the number of frequent words
used for indexing to 100. The QS DTW distance improves the performance of the DQC classifier. This is
mainly due to the improved alignments involved in the QS DTW distance. The query specific alignments
better capture the variations in the query class. Moreover, unlike the case of sDTW distance the QS
DTW distance has linear complexity and therefore we are able to index all the frequent mean vectors
in the DQC classifier. Thus, the proposed method of QS DTW enhances the performance of the DQC
classifier [[128]].

The experiments revealed that the QS DTW gets the global principal alignments from the mean vec-
tor of the same (query) class for frequent queries. Since the alignments are coming from the query
class, it gives a minimum distance only for the samples which belong to its class. Therefore, the re-
trieved samples largely belong to the query class. The performance is therefore improved compared to
sDTW distance. In contrast, the Fast SurrogateDTW distance [[109] computes the global principal align-
ments using all samples in the database, without exploiting any class information. The computed global
principal alignments, therefore, include alignments from classes that may be different from the query

class. For this reason, it performs inferior to the proposed QS DTW distance.

Retrieval Results (mAP) for Rare Queries

Dataset Using Nearest Neighbour Classifier Using DQC (Exemplar SVM)

DTW | Fast Surrogate DTW [109] | QS DTW | Euclidean | Salvador et al. [140] | sDTW | aNN | Fast Surr DTW | QS DTW | QE
D1 0.82 0.77 0.83 0.69 0.75 091 | 0.90 0.91 0.95 0.98
D2 0.81 0.74 0.80 0.65 0.74 0.89 | 0.90 0.90 0.94 0.95
D3 0.73 0.66 0.71 0.59 0.62 0.80 | 0.78 0.80 0.91 0.96

Table 4.3: Retrieval performance of various methods for rare queries.
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4.4.4 Results for Rare Queries

The faster indexing offered by using QS DTW with DQC allows us to use the mean vectors of all the
1000 frequent classes. This gives us much improved performance of the DQC on rare queries compared
to sDTW [128]], which uses mean vectors from 100 frequent classes. Table shows the retrieval
performance of DQC with a nearest neighbour classifier using different options for distance measures.
The performance is shown in terms of mean average precision (mAP) values on rare queries from three
datasets. For the nearest neighbour classifier, we experimented with five distance measures: naive
DTW distance, Fast Surrogate DTW distance [[109], query specific DTW (QS DTW) distance, Salvador et
al. [140] and Euclidean distance. We see that QS DTW performs comparably with DTW distance for all
the datasets. It performs better than the Fast Surrogate DTW distance [[109], Salvador et al. [140|] and

significantly better than Euclidean distance.

For DQC, we observe that QS DTW improves the performance compared to sDTW. This improvement
of QS DTW over sDTWis more for rare queries compared to that for frequent queries. This shows that

QS DTW can be used for faster indexing for both frequent and rare queries.

For rare queries, the query specific DTW distance outperforms Fast SurrogateDTW [109]] distance.
This happens because the Fast SurrogateDTW computes the global principal alignments from the database
and its performance depends on the number of samples. Also, these alignments are query independent,
i.e., they do not use any query information for computing the global principal alignments. For a given
query, it needs enough samples from the query class to get novel global principal alignments. However,
in any database the number of samples for frequent classes dominates the number of samples for rare
classes. The global principal alignments for frequent queries are likely to dominate the rare queries.
Therefore, the precomputed global principal alignments in Fast SurrogateDTW may not capture all the
correlations for rare query classes. In the proposed QS DTW distance, the global principal alignments
are learned from the ngrams (cut-portions) of frequent classes. These ngrams are in abundance and also
shared with rare queries, thus there are enough ngram samples for learning the cut-specific alignments.
The computed query specific alignments for the cut-portions outperform the alignments obtained from

Fast SurrogateDTW.

It is worth mentioning that Salvador et al. [[140]] is an approximation method attempt to compute
the DTW distance efficiently. It does not consider cut portion similarities, which may be influenced by

various printing styles. Hence, these approaches are not applicable in our setting where the dataset can
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Average of DTW distance

For given query For Reformulated Query

n=2 n=>5 n=7 n=10

2.67 £0.19 2.69£0.23 | 2.524+0.13 | 2.58£0.21 | 2.944+0.29

Table 4.4: The table gives the average sum of DTW distance for the given query and the reformulated

query with varying number of samples n from the query class.

have words printed in varied printing styles and thus can result in marked degradation of performance for
rare queries. Since query specific DTW finds the approximate DTW distance using cut specific principal

alignments, it can exploit properties that cannot be used by other DTW approximation methods.

To summarize, the experiments demonstrate that the proposed query specific DTW performs well for
both frequent and rare queries. Since it is learning the alignments from ngrams, it performs comparable

to sDTWdistance for rare queries. For some queries, it performed better than the DTW distance.

4.4.5 Results for Rare Query Expansion

The results for QS DTW enhanced with query expansion (QE) using the five best matching samples
are also given in Table 4.3] It is observed that QE further improves the performance of our proposed
method. To show the effectiveness of query expansion, we have computed the average of the DTW
distance between the given query and all database samples that belonged to the query class. Likewise,
we computed the average of the DTW distance for the reformulated query. Table[#.4]shows a comparison
of the averaged DTW distance for the given query and the reformulated query using 2, 5, 7, and 10 most
similar (to the query) samples from the database. From the results, we can observe that compared to the
given query, the reformulated query using five best matching samples gives the lowest averaged DTW
distance to the samples from the query class. This means the reformulated query is a good representative
of the given query. However, using nine best matching samples for reformulating the query leads to a
higher average of DTW distances. This means some irrelevant samples to the query come in the top

similar samples.
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mAP using nearest neighbour mAP using DQC
Dataset
DTW | Fast Surrogate DTW [109] | QS DTW | Euclidean | sDTW | Fast Surr DTW | QS DTW
GW 0.51 0.50 0.52 0.32 0.62 0.63 0.70

Table 4.5: Retrieval performance on the George Washington (GW) dataset. The DQC makes use of top

800 frequent classes for indexing the cut-portions.

Length of cut portion | D1 | D2 | D3
1 0.81 | 0.78 | 0.7
10 0.86 | 0.83 | 0.74
20 0.86 | 0.82 | 0.75
30 0.82 | 0.77 | 0.72

Table 4.6: The table shows change in retrieval performance with change in the length of cut portion over

all the datasets (D1, D2, D3).

4.4.6 Results on George Washington Dataset

The George Washington (GW) dataset [[/]] contains 4894 word images from 1471 word classes. This
is one of the popular datasets for word images. We applied our proposed method of DQC using QS DTW
for word retrieval on the GW dataset. Table 4.5 provides comparative results for seven methods. Exper-
iments are repeated for 100 random queries and the average over these results are reported in the table.
We can observe that for the DQC the proposed QS DTW gives better performance than DTW. We can also
observe that for the nearest neighbour classifier, QS DTW distance is performing slightly superior to the
DTW distance and Fast SurrogateDTW distance. The superiority is because of the principal alignments,

which are query specific.

4.4.7 Setting the Hyperparameters

The proposed method has few hyperparameters, like the length of the cut portion and the number
of cut specific principal alignments. For tuning these parameters, we randomly choose 100 queries for
each dataset and validate the performance over these queries. Queries included in the validation set are

not used for reporting the final results.
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Number of cut specific | mAP for different datasets
Principal Alignments | D1 | D2 D3
10 0.92 | 0.89 0.81
20 0.93 | 0.89 0.81
30 091 | 0.88 0.78

Table 4.7: Retrieval performance on the 3 datasets D1, D2 and D3 for varying number of cut specific

principal alignments.

In Table [4.6] we report the effect of varying the cut portion length on retrieval performance. The
mAP score is less for smaller cut portion length. In this case, the learned alignments are not capturing
the desired correlations. This happens because the occurrence of smaller cut portions is very frequent in
the word images. For length more than 30, the mAP is again decreased. This is because the occurrences
of larger cut portions are rare. Cut portion lengths in the range of 10 to 20 give better results. In this case,
the cut portions are good enough to yield global principal alignments that can distinguish the different

word images.

We assessed the effect of varying the number of cut-specific principal alignments on the retrieval
performance of the three datasets and the results are given in Table It is seen that the performance
degrades for all the datasets when the number of alignments is chosen as 30. This can be attributed to
some redundant alignments getting included in the set of principal alignments. Increasing the number of
alignments from 10 to 20 improves performance for dataset D1, but has no effect on the performance for
datasets D2 and D3. Therefore, we can conclude that restricting the number of principal alignments in
the range of 10 to 20 would give good results. In all our experiments, we set the number of cut-specific

principal alignments as 10.

4.4.8 Computation Time

Table {.8] gives the computational time complexity for the methods based on DTW. The main com-
putation involved in the use of QS DTW is that of computing the cut specific principal alignments for the
frequent classes. Figure 4.4]shows the time for computing the cut specific principal alignments for the 3

datasets. The computation of these cut specific principal alignments can be carried out independently
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Figure 4.4: Computation time for computing the cut specific principal alignments for all the datasets. It
includes the computation of cut specific principal alignments for all the frequent classes over all the cut

portions.

for all the classes. Since we can compute these principal alignments in parallel with each other, the

proposed QS DTW scales well with the number of samples compared to Fast Surrogate DTW [[109]].

Unlike the case of QS DTW, where the global principal alignments are computed for the small cut
portions, in Fast Surrogate DTW, the principal alignments are computed for the full word image rep-
resentation. Further, in Fast Surrogate DTW, the principal alignments are computed from the entire
dataset, unlike the case of QS DTW in which the principal alignments are computed for the individual

classes. For these reasons, Fast Surrogate DTW is computationally slower compared to the QS DTW.

For a given dataset, computing the cut specific principal alignments for the frequent classes is an
offline process. When performing retrieval for a given query, DQC involves computing the query mean
by composing together the nearest cut portions from the mean vectors of frequent classes. Further,
the query specific principal alignments are not explicitly computed, but rather constructed using the
cut-specific principal alignments corresponding to the nearest cut portions. Once the query specific
principal alignments are obtained, computation of QS DTW involves computing the Euclidean distance

(using the query specific principal alignments) with the database images.

Methods sDTW | Fast Surrogate DTW [109'] Salvador et al. [140'] QS DTW

Computational Complexity | O(n?) O(n) O(n) O(n)

Table 4.8: Computational complexities of DTW-based methods for distance computation. Here n is the

length of the cut-portion of the feature vector.
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For given two samples x and y of length IV, Salvador ef al. [[140] computed the DTW in the following
way. First, these two samples are reduced to a smaller lengths (1/8 times), and the naive DTW distance is
applied over the reduced length samples to find the optimal warp path. Next, both the optimal path and
the reduced length samples from the previous step are projected to be higher (2 times) resolution. Instead
of filling all the entries in the cost matrix in the higher resolution, only the entries around a neighborhood
of the projected warp path, governed by a parameter called radius r, are filled up. This projection step
is continued till the original resolution is obtained. The time complexity of the approximated DTW
proposed in [140] is N (8r + 14), where r is the radius. Its performance depends on the radius r. The
higher the value of r, the better the performance is. The time complexity of QS DTW/Fast Surrogate
DTW is N x p, where p is the number of principal alignments. In general, p << 8r 4 14, for getting the

similar performance in both the methods.

4.5 Recent Advances in DTW Distance

In this section, we discuss few recent advances in DTW distance.

4.5.1 DTW Distance as a Differentiable Loss Function for Time Series

In the domain of sequence data analysis, compared to the Euclidean distance, the DTW distance
reveals the true similarity between target samples. This is mainly due to invariance against shifting and
scaling in the time axis (Doppler effect). However, it has limited applicability for the problems where we
need the gradient of the corresponding similarity function. These gradients are needed for the problems
like clustering and multistep-ahead prediction. The DTW distance is not differentiable with respect to its
input variables. Due to the non-differentiable behavior of DTW distance, Euclidean distance is preferred

for the problems where we need its corresponding gradient.

4.5.1.1 Soft-DTW

In [34]], a differentiable learning loss between time series is proposed, which turns the popular DTW
discrepancy into a full fledged loss function. It widens the applicability of DTW distance. Consider two
multivariate time series * = (21,...,%,) € RP*™", y = (y1,...,ym) € RP*™ and their cost matrix

C(z,y), the y-soft-DTW is defined as
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dtwy = min"{(A,C(z,y)), A € Apm} 4.7)

where, A;, ,, is the set of all alignment matrices between = and y. The min operator min” with a

smoothing parameter v > 0 is defined as

minignbi, if’y =0
b (4.8)

min{by,..., by} = n
—7[0926_7, v>0
i=1

If v = 0 then the soft-DTW is same as the naive DTW distance.

4.5.1.1.1 Differentiation of soft-DTW If v = 0, then dtwy is the minimum over a finite set of linear
equations of C'. Therefore, dtwy is locally differentiable w.r.to the cost function C [137]]. The gradient

of dtwg w.r.to x is computed using the chain rule

oC T
Vadtwo(z, y) = (ﬂ) AP (4.9)
oz
OC(x,y) . . : : .
where, “or is the jacobian of C' w.r.to x and AP is the optimal alignment matrix between x and
x
Y.

For ~ > 0, the gradient of soft-DTW is given as

oC(z,y)

T
- ) E,[A] 4.10)

Vedtwy(z,y) = (

1
T Yaen e ACEH/A
under the Gibbs distribution p, = e~ {(A.C@Y)/7 The gradient computation given in Eq is inspired

where, E,[A] ; D AcAnm e~ {AC@Y)/7) A is the average alignment matrix
from the derivative of Edit distance [[119}/143]].

