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Abstract

This thesis targets the problem of surrogate approximations for similarity measures to improve their

performance in various applications. We have presented surrogate approximations for popular dynamic

time warping (DTW) distance, canonical correlation analysis (CCA), Intersection-over-Union (IoU),

PCP, and PCKh measures. For DTW and CCA, our surrogate approximations are based on their corre-

sponding definitions. We presented a surrogate approximation using neural networks for IoU, PCP, and

PCKh measures.

First, we propose a linear approximation for the naïve DTW distance. We try to speed up the DTW

distance computation by learning the optimal alignment from the training data. We propose a surro-

gate kernel approximation over CCA in our next contribution. It enables us to use CCA in the kernel

framework, further improving its performance. In our final contribution, we propose a surrogate ap-

proximation technique using neural networks to learn a surrogate loss function over IoU, PCP, and

PCKh measures. For IoU loss, we validated our method over semantic segmentation models. For PCP,

and PCKh loss, we validated over human pose estimation models.
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Chapter 1

Introduction

1.1 Motivation

Humans primarily differentiate two objects by measuring their similarities. The concept of similarity

is fundamentally essential in almost every scientific field. For instance, the relationship between two

topological spaces is studied using similarity concepts like congruence and isomorphism. Measuring

the similarity between a given query sample and indexed samples is an important problem in search

engines. In machine learning, similarity concepts play a fundamental role in evaluating the performance

of learned models. A similarity measure is a function that computes the degree of similarity between

two objects. Several forms of these similarity measures routinely come up in many real-world problems.

In a typical learning task, we are given access to labeled examples (x, y) drawn from some distri-

bution P over X × Y , where X is the input space, and Y is the target/output space. Here, we have

not made any assumptions on the input space X . The objective of a learning algorithm is to learn a

discriminative function h : X → Y , such that, for given an example (x, y) ∈ P , (x, h(x)) is in some

sense similar to the training data D. In other words, we want similar inputs to lead to similar outputs.

In machine learning, to study the problem of learning, we need additional structure in input and output

space. On this front, we need a similarity measure over the input space X and the output space Y . The

discriminative function h is computed using these similarity measures. For the input space X , we need

a function,

f : X ×X → R (1.1)

satisfying, ∀x, x′ ∈ X , f(x, x
′
) = f(x

′
, x). It defines a similarity measure over X . If f(x, xi) ≤

f(x, xj), ∀ j 6= i then h(x)(= y) should be similar to h(xi)(= yi).
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In the output space Y , the similarity is usually measured in terms of a loss function. The similarity

in the output space evaluates a learned model’s performance. The loss function over the output space Y

is defined as,

L : Y ×Y → R (1.2)

satisfying, L(yi, yj) ≥ 0, ∀yi, yj ∈ Y . The loss function is used to evaluate the performance of

discriminative function h (learned model) for the given sample x ∈ X .

1.1.1 Similarity Measures in Machine Learning

Comparing two images/objects is a fundamental operation in many computer vision applications

like classification, clustering, recognition, and retrieval. Comparing two images or, more generally,

two samples mainly relies on the concept of the similarity measure. Many similarity measures are

proposed in the literature for comparing different types of objects. Different similarity measures give

different types of similarities between the samples. No single similarity measure is best suited for all

types of data. For example, the standard Euclidean distance works well for comparing the samples in

Rn (samples in the n-dimensional space). However, if we consider two-time series sequences of the

same dimension, then Euclidean distance may not be able to capture all their similarities. For example,

consider the two-time series X and Y , given in figure 1.1(a). It shows that the Euclidean distance

cannot capture their similarities for the given two-time series. In Euclidean distance, ith sample point

of X (Xi) is mapped to ith sample point of Y (Yi). However, Xi is not similar to Yi for the given

time series. On the other hand, Dynamic time warping (DTW) distance (Figure 1.1(b)) can capture the

similarities between X and Y . In DTW distance, ith sample point of X (Xi) is mapped to its similar

point in Y . In the figure, Xi is similar to Yi+2, so Xi is mapped to Yi+2. For time-series data, DTW

distance works well compared to Euclidean distance.

The similarity measures are domain-specific. The applicability of similarity measures may differ

from one domain to another domain of data. Such as the similarity measure used to compare two

speech signals may not work well for comparing two DNA sequences. There are similarity measures

that best suit specific problems. For example, each of the similarity measures canonical correlation

analysis (CCA) [18, 51], Edit distance [43], χ2 Histogram distance [14] and Earth movers distance

(EMD) [134, 135] works well for a specific type of problems. The canonical correlation analysis
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Figure 1.1: Euclidean distance and Dynamic time warping (DTW) for comparing time series data. Here,

i corresponds to ith sample point of X (Y ), i.e. Xi (Yi)

(CCA) [18,51] is best suited to compute the similarity between two random variables. CCA is popularly

used for comparing videos, where videos are represented as a tensor variable. CCA has applications in

action recognition [108]. On the other hand, the similarity measure Edit distance [43] works well for

the problem of string matching. The Edit distance between two strings is the cost of the sequence of

operations like insertion, deletion, and substitution of a symbol required to transform one string into

another. Edit distances find applications in natural language processing (NLP) and bioinformatics. χ2

Histogram distance [14] is useful in comparing the histograms. For many computer vision tasks, each

object of interest can be presented as a histogram by using visual descriptors. Earth movers distance

(EMD) [134, 135] is popularly used for comparing two probability distributions. EMD is widely used in

content-based image retrieval. In general, these similarity measures work well with the nearest neighbor

(NN) classifier. NN classifier classifies the data based on the given similarity function. One advantage

of using the NN classifier is that we can use it with any similarity measure and its performance depends

on the given similarity measure.

1.1.1.1 Kernels

The objective of a similarity function is to output small values for similar samples and large values

for dissimilar samples. Consider the example given in Figure 1.2. In Figure 1.2(a), the samples marked

in red belong to class 1, and those marked in blue belong to class 2. Here, the data is non-linear, and

we cannot draw a straight line that separates the given two classes. Consider the Euclidean distance
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Figure 1.2: Projecting the given data using feature maps. Here, 2-D data is projected into 3-D.

over this data for measuring the similarity. Ideally, the Euclidean distance between class 1 and class 2

samples should be high. However, the Euclidean distance between class 1 and 2 samples around the

circle drawn is minimal. Many similarity measures will not work over these types of data to measure

the similarity. The primary reason for this is that the given data is non-linear. One possible solution for

this problem is to project the non-linear data into a linear space and use the above similarity measures

over the projected data. Kernel functions are suitable for this task. Kernels are a class of similarity

measures that handles the non-linearities present in the given data. For a given sample x, x
′ ∈ X , a

kernel κ : X ×X → R is defined as

κ(x, x
′
) = 〈φ(x), φ(x

′
)〉 (1.3)

where φ is the feature map, which projects the given data into some dot product space H (Hilbert space).