For the problems like clustering and multistep-ahead prediction, soft-DTW loss produces better re-
sults compared to Euclidean loss [34]. Soft-DTW loss can be applied for the problems where we use
Euclidean loss. In [26], a discriminative differentiable dynamic time warping (D3TW) is proposed to

solve video alignment and segmentation problems in a weakly supervised setting.
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4.5.2 Dynamic Time Warping Networks (DTWNet)

Over the past few years, there has been increasing interest in deep learning methods, and they have
produced state-of-the-art results over various problems. Although DTW is one of the important similarity
measures for temporal data and is useful in data analysis, it is not explored much in the deep learning
domain. In [23]], the DTW distance is successfully used in the deep learning framework. The authors [23]]
proposed the DTWNet, where the DTW distance is applied as a feature extractor. Unlike the convolution,
the DTW handles the Doppler effect and has the non-linear transformation property [23]]. In DTWNet,
the DTW kernels are learned using standard stochastic gradient descent on the warping path. For an
input sequence = € R/, the objective is to learn a kernel & € R™(m < [) such that it has best warping
path with z, i.e. k¥ = argmin, dtw(z, z). The kernel k is initialized randomly. For the problems like
data decomposition, it outperforms standard convolutional kernels.

In DTWNet, the DTW computation is applied in the DTW layers. The DTW is computed between the
input and the kernels. The DTWNet contains multiple DTW layers, each of which contains multiple DTW
kernels, which extract important features from the input. In sliding window, similar to the convolutional
kernels, the DTW kernel produces multiple distance outputs. Since the entries along the warping path
(optimal path) contribute to the final DTW distance, in DTWNet, the differentiation is performed only
along this warping path. It makes the differentiation of DTW distance faster. For two sequences of length
[ and m, the gradient along the warping path takes O(l +m) time. The soft-DTW [34] takes O(lm) time

for computing the gradient.

4.6 FastDTWNet

In DTWNet [23]], the gradient is computed along the warping path. For two sequences of length / and
m, the warping path computation takes O(lm) time. This slows down the training process in DTWNet.
In this section, we propose FastbTwNet. Compared to DTWNet, FastbTWNet employs Fast Surrogate
DTW distance, which increases the training speed. In Fast Surrogate DTW distance, we approximate
the warping path using global principal alignments. In FastDTWNet, instead of computing the warping
path between the input and kernels, we approximate it using the global principal alignments (defined in
Chapter 3). Now, the gradient is computed along these global principal alignments. It will increase the
training speed in FastDTWNet. We show the speed up on the popular Libra dataset. For both the DTWNet

and FastDTWNet, we take 5 DTW layers. We compare the training time for DTWNet and FastbTwNet in
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Training Time (mins) | Accuracy
DTWNet (Actual warping path) 51 97.8
FastDTWNet (Approximated warping path) 32 97.6

Table 4.9: Comparison of training time for DTWNet using Actual Warping path and Approximated
Warping path (FastDTWNet). In Actual Warping path, the warping path is computed using dynamic
programming. In Approximated Warping path, the warping path is computed using global principal

alignments.Training time is given in minutes.

Table From the results, we can observe that the warping path approximated using global principal
alignments speeds up the training in DTWNet. In terms of accuracy, the DTWNet using global principal

alignments (FastbTWNet) is performing equally well compared to the DTWNet using the actual warping

path.
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Chapter 5

CCK: A Surrogate Kernel Approximation of Canonical Correlation

Analysis (CCA)

In our previous chapter (Chapter 3)), we presented a surrogate kernel over DTW (Fast Surrogate DTW
kernel), enabling us to use DTW with a linear SVM. In this chapter, we present a surrogate kernel CCK
over canonical correlation analysis (CCA). It enables us to use CCA in kernel framework, which further
improving its performance. The kernel function works well for action recognition as it embeds the
temporal context in the videos. We have also shown that multiple features can be seamlessly integrated
into the surrogate kernel to enhance the recognition performance further. It seamlessly integrates the
advantages of lower dimensional representation of videos with a discriminative classifier like SVM. This
chapter presents a novel application built using the proposed surrogate kernel CCK in the deep learning

setting. We propose CCKNet, where CCK is used as a feature extractor in CNN.

5.1 Introduction

Recent advances in action recognition are propelled by (i) the use of local as well as global fea-
tures [87,/170|], which have significantly helped in object and scene recognition by computing them
over 2D frames [64,/170]] or over a 3D video volume [37] (ii) the use of factorization techniques over
video volume tensors [83(94]] and defining similarity measures over the resulting lower dimensional fac-
tors [18]. In this work, we try to take advantage of both approaches by defining a canonical correlation
kernel computed from tensor representation of the videos. This also enables seamless feature fusion by
combining multiple feature kernels.

Wang et al. [170] demonstrated the successful use of multiple features defined over relatively densely

extracted tracks. Motivated by the success of dense features for object recognition [39,/171]], we do a
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further dense feature extraction on a regular grid of pixels which helps us to obtain a rich and robust
set of descriptors. However, we avoid any explicit tracking across frames. Though there have been
many previous attempts in using spatio-temporal descriptors in the past [[156], our focus is to explore
the utility of well-understood 2D image descriptors. Our method captures the temporal information as

well as correlation across the frames while computing the low-dimensional representations of tensors.

Spatio-temporal shape and texture of the action videos are well represented in a number of low-rank
representations computed out of the tensors with various factorization techniques [94,/95]]. This tensor
computation has been successfully applied in many vision tasks including action classification in the
past [83,(94}95]]. Recognition is often carried out on the prominent components obtained by the factor-
ization or dimensionality reduction of the videos. Kim et al. [[83]] represent the video as a tensor and
compute the similarities using canonical correlation [[18]] with specially selected discriminative correla-
tion coefficients. These tensorial representation methods [83,94,(95]] often use pixel values directly as
observations to build the data tensor. However, [81]] uses SIFT for tensor representation. One of the in-
gredients of the success of our method is the use of rich feature descriptors in the tensorial representation
of the video. We also define a canonical correlation kernel that seamlessly integrates the advantages of
lower dimensional representation of videos with a discriminative classifier like SVM. This also enables

us to weigh the features differently to improve the recognition performance.

Wolf and Shashua [[173] extended the notion of canonical correlation analysis (CCA) to introduce a
kernelized version of the same in KCCA. This is considerably different from what we do in this work.
Rather than kernelizing CCA, we are interested in defining a kernel that can be used in many situations
where canonical correlation is used. However, by computing similarities over projections on nonlinear
manifolds we find that the correlation analysis with the help of KCCA also provides useful information
for action recognition. We simultaneously consider the correlations computed over linear as well as
nonlinear manifolds of the video data tensor. While the individual correlation coefficients can not be
used as a valid measure for comparing two action videos in a kernel setting, their sum becomes a valid
measure. Our kernel is simple to compute and visualize, starting from canonical correlation analysis.
However, this enables a host of useful tricks. (i) we can use SVM along with CCA/KCCA based
feature extraction (ii) we can simultaneously compute similarities over multiple features in a single
framework (iii) we can optimally fuse the advantages of the bag of words representation (as in [[171]])
and tensor based methods (as in [83,/95]]) for action recognition. Multiple feature kernels are often

combined using multiple kernel learning (MKL) [86] framework. MKL techniques [172] have been
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used in action recognition for combining different contextual features. Our kernel yields superior results
with simple (say pixel values) features, it allows comparing videos without hand coding or tracking. An
illustration of the framework of the proposed method is shown in Figure [5.1] The method has 3 steps,
a given video is represented using a 3D tensor in the first step. In the second step, this 3D tensor is
decomposed into three 2D tensors/matrices. Finally, for the given two videos, CCK is computed from
their corresponding 2D tensors, which involves CCA and KCCA. This results in a set of correlation
coefficients. The sum of these correlations gives the CCK for the given two videos.

Our approach is evaluated on four popular action video data sets. Our single feature representa-
tion (with pixel values as features) outperforms most competitive methods, which use more powerful
features. We also show that recognition performance improves by the intuitive and seamless fusion of
multiple feature kernels. Our proposed canonical correlation kernel is explained in Section[5.3] Experi-

mental results are discussed in detail in Section [5.4]

5.2 Related Work

A broad spectrum of features and representations has been used for action recognition in the past.
Initial attempts like Motion Intensity/History Images represented the whole video as a single image and
used traditional feature extraction for recognizing actions. Such features typically capture global motion
information in a compact manner. On the other extreme, local information captured using features like
SIFT [156]], HOG [64.|170], LBP [78] and MBH were also used for describing video frames and
found to be useful for action recognition. The need for defining a set of distinct descriptors for video
(from images) was realized, and many features like SIFT and HOG got extended to video by defining
them over a volume rather than over a 2D grid [156]]. However, a successful direction has been to
track the features over frames and to compute the descriptors over this track to represent the action
content [101,{103]. By making these tracks denser, Wang er al. [[170] obtained excellent results on
popular data sets. We argue that such dense and feature rich representations can result in superior
results when used along with the learned representations from video volumes.

A video can be represented as a third order data tensor denoted as V € R¥*Y*Z_ Where, X and
Y are spatial dimensions, which gives spatial information and Z is a time axis, which gives temporal
information of a video. This representation is bulky and noisy for deriving effective representations for

action recognition. A wide variety of decomposition techniques [83/94},95]] were used for deriving lower
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Figure 5.1: An illustration of the proposed method. In the first step, videos are represented using 3D
tensors. Next, these 3D tensors are flattened to obtain three 2D matrices. Finally, CCK is computed as

the sum of correlations between the flattened matrices obtained from CCA and KCCA.

dimensional representations from these data tensors. A successful method [83] is to start with projec-
tions of these tensors over multiple dimensions resulting in matrices and deriving algorithms that work
on these matrices. Often matrix projections on the spatial and temporal axes are represented as points
on a manifold [94]. Canonical correlation analysis represents an action video with the help of a vec-
tor of a discriminatively selected subset of correlation coefficients defined over a linear manifold [I8].
The kernalized version of CCA measures the correlation on a nonlinear implicit manifold. Alter-
nate techniques for representing the action videos include those based on tangent bundles [94]], product
manifolds [95]], etc. In tangent bundles [94]], data tensors are factorized to a set of tangent spaces on a
Grassmann manifold. In product manifold [93], each tensor is considered as a point on a product mani-
fold and the tensor is factorized using a modified High Order Singular Value Decomposition. Naoki et

al. [3] represent the gait dynamics trained from multiple training videos by a standard manifold.

Once the video is represented in a lower dimension, a similarity measure is defined to compare
two videos. This similarity/dissimilarity measure could be simple Euclidean or cosine similarity as in

canonical correlation. Our canonical correlation kernel is based on the principal angles between the
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Figure 5.2: Flattening of Tensor representation. A third order tensor is flattened into 3 second order
tensors (2D matrices) XX YZ, Y xXZ and ZxXY. Here, X, Y are spatial axes and Z is a time axis. The
first tensor matrix (XX YZ) (a) is obtained by keeping X fixed and flattening YZ into a single dimension.

The other decomposition matrices are also obtained in a similar way.

points on a manifold [18] resulting from the tensor decomposition of two videos. This is a simple, yet

powerful generalization of the similarity computation in a canonical correlation analysis.

Canonical correlation analysis [18]] has been successfully applied for image set comparison in robust
object recognition, and later extended for action recognition [[83,94]. It gives the linear relationships
between two set of random variables (or two matrices) in terms of correlations. Given two matrices,
CCA finds two projections one for each of the matrices such that the correlation between projections
of the matrices is maximized. The correlation constants (correlations) between the projections of the
matrices gives a similarity measure between original matrices. For any given two matrices, its canonical
correlations can be computed in two ways. One is from the singular values of given matrices and other
is using the eigendecomposition of the matrix which is obtained by pre and post multiplying the cross-
covariance matrix by the inverse square root of the covariance matrix of given matrices. In this work, we
have followed the SVD based solution [[18]]. For the matrices P and () of dimension n X d; and n X do
(n > min{d, d2}), we denote their orthonormal matrices as P and Q) of dimension n x rank(P) and
n x rank(Q). The d correlation constants (p1, pa, . . ., pq), where d = min{rank(P),rank(Q)}, for

the matrices P and Q, can be computed as the singular values of the matrix P7Q.

Our definition of the canonical correlation kernel is motivated by the need to use tensorial represen-
tation framework along with a discriminative classifier like SVM. Diverse set of features can also be

used for tensorial representation.

90



5.3 Canonical Correlation Kernels

We start with a tensor representation of the video volume. To begin with, let us consider that elements
of the tensor are the pixel (or intensity) values. However, this representation can easily scale to other
dense representations, where more powerful feature descriptors (e.g., SIFT) are used to encode the
local information. Our objective is to define an effective similarity measure that can scale for multiple
features. We achieve this with the help of a canonical correlation kernel defined based on the canonical
correlation analysis [[18]], which has already been used in action recognition [83|]. Our kernel is far
more effective than the discriminatively selected (using boosting) correlation coefficients used in [83]]

for comparing videos, as can be seen in Section[5.4]

The use of CCA for defining a kernel for the action recognition task is motivated by multiple fac-
tors: (i) Canonical correlation allows us to define a kernel, which can be used in a maximum margin
discriminative framework like SVM, and used for a seamless combination of multiple features and rep-
resentations. For example, in Section[5.4] we show that Bag of Words based methods can be used along
with the tensor based ones (ii) TCCA based method had shown some success in recognizing actions in
the past [83]]. (iii) similarity of the videos can be computed by projecting them over a linear manifold in
CCA and a nonlinear manifold in KCCA in the same framework. (iv) correlation coefficients measure
the similarity more intuitively compared to the popular distance functions like Euclidean. We find this
to be very effective for comparing videos. Note that the principal angle based similarity computation
(cosine similarity) is widely used in the text domain and has proven to be more appropriate than the L”

norms in a wide range of problems.

5.3.1 Canonical Correlation Kernel (CCK)

Given two random vectors x and y, canonical correlation analysis measures the similarity by finding
the correlation of these two vectors after a set of linear transformations. Assume x gets linearly trans-

tx and y as y’ = v'y, then canonical correlation is defined as the maximum

formed with u as x’ = u
possible correlation over all possible transformations u and v. For a video recognition problem, this
implies that the video is getting transformed (or features are getting extracted) such that the correlation
in the most appropriate feature space is maximized. Thus, we simultaneously learn the most appropriate

features and the similarity in that feature space. The method remains same irrespective of whether x and
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y are vectors, matrices or tensors. Correlation coefficients p; measures the similarity in the projected
space as the cosine of the angles between the linear manifold.

A limitation of the above is the use of linear transformation while extracting features. Wolf and
Shashua [173]] addressed this problem by kernelizing the canonical correlation by defining the trans-
formation in an implicit feature space. For example, a kernel x(x,u) = ¢(x)7 ¢(u) does the feature
extraction by finding a manifold instead of a linear subspace. This generalizes the classical canonical
correlation and provides a mechanism for extracting a richer set of features. In our implementation,
we use an exponential kernel (for KCCA) as k(x,y) = e~ Pd(xY)_ Here also, similarity is measured
using correlation coefficients p; computed for nonlinear manifolds. For our experiments, we use the
similarities computed over both linear as well as nonlinear manifolds i.e., p; and p/, simultaneously.

Our video representation is essentially a third order tensor. While working with pixel values, we scale
the video to a smaller size, as explained in the experimental section. While using feature representations
(e.g. SIFT descriptors), we sample the image/frame further and compute the features at smaller set of
grid points. A tensor thus obtained from pixel values or feature descriptors is first flattened to obtain
a matrix. Here, we use three kinds of flattening corresponding to the spatial and time axis. This is
done similarly to many of the previous works [83,094,95]]. This flattening is explained in Figure [5.2]
For a given video of size [ X m x n, where n is the number of frames and [ x m is the size of each
frame, the flattening corresponding to the time axis leads to a matrix of size d; X n. Each column in the
matrix corresponds to a video frame and the number of columns is same as the number of frames in the
video/tensor. Here d; is the length of the feature descriptor obtained from each frame; for pixel values,
this is equal to [ - m. The computation of feature descriptors is explained in Section[5.3.2] Similarities
between two videos is then computed with the help of canonical correlations coefficients between the
corresponding flattened matrices, which are the principal angles between the subspaces.

Given two videos V; and Vs denote their ith (1 = 1,2, 3) flatten matrices as Vf, Vf, we define the
canonical correlation kernel corresponding to the i flatten matrices as the sum of all the correlation

coefficients obtained from both CCA and KCCA over V; and V5. i.e.,

d d

K'(VEVE) =Y "pi+> 0} 5.1)

j=1 j=1
where, d = min{rank(V{),rank(Vy)} and p;, p} are the correlation coefficients obtained from CCA
and KCCA over V' and V3. We flatten the third order tensor video into three second order matrices

(tensor). Our final canonical correlation kernel between two videos is the sum of canonical correlation
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kernels obtained from three flattening matrices. i.e.,

3
CCKWi, W) =Y K (Vi V3) (5.2)

=1
5.3.2 Feature Kernels

CCK can be computed for pixel values and other extracted features. In both cases, the procedure of
computation remains the same. For every feature, we first compute its feature matrices corresponding
to three flattenings then CCK is computed over these matrices. For a given feature, its feature matrix
corresponding to time axis flattening over a video of n frames is an d x n matrix. The i** column in this
matrix represents the feature descriptor obtained from the i*" frame and d is the descriptor length. In
addition to the pixel values, we use the features SIFT [93]], HOG (histograms of oriented gradients) [36],
MBH (motion boundary histogram) [[37] and HOF (histograms of optical flow) [87]. Among these
descriptors, HOG and HOF have shown to give good results for action recognition [[171]]. HOG captures
static local information whereas HOF captures motion information. Dalal et al. [|37]] proposed MBH for
human detection, it captures the relative motion between the pixels. In our experiments, these feature

descriptors are extracted as follows,

* For SIFT, we divide a frame into fixed grids, where the size of each grid is 4x4, and SIFT is
extracted at each grid location. The final descriptor for the corresponding frame is obtained by

concatenating all the SIFT descriptors.

e For HOG, we compute HOG descriptor using a window of size 4x4 and a bin size 9. Concate-

nation of all the local histograms is taken as the final representation.

e For MBH, similar to SIFT, we divide a frame into grids of size 4x4 and MBH is computed at

each of the grid locations. We take bin size of 8 and patch size 32.

* For HOF, we divide the frame into grids of size 6 x6 and HOF descriptors are computed at each
grid locations with a neighborhood size of 24 x24 and concatenation of all these descriptors is

taken as the final feature descriptor. Here, we quantize the orientations into 9 bins.

All the descriptors are normalized to zero mean and unit variance.
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CCK is reasonably insensitive to various factors such as temporal misalignment, scale variations
and background variations. Temporal misalignment comes from the affine invariance property of CCA.
Since CCK is computed after normalizing the videos, scale variation is also taken care of. When the
background changes significantly, insensitivity depends on the features used. In our experience, CCK

defined over HOF and MBH is practically insensitive to this.

5.3.3 Classifier

We use a support vector machine (SVM) classifier. Feature kernels are combined [48]] by giving
equal weights to all the kernels or by giving high weight to one kernel and zero weightage to all other
kernels. One can also use multiple kernel learning (MKL) [27] for combing the feature kernels. If
k;(+,-) is the canonical correlation kernel computed using j th descriptor, then the final kernel is obtained

as the linear combination of all the kernels

(% y) =Y dikj(x,y) (5.3)
J

If all the d;s are equal then the final kernel x will be the simple average of given kernels. In all our

experiments, we use libsvm [25]] package for the SVM classifier.

5.4 Experiments

This section presents a detailed evaluation of our proposed kernel (CCK). CCK is based on canonical
correlation analysis and can be used to compare the videos for action recognition. We evaluate various
components of the proposed kernel to justify our choices. We compare our results with the previously
published works.

We report our results on four publicly available standard action datasets: Cambridge gesture, KTH
human action, Youtube and UCF sports action datasets. Some sample frames from the datasets are
shown in Figure [5.3] For multiclass classification, in all our experiments, we use a one-vs-rest SVM
classifier and select the class with the highest score. We perform the experiments on raw video represen-
tation using pixel values as well as on feature representations. For combining the feature representations,
we use the simple weighted scheme as discussed in Section[5.3.3] The kernel matrices obtained over the
given datasets are positive definite in all our experiments. For the given four datasets, average accuracy

over all the classes is reported as the performance measure.
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Set 1 set2

Boxing Handwaving Handclapping Running

Horseriding Kicking Weightlifting

Basketballshooting Biking Golf swinging Swinging Volleyball spiking

Figure 5.3: Some sample frames from video sequences on Cambridge Gesture (first row), KTH (second
row), UCF (third row) and Youtube (fourth row) datasets. For cambridge, background is uniform in
most of the sequences. For KTH, background is homogenous and static. UCF and youtube videos have

non uniform background. Youtube dataset has large variations in camera motion

5.4.1 Datasets and Experimental Setting

Cambridge Gesture Dataset: The cambridge gesture dataset consists of 900 video sequences
belonging to nine action classes. These videos are captured using five different lighting conditions
from two subjects. The data is divided into five sets (one for each illumination setting), where each
set contains a total of 180 video sequences. we use 10 random videos from each class in set5 (plain

illumination setting) for training and all videos from the remaining sets (setl, set2, set3 and set4) for

'ftp://mi.eng.cam.ac.uk/pub/CamGesData
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testing as reported in [83}94L95]]. For our experimental setup, we use tensors of size 20x20x 20, where
20 frames from each sequence were obtained by uniform sampling. Each frame in the sequence is
resized to 20x20. Classifier is trained using the randomly chosen 90 videos. Accuracies are reported
by taking the average over ten trials.

KTH Dataset: The KTH dataset [142]E] contains 600 videos from 6 human action classes. In most of
the videos, background is homogeneous and static. Each type of action is performed by 25 different
actors in indoor and outdoor settings. We extract the human actions by following the procedure used
in [94,95]]. Our tensor formulation is identical to [[82,94]] by constructing tensors of size 20x20x32.
Experiments are carried out using leave one out cross-validation, which is performed by dividing the
dataset into 25 folds (each fold containing 24 videos of the same person).

UCF Sports Action Dataset: The UCF sports action dataset [97]F| contains 150 videos from 10 differ-
ent sports action classes. The number of videos for each class varies from 6 to 22. This dataset has large
intra-class variability. Similar to [94], we use tensors of size 32 x32x 64 where each frame is resized to
32x32. Similar to the KTH dataset, experiments are performed using leave-one-out cross-validation,
where each video is taken as a separate fold and the remaining 149 videos are used for training.
Youtube Dataset: The youtube dataset [91ﬂ contains 1168 videos from 11 different classes. It is one
of the challenging datasets. This is mainly due to significant camera motion, viewpoint transitions,
varying illumination conditions and cluttered backgrounds in the videos. Videos for each class are
divided into 25 folds based on the persons performing that action. We use tensors of size 32x32x64,
where each frame is resized to 32 x32. Accuracies are reported using leave one out cross validation over

the predefined 25 folds.

5.4.2 Results and Discussions

The methods we compare with our proposed method, can be divided into two categories. Methods
that uses tensor decomposition representation for videos [83194195]] and which use the feature represen-

tations [64,88./170].

5.4.2.0.1 CCK on individual Features We report the individual feature accuracies using CCK in

Table [5.1] We compare the results with dense trajectories [I70] feature kernels, which are computed

Zhttp://www.nada kth.se/cvap/actions/
3http://www.cs.ucf.edu/vision/public_html
“nttp://www.cs.ucf.edu/~liujg/YouTube_Action_dataset.html
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Figure 5.4: Classwise accuracies on KTH and Youtube (in first row), UCF and Cambridge (in sec-
ond row). For KTH, we compare with Tangent Bundle (TB) [94]], Product Manifold (PM) [95]] and
TCCA [83]]. For Youtube, we compare with Dense Trajectories (DT) and Ikizler [[64]. For UCF, we
compare with Tangent Bundle (TB) [94]]. For Cambridge, we compare with Tangent Bundle (TB)
and Product Manifold (PM) @]

using x? kernel and kernels are combined in a multichannel approach similar to [164]. CCK
perform better than the dense trajectories for HOG and HOF over all the four datasets. This indicates
the strength of CCK, the superiority comes from the temporal context it embeds from the videos. Thus,

it best suits for the action recognition task over other kernels.

5.4.2.0.2 CCK using Pixel values Pixel value accuracies are reported in Table [5.2] Using pixel
values alone, we achieve a significant improvement of 2.1% and 5.3% for Cambridge and UCF datasets
over previous work. We report 97.5% on KTH dataset, which is an improvement of 0.5% over [94].

The CCK using pixel values is comparable to state-of-the-art [[170] on Youtube dataset. This indicates
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Cambridge UCF KTH Youtube
CCK DT [[170] | CCK DT [170] | CCK DT [170] | CCK DT [170]]
Pixel Values 93.1 - 93.5 - 97.5 - 82.5 -
HOG 89.0 - 83.8 838 98.3 86.5 832 745
SIFT 95.1 - 85.7 - 98.6 - 79.1 -
HOF 952 - 815 77.6 94.3 932 804 728
MBH 75.1 - 80.4 84.8 98.9 95.0 80.1 83.9
Combined 9%6.4 - 93.5 88.2 98.9 942 86.3 842

Table 5.1: Comparison of our proposed canonical correlation kernel (CCK) with DT (Dense trajecto-
ries) [170] over different feature descriptors on Cambridge, UCF, KTH and Youtube datasets. Results
are reported on pixel values, HOG, SIFT, HOF and MBH. For each dataset, we report average accuracy
over all the classes. Final accuracies after combining the features are also displayed. Dense trajecto-

ries [[170]] have not used pixel values and SIFT. Accuracies are reported in %.

that pixel values alone are good enough for CCK to get the better results. The main reason behind
this is that, for tensorial representation, the actions in the videos are well represented using pixel values

compared to other features. This gives the superiority of CCK.

5.4.2.0.3 CCK using multiple features We combine the feature descriptors to enhance the accuracy
further. Features are combined using a simple weighted scheme as discussed in Section [5.3.3] We
report the combined feature accuracies using the weighted scheme in Table [5.2] which compares our
results with the previous methods. We achieve an improvement of 5.4%, 5.3%, 1.9% and 2.1% over
Cambridge, UCF, KTH and Youtube datasets. This indicates that videos can be well represented using
multiple features in a tensorial representation framework. One can also use MKL [84] for combining the
feature descriptors.