The inner product between the projected samples φ(x) and φ(x
′
) can be viewed as a similarity between

the given samples in the inner product space H . The inner product between the projected samples

is computed using the kernel function (Eq 1.3). Kernels project the given data into an inner product

space H using a feature map φ, and the similarities are computed in this projected space. Consider the

example given in Figure 1.2(b). Here, the original data in R2 (Figure 1.2(a)) is projected on to R3 using

the featuremap φ(x = (x1, x2)) = x2
1 + x2

2 + 2x1x2. Now, the projected data is linear, and we can find

a hyperplane that separates the given two classes. The dot product in this projected space can compute
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the similarities between the original samples. In general, the dimensionality of the projected space is

very high.

Many kernels proposed in the literature describe different notions of similarity between the samples

in various settings. For example, the RBF kernel is popularly applied for the samples in Rn. In the

RBF kernel, the original data is projected into infinite-dimensional space and the similarities between

the given samples are computed in this projected space. For the samples x and x
′
, the RBF kernel is

computed as κRBF (x, x
′
) = exp(−γ||x − x′ ||2). Histogram intersection kernel [14] serves as a good

measure for the histograms. It measures the degree of similarity between two histograms. Pyramid

match kernel [53] works well for data where the samples are sets of features with different cardinalities.

Kernels are widely used as similarity measures in support vector machines (SVM) classifier. SVMs are

the most well-known learning systems based on kernel methods. For the labeled training data, SVMs

output an optimal hyperplane, which categorizes the new samples. If there is an appropriate choice of

kernel, the SVMs perform well compared to the NN classifier [32,43]. The generalization ability of SVMs

contributes to their success.

1.1.1.2 Loss Functions

The objective of a learning algorithm is to learn a discriminative function h : X → Y accord-

ing to a similarity function f : X × X → R, such that h(xi) = yi, i = 1 to n, where, D =

{(xi, yi) : i = 1 to n} is the given training data. However, during the training, h(xi) may not give

the exact output yi. We need a similarity measure over the output space to evaluate how well the dis-

criminative function h fits the given training data. Loss function L : Y × Y → R, defines a similarity

measure over the output space Y . These are also used to evaluate the performance of given discrimina-

tive functions. For a given sample (x, y) ∈ X×Y , if h(x) deviates from y then the loss function outputs

a higher score/error (L(h(x), y) will be high) otherwise it gives a small error or no error (L(h(x), y) will

be a small value). There are many loss functions proposed in the literature for measuring the similarity

in the output space. Few loss functions commonly used in machine learning are L2 loss (Mean squared

error), L1 loss, Hinge loss, cross entropy, and intersection over union (IoU).

The L2 loss or Mean squared error (MSE) is measured as the average squared difference between pre-

dictions and actual observations. For a given training sample (x, y) ∈ X ×Y , the L2 loss corresponding

to the discriminative function h is computed as
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LMSE =
1

p
‖y − h(x)‖22 (1.4)

where, y is the target value for x and p = dim(y). It is the Euclidean distance between y and h(x).

Consider the case, where the target space Y contains probability scores ([0, 1]), i.e the discriminative

function h(x) outputs a probability value between 0 and 1 (y ∈ [0, 1]). If there are c number of classes

present in the given data, then y ∈ [0, 1]c. In this setting, cross-entropy loss is used to measure the per-

formance of a given learning algorithm. For a given sample x ∈ X , the cross-entropy loss corresponding

to the discriminative function h is computed as

LCE = −
c∑
i=1

yilog(hi(x)) (1.5)

where, y = (y1, . . . , yc) ∈ Rc is the target value for x and h(x) = (h1(x), . . . , hc(x)). Similar to cross-

entropy, IoU is also popularly used in measuring the performance of the given discriminative function,

where the target space Y contains probability scores.

More recently, in machine learning, neural network-based classifiers are performing well compared

to the SVM based methods. In particular, convolutional neural networks (CNN) achieve state-of-the-art

performance on a wide variety of problems. In CNNs, the features are learned along with the classifier in

an end-to-end fashion. Loss functions play an essential role in the performance of CNNs. For the given

problem, the network is trained to minimize the training error, measured using the given loss function.

The performance of the CNN network is evaluated using this training error (accuracy).

1.2 Surrogate Approximations in Machine Learning

In machine learning, surrogate approximation techniques are widely used for approximating func-

tions in various applications. It includes approximating a discriminative function using the training data,

approximating an objective function in a simpler form [49], and approximating similarity functions to

improve their performance [35, 79, 173]. In mathematical programming, sometimes the objective func-

tions are approximated by one of the simpler forms to reduce the computational overhead [49]. Few

approximation techniques estimate the decision function using the given functional data, like approxi-

mating the optimal discriminative function using SVM [31]. For the given training data, SVM approxi-

mates its decision function by minimizing its training loss. Linear regression and SVM regressions are
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used to approximate the functions whose output is a real or continuous variable. Neural networks are

popularly used to find surrogate approximations for various real-valued functions. These are widely used

in approximating the non-differentiable functions, which do not have a closed-form expression [58,66].

Differentiable similarity functions have better properties than non-differentiable similarity functions

like the computation of gradients for finding the optimal solution. For example, the similarity measure,

intersection-over-union (IoU), is popularly used as the performance measure in segmentation problems.

However, due to its non-differentiable property, it cannot be used as a loss function in CNN. The differ-

entiable similarity functions are widely used as loss functions in CNN, like L2 loss and cross-entropy.

For finding the differentiable approximation of non-differentiable similarity measures like edit distance

and intersection-over-union (IoU), a few surrogate approximation techniques [90, 127] approximate the

given similarity function using some modifications in its definition. Similar to linear techniques, non-

linear approximation techniques are also used in functional approximation [55]. These techniques use

Gaussian kernels in the functional approximation. Surrogate approximations are also widely used in

kernel approximations. In general positive definite kernels guarantees a unique global optimal solution

in SVM. However, many of the kernels in the literature are not positive definite, like the sigmoid ker-

nel [61], hyperbolic tangent kernel [149], and edit distance kernel [90]. These kernels are converted into

positive definite kernels using surrogate approximation techniques [38, 90].

In our work, we would like to focus on the problem of surrogate approximations for similarity mea-

sures. In this space, we propose approximation techniques for different similarity measures to im-

prove their performance in various applications. We introduce different approximation techniques for

(i) Speedup and (ii) Improved accuracy.

1.2.1 Problems of Interest

(a) Linear approximation of DTW distance: In general, DTW distance has quadratic complexity,

which limits its use in various applications with the nearest neighbor classifier. For a given two se-

quences of length n andm, respectively, the computational complexity for DTW distance isO(nm).