Accuracy over the combination of canonical correlation feature kernels and DT (dense trajectory) [[170]
feature kernels are shown in Table[5.2] It further improved the accuracy over all the datasets. This indi-
cates that CCK can be easily integrated with other features such as Bag of words histograms to further
improve accuracy. We also compare the classwise accuracies for all the datasets with other methods in

Figure 5.4 On KTH, CCK gives the best results for 5 out of 6 action classes, as compared to [95].
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Method Cambridge | UCF | KTH | Youtube
TCCA [83]] 82+3.5 - 95.33 -
Product Manifold [95]] 88 - 97 -
Tangent Bundle [[94] 91 88 97 -
Dense trajectories [170] - 88.2 | 94.2 84.2
Le et al. [8§]] - 86.5 | 93.9 75.8
Ikizler-Cinbis et al. [64]] - - - 75.21
Jiang Wang et al. [[172]] - - 93.8 -
Proposed (Using pixel values ) 93.1 93.5 | 975 82.5
Proposed (Using multiple features) 96.4 93.5 | 98.9 86.3
Proposed (CCK feature kernels + DT feature kernels) 97.2 93.5 | 98.9 86.6

Table 5.2: Comparison of our proposed method with other state-of-the-art methods. Here, we give the
accuracy of our proposed kernel (CCK) over simple pixel values and using multiple features (pixel
values, HOG, SIFT and MBH). Accuracies over multiple features are obtained using simple weighting
scheme. Finally, combined accuracy using CCK feature kernels and of DT [[170] feature kernels are

also reported. Accuracies are reported in %.

On Youtube, our method got the best results over 5 classes compared to [[170]. For UCF, we got best
results for 9 out of 10 classes and for Cambridge, we got best results for all the classes compared to the

state-of-the-art.

In summary, our superiority comes from (1) The proposed CCK which embeds temporal context in

the videos into similarity measure (2) Seamless fusion of multiple features into tensor representation.

5.5 Conclusions

In this work, we have introduced the canonical correlation kernel (CCK), which enables the com-
parison of videos in a kernel framework. This kernel function works well for action recognition as it
embeds the temporal context in the videos. We have also shown that multiple features can seamlessly

integrate into CCK to further enhance recognition performance. We hope our work opens up scope for a
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class of action recognition algorithms which use, tensor representation, multiple feature description and

use a discriminatively max margin classification.

5.6 Recent Advances in CCA

In this section, we discuss few recent advances in Canonical Correlation Analysis (CCA).

5.6.1 Deep Canonical Correlation Analysis (DCCA)

CCA is a standard statistical technique for finding linear relations between two random vectors. It
gives the maximum correlation between the given random vectors in the linear space. Let (X1, X2) €
R™ *"2 pe the two random vectors (data views). For the given data views (X1, X2), the CCA finds a pair
of linear projections (w1, ws), such that (w; X1, weX2) are maximally correlated. It can be expressed

as

(wy,w3) = argmax corr(wy X1, w; X7) (5.4)
(w17w2)

Let 311 and Y99 are the covariances for the random vector X; and X5 with a cross-covariance 9.
Define C' = 21_11/221222_21/2, and let P, = [p1,p2,...,pk) and Qr = [q1, q2, - - -, qx], containing first
left and right singular vectors of C' (p; is the 4 singular vector of C from left and qj 18 the 4 singular
vector of C from right). Then the sum of singular values of C gives the total maximum correlation

between X7 and X5. It can also be defined as

corr(X1, Xo) = trace(CTC) = ||C| |4 (5.5)

Kernel canonical correlation analysis (KCCA) is an extension of CCA which gives the maximum
correlation between the two views in the non-linear projection space. If H;y, Hy are the reproducing
kernel hilbert spaces of functions on R"*, R™ and k1, kg are their associated kernels, then the optimal

non-linear projections f; € Hy, f5 € Hy are given as

(ff, f3) = argmax corr(fi(X1), f2(X2)) (5.6)
(fi€H1,f2€H2)

For the given data, KCCA allows learning of non-linear representations. However, these represen-

tations are limited by the given fixed kernel. Also, it is a non-parametric method. For the given data,
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the cck [108]] allows jointly learning both linear and non-linear representations. CCA and KCCA are
also used in feature learning for a single data view when another view is available in representation
learning [[10}/19].

Over the past few years, there has been increasing interest in deep learning methods and they have
produced state-of-the-art results over a wide variety of problems. In [8], a deep canonical correlation
analysis (DCCA) is proposed for learning non-linear correlations between the given random vectors,
which have the maximum correlation. These representations are learned using a deep learning frame-
work. It gives the highly correlated representations compared to CCA and KCCA. Deep learning methods
have been successful in learning representations of a single data view [10,19]. Deep CCA simultaneously
learns two deep non-linear mappings for two data views that are maximally correlated. Let X; € R™
and Xy € R"2 are the different instances of the two data views. The objective of Deep CCA is to jointly
learn two deep networks g1 and go such that corr(g1(X1), g2(X2)) is as high as possible. If 71 and 7
are the parameters for the two networks ¢g; and g2 respectively, then their optimal parameters (77, 75)

are given as

(m1,m5) = argmax corr(g1(X1; 1), g2(X2; m2)) (5.7)

(m1,m2)

Here, it only learns the non-linear embeddings. Since Deep CCA is learning the non-linear represen-
tations, it can be viewed as learning a kernel for KCCA. Deep CCA is closely related to the multimodal
autoencoders [112]] and multimodal restricted Boltzmann machines [154]], where they learn a single net-
work connected to both the modalities (views). In Deep CCA, it learns two separate deep encodings for

the two modalities. The learned encodings have the maximum possible correlation.

5.6.2 Representational Similarity in Neural Networks using Canonical Correlation

In general, CCA, KCCA and DCCA are used to compute the correlation (similarity) between different
data representations. Understanding the function of neural networks is a challenging task, in particular,
comparing two neural network representations is a difficult task as the structure of these representations
changes vastly over the training. In [[105], the authors developed a projection weighted CCA for un-
derstanding and comparing network representations across a group of CNN. Using projection weighted
CCA, the authors analyzed the converged solutions in CNNs. It is demonstrated that compared to narrow

networks, wider networks converge to similar solutions, and the networks which have identical topology
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but distinct learning rates converge to a small set of distinct solutions. The projection weighted CCA
is also useful in analyzing RNN representations over training. The authors proved that RNNs exhibit
bottom-up convergence and these representations vary nonlinearly. Here, the LSTMs are used for the

Penn Treebank (PTB) and WikiText-2 (WT2) language modelling tasks.

5.7 CCKNet

In general, the convolution operation is used as a feature extractor in CNN. However, recently these
convolution operations are replaced with other similarity measures [23] for feature extraction in CNN.
In [23]], DTW distance is applied as a feature extractor. For the problems like data decomposition, it
outperforms standard convolutional kernels [23]]. In this section, we propose CCKNet, where we applied
cck [[108] [[108] as a feature extractor in deep learning framework. For a given input sequence X € R",
the objective is to learn a kernel (filter) X' € R"* such that it has the maximum correlation with X.
The kernel is initialized randomly and learned using standard gradient descent methods. For the input

sequence X, the CCK kernel (filter) K, is computed as

K = argmax CCK (X, z) (5.8)

where,

COK(X, K) = [[Cller + [Cllr (5.9)

(' is computed in the feature space ¢ corresponding to the kernel x in KCCA. CCK is the sum of the cor-
relations obtained from both CCA and KCCA. Denote CCK (X, K) = CCK;(X,K)+ CCK»(X, K),
where COK (X, K) = ||C||s and CCK»(X, K) = ||Cy|¢r-

The cCKNet contains the multiple CCK layers like convolutional layers in CNN. A CCK layer con-
sists of multiple CCK kernels that extract meaningful features from the input. Each CCK kernel generates
a correlation output by performing CCK computation between the kernel and the input sequences. In
sliding window, similar to the convolutional kernels, the CCK kernels produces multiple correlation out-
puts. These correlation outputs are combined in the subsequent layers. These outputs capture important
details in the input sequence. To learn the CCK kernel using gradient descent, we need the gradient of
CCK (eq[5.9). Let the singular value decomposition of C'is C' = PDQ and Cy is Cy = PyDyQy.
Define X195 = mXKT and Y99 = ﬁKKT + r11, where r; is a regularization constant and

m = dim(K) (for 1-D), then the gradient of CC K is computed as [8]]
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Training Time (mins) | Accuracy

DTWNet 51 97.8
FastDTWNet 32 97.6
CCKNet 68 98.1

Table 5.3: Comarison of DTWNet, FastDTWNet and CCKNet. Training time is given in minutes.

ICCK, (X, K) 1

i = —(2VX + VoK) (5.10)
where
Vi = X 2PQy,, (5.11)
and
Vaz = ‘%E;;/ QT Dy, (5.12)

Similarly, we can compute the gradient of CC K.

To validate the cCKNet, we compare it with the DTWNet [23]] and FastDTWNet over the libra dataset.
In the DTWNet, the DTW distance is computed between the input and kernel. In the FastDTWNet, the
Fast Surrogate DTW distance is used to compute the similarity between the input and kernel. The results
are given in Table[5.3] For both the DTWNet and FastbTWNet, we take 5 DTW layers. For CCKNet, we
take 5 CCK layers. From the results, we can observe that, in terms of accuracy, the CCKNet is performing
well compared to the DTWNet and FastDTWNet. However, it is taking more time for the training. This

is mainly due to the computational time needed for computing both the CCA and KCCA.
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Chapter 6

Surrogate Loss Networks for Semantic Segmentation and Human Pose

Estimation

Supervised training of deep neural networks involves minimizing the loss function over the given
training data. However, in many domains, we are interested in performing well on metrics specific to
the application. Like average precision (AP) from information retrieval, intersection-over-union (IoU)
which is used in image labelling, normalized discounted cumulative gain (NDCG) which is popular in
ranking and percentage of correct parts (PCP)/percentage of correct keypoints (PCKh) which are used
in pose estimation for measuring the accuracy of detected joint locations. However, these metrics are
inherently non-differentiable by nature due to their discrete form and non-decomposable behavior. In
this chapter, we propose a novel method to automatically learn a surrogate loss function that approxi-
mates discrete and non-decomposable metrics - in particular, the JoU, PCP and PCKh loss and is hence
better suited for providing stronger performance. The proposed loss can be directly learned over any
base network. For ToU loss, we validated our method over semantic segmentation models [11,(92] on
the PASCAL vOC and Cityscapes datasets. On the PASCAL VOC, we got an improvement of 3.79 in [oU
over cross-entropy loss. For PCP loss, we validated our method over LSP dataset and for the PCKh loss,
we validated our method over MPII dataset. For the PCP and PCKh loss, we applied our method over
DeepPose [163]] network. Our results on this work show consistent improvement over baseline methods.
On LSP dataset, we got an improvement of 2.1% on the PCP measure and on MPII dataset, we got an

improvement of 1.8% on the PCKh measure compared to the regression loss.
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6.1 Introduction

For the last few years, Convolutional Neural Networks (CNNs) have shown to be very effective for
a wide variety of problems, including classification [[11f], semantic segmentation [92}[133,|182], and
pose estimation [24,|163]]. Loss functions play an important role in the performance of CNNs. The loss
function is used to guide the training process of CNNs, and training involves computing the gradient of
the loss function with respect to the parameters of the model. For the given problem, the network is
trained to minimize the training error, which is measured by the given loss function. The performance
of the CNN model is typically evaluated using the training and test error (or equivalent accuracy). How-
ever, in many problems which have gained importance in recent times, we are interested that the final
learned model performs well on metrics specific to the given application. Such metrics are, however,
often non-differentiable with respect to the output of the network. Examples of such metrics include av-
erage precision (AP), intersection-over-union (/oU), normalized discounted cumulative gain (NDCG),
and percentage of corrected parts (PCP)/percentage of corrected keypoints (PCK)h. Many of these met-
rics are discrete and non-decomposable (which are not simple sums over the network outputs), and
are not readily differentiable. In such scenarios, the loss used to train the network is different (e.g.,
cross-entropy in semantic segmentation) from the actual performance metric (e.g., IoU in semantic seg-
mentation). In this work, we explore the non-differentiable behavior of discrete and non-decomposable
metrics - in particular, JoU, PCP and PCKh - and propose differentiable surrogate approximations using
neural networks. JoU is a discrete metric as it is defined over pixel counts which are discrete in nature,

while PCP and PCKh measures are non-decomposable metrics.

CNNs for semantic segmentation typically use the cross-entropy loss for training the network, given
as: Lop = —% > i1 Yi log(y;), where ; is the ground truth, y; is the output class score predicted
from the network for the pixel ¢, c is the total number of classes, and N is the number of pixels in the
image. While the vision community uses pixel-wise cross-entropy loss to train networks for a semantic
segmentation task, the standard performance measure that is used for evaluation is intersection-over-
union (IoU). For an object present in a given image, the JoU measure gives the overlap between the
predicted region and the ground truth region of the object. The IoU measure is popularly used for

semantic segmentation due to its ability to handle class imbalances [[127]].

Consider the example in Figure For the given image, two segmentation results are given in Fig-

ures|[6.1](c) and[6.1](d). The segmentation results in Figure[6.1](c) classifies all the pixels as background.
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(a) Original Image (b) Ground truth (c) Segmentation result-1 (d) Segmentation result-2

Figure 6.1: Illustration of cross entropy loss for semantic segmentation: (a) Original image (b) Ground
truth segmentation (c) All pixels predicted as background (d) Few pixels correctly predicted as fore-

ground.

The segmentation result in Figure [6.1] (d) correctly classifies few object pixels and classifies few back-
ground pixels as object pixels. These two results have the same cross-entropy loss. However, the ToU
measure for the segmentation result in Figure (c) is zero, clearly indicating a gap between the loss
function used in training the network and the metric used for measuring the performance of the network.
The key limitation of not using JoU directly as a loss function in CNNs is its non-differentiability [[127]].
While there have been a few recent attempts to address this issue (described in Section for IoU,

these methods have their limitations and are handcrafted approximations.

Human pose estimation [24,/163| is another example where there is a gap between the loss function
used in training the network and the metric used for measuring the performance of the network. Human
pose estimation aims to localize each human part (key points). CNNs for pose estimation typically use

/H2

the regression loss for training the network, given as: Ly = Z]f llyi — yi||*, where y; is the ground
truth location for ¥ part, y, is the output location predicted by the network for the ith part, and k is
the number of human parts to be localized. It uses regression loss over the locations of body parts to
train the network. During training, regression loss enforces the network to detect the keypoint joint
locations. This helps to improve the training accuracy at the outset. However, if we observe any pose,
any pixel location in a small neighbourhood around the true joint location is also considered the correct
joint location. Due to this, the accuracy of pose estimation methods (networks) is measured using
metrics such as percentage of correct parts (PCP) [[163]], PCPm [24], and percentage of correct keypoints
(PCK) [127]]. PCP measures the detection rate of limbs. In PCP, a limb is considered localized correctly

if the distance between the predicted and actual joint locations is at most half of the limb length. It

penalizes shorter limbs. PCK is the most widely used performance measure. It considers a detected
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joint to be localized correctly if the distance between the predicted and the true joint is within a certain
threshold. The threshold is defined as 50% of the head segment length. The corresponding metric is
defined as PCKh. The PCKh measure is popularly used for human pose estimation due to its ability to
evaluate joint positions for varying torso diameters. Since we are considering the locations around the
true joint location as correct predictions, training the network to detect exact joint locations as given
in the ground truth may not yield the best test performance when measured by such metrics as PCP
and PCKh. This suggests that regression loss used in contemporary deep pose networks may not be the
most appropriate loss function to train such models. The PCKh measure is an example of an ideal loss
function for training deep pose networks. However, both PCP and PCKh measures cannot be used as
a loss function directly in deep pose networks due to their non-differentiable nature, and the gradient
lacking a closed-form representation. So far to the best of our knowledge, there has been no effort to

address this issue.

In this chapter, we propose a novel method to automatically learn a surrogate loss function for non-
differentiable metrics such as IoU, PCP and PCKh that is aimed at attaining good performance. In
particular, we use a neural network to approximate these metrics, thereby providing a differentiable
approximation that can be directly used with CNNs. We call the corresponding proposed loss functions as
the NeuroloU (for semantic segmentation), NeuroPCP and NeuroPC K h (for pose estimation) loss
functions, which can be integrated with any deep network. To the best of our knowledge, this is the first
such work that attempts to learn a loss function for this purpose. Further, there has been no such effort
for human pose estimation to the best of our knowledge. For NeuroloU, we validated our method by
integrating the NeuroloU loss in the FCN [92f], SegNet [11] and UNet [[133]] models, and evaluated their
performance on the PASCAL VOC and Cityscapes datasets. For NeuroPCP and NeuroPCKHh, we
integrated the corresponding loss in the popular DeepPose network [[163]] and evaluated our performance
on the LSP and MPII datasets. Our results show promise, and a consistent increase in the performance

across all models on all the datasets.

The remainder of this chapter is organized as follows. Section [6.2] reviews earlier related work,
including prior work on surrogate loss functions for semantic segmentation. The proposed surrogate loss
for semantic segmentation and human pose estimation, as well as the methodology to train CNNs using
the proposed loss, are presented in Section [6.4] Experiments and results are discussed in Section [6.5]

followed by concluding remarks in Section [6.6]
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6.2 Related Work

Existing efforts that have attempted to use surrogate loss functions to train deep neural networks
have largely focused on forms of functions that can be easily optimized [52}89}102}/150]]. For exam-
ple, in [102], McAllester et al. show how to compute the gradient of complex non-differentiable loss
functions for linear models. In [[150], this is extended to the non-linear case, in particular, to maximize
average precision for ranking problems using direct loss minimization techniques. These methods can-
not be directly used in a wide range of learning architectures and problems without significant effort.
Besides, these methods are often problem-specific, such as [[150], and cannot be used for other problems

that use CNNs.

Non-decomposable loss functions have been previously used in the context of maximum-margin
methods [[2,]122,/168,|180]]. In structured prediction problems, in which the output is multi-dimensional,
these efforts have attempted to develop maximum-margin training methods capable of minimizing an
upper bound on non-decomposable loss functions. Standard learning in this paradigm involves updating
the parameters such that the model assigns a higher score to the ground truth output than to any other
output. This is typically encoded by a constraint, enforcing that the ground truth score should be higher
than that of a selected, contrastive output. The latter is defined as the result of inference performed using
a modified score function that combines the model score and the task loss, representing the metric that
we care about for the application. This modified scoring function encodes that we should penalize higher
scoring configurations that are inferior in terms of task loss. These methods mainly try to incorporate
complex discrete loss functions into maximum-margin methods [2,|122,/168}|180]], and only optimize an

upper bound. Our focus in this work is on deep neural network models.

6.2.0.0.1 Semantic Segmentation. State-of-the-art models for semantic segmentation largely rely
on fully convolutional layers in the architectures [[11,92}/133}/182]]. In these models, for a given input,
we obtain class scores for each pixel, and the class scores are mapped to probabilities using a softmax
layer. These probabilities also capture the likelihood of the pixels being the foreground (object/class)
or background. In all these models, the cross-entropy loss function is applied over this probability
map pixel-wise. The cross-entropy loss is closely tied to the overall classification accuracy. If the
number of examples for foreground and background are balanced, then the cross-entropy loss works

well. However, in a typical object category segmentation, these may not be balanced, thus raising
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questions on whether cross-entropy loss may be the best choice for loss functions in the object category

segmentation task.

As already mentioned, the ToU loss cannot be used in deep networks due to its non-differentiability [[127]].
In recent years, a few approximations to the JoU measure have been proposed for various applications.
These methods [2}|114}/121}/129,/159] attempt different techniques to optimize the /oU measure in the
given problem. In [[129], the ToU measure is optimized specifically for the object detection and lo-
calization problem using joint kernel maps in a SVM context. They can only optimize over bounding
boxes of the object and not over full pixel-wise segmentation. In [[I59]], structured Markov Random
Field models are used for the same purpose. In [114], special purpose message passing algorithms are
used for optimization. [114] provides a Bayesian framework for optimizing the IoU, in particular, an
approximate algorithm is proposed using parametric linear programming. In [121], a framework for
optimizing Expected ToU (EIOU) is proposed. In [2], instead of directly optimizing the model with
respect to ToU, the authors select a few candidate segmentations for optimization. However, in con-
trast to the proposed work, all these methods do not provide a differentiable approximation to the JoU
measure, which can be used for directly training contemporary deep learning models. In particular, all
these methods [2/114}[121}/129,/159]] optimize the IoU measure specific to certain problems and are not
generalizable across problems. In this work, we seek to obtain a differentiable approximation of IoU
that can be applied across problems and architectures. We also provide us with gradients of the measure

that we finally seek to maximize.

The work closest to ours in semantic segmentation is [127]], which provides a differentiable ap-
proximation of the IoU measure, and hence can be used in training deep learning networks. Rah-
man and Wang presented a handcrafted approximation of the [oU measure in [127]. For a given
image I, let V. = {1,...,m} be the set of all its pixels and X be its probability map obtained
from the network. Let Y = {0,1}" be the groundtruth of I, where O represents background and

1 represents foreground (object). Then, the approximated [oU measure defined in [[127] is given as

>, Xy xY,
IoU — Appx = e
PP = S X+ Y, — X, # Y,
the given image, the numerator in /oU — Appx is the sum of true positive pixel probabilities. The value

. The authors showed that this a differentiable function. For

in the denominator can be simplified as the sum of number of object pixels in the ground truth and false
positive pixel probabilities. We can observe that this expression approximates the /oU measure well if
the probabilities of background pixels are near zero and probabilities of object pixels are near 1, which

is not always practical. In this work, we instead propose a method to directly learn the loss function
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corresponding to good IoU performance for the given problem. We also compare the performance of
the proposed method with Rahman and Wang’s approach [[127] to corroborate this claim. The proposed

loss can be integrated with any existing deep semantic segmentation network.

In another related work [15], Berman et al. presented a method for direct optimization of the mean
intersection over union loss (Jacard loss) in the context of semantic image segmentation in deep net-
works. It is based on the convex Lovasz extension of submodular losses. The authors developed a
specialized optimization method based on efficient computation of the proximal operator of the Lovasz
hinge, yielding reliably faster and more stable optimization than alternatives. The loss is shown to per-
form better than cross entropy loss in the context of semantic segmentation. They specially designed
the optimization technique for IoU loss. However, it is practically very difficult to extend their tech-
nique to other non-differentiable loss functions which do not satisfy the submodular property, like the
PCP and PCKh measures in pose estimation [9,/41]. The PCP and PCKh measures do not have a closed
form expression. The main focus of this work is to propose a generalized framework that enables us to
use non-differentiable performance measures in CNN networks. The proposed surrogate neural network
approach can be used to find a differentiable approximation for any non-differentiable performance

measure.

6.2.0.0.2 Human Pose Estimation. State-of-the-art performance on the task of human pose estima-
tion has made significant progress in recent years. This has been largely due to the success of using
various CNN architectures for the task [24,(77,(161,/163,/176[]. In pose estimation, the task is to find
the joint locations of body parts. In a widely used recent work [163]], the problem is formulated as
a direct regression problem over joint locations. Here, the network output is the joint locations for
the body parts. In [24,(77,/161,(176], the network output is a discrete heatmap instead of continu-
ous regression. A heatmap predicts the probability of the joint occurring at each pixel. In these ap-
proaches [[24}[77,]161L(176], the model is trained by minimizing the Mean Squared Error (MSE) between
the predicted heatmap and the target heatmap. Both these types of models use either standard (MSE)
or other variants of regression loss. However, to evaluate the trained model in any of these methods,
the standard performance measures used include PCP [41]], PCK [[141]], PCKh [9]. These performance
measures cannot be directly used for training the network due to their non-differentiable nature. Clearly,

there is a gap between the loss function and performance measure for state-of-the-art networks in pose
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estimation. To the best of our knowledge, the proposed approach is the first work in the direction of

bridging the gap between loss functions and performance measures in deep pose networks.

6.3 Surrogate Loss Networks

This section explains our overall idea of approximating loss functions and their derivatives using the
surrogate neural networks (NN)s. We present the proposed framework to train deep neural networks with
approximated gradients obtained from the surrogate neural network. Then, demonstrate its application
to semantic segmentation and human pose estimation.

Neural networks have established themselves as very good function approximators over the years [46,
581159,/66,158]] with as few as one hidden layer. In this work, we are interested in the computation of
the derivatives of approximated functions (in particular, performance measure functions, which can be
used to train a base network). Fortunately, neural networks can also be extended for the approximation
of derivatives [58./59]. If we need to approximate a function f : R — R using neural networks, we
need the input and output data for the given function. i.e. we need D = {(x;,y;) : i = 1,--- ,n}, where
x; € RV, y; € R, y; = f(x;) and n is the number of data points. Using a single hidden layer network,

for a given input x, the function is computed as the following:

l
x)=> wi,Sx"wl) (6.1)
=1

where ws are the weights of the neural network, and S : R — R is an activation function. We note
that the corresponding first-order derivatives of f can be computed w.r.t. the input x (also known as

backprop-to-image [[1511{181]]) can be computed as [58]:

Zwopwhs Twhy j=1,...,N (6.2)
=1

8X]

where X = (X1, ,X;, -+ ,Xy), [ is the number of neurons in the hidden layer, wi € RN are the
weights in the hidden layer and w? € R! are the weights in the output layer. Any function can be
approximated by a neural network represented by Eqn [6.1] and its derivative can be approximated by
Eqn It only remains to determine the weights w and w° using the given data D. We call such
a network as a surrogate network for the given approximated function and denote it as W in this work.

This is done by propagating the training data through a (potentially pre-trained) CNN and obtaining its
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Input

Figure 6.2: Overview of the proposed framework for training the CNN using surrogate loss network.

outputs, which act as inputs to the W. Then it is trained using the expected performance measure values

computed for training data.

This is done by propagating the training data through a (potentially pre-trained) CNN and obtaining
its outputs, which are used as inputs to the ¥, which is then trained using the expected performance
measure values that can be computed for training data. As stated earlier, this approach leverages the fact

that neural networks can approximate continuous and non-differentiable functions (please see sample

results of our empirical studies in Section |6.5.2)). This %f—f_‘) can now be used as the derivative of the
J

appropriate non-differentiable performance measure to train the original CNN. This can be done as

follows,

6.3.1 Training CNNs with Surrogate Networks

The main criterion for a function as a loss function in a CNN is its differentiability. If a function is
non-differentiable, we cannot compute its gradients for the network parameters. This restricts us from
using it as a loss function since the gradients of the loss function are required during backpropagation for
the updation of network weights. As discussed above, we can approximate a non-differentiable function
and its gradients (derivatives) using surrogate networks. We propose that an approach to use non-
differentiable functions as loss functions in CNNs is that the training of the CNN can be performed using
approximated gradients obtained from a surrogate network. In this subsection, we present a framework
for training a CNN (this can be generalized to any neural network, for that matter) using the gradients

obtained from the surrogate network.