It is computationally expensive for large datasets. To compute the DTW distance for a pair of given

two sequences, we need to find the optimal alignment with the least cost from all the possible align-

ments. This is the computationally expensive operation in DTW distance. This work aims to find

a linear approximation to the DTW distance. The surrogate approximation will speed up the DTW
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distance computation, which enables to use of DTW distance for various applications like the word

image retrieval over a large corpus.

(b) Linear approximation kernel over DTW distance: The DTW distance is a popular similarity mea-

sure for comparing the time series data. In the past, there have been attempts to define kernels over

DTW distance. These kernels enable the use of DTW distance in kernel methods like SVM, which im-

proves its performance compared to NN classifier. However, these kernels have quadratic complexity

and are computationally expensive for large datasets. Also, these kernels are not definite, limiting

their applicability in kernel methods. An explicit feature map is a popular method for speedup the

non-linear kernels. It approximates the original large dimensional (infinite-dimensional) feature

map of non-linear kernels by a small finite-dimensional feature map. This small-dimensional fea-

ture map gives a linear approximation of the original non-linear kernel. The explicit feature maps

are quite popular for different non-linear kernels like intersection, Hellinger’s, χ2, and RBF kernels.

However, this technique does not appear widespread in the time series community. Our second

problem of interest aims to find a linear surrogate approximation kernel over DTW distance using

explicit feature maps. The linear approximation kernel is computationally efficient compared to all

other kernels over DTW distance and can also be used with linear SVM.

(c) Surrogate approximation kernel over canonical correlation analysis (CCA): Videos are gener-

ally represented using 3D tensors. To compare the videos in the problems like action recognition in

videos, the 3D tensors are factorized into lower-dimensional factors, and similarity measures are ap-

plied to these factors. Canonical correlation analysis (CCA) is widely used as the similarity measure

for comparing these lower-dimensional tensors. It measures the similarity using specially selected

discriminative correlation coefficients. Kernelized CCA is proposed to improve its performance in

a kernel setting. However, it cannot be applied in all the kernel methods. In this work, rather than

kernelizing the CCA, we are interested in defining a surrogate kernel over CCA, which can be applied

in many situations where the canonical correlation is used.

(d) Learning a Surrogate Loss for Semantic Segmentation and Human Pose Estimation Semantic

segmentation is a key topic in computer vision today, and deep neural network models have emerged

as the state-of-the-art solution to this problem in recent times. Cross-entropy loss is the typical loss

function used to train deep neural networks for this task. However, the success of the learned models

is measured using Intersection-Over-Union (IoU), which is inherently non-differentiable. Similarly,
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CNNs for human pose estimation typically use the regression loss for training the network. However,

the accuracy of human pose estimation methods (networks) is measured using metrics such as the

percentage of correct parts (PCP) and the percentage of correct key points (PCK). This gap between

performance measure and loss function results in a fall in performance, which few recent efforts

have also studied. This work aims to learn surrogate loss functions (networks) approximating the

IoU, PCP, and PCK loss.

1.3 Major contributions

The thesis has the following major contributions.

1. Linear approximation of DTW distance: In this work, we propose Fast Surrogate DTW dis-

tance, a linear approximation of naive DTW distance. We need to find the optimal warping path

from the possible alignments for computing the DTW distance. This is a computationally expen-

sive operation and requires quadratic complexity. We try to speed up the DTW distance by learning

the optimal alignment from the training data. We learn a small set of global principal alignments

from the training data, and the optimal alignment for the new test sequences is approximated

using these alignments. As far as we are aware, none of the previous methods have exploited

the hidden structure of the alignments. We approximate the DTW distance as a sum of multiple

weighted Euclidean distances that are known to be amenable to indexing and efficient retrieval.

The performance of the proposed Fast Surrogate DTW distance is as good as DTW distance and

computationally performs equally as simple Euclidean-based matching. The details of the Fast

Surrogate DTW distance are present in Chapter 3.

2. Linear approximation kernel over DTW distance: In this work, we have introduced the Fast

Surrogate DTW kernel, which is a linear kernel over DTW distance. We have also proposed an

explicit feature map for our Fast Surrogate DTW kernel, that enables the kernel to be applied

with linear SVM. The explicit feature map for the Fast Surrogate DTW kernel is computed using

the global principal alignments learned from the training data. In chapter 3, we present our Fast

Surrogate DTW kernel along with its evaluation studies.
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3. Efficient query specific DTW distance for document retrieval: We present an application using

Fast Surrogate DTW distance in chapter 4. These applications widen the scope of our work and

validate its robustness to different modalities.

• This chapter addresses the problem of faster indexing in classifier-based retrieval methods

using fast surrogate DTW distance. We introduce the query specific Fast Surrogate DTW

distance for faster indexing, which has linear time complexity.

4. Surrogate approximation kernel over canonical correlation analysis (CCA): In this work,

we have introduced a surrogate kernel over CCA. The proposed canonical correlation kernel

(CCK) enables us to compare videos in a kernel framework. The kernel function works well

for action recognition as it embeds the temporal context in the videos. It seamlessly integrates

the advantages of lower-dimensional representation of videos with a discriminative classifier like

SVM. We have also shown that multiple features can be seamlessly integrated into CCK to enhance

recognition performance further. We present the details of the proposed CCK kernel in chapter 5.

5. Learning a Surrogate Loss for Semantic Segmentation and Human Pose Estimation This

work proposes a novel method to automatically learn a surrogate loss function that approximates

the IoU, PCP, and PCKh loss, and is hence better suited for providing stronger performance. To

the best of our knowledge, this is the first such work that attempts to learn a loss function for

improved performance. The proposed loss can be directly learned over any base network. For

IoU loss, we validated our method over semantic segmentation models. For PCP and PCKh loss,

we validated over human pose estimation models. The proposed approach can also be used for

other tasks evaluated using non-differentiable measures. We present the details of the proposed

method in chapter 6.

1.4 Publications

Part of the work described in this thesis has previously been presented in the following publications.

Journals:

1. G Nagendar, Viresh Ranjan, Gaurav Harit, C. V. Jawahar: Efficient Query Specific DTW Dis-

tance for Document Retrieval with Unlimited Vocabulary. J. Imaging, 2018.
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2. G Nagendar, Vineeth N. Balasubramanian, C. V. Jawahar. Surrogate Loss Networks for Discrete

and Non-Decomposable Metrics. PR, 2022 (Under Review)

Conferences:

1. G Nagendar, Sai Ganesh Bandiatmakuri, Mahesh Goud Tandarpally, C. V. Jawahar, Action

Recognition Using Canonical Correlation Kernels, ACCV 2012

2. G Nagendar, C. V. Jawahar, Efficient word image retrieval using fast DTW distance, ICDAR

2015

3. G Nagendar, C. V. Jawahar, Fast approximate dynamic warping kernels, CODS 2015

4. G Nagendar, Digvijay Singh, Vineeth N. Balasubramanian, C. V. Jawahar, Neuro-IoU: Learning

a Surrogate Loss for Semantic Segmentation, BMVC 2018

Other publications during PhD which are not part of this thesis are as follows:

1. Tejaswi Kasarla, G Nagendar, Guruprasad Hegde, Vineeth N. Balasubramanian, C.V. Jawahar,

Region-Based Active Learning for Efficient Labelling in Semantic Segmentation, WACV 2019

1.5 Organization

• In Chapter 2, we provide the necessary background from the domain of computer vision and

machine learning for understanding the concepts and methods presented in this thesis.