We propose our methodology in a manner which allows us to use this framework with any existing
CNN (or neural network) architecture. We put forward a direct optimization technique for training a

CNN with surrogate loss networks. In direct optimization, we train the surrogate loss network a priori.
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6.3.1.1 Training using Direct Optimization

An overview of training a CNN using direct optimization is illustrated in Figure[6.2] In the first step,
the given non-differentiable loss function L is approximated using a surrogate loss network Wyr,ss. We
then train the CNN using this surrogate loss network as follows. In the forward pass, given an image
1;, we first compute the CNN output y;. Using the trained surrogate loss network, we then compute the
loss between the network output y; and target output y;, i.e L(y;) using Eq The parameters in the

CNN are then typically updated in the backpropagation step, which requires the computation of g—j, the

K

gradient of the loss function w.r.t the network output. We compute gyL; using Eq , where the oﬁtput
of the CNN is provided as input to the surrogate network, and the gradient of the refined loss function, as
approximated by the surrogate network, is computed using the backprop-to-image approach (Eq[6.2)). In
the next step, the gradient of the loss function L w.r.t. the weights in the last layer, say fully connected

(FC) layer /¢, are computed using the chain rule as follows:

OL  OL Oy,
oW /le oy, oW /e

(6.3)

The weights in the FC layer are updated using these gradients, and the weights in the preceding layers
are updated using the standard chain rule. Given a pre-trained surrogate network (which is first trained
based on a given CNN model), the CNN is further refined using the aforementioned backpropagation

until convergence or the desired number of iterations. In summary, the availability of the gradients of

the non-differentiable loss function L w.r.t. the network output y;( ) through the surrogate network

oL
9y

allows us to finetune the CNN parameters using chain rule.
We note that if the given loss function is differentiable, the gradients obtained from the surrogate
network would more or less be the same as its actual gradients. In this case, the above direct optimization

technique for training the CNN network would be equivalent to the usual training of the CNN. From this

perspective, one can view the regular training of CNN as a particular case of our proposed approach.

6.4 Surrogate Loss Network for Semantic Segmentation and Human Pose

Estimation

This section explains the proposed surrogate loss network framework for the discrete JoU and the

non-decomposable PCP and PCKh metrics, used in semantic segmentation and human pose estimation
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respectively. We begin with defining the loss functions in both cases, the corresponding surrogate net-

works, and finally describe the training methodology.

6.4.1 Defining the loss functions

In order to propose a surrogate loss network for the JoU, PCP and PCKh metrics, we need to define a
loss function over these performance measures. In this subsection, we begin with a discussion of a loss

function over IoU and PCKh measures.

6.4.1.0.1 [oU Loss For a given image, the widely used JoU measure gives the similarity between
the predicted region and actual region (ground truth) of the object present in the image, and is given by:
IoU TP

0

T TP+ FP+FN’
and false negatives respectively. If the output of the semantic segmentation model exactly matches with

where TP, F'P and F'N denote the counts of true positives, false positives

the ground truth, then its JoU becomes 1, which is desired. Owing to the discrete nature of the counts,
the ToU measure is inherently non-differentiable [127]]. Instead of replacing the non-differentiable
IoU measure with proxies such as cross-entropy (which is the standard practice in existing semantic
segmentation work [[111/92,[133}/182]) or use other recently proposed measures [[127], we use a neural
network as a function approximator to automatically learn the surrogate /oU loss to train models for
semantic segmentation. Note that to incorporate the JoU measure directly as a loss function to train

models, we need to minimize 1 — ToU. We hence define the [oU loss, denoted by Lj,, as:

TP _ FP+FN
TP+ FP+FN TP+ FP+FN

ﬁ[OUzl—IOUzl— (64)

Since 10U is not differentiable, the ToU loss, L,y (Eqn , is also non-differentiable. Hence, we
cannot directly compute its gradients, which restricts us from using it directly to train deep networks.
Instead we choose to approximate the [oU loss using a surrogate neural network, and obtain its deriva-
tive across this new network to get the required gradients (using the backpropagation-to-image trick as

explained earlier, Eqn[6.2])

6.4.1.0.2 PCKh Loss For a given predicted human pose, the PCKh metric measures the percentage
of joints location predictions that is at maximum distance of 50% of the head size from the ground truth.
We use the following notations for defining pose of a human present in the given image. For a given

labeled image X, its pose is defined as x, = (I1,l2,...,l}), where [; = (m;,n;) is the location of ith
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joint and k is the number of body joints. In a typical pose estimation CNN network [24}/163}/176,/176],
we generally train a model v such that, for the given image x, it outputs the pose presented in the image,
ie. y = ¥(x,0) € R?*, where 6 denotes model parameters. It outputs the locations of k body joints.
Since PCKh gives the prediction accuracy, if the output of the pose estimation model exactly matches
with the ground truth, then its PCKh becomes 100%, which is desired. During training, we normalize
these accuracy values between 0 to 1. However, PCKh measure is a non-decomposable metric, and
hence also non-differentiable. To incorporate the PCKh measure as a loss function to train the network,

we need to minimize 1—PCKh. We hence define the PCKh loss as:
Lpegy =1—PCKh (6.5)

where PC K h is the PCKh measure for the given pose. Similar to what was discussed for the IOU loss
above, we approximate L pc g using a surrogate neural network, and obtain its derivative across this
new network to get the required gradients.

Now we describe our methodology to automatically learn a differentiable approximation for both

IoU and pCckh loss functions using surrogate loss networks.

6.4.2 The Surrogate Loss Networks

Given the input-output data pairs D = {(x;,y;) : @« = 1,--- ,n}, where y; = f(x;) and n is the
number of data points, we propose our methodology in a manner which allows us to use this framework

for any non-differentiable loss function.

6.4.2.0.1 Surrogate [oU Loss Network In semantic segmentation, the output of the CNN gives a
probability score map, i.e. for each pixel, it gives the probability of being part of each of the classes
considered. To approximate the [oU loss using neural networks, we need to define the input data over
the continuous domain. To this end, we define the outputs of the semantic segmentation CNN in terms
of probability counts T'P,., I'P,, and F' Ny, as below:
TP, =Y P(v;), wherew; € TP, FP,. =Y P(z;), wherex; € FP
z; z;

FNp =Y P(x;), where z; € FN

T

TPy, F'Py and F'N,,. are the sums of probabilities of pixels in T'P, F'P and F'N respectively (which

(6.6)

provide us a continuous-domain equivalent of the corresponding T'P, F'P and F'N counts). Given a
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CNN model, we can calculate T'P,,., F'P,. and F' N, using the available ground truth. Our IoU loss ap-
proximator network is hence defined by the input-output data pairs: D = {((T'Ppr,, F Ppr;, F'Npr,), L1ov,) :
i=1,---,n},where Ljoy, = 1— TIDZ_J}*M is the actual 1oU loss computed from the pixel counts.

We generate the dataset D to train this JoU-loss approximator network as follows:
* For the given training data, we first train a CNN, O ¢, using cross-entropy loss.
* After training, for each training image, we store the output probability map obtained from O¢g.
* For each image, we compute its TPy, ' Py, F'Ny, using Eq[6.6]

We now have the dataset D to train the approximator network. We call this surrogate neural network as
NeuroloU, and the loss as NeuroloU loss. We use the mean-squared error loss function, as defined
below, to train this network using this data:

E(w) =Y [NeuroIoU(T Py, F Ppr;, FNpr,) = Liov,)” (6.7)

i
In semantic segmentation, it is possible that two different segmentation results may have the same IoU
score, i.e. two different sets of T'P, I'P and I'N counts (or T'Py,., F'P,,., F'N,,) may have the same
10U value. This affects the approximation performance. To make the approximation more robust to
such issues, apart from 1'P,,., F'P,., F'N,,, we also include T'P, F'P and F'N counts as inputs to the
Tl Fhy d FNpr as inputs to the network, where,

TP[* [FP[ " [FN
|T'P|,|FP|,|FN]| are the counts of TP, F'P and F'N. Our empirical studies (detailed in Section

NeurolOU network. In particular, we add

showed that with more inputs, the network was more robust in the approximation.

Approximation using Prediction Loss: Instead of approximating the IoU loss using pixel counts
as discussed above, we can also approximate using the loss values obtained for each pixel during
the prediction obtained from the original model. We use hinge loss, and these values are obtained
from the classification layer. Hinge loss values have been previously used for approximating the
IoU loss [[15]]. In this new setting, input to the NeuroloU loss are T Py, F'Py and F' Ng, which
are computed as TPy = ), h(z;), wherex; € TP, FPy = ) h(z;), wherez; € FP and
FNy = EIZ h(z;), where x; € F'N. h(z;) is the hinge loss for pixel z;.

6.4.2.0.2 Surrogate PCKh Loss Network As discussed in the previous section, to approximate
PCKh loss (L pcxp) using neural networks, we need its input-output data D. In pose estimation, for

a given image, the deep pose network models [24,[77,[163,|176] output the locations of body joints.
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Algorithm 1 Training a Semantic Segmentation Network using NeuroloU Loss

Input: (i) Set of training images I and their ground truth labels G; (ii) NeuroloU loss for each
training image (obtained from the surrogate-loU neural network); (iii) Initial trained CNN model
O¢ g trained on standard cross entropy loss
Output: Updated semantic segmentation CNN model ©’
Let © = Ocp
Repeat until convergence
forx € I do
(1). Compute ©’ (x), the probability score map for x
(2). Compute the T'P,,, F P, and F N, for x using Equations

(3). Using Equations compute ONeuroloU ONeuroloU and ONeuroloU
P ome p COmP oTP, ' OFD, OFN,,

(4). Using the gradients obtained from step (3), backpropagate through the O’ network and update

the network weights

end for=0

The regression loss takes these joint locations as input and outputs its corresponding loss. Similarly,
we take the joint locations as input to our surrogate neural network. To get a more generalized loss
network, we need to consider the interactions between joint locations. Regression loss does not encode
these interactions. In the computation of PCKh measure, a part is considered detected only if two of
its joint locations are within a threshold from its true locations. This means connections between the
joint locations are also very important for improved accuracy. To encode the interactions between
the joint locations, we also take the midpoint of each part locations and a unit normal vector along
each part as inputs to our surrogate network. The midpoint of body parts and the unit normal vector
along the parts can also characterize the given pose. We also add a threshold for each part, which is
used for measuring the PCKh measure. These thresholds are calculated from the training data. Our
results showed that, the addition of interactions between joint locations enhance the performance of the
network. Thus, the input-output data for our surrogate network is defied as D = {(p;, Lporn(pi) :
i =1,...,t}, where p; is the detected pose and Lpcgp(p;i) is its PCKh loss. The pose p; is given as
(I, mi,u1,t1, ..., lg, My, ug, t), where [ is the location of 4t joint. uy, is the unit normal vector for

the p'* part and m, is its midpoint, and ¢, is its threshold. We generate the dataset D as follows:

* For the given training data, we first train a CNN, 0.4, using regression loss
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* During training, for each training image, we store the detected pose obtained from 0,4

* For each detected pose in the training image, we compute the unit vector for each part and its

midpoint

We now have the dataset D for training the surrogate network. We call this surrogate network as
NeuroPCKh and the loss as NeuroPCKh loss. Using the similar methodology, we can also com-
pute the surrogate loss network over the performance measure PCP. We call the corresponding loss as

NeuroPCP.

6.4.3 Training CNN networks with Surrogate Loss

This section presents the details of the methodology to train the original CNN using the proposed
surrogate loss. We describe this in the context of training deep semantic segmentation networks by
minimizing the corresponding NeuroloU loss. A similar formulation is used for deep pose networks.

The NeuroloU loss takes T' P, F' Py, and ' Ny, as inputs and approximates the corresponding JoU
loss. Once we train the network, we use the backprop-to-image trick [181]] to compute the derivative of
the NeuroloU loss with respect to the outputs of the original CNN. These derivatives are computed as
follows. For simplicity, we consider a single hidden layer in the surrogate network (this can be easily
extended for multiple hidden layers). If S is the activation function used in the network, then for the

given input z; = (T'Py,,, F Py, F Ny, ), NeuroloU (T Py, F P,y,, F'Ny,,) is computed as:
k
NeuroIoU (T Py, F Py, FNpy,) = >  wi?S(af w]) (6.8)

where k is the number of neurons in the hidden layer, w” € R**3 are weights in the hidden layer and
w’ € R* are the weights in the output layer. The derivatives of the NeuroloU loss w.rt. the CNN

outputs are given as:

8Neur0 aNeuro
UIVEUrorou Zwop h ) GLIVEUTOIoU Zwop h T h)

wﬂ
(6.9)
aN euro IOU o
P h T h
Z w; w]3 )
where S’ is the derivative of the activation function S.

We now have the gradients of NeuroloU with respect to T' Py, F' P, and F'Ny,.,, and can retrain

the initial CNN, ©¢g, using these gradients. The training procedure is summarized in Algorithm[T] We
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consider the semantic segmentation network O¢ g initially trained using cross-entropy loss. We then
finetune this network using NeuroloU loss, by using the gradients of the NeuroloU loss w.r.t. the
outputs of O ¢ in Equations[6.9] To this end, we remove the softmax layer from the © ¢ g network. For a
given training image X, we compute its probability score map O ¢ g(x) from the network. We then update
the network weights using backpropagation, by using the gradients of NeuroloU loss with respect to
probability score maps. These steps are continued till convergence. In each iteration, the NeuroloU
loss increases the pixel probabilities for true positive and false negative pixels, as well as decreases the
pixel probabilities for false positive pixels. This increases the true positive count and reduces the false
positive and false negative counts for each image, thus increasing overall JoU performance. We use
a similar formulation for training deep pose networks, except that the initial network is trained using

regression loss in this case.

6.4.4 Weighted Surrogate Loss Function

In the previous subsection, we defined the proposed NeuroloU loss for semantic segmentation and
NeuroPCKh Loss for human pose estimation. In semantic segmentation, to leverage the additional
information obtained from the cross-entropy loss, we define the weighted NeuroloU loss for semantic

segmentation as:

LtheuroIoU = LNeuroIoU + )\LCE (6 10)

where Lneyroror 18 the NeuroloU loss and Lok is the cross-entropy loss. A is a tradeoff parameter

controlling the importance of cross-entropy loss.

Similarly, for human pose estimation, to leverage the additional information obtained from the re-

gression loss, we define the weighted NeuroPC K h loss as:

LtheuroPC’Kh = LNeuroPCKh + )\Lreg (611)

where L yeyropcih 18 the NeuroPCKh loss and L. is the regression loss. A is a tradeoff parameter

controlling the importance of regression loss.
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6.5 Experiments

In this section, we validate the performance of the proposed NeuroloU and NeuroPCKHh loss
functions to train the corresponding state-of-the-art deep models for semantic segmentation and human

pose estimation.

6.5.1 Datasets and Experimental Settings

For semantic segmentation, we conducted our experiments on two popular datasets: PASCAL VOC
2011 [42] and Cityscapes [30]. For both datasets, we train the network on the provided benchmark
training and validation splits (the ground-truth for the test set is not publicly available and our focus is
on comparison to the baseline method, which is also evaluated in the same manner for fairness). For
the PASCAL VOC dataset, we resized the training images to 375 x 500, and for Cityscapes, we resized
the images to 512 x 1024. We integrated the proposed NeuroloU loss into 3 contemporary semantic
segmentation networks, FCN [92]], Segnet [[11]] and UNet [[133]]. We take the original FCN, Segnet and
UNet with cross-entropy loss as the baseline for studying the performance of our proposed NeuroloU
loss, as well as compare our results to [[127] on models that were validated in their work (FCN). In the
experiments, we refer to the proposed method as NVeuroloU, the approximation in [127]] as 1oU — Appx

and the deep networks trained with standard cross-entropy loss as C'E.

For human pose estimation, we conducted all our experiments on Leeds Sports Dataset [[71]] (LSP) and
MPII datasets. These are images from sports activities and are quite challenging in terms of appearance
and especially articulations. In this dataset, for each person, the full body is labeled with total of 14
joints. The MPII dataset [9] (single person) contains images in diverse scenarios that contain many
real-world challenges such as crowding, scale variation, occlusion, and contact. For both datasets,
we train the network on the provided benchmark training set and test on the respective test set. We
integrated the proposed NeuroPCP and NeuroPCKHh loss into DeepPose [163]] network. We take
the original DeepPose [[163]] network with regression loss as the baseline for studying the performance of
our proposed NeuroPC K h loss. We evaluated the performance of NeuroPC P loss over LSP dataset
and NeuroPCKh over MPII dataset. For all our experiments, we used a fixed learning rate of 1075,
momentum of 0.99 and weight decay parameter of 0.0005. In our surrogate neural network used to

approximate the ToU, PCP and PCKh measures, we use 4 hidden layers and 100 nodes in each layer.
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Figure 6.3: Approximation of a function (non-differentiable at x = 1) and its derivatives using neural

networks: (a) Approximation of the function; (b) Approximation of its derivatives.

6.5.2 Function Approximation using Neural Networks

In order to understand the usefulness of the Surrogate-IoU network for approximating the IoU
measure, we conducted simple experiments on the capability of neural networks to approximate a

2—x ifr <1
discontinuous function and its derivatives. Consider f(z) = and its derivative

401 ifz>1

, -1 ifz<l1
f(z) = . We can check that f(z) is not continuous and hence not differentiable at

1 ifx>1
x = 1. Results for this approximation using a simple one hidden-layer neural network are given in

Figure[6.3] Figure[6.3](a) show the approximation of the function and Figure[6.3](b) shows the approx-
imation of its derivatives. We can observe that the approximations obtained almost exactly matches the
original function. At x = 1, there is a sudden change in the derivative due to the discontinuity, but the
neural network is able to approximate this sudden peak with a smooth curve. Since f(x) is not differ-
entiable at z = 1, we did not plot its derivative value at z = 1. The approximation of the derivative at

x = 1 lies between —1 and 1.

6.5.3 Results on Semantic Segmentation

The results for FCN, Segnet and UNet on PASCAL VOC are shown in Figure [6.4] It shows the com-
parison of the proposed NeuroloU loss and the baseline cross-entropy loss. We can observe that the
proposed NeuroloU loss consistently outperforms the cross-entropy loss in all the categories, with a
performance gain for all three networks. This corroborates our claim that this approach can be integrated

into any existing deep learning network for improving its performance in semantic segmentation. From
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Figure 6.4: Results on PASCAL VOC: (a) FCN (b) SegNet (c) UNet. Here, CE is the network trained

using cross-entropy loss, and NeuroloU is the network trained using proposed NeuroloU loss.
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Figure 6.5: Results on CityScapes: (a) FCN (b) SegNet (c) UNet. Here, CE is the network trained using

cross-entropy loss, and NeuroloU is the network trained using proposed NeuroloU loss.

the Figure[6.4] we also notice that the performance improvements are more significant for some classes,

where the foreground to background pixel ratio is very small.

Similar results for FCN, SegNet and UNet on the Cityscapes dataset are presented in Figure[6.5] Once
again, we observe that the proposed NeuroloU loss outperforms cross-entropy loss over all classes for
all three networks. Note again that the maximum performance improvement is obtained for classes
where the ratio of foreground to background pixels is very small. We also tested our method against
using weighted cross-entropy loss on a subset of classes with this foreground-background imbalance
from the Cityscapes dataset. One could argue that weighting cross-entropy loss suitably can account for
class imbalance in the training set. Using weighted cross-entropy, we obtained an IoU of 58.4, whereas
NeuroloU gave an IoU of 60.2 for the same subset. The proposed NeuroloU method does not need

such explicit reweighting since it implicitly learns what is necessary for overall IoU performance.
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(a) Image (b) Ground truth (c) Cross Entropy (d) Neuro lIoU

Figure 6.6: Few qualitative results. (a) Original image (b) Ground truth segmentation (c) Segmentation

obtained from cross entropy loss (d) Segmentation obtained using NeuroloU.

We also show some qualitative results in Figure [6.6] From the figure, we can observe that, in com-
parison to the cross-entropy loss, the proposed Neuroy, loss tends to fill the gaps in the segmentation.
It means it tends to recover some of the false negative errors made by the cross entropy loss. In the 4"
image (Row-4), we can observe that NeuroloU is able to localize small objects (pole), which the cross

entropy-trained model could not. In the 5"

image (Row-5), we show a failure case for the NeuroloU
loss. Here, NeuroloU is not able to find the small traffic signals present in the image. Note that these

objects are also not detected by the model trained using cross-entropy loss.

6.5.3.0.1 Comparison to previous work Rahman and Wang proposed an approximation to the IoU
measure in [127] (as stated in Section [6.2). The results of comparing the proposed method to this
approximation are given in Table where CE represents networks trained using cross-entropy loss.
The results are given for FCN over the PASCAL VOC dataset (as in [127]). The results for [127] are
obtained from our implementation of their work. The results for training the model using cross-entropy
loss (CE) are obtained for a fixed learning rate. Note that these performance numbers can be improved by

experimenting with different learning rates, weight decay and other parameters. Our objective is to show
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Aeroplane Cycle Bird Boat Bottle Bus Car Cat  Chair Cow

CE 70.58 59.71 6771 64.84 6348 75.17 72.05 7040 53.81 64.37
IoU-Appx [[127] 72.72 61.78 68.61 67.29 6431 76.57 73.03 70.82 54.18 64.06
NeuroloU 73.68 61.84 69.80 67.83 6449 77.73 73.57 71.28 54.82 65.38
NeuroloUno—rnit 73.65 61.80 69.80 67.82 64.38 77.73 73.57 7127 5477 6537
NeuroloUginge 75.14 63.35 70.71 69.75 65.84 79.80 7497 73.03 5547 66.16
NeuroloUginge — AO 75.16 63.35 70.72 69.73 65.87 79.81 7497 73.00 5548 66.16
NeuroloUwiHinge 75.52 63.69 71.15 70.05 6623 80.16 7534 73.45 55.86 66.49

D.Table Dog Horse M.Bike Person PPlant Sheep Sofa Train TV  Mean

CE 64.12 6571 58.64 7061 7728 6227 66.85 56.73 7227 6479 66.06
IoU-Appx [[127] 65.63 64.17 5870 7120 7739 64.14 67772 5838 7220 66.07 66.94
NeuroloU 65.98 65.82 6037 7210 78.04 66.62 69.02 59.52 73.06 67.18 67.90
NeuroloUno—rnit 6597 6582 6037 7204 78.03 66.62 6898 5952 73.03 67.18 67.87
NeuroloUginge 67.63 66.74 6273 7368 79.89 68.03 71.62 6085 7475 69.27 69.46
NeuroloUginge — AO  67.62 6679 62.74 7368 79.86 68.04 71.65 60.86 7473 6927 69.47
NeuroloUwiginge 67.97 6723 63.18 7403 80.20 6845 72.07 6140 75.06 69.53 69.85

Table 6.1: Comparison of NeuroloU with cross-entropy loss and [[127]] on PASCAL VOC.

the relative performance gain for different methods over CE loss under the same training conditions. The
relative improvement in the performance of [[127]] over cross-entropy loss (CE) is what we intend to show,
rather than the absolute JoU value. Here, the NeuroloU loss is used to retrain the network obtained
from training using the CE loss. It is evident that NeuroloU loss outperforms this surrogate loss [|127]
over all classes. Compared to the cross-entropy loss, the surrogate loss in [[127]] underperforms for some
classes. However, the proposed NeuroloU loss consistently outperforms cross-entropy loss over all
classes.

We also compare other variants of NeuroloU, NeuroloUn,— rpit, NeuroloUginge and N euroloUy i pinge
in Table @ In NeuroloUp,—1nit, We train the network without any initialization, i.e., the model
trained using cross-entropy loss is not used to initialize the network. In NeuroloUpinge, I0U is ap-
proximated using hinge loss values instead of probabilities from the final layer (as in Section [6.4.2)). In
NeuroloUwminge, the weighted surrogate loss is used as the final loss function (as in Section @)

Here, we take A= 0.1. From the Table we can observe that the network trained without initial-
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RBF | Tanh | Sigmoid
IoU | 67.58 | 67.76 67.90

Table 6.2: Comparison of RBF, Tanh and Sigmoid activation functions in NeuroloU loss for semantic

segmentation.

—Cross Entropy
—NeuroloU- 3

NeuroloU- 6

»»»»»»
Iterations

Figure 6.7: Comparison of performance of NeuroloU with 3 inputs vs NeuroloU with 6 inputs using

FCN on PAsCcAL VOC. While both performed better than CE, NeuroloU-6 was more consistent.

ization from a pre-trained model (INeuroloUp,—_1y;:) can obtain similar performance as the network
trained using the initialization (/NeuroloU) obtained using cross-entropy loss. We can also observe
that NeuroloUgpge performs well compared to NeuroloU and, NeuroloUwginge outperformed
all other methods. Using NeuroloUwginge, We obtained an IoU of 69.85, which is an improvement
of 3.79 IoU over cross-entropy. The superiority in the performance is due to the additional information
obtained from the cross-entropy loss while training the network. In all the above experiments, we use

direct optimization technique for training the segmentation network using NeuroloU loss.

6.5.3.0.2 Ablation Studies: We show here the impact of various choices in the surrogate loss net-
work on the CNN performance. We show the results for NeuroloU loss over semantic segmentation.
In all the experiments, the results are given for FCN over PASCAL VOC. Here, the FCN is trained using
NeuroloU loss. We first evaluate the impact of different activation functions for the NeuroloU loss
in Table

From the results, we can observe that the Sigmoid function performs slightly better compared to RBF
and Tanh activation functions.

We studied the performance of the Surrogate-IoU neural network over different inputs in Figure

TP, FP
In NeuroloU — 6, the neural network is trained over 6 inputs 1'Py,., F'Pp,., F'Np,, ﬁ, i ;T and
FN,
7|F ]\’; T, while the neural network is trained only on 3 inputs T'P,,, F'P,,., F'N,, in NeuroloU — 3.
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# Hidden layers 2 4 6 8
IoU 67.57 | 67.90 | 67.90 | 67.92

Table 6.3: Comparison of performance of NeuroloU loss with varying number of hidden layers for

semantic segmentation.