• Chapter 3 presents our first major contribution by proposing a linear approximation of the pop-

ular DTW distance. We present a detailed analysis of the proposed approximation technique and

evaluate it over standard datasets. We also proposed a linear kernel over DTW distance. The

proposed kernel is computationally faster compared to all the kernels over DTW distance.

• In Chapter 4, we present an interesting application using the proposed linear approximation of

DTW distance. We address the problem of faster indexing in classifier-based retrieval methods

using the proposed linear approximation of naive DTW distance.

• In Chapter 5, we introduce a surrogate kernel approximation over canonical correlation analysis

(CCA). The proposed surrogate kernel reports state-of-the-art results for the task of action recog-

nition in videos. It also enables multiple feature fusion for enhancing recognition performance.
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• In Chapter 6, we present a novel method to automatically learn a surrogate loss function that

approximates discrete and non-decomposable metrics - in particular, the IoU, PCP and PCKh loss,

and is hence better suited for providing stronger performance.

• Finally, in Chapter 7 we present the summary of the thesis proposal.
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Chapter 2

Background

2.1 Introduction

This chapter provides a brief background for some of the concepts we use to design our approaches

for various tasks.

2.2 Similarity Measures

A similarity function is a real-valued function that quantifies the similarity between two objects. This

section provides a brief overview of a few popular similarity measures.

2.2.1 Canonical Correlation Analysis (CCA)

Canonical correlation analysis (CCA) [18, 51, 60, 75] identifies and measures the linear relationships

between two sets of random variables. It consists of finding a linear combination of variables in each

set such that the resultant linear combinations best express the correlations between the given two sets

of variables. Let X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , ym} be two vectors of random variables

and there exists correlations among the variables. The CCA finds a linear combination of variables in

X and Y , i.e., Uk =
∑n

i=1 akixi = ak1x1 + ak2x2 + . . . + aklxn and Vk =
∑m

i=1 bkiyi = bk1y1 +

bk2y2 + . . .+ bkmym such that Uk and Vk have maximum correlation with each other and best express

the correlations between X and Y . The random variables U1 = aT1 X and V1 = bT1 Y , where a1 ∈ Rn

and b1 ∈ Rm, are the first pair of canonical variables. The cross covariance
∑

XY = cov(X,Y ) for

X and Y is an n ×m matrix, whose (i, j) entry is the covariance between xi and yj . The first pair of

canonical variables (U1, V1) is defined using the coefficient vectors a1 and b1, which are defined as
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(a1, b1) = argmaxa1,b1Corr(U1, V1) (2.1)

where, Corr(U1, V1) is the correlation between U1 and V1 and defined as

Corr(U1, V1) ==
Cov(U1, V1)√

V ar(U1)
√
var(V1)

=
aT1 ΣXY b1√

aT1 ΣXa1

√
bT1 ΣXb1

(2.2)

where,
∑

X = cov(X,X) and
∑

Y = cov(Y, Y ). The correlation Corr(U1, V1) between U1 and V1

is the first canonical correlation ρ1 between X and Y . Similarly, the second pair of canonical variables

(U2, V2) are computed using Eq 2.1, subject to the constraint that they should to be uncorrelated with the

first pair of canonical variables (U1, V1). The 2nd canonical correlation is given by ρ2 = Corr(U2, V2).

The kth canonical correlation is the square root of the kth eigenvalue of Σ
−1
2
X ΣXY Σ−1

Y ΣY XΣ
−1
2
X . For a

given random vectors X and Y , we are interested in p canonical correlations, where p = min{n,m}.

The coefficient vectors ak and bk for the kth pair of canonical variables (Uk, Vk) are computed as

ak = dTk Σ
−1
2
X and bk = eTk Σ

−1
2
Y (2.3)

where, dk is the kth eigenvector of Σ
−1
2
X ΣXY

∑−1
Y ΣY XΣ

−1
2
X and ek is the kth eigenvector of

Σ
−1
2
Y ΣY X

∑−1
Y ΣXY

∑−1
2
Y .

For given random vectors X and Y , its CCA is given as

CCA(X,Y ) =

p∑
i=1

ρi (2.4)

where, ρi is the ith canonical correlation between X and Y and p = min{n,m}.

CCA is often defined using the theory of subspaces. In terms of subspace concepts, canonical cor-

relations are defined as the principal angles between the linear subspaces generated from the given set

of random variables. Canonical correlations are invariant to affine transformations with respect to the

given inputs [20], i.e. for the given inputs x ∈ Rn and y ∈ Rm

CCA(Px+ q,Ry + s) = CCA(x, y)

where, P ∈ Rn×n, q ∈ Rn, R ∈ Rm×m and s ∈ Rm.
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Applications of CCA CCA can be successfully applied for various visual classification tasks [138].

It has been successful in comparing two sets of images [45, 174, 178], where a set of linearly inde-

pendent vectors represents each image set. It has also been used as a set similarity measure for object

recognition problem [40]. Here, each image is represented as a collection of image descriptors and

these image descriptors are compared using CCA. CCA has also been applied to the problems of robot

localization [148], underwater target classification [120], estimation of face depth maps from color tex-

tures [132], and detection of neural activity in functional MRI [44].

2.2.2 Dynamic Time Warping (DTW)

For a given two time series, a naive approach for computing their similarity could be first to sample

the equal number of points from both the time series; here, the time series may have variable length.

Then, compute the Euclidean distance between the sampled points. This method may not always pro-

duce the desired results, mainly due to the variable time series length, as its results match the points that

might not correspond well. Also, it cannot capture the local dependencies between neighboring states

of the time series. Consider the example given in Figure 1.1(a). From the figure, we can observe that

Euclidean distance cannot capture their similarities for the given two-time seriesX and Y . In Euclidean

distance, ith sample point of X (Xi) is mapped to ith sample point of Y (Yi). However, in the figure,

Xi does not correspond well with Yi.

A successful method to compare time series data (sequences) is dynamic time warping (DTW) [12,

139, 146]. The DTW is used to compute the similarity between two time series [144].DTW has been

widely used for matching the time series (1-D signals) in many areas [79], including bio-informatics [1],

speech recognition [107], and word recognition [21,128]. For a given two time series, the DTW yields an

optimal alignment from all possible alignments. The optimal alignment is used to find the corresponding

points between the given time series. These correspondences are used to find the similarity between

the given time series. The example given in Figure 1.1(b) shows the DTW distance better capture the

similarities between X and Y compared to Euclidean distance In DTW distance, ith sample point of X

(Xi) is mapped to its similar point in Y . Since Xi is similar to Yi+2, Xi is mapped to Yi+2. In general,

for time series data, DTW distance works well compared to Euclidean distance.

Given two time series, X = (x1, . . . , xn) and Y = (y1, . . . , ym) of lengths n and m respectively, an

alignment π of length |π| = p is a pair of increasing p-tuples (π1, π2) such that
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Figure 2.1: Two constraints for speed up the DTW: Sakoe-Chuba Band (left) and an Itakura Parallelo-

gram (right).

1 = π1(1) ≤ . . . ≤ π1(p) = n,

1 = π2(1) ≤ . . . ≤ π2(p) = m

with unitary increments and no simultaneous repetitions. That is, for ∀1 ≤ i ≤ p− 1,

π1(i+ 1) ≤ π1(i) + 1, π2(i+ 1) ≤ π2(i) + 1

(π1(i+ 1)− π1(i)) + (π2(i+ 1)− π2(i)) ≥ 1.

Intuitively, an alignment π between X and Y describes a way to associate each element of X to one or

possibly more elements in Y , and vice-versa. LetA(X,Y ) be the set of all possible alignments between

X and Y . The DTW between X and Y is given as the minimum distance over all possible alignments,

DTW (X,Y ) = minπ∈A(X,Y )

|π|∑
i=1

ϕ(Xπ1(i), Yπ2(i)) (2.5)

where, ϕ(Xπ1(i), Yπ2(i)) is the ground distance between the given sequences indexed by the align-

ment π. In general, Euclidean distance is used as the ground distance. The resulting alignment is the

optimal alignment between the given two sequences. The DTW between the time series X and Y is the

distance between X and Y after mapped together with the optimal alignment.

For comparing two time-seriesX and Y of length n andm respectively, the time and space complex-

ity of DTW is O(nm). The quadratic complexity mainly involves finding the optimal alignment from

a large set of possible alignments. The quadratic complexity is particularly prohibitive for large-length

time series. The time series containing a few thousands of observations requires much memory and

is computationally unattractive. In practice, heuristic constraints are used to speed up DTW. Among

these, the most commonly used constraints are Sakoe-Chiba [139] and Itakura [65] constraints. These
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constraints are shown in Figure 2.1. The shaded region gives the constraint window. Instead of search-

ing in the entire space for optimal path, it restricts the search space to the constraint window. When

constraints are used, the DTW algorithm finds the optimal warp path from the constraint window. Using

constraints speed up the DTW distance by a constant factor, but the quadratic complexity remains the

same. In addition, using these methods, the global optimal path cannot be found if it does not pass

through the constraint window. The constraint windows work well if the optimal path is expected closer

to the diagonal.

2.3 Classifiers

In machine learning, a large number of problems can be posed as classification tasks. In classifica-

tion, we will be given a set of observations called "input variables" and the objective is to assign/predict

its category ("output variable") from a set of categories. For a given input spaceX and its corresponding

output space Y , the problem can be formulated as finding a classifier f : X → Y that can correctly

classify the given input samples. Formally, the classification problem has the following inputs

• A set of input-output pairs, called the training data D = {(x1, y1), . . . , (xn, yn)} ∈ X × Y

• A query sample xt

For the given query sample xt, its corresponding predicted category yt is formulated as

yt = f(xt, D, P ) (2.6)

where, P is the parameters for the classification algorithm. Classification has been widely used in

many vision tasks, which include semantic segmentation [92], speaker identification [152], document

categorization [70], and face recognition [116]. Examples of few popular classification algorithms in

machine learning include k-nearest neighbor (k-NN) classifier, support vector machines (SVM), and

convolutional neural networks (CNN).

2.3.1 Nearest Neighbor Classifier

The k-nearest neighbor (k-NN) [32, 43] is a supervised classification technique. k-NN has been stud-

ied over the past few decades and is widely used as the baseline classifier in many pattern classification
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problems [17]. It is a non-parametric technique [76]. In non-parametric methods, there are no parame-

ters or a fixed number of parameters irrespective of the data size. If there is no prior knowledge available

about the data distribution, then k-NN could be the best choice for the classification. It requires labeled

training data for classifying the new samples. In k-NN, for a given new query sample, it first computes

its distance from all the training samples using the base similarity measure. The sample is classified by

a majority vote of its k-nearest neighbors. It is simply assigned to the most common class among its k

nearest neighbors. Here, k is a positive integer. If k=1, then the sample is assigned to the class of its

nearest training sample. The choice of k depends on the data. In general, a larger value for k helps to

reduce the effects of noisy samples in the training data. For a given query sample xt, k-NN classifies it

as follows,

yt = argmax
c∈{c1,...,cl}

∑
D(x, c)

x∈NN(xt,k)

(2.7)

where yt is the predicted category for the given query sample xt, {c1, . . . , cl} are the set of categories

and NN(xt, k) is the k nearest neighbors for xt according to the given base similarity measure.

D(x, c) =


1 if y = c

0 else

where y is the given category/output for the sample x. The performance of k-NN algorithm mainly de-

pends on the given base similarity measure used for measuring the similarity between the query sample

and the training samples [4]. This raises the importance of the similarity measure (distance function)

used in k-NN algorithm. Several studies have been conducted to analyze the effect of similarity/distance

measures on k-NN classifier performance [4, 29, 62, 123]. In [62], Hu et.al. analyzed the effect of four

distance measures, including Euclidean, Cosine, Chi square, and Minkowski distances on k-NN perfor-

mance over four medical domain datasets (Blood, Breast cancer, Ecoli, and Pima) which are chosen

from the UCI machine learning repository. The results of this comparative study are given in figure 2.2.

From the results, we can observe that the performance of the k-NN classifier depends on the distance

function and the choice of distance function depends on the given dataset. Minkowski distance is per-

forming well on Breast cancer and Ecoli datasets, whereas, Chi-square is performing well on Blood and

Pima datasets.

k-NN is one of the simplest classification algorithms, however, it has some limitations. It needs to

store all the training data to classify a given sample, which results in memory overhead. For problems
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Figure 2.2: Effect of similarity measures on k-NN performance. Here, the similarity measures Eu-

clidean, Cosine, Chi square, and Minkowski are compared over Blood, Breast cancer, Ecoli, and Pima

datasets.

Figure 2.3: Role of k value on k-NN performance. Here, the results are given for k=1 and k=7.
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where the training set is large, the k-NN classifier is computationally expensive, and testing is imprac-

tical. For classification, the k-NN classifier gives equal weightage to all the features. It may result in

undesirable performance for problems where only a subset of features are important. The value for k

also plays an important role in k-NN performance. Consider the example in figure 2.3. In the figure, the

samples marked in blue belong to category 1, and samples marked in green belong to category 2. For

a given query sample (marked in red), the regions for k=1 and k=7 are marked in dotted circles. From

the figure, we can observe that if k=1, the query sample belongs to category 1, and if k=7, it belongs to

category 2. Also, while computing the nearest neighbors during the testing phase, it does not consider

their class distribution. It may not always produce desirable results on imbalanced data.

2.3.2 Support Vector Machines (SVM)

Support vector machines (SVM) are introduced by Vapnik [31] et al. It is a popular learning method

for binary and multiclass classification [22, 165]. The basic idea is to find the hyperplanes that separate

the given data classes. It finds a hyperplane that separates the data into two classes for binary classifica-

tion. This subsection presents an overview of support vector machines, starting with hard margin SVM

and followed by soft margin SVM.

2.3.2.1 Hard margin SVM (Separable Case)

In a binary classification setting, letD = {(xi, yi); i = 1 to n} be the given training data, where xi(∈

Rd)s are the data samples and yi(= {+1,−1})s are their corresponding labels. Linear classification is

the problem of finding a linear hyper plane, which separates the given two classes. All the hyper planes

in Rd can be characterized by the two parameters w ∈ Rd and b ∈ R, and expressed as

wTx+ b = 0 (2.8)

This gives a decision function

f(x) = sign(wTx+ b) (2.9)

However, a given hyperplane characterized by the parameters (w, b) is equivalently expressed as

(λw, λb), ∀λ ∈ R+. Thus we define the hyperplane (w, b) as the one which separates the two classes

by a distance of at least one. This can be expressed as
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Figure 2.4: Two separating hyperplanes for a linearly separable data. The hyperplane in the right hand

side has maximum margin compared to the other hyperplane.

wTxi + b ≥ 1 if yi = +1

wTxi + b ≤ −1 if yi = −1
(2.10)

or in a compact way

yi(w
Txi + b) ≥ 1 (2.11)

Consider a binary classification problem given in Figure 2.4. In the figure, both the hyperplanes

correctly separate the given two classes of data. The margin of a hyperplane is defined as its distance

from the closest data sample. In figure 2.4, the hyperplane on the right-hand side has the maximum

margin compared to the other hyperplane. In general, the samples around the decision hyperplane have

high uncertainty. They represent very uncertain classification decisions. A hyperplane with a maximum

margin has very few uncertain samples, which results in minimal uncertain classification decisions. It

also guarantees minimal test error compared to other hyperplanes. The maximum margin hyperplane

is less sensitive to the noise in the data. For a given classification problem, support vector machines

find a hyperplane that separates the given classes with the maximum margin. The maximum margin

hyperplane is computed by minimizing the norm of w, i.e., ‖w‖. The SVM problem for classification is

formulated as

min
‖w‖

2
(2.12)

subject to

yi(w
Txi + b) > 1 ∀i = 1 to n ; yi ∈ {+1,−1}
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The above optimization problem is solved using the concept of Lagrangian dual. The Lagrangian for

the above problem is given as

L(w, b, α) =
1

2
wTw −

n∑
i=1

αi

[
yi(w

Txi + b)− 1

]
(2.13)

where αis are the Lagrangian multiplier.

To get the Lagrangian dual, the Lagrangian has to be minimized with respect to w and b. Thus,

differentiating L(w, b, α) w.r.to w and b, and setting it to zero gives the following expressions

∂L(w, b, α)

∂w
= 0 =⇒ w =

n∑
i=1

αiyixi (2.14)

∂L(w, b, α)

∂b
= 0 =⇒

n∑
i=1

αiyi = 0 (2.15)

Substituting (2.14) and (2.15) in (2.13) gives the following lagrangian dual

Q(α) =

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
T
i xj (2.16)

The lagrangian dual Q(α) has to be maximized w.r.to the lagrangian multiplier α, this gives the

following lagrangian dual formulation for the SVM primal problem (2.12).

maxαi

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
T
i xj (2.17)

subject to
n∑
i=1

αiyi = 0

αi ≥ 0 for i = 1, 2, . . . , n

This is a quadratic programming (QP) problem, and many techniques are available for solving this

formulation. After the computation of Lagrangian multipliers αi, the expression (2.14) is used to find

the optimal hyperplane.

2.3.2.2 Soft margin SVM (Non-Separable case)

In the previous section, we discussed the case where the data is linearly separable. Consider the data

given in Figure 2.5. For this data, we cannot find a separating hyperplane using hard margin SVM as
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Figure 2.5: Example of a non-linear data. Here, we cannot find a hyperplane, which separates the two

classes.

discussed in Section 2.3.2.1. Even for the linearly separable data, an outlier may cause a hard margin

SVM to overfit the training data in its search for a separating hyperplane. One solution to this problem is

to allow some training error during the training. It prompted the development of soft margin SVM [31],

which can handle non-separable data. It introduces a positive slack variable ξ in the constraints 2.10 and

allows some misclassification error during the training. The resulting problem is solved by minimizing

the misclassification error. This approach gives the following soft margin SVM formulation

minw,ξ
1

2
wTw + C

n∑
i=1

ξi (2.18)

subject to

yi(w
Tφ(xi) + b) ≥ 1− ξi

ξi ≥ 0 ∀i = 1, . . . , n

Here C is a regularization parameter. It controls the tradeoff between the complexity of the machine

and the number of non-separable points. If the value of C is large, it leads to overfitting, and if it is

very small, it allows many misclassifications, leading to underfitting. The value for C is chosen using

cross-validation techniques.

2.3.3 Convolutional Neural Networks (CNN)

Over the past few years, there has been increasing interest in feature learning for various tasks like

object detection, recognition, segmentation, etc, using machine learning methods. Deep learning models

offer a solution to this problem. These are based on multi-layer neural networks. In these networks,
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Figure 2.6: Typical architecture of a convolutional neural network for image classification.

each layer learns a set of features for the given problem. A feedforward neural network involves an

input layer, multiple hidden layers, and an output layer. Each neuron in the hidden layer contains an

activation function. Input to a neuron in the kth layer is the linear mapping of the output of k− 1- layer

neurons. Given an input x0 ∈ Rd, it maps to an output xm ∈ Rp through a sequence of functions fi

called layers. The output at jth layer is given as fj(xj−1, wj), where wj is the jth layer parameters

and xj−1 is input to the jth layer. In general, feed-forward neural networks are trained using the back

propagation technique. These are susceptible to the vanishing gradient problem. The gradient of the loss

with respect to the network parameters becomes increasingly smaller in the initial layers. Since these

gradients become increasingly smaller in each iteration, the weights and biases in the initial layers will

not be updated effectively. It is the main limitation of neural networks in terms of the number of layers.

In fully connected networks, neurons are connected to all the input dimensions. If we consider a typical

image classification problem using fully connected networks with images of size 128×128. It results in

an input dimension of 16384. Training the network for this higher dimensional data is practically very

difficult.

A Convolutional Neural Network (CNN) is a multi-layer feed-forward neural network that can learn

multiple layers of non-linear features. CNNs are particularly useful for image data. In CNN, instead of

connecting all the input image pixels to the neurons in the next layers, each neuron in the immediate

layer only connects to the pixels in a small patch of the image using receptive fields. This makes training

simpler compared to fully connected models. Given an image I ∈ Rw×h×c, where w, h, c are the width,

height and number of channels (for RGB image c = 3), the output at jth layer of CNN is given as a

24



Figure 2.7: Popular activation functions used in convolutional neural networks

spatial map xj ∈ Rwj×hj×cj , where wj , hj are the spatial resolution of xj and cj is the number of

feature channels in jth layer.

2.3.3.1 Layers of CNNs

The CNN contains different functional layers, and each of these layers performs different types of

tasks. Some important functional layers in CNN are the convolutional layer, pooling layer, and fully

connected layer. A typical CNN network is given in figure 2.6. Here we show five convolutional layers

and one pooling layer.

Convolutional Layer: In convolutional neural networks, convolutional layer is the most important

layer. A convolutional layer computes the convolution between an input x ∈ Rw×h×c and a set of k

filters f ∈ Rw
′×h′×c to produce an output y ∈ Rw

′′×h′′×k. The convolutional operation is performed as

follows

ynj = f(

F∑
i=1

xn−1
i ∗ wnij), j = 1, . . . , k (2.19)

where, n indicates the layer index, i is the input channel index, wnij are the filter weights, ∗ denotes

convolution operation, f() is the activation function and ynj is the jth output featuremap. Each of the

filters is applied as a sliding window over the input. It acts as the local feature detector for images. As

the layers go deeper, it computes more complex features. The parameters (weights) are shared among

all the neurons in a convolutional layer. These features do not change according to spatial positions.

Convolution is a translation invariant operator. After each convolution operation, non-linear activation
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functions are applied to learn complex transformations in the input space. Few popular activation func-

tions are sigmoid, tan hyperbolic, rectified linear units (ReLU)s [111], and leakyReLU. These activation

functions are shown figure 2.7. Here both the sigmoid and tanh functions suffer from vanishing gradient

problem. This is mainly due to its smoothness towards the lower and higher domain values. This leads to

slower training. The activation function ReLU solves this problem by having non-saturating gradients.

The hyper-parameters of a convolutional layer are weights in the filters (w, h), the number of filters (k),

the step size (s), and the padding width (p). Padding is used to preserve spatial dimensionality.

Pooling Layer: In CNN architecture, a pooling layer is followed by a convolution layer. The pooling

layers are used to progressively reduce the spatial size of feature maps obtained from the convolutional

layer. The pooling layers play an important role in CNN architecture. In general, the convolutional

layers preserve the spatial dimension of the feature maps. If the input image is of size w × h× 3, then

convolutional operation produces an output w
′ × h′× (number of filters). For large images, it results in

a huge number of features. Training on such a huge number of features is very difficult and may also

result in overfitting. Many pooling techniques are available for reducing the feature dimensions, such as

max pooling and average pooling. The most popular technique is max pooling, as it extracts the most

dominant features from its corresponding region. As we go further down from the input layer, pooling

layers reduce the featuremap resolution and thereby capture the rich semantic features.

Fully Connected Layer: In a typical CNN architecture, after a set of convolutional and pooling layers,

a set of fully connected (FC) layers are applied. These are treated as a classifier in the form of a multi-

layer perceptron. It maps the convolution features to an output space. For a classification problem, its

output space dimension is equal to the number of classes. Neurons in a fully connected layer have full

connections to all activations in the previous layer. In figure 2.6, we show 3 fully connected layers.

After the fully connected layers, a softmax layer is applied to convert the FC layer scores in the range

(0,1). The nodes in the softmax layer generally contain different activation functions. In general, the

softmax function is used as the activation function, which is given as,

yi =
exi∑
j e

xj
(2.20)

The output from this softmax function can be treated as the probability values for each label.
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Figure 2.8: The 4 nearest neighbors for an interpolated sample in bilinear interpolation.

Upsampling Layer: In the classification task, the spatial dimension of the featuremaps is reduced

using the above layers. In the final layer, the number of neurons equals the number of classes. In

general, downsampling is needed for the classification task. However, downsampling is not always

needed in CNN. For the problems like semantic segmentation, where the objective is to classify each

pixel in the image, we also need an upsampling layer. Here we need to construct an output with the exact

spatial dimensions of the input. Upsampling layers are needed for increasing the spatial dimension of

the deep features in the later layers. Many upsampling techniques are available for increasing the spatial

dimensions in CNN. A few popular upsampling techniques are bilinear interpolation and deconvolution.

Bilinear interpolation is the simplest upsampling technique and is an extension of linear interpolation

for functions of two variables. In bilinear interpolation, interpolation is performed using the nearby

values. To interpolate at a location, it needs four nearest neighbors. The weighted average of these four

nearest neighbor values is assigned to the new location. These weights are calculated using the distance

from the nearest neighbors. Suppose if we want to interpolate at a location (x, y) using the bilinear

interpolation and we know its 4 nearest neighbors (x1, y1), (x1, y2), (x2, y1) and (x2, y2). The location

of interpolation is given in figure 2.8. The bilinear interpolation is given as

P =
(x2 − x)(y2 − y)

(x2 − x1)(y2 − y1)
V11+

(x− x1)(y2 − y)

(x2 − x1)(y2 − y1)
V21+

(x2 − x)(y − y1)

(x2 − x1)(y2 − y1)
V12+

(x− x1)(y − y1)

(x2 − x1)(y2 − y1)
V22

(2.21)

Deconvolution is the inverse function of the convolution operation. The deconvolutional layer is

used for upsampling the down-sampled featuremaps obtained from the CNN. In CNN, the deconvolution

term is generally referred to as convolution operation for upsampling or transposed convolution. The
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Figure 2.9: Deconvolution operation over a 3×3 image (blue squares). Here the 3×3 image is upsam-

pled to a 5×5 image (green).

deconvolution operation performed over a 3×3 image is explained in figure 2.9. Here the 3×3 image

is upsampled to a 5×5 image. The white boxes denote the zero-padding around each pixel. In general,

the deconvolution for an input image is the convolution operation over the padded image. In [113], the

authors proposed a DeconvNet, where zeros padding around each pixel can be avoided with an unpool-

ing layer. The convolution operation is directly applied over the unpooled images. Deconvolution gives

better results compared to bilinear interpolation. This is mainly due to the learning process involved in

the deconvolutional layer.

2.3.3.2 Training

Training a CNN network requires finding the optimal weights for each learnable parameter in the net-

work. These are filter weights (W ) and biases (b), which correspond to the convolutional and fully con-

nected layers. The most popular optimization algorithm used for finding the optimal parameters is the

mini-batch stochastic gradient descent (SGD) with momentum. The backpropagation algorithm [136] is

used for updating the parameters of each layer in CNN network.

For finding the optimal weights, we formulate the learning process in terms of an optimization prob-

lem with the following objective function

θ∗ = argminθ

N∑
i=1

L(xi, yi) + λ‖W‖22 (2.22)

where L(.) denotes the loss function which is parameterized by θ and θ = (w, b). Here xi, yi denotes

the input sample and the ground truth label vector for the ith sample, respectively. The second part of the
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equation minimizes the L2 norm of the weight coefficients, also referred to as the weight decay, which

prevents over-fitting by reducing the complexity of the network. This is also known as the regularization

process.

In general, the loss function for a deep convolutional network with non-linear activation functions

is highly complex and non-convex. The most popular optimization algorithm used is the mini-batch

stochastic gradient descent (SGD) with momentum. SGD is a first-order iterative optimization method

that computes the gradient of the loss and iteratively update the weights in the direction where the loss

decreases as given below:

θn+1 = θn − η∆ (2.23)

∆ = µ∆ +
∂L

∂θn

where η is the learning rate that decides the step size of the update. µ is the momentum factor that

determines how much gradient direction from the previous step should be considered in the current

update. Note that there exist many weight initialization schemes for better learning the optimal weights.

2.3.3.3 Regularization

The goal of any machine learning model is to generalize well on unseen examples and prevent over-

fitting of the training data. The same is applicable in the context of deep learning. In this section, we

discuss a few regularization techniques from the literature,

Dropouts: Dropouts [153] is a regularization technique proposed in [153]. In dropouts, at each it-

eration of training, a few neurons are selected randomly with a probability p and dropped out during

training. All the connections to the selected neurons are made zero in the forward pass, and in the

backward pass, the weights are not updated. It makes each neuron learn individually during the train-

ing, which avoids overfitting. It is similar to the concept of learning an ensemble of networks. Now, the

learned network is less sensitive to specific neurons, which results in a generalized network. All neurons

are preserved but scaled during testing with a factor of p.

Data Augmentation: Convolutional neural networks have been performing well on many computer

vision problems. However, their success depends on the amount of training data. In practical scenarios,

sometimes collecting the labeled data is very expensive. If the network is trained on small datasets,
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it may not generalize well on test data, leading to poor generalization. Data augmentation provides

a solution to these problems. It extracts more information from the training data using augmentation

techniques. Few popularly used augmentation techniques are translation, rotation, cropping, and scaling.

All of these techniques are affine transformation over given training images, which can be expressed as,

y = Wx+ b

Here x is the original image. However, during these transformations, one must be careful in preserving

the label information.

2.3.3.4 Loss functions in CNN

In convolutional neural networks, the goal is to minimize or maximize a function with respect to

the network parameters. Minimization is the most common case in CNN. The function that is mini-

mized/maximized in CNN is typically called the objective function. It can also be called a loss, error, or

cost function. In CNN, the loss function measures how far the network output is from the target/desired

output. It is essential to choose the correct loss function in CNN. Since the gradient of the loss function

is used for updating the network parameters during the training, the loss function plays an essential role

in CNN. In CNN, if an appropriate loss function is not used, it directly affects the convergence of the

network. Loss functions can be broadly divided into two categories depending on the learning task,

classification loss and regression loss. In this section, we discuss a few loss functions in each category.

2.3.3.4.1 Classification Loss: For classification, we generally use cross-entropy and hinge loss.

Cross Entropy Loss: Cross entropy is widely used as the loss function in classification models, where

the model output is a probability value between 0 and 1. In CNN, a softmax layer is applied before com-

puting the cross entropy loss for converting the network scores in to probability values. For multiclass

classification, cross entropy loss for a sample xi is calculated as,

L = −
c∑
i

yilog(y
′
i) (2.24)

where, yi is the ground truth, y
′
i is the network output for the sample xi and c is the number of classes.

For binary classification problem, the cross-entropy is calculated as
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Figure 2.10: The behaviour of cross entropy loss over the predicted probability scores. Here, X- axis

contains the predicted probability scores and their corresponding cross entropy loss values are plotted

on Y-axis.

L = −(yilog(y
′
i) + (1− yi)(1− log(y

′
i)) (2.25)

The behavior of cross-entropy loss is shown in figure 2.10. As the predicted probability of the true

class gets closer to one, the loss becomes small. If it reaches closer to zero, the loss increases rapidly.

Hinge loss Hinge loss is used for maximum margin classification. It is popularly used in support

vector machines. Hinge loss is not a differentiable function, however, due to its convex nature, it is

widely used in the machine learning community. For binary classification, where the class labels are

either +1 or -1, the hinge loss is given as,

L =
∑
i

max(0, 1− yih(xi)) (2.26)

where, yi is the ground truth and h(xi) is the network output.

2.3.3.4.2 Regression Loss For regression, we generally use mean square or L2 loss.

Mean Square Loss/L2 loss For a given problem, the mean square loss/error (MSE) is measured as

the average of squared difference between predictions and actual observations. The mean square loss is

defined as,
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L =
1

n

n∑
i=1

‖yi − y
′
i‖22 (2.27)

where yi is the ground truth and y
′
i is the predicted value for the ith training example. n is the number of

training samples. The mean square loss is only concerned with its magnitude and does not look into its

direction. Due to the squaring operation involved in the definition, the predictions far from the ground

truth are more penalized compared to the near ones.

In addition to these loss functions, other loss functions exist, such as KL divergence, margin-based

raking loss, negative log-likelihood, cosine embedding, and others. These loss functions are problem-

specific and suit well for a certain class of problems. Also, note that, except hinge loss, all these loss

functions are continuous and differentiable. In CNN, the loss function must be differentiable for training

the network.

2.3.3.4.3 Loss functions in Generative Adversarial Networks (GAN) Generative adversarial net-

works (GAN) is a deep learning architecture consisting of two neural networks competing with each

other to improve their prediction accuracy. The two neural networks are generally referred to as the

generator and the discriminator. Min-max loss is the standard loss function used in GAN, which is given

as

L = Ex[log(D(x))] + Ez[log(1−D(G(z)))] (2.28)

where,D(x) represents