NeuroloU-Mapillary | NeuroloU-Cityscapes | NeuroloU-Map-City

IoU 61.86 62.18 62.41

Table 6.4: Performance of the NeuroloU trained over Mapillary and Cityscapes datasets. In
NeuroloU-Mapillary, NeuroloU is trained on mapillary dataset. In NeuroloU-Cityscapes,
NeuroloU is trained on Cityscapes. In NeuroloU-Map-City, NeuroloU is trained on both map-

illary and Cityscapes.

The results are given for 15000 iterations. From the figure, we notice that NeuroloU — 6 is better than
NeuroloU —3 (we observed the same trend for other datasets too), while both outperform cross-entropy

loss. In this experiment, we take number of hidden layers as 4 in NeuroloU.

In the next experiment, we evaluate the impact of the number of hidden layers in the NeuroloU loss
for the given semantic segmentation problem. The results for comparing the performance on varying
number of hidden layers are given in Table [6.3] From the results, we can observe that there is an im-
provement in performance with the increase in the number of hidden layers. However, the improvement
is rather minimal. It means that our surrogate network can approximate the JoU measure with a fairly
low number of hidden layers. In all our experiments, a surrogate network with four hidden layers gives

reasonably good performance.

In all our experiments, for each dataset, we train the surrogate loss network on the same dataset. To
further evaluate our surrogate loss network, we initially train it on other datasets and test it on the given
dataset. In this experiment, we train our NeuroloU in different configurations and test each case in
the Cityscapes. These results are given in Table [6.4 In NeuroloU-Mapillary, NeuroloU is trained
only on the Mapillary dataset. There is no training involved on Cityscapes dataset. In NeuroloU-
Cityscapes, NeuroloU is pre-trained on Cityscapes dataset. Here, there is no training involved on
the Mapillary dataset. In NeuroloU-Map-City, NeuroloU is initially pre-trained on the Mapillary

dataset and during the training of the segmentation model, it is finetuned on the Cityscapes dataset.
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Cross-Entropy | INeuro-Cross-Entropy

IoU 66.06 66.07

Table 6.5: Performance of FCN trained with naive cross-entropy loss (cross-entropy) and cross-entropy

loss approximated using the proposed surrogate loss network (/N euro-Cross-Entropy) on PASCAL VOC.

From the results, we can observe that NeuroloU-Map-City performs the best, thanks to the additional
information from the Mapillary. NeuroloU-Mapillary has performance comparable to the other two
settings but has slightly lower performance since it is not exposed to the Cityscapes dataset, which is

used for testing.

The naive training in CNN is a particular case of our proposed approach. To demonstrate this, we
try to approximate the cross entropy loss using our proposed surrogate loss network and train the given
segmentation network using the trained surrogate loss network. We use (FCN) as the segmentation
network. Note that, the cross entropy loss is a differentiable function. The results over PASCAL VOC are
given in Table[6.5] In cross-entropy, FCN is trained using original cross entropy loss. In N euro-Cross-
Entropy, cross-entropy itself is approximated using the surrogate network and FCN is trained using this
surrogate loss network. From the results, we can observe that /N euro-Cross-Entropy performing equally
well compared to cross-entropy. In fact, it is slightly performing better compared to cross-entropy. It
shows that CNN training with differentiable loss functions is a particular case of our proposed technique.
This demonstrates that our proposed surrogate loss network is a more generalized version of existing

methods for training.

6.5.3.0.3 Training using Alternate Optimization In alternate optimization, we train both CNN and
surrogate loss network in parallel in an alternate manner. It is based on alternate optimization. The
training procedure (for semantic segmentation) is summarized in Algorithm [2] Unlike the direct opti-
mization, presented in Section [6.3.1.1] (where the surrogate network is trained completely before fine-
tuning the CNN), we alternately train the CNN and surrogate loss networks in this technique. The re-
sults for the alternate optimization technique are presented in Table 6.1 under NeuroloUninge — AO
and compared with NeuroloUpinge. From the results, we observe that both NeuroloUpinge and
NeuroloUgnge — AO are performing equally well. In the alternative optimization technique, at each

step of training the segmentation network, we train the NeuroloU for five iterations.
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Algorithm 2 Training using Alternate Optimization

Input: (i) Set of training images I and their ground truth labels G; (ii) Initial network ) (initialized
using a backbone network)
Output: Final model ©' trained using alternate optimization technique
Repeat until convergence
forx € I do
(1). Compute ©'(x), the probability score map for x

(2). Compute the actual IoU loss for = using the pixel counts obtained from G)'(x), Loy, =

1 Th
TP, 1 FP;; FN,

(3). Compute NeuroloU loss using Equation and its gradients w.r.to T'P,., F'P,, and F'Np,
(4). Using the gradients obtained from step (3), backpropagate through the surrogate network
(NeuroloU) and ©' network, and update the network weights

end for=0

6.5.4 Results on Human Pose Estimation

The results for DeepPose network [[163]] using regression loss (Deep Pose) and the proposed N euroPC P
loss (Neuropcp) on the LSP dataset are given in Table[6.6] We begin our analysis by reporting each ap-
proach’s overall pose estimation performance and summarize the results in Table[6.6] As given in [163],
we show results for the four most challenging limbs, lower and upper arms and legs to compare across
different loss functions. We also show the average value across these limbs. The NeuroPCP loss
achieves the best result of 61.3% PCP, followed by the regression loss with 60.7% PCP. We obtain
maximum improvement for lower arm, which has many variations compared to all other parts. We also
show the results for training DeepPose [[163]] using alternative optimization (Neuropcp — AO) for the
proposed NeuroPC'P loss in Table[6.6] In alternate optimization, we train both CNN and surrogate loss
networks in parallel in an alternate manner. The results show that the model trained using alternative
optimization slightly performs well compared to the NeuroPCP. In NeuroPC P, the model is trained
using direct optimization. We hypothesize that the slight superior performance for the alternative opti-
mization technique is due to the performance of the surrogate network trained for approximating PCP
measure as stated earlier for semantic segmentation. In alternative optimization, we gradually increase
the training set to train the surrogate network, whereas in direct optimization, we train the surrogate net-

work only once with complete training data. This causes a difference in performance. From the results,
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Upper Leg | Lower Leg | Upper Arm | Fore Arm | Ave
Deep Pose 77.2 71.4 56.1 38.2 60.7
Neuropcp 77.8 71.8 56.6 39.1 61.3
Neuropcp — AO 77.8 71.9 56.9 39 61.4
Neurowipcp 78.1 73.6 58.5 40.9 62.8

Table 6.6: Comparison of NeuroPC P loss with regression loss on LSP dataset. In Neuropcp — AO,

CNN is trained using alternative optimization. In Neurow:pcp, weighted NeuroPC P loss is used as

the loss function.

Head | Sho | Elb | Wri | Hip | Knee | Ank | PCKh
Deep Pose 949 | 905|802 | 745 | 77.1 | 69.2 | 63.2 | 79.2
Neuropckh 953 1909 | 804 | 75 | 7777 | 69.7 | 63.8 | 79.7
Neuropogn —AO | 95.6 | 90.8 | 804 | 752 | 77.6 | 69.8 | 64.1 | 79.9
Neurowpckh 96.5 | 92.3 | 824 | 76.1 | 78.7 | 71.0 | 65.4 | 81.0

Table 6.7: Comparison of NeuroPC K h loss with regression loss on MPII dataset. In Neuropcgn —

AQ, CNN is trained using alternative optimization. In Neuroypcxn, weighted NeuroPC K h loss is

used as the loss function.

we can also observe that N euroywpc i, where the weighted surrogate loss (as in Section[6.4.4) is used

as the final loss function, outperformed all other variants of NeuroPC P. Here, we take A\=0.5. The
noticeable performance gain of 2.1% in PCP measure for Neurowpcipn compared to the regression

loss is due to the additional information obtained from the regression loss. It shows that the proposed

surrogate loss can be added with other loss functions to further enhance its performance.

The results for DeepPose network [[163]] using regression loss (Deep Pose) and the proposed NeuroPCKh

loss (Neuropckn — AO) on MPII dataset is given in Table[6.7] From the results, we can observe that

NeuroPCKh loss outperforms regression loss over all parts. For the NeuroPCKh loss, we get
79.7% PCKh, whereas regression loss obtained 79.2% PCKh measure, corroborating our claim. The

superior performance obtained for NeuroPC K h loss over regression loss is due to its ability to model
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Figure 6.8: Visualization of pose results obtained using NeuroPCK h loss on images from MPIIL. The

last two results shows some fail cases caused by combinations of extreme occlusion and rare poses.

the explicit interactions between the body joints. While training the network regression loss does not
capture these interactions; however, NeuroPC K h loss captures these interactions from the pose infor-
mation we provide using unit normal vectors while training the surrogate network. We also show the
results for training the DeepPose network using alternative optimization (Neuropcoxp — AO) for the
proposed NeuroPCKHh loss in Table [6.6] The results show that the model trained using alternative
optimization performs better than the regression loss, and the model trained using direct optimization
(NeuroPCKHh). We also compare the Neurowpcih, Where the weighted surrogate loss (as in Sec-
tion [6.4.4) is used as the final loss function with NeuroPCKh and Neuropckp — AO in Table
From the results, we can observe that Neuroypcip outperformed all other variants of NeuroPC P.
Here, we take A\=0.5. Using Neurowpcih, we got an improvement of 1.8% in PCKh measure com-
pared to the regression loss. The superiority in the performance is again due to the additional infor-
mation obtained from the regression loss while training the network. We also show some qualitative
results in Figure [6.6] The results are obtained using NeuroPCKh loss. The figure shows that the
proposed NeuroPC K h loss copes well with both occlusions and difficult poses. We also show a few
failure cases in the last two images. The failure cases are mainly caused by the combinations of extreme

occlusion and rare poses.
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6.6 Summary

In this work, we presented a new approach using surrogate neural networks for learning discrete
and non-decomposable loss functions, which are inherently non-differentiable. In particular, we learned
the loss functions over [oU, PCP and PCKh measures for the semantic segmentation and human pose
estimation tasks. Our experimental results demonstrate that the proposed loss function can be applied
to any existing network. For IoU loss, we demonstrated the effectiveness of the proposed method over
semantic segmentation models on the PASCAL vOC and Cityscapes datasets. For PCP loss, we validated
our method over LSP dataset and for the PCKh loss, we validated our method over MPII dataset. For both
the PCP and PCKh loss, we applied our method over DeepPose [163]] network. Our results on this work
show consistent improvement over baseline methods, and the ablation studies presented also show the

robustness of the proposed method.
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Chapter 7

Conclusion

In this chapter, we conclude this thesis by discussing the contributions, impact, and comparisons of

our proposed approaches with contemporary methods.

7.1 Summary

This thesis targets the problem of surrogate approximations for similarity measures to improve their
performance in various applications. We have presented surrogate approximation for DTW distance,
canonical correlation analysis (CCA), Intersection-over-Union (IoU), PCP, and PCKh measures.

First, we propose a linear approximation for naive DTW distance. To compute the DTW distance for
any given sequence, we need to find the optimal warping path from all the possible alignments, which is
a computationally expensive operation and requires quadratic complexity. We try to speed up the DTW
distance computation by learning the optimal alignment from the training data. We learn a small set
of global principal alignments from the given training data, and for the new test sequences, the optimal
alignment is approximated using these alignments. As far as we are aware, none of the previous methods
have exploited the hidden structure of the alignments. We approximate the DTW distance as a sum
of multiple weighted Euclidean distances, which are known to be amenable to indexing and efficient
retrieval. The proposed FastDTw distance is as good as DTW distance and computationally performs
equally as simple Euclidean-based matching. Further, we also introduced a Fast Dynamic Time Warping
kernel (Fast Surrogate DTW kernel), which is a surrogate linear kernel over DTW distance. We have also
proposed an explicit feature map for the Fast Surrogate DTW kernel, which enables the proposed kernel
to be applied with linear SVM. The explicit feature map for the FastDTw kernel is computed using

the global principal alignments learned from the training data. We then presented an application using
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FastDTw distance, which widens the scope of our work. In this application, we address the problem of
faster indexing in classifier-based retrieval methods using FastDTW distance. We introduce the Query
specific FastDTW distance for faster indexing, which has linear time complexity. In addition to this, we
also present an application built using the Fast Surrogate DTW distance in the deep learning framework.
We propose, FastbTwNet, where the Fast Surrogate DTW distance is applied as a feature extractor in
CNN.

Our next contribution proposes a surrogate kernel approximation over canonical correlation analysis
(cca). It enables us to use CCA in the kernel framework, further improving its performance. The
kernel function works well for action recognition as it embeds the temporal context in the videos. We
have also shown that multiple features can be seamlessly integrated into the surrogate kernel to enhance
recognition performance.

In our final contribution, we propose a method to automatically learn a surrogate loss function that
approximates the IoU, PCP and PCKh loss. Semantic segmentation is a popular task in computer vi-
sion today, and deep neural network models have emerged as the popular solution to this problem in
recent times. The typical loss function used to train neural networks for this task is cross-entropy loss.
However, the success of the learned models is measured using Intersection-Over-Union ({oU), which is
inherently non-differentiable. This gap between performance measure and loss function results in a fall
in performance, which few recent efforts have also studied. In this work, we propose a novel method to
automatically learn a surrogate loss function that approximates the IoU loss and is better suited for good
10U performance. To the best of our knowledge, this is the first such work that attempts to learn a loss

function for this purpose. The proposed loss can be directly applied over any network.
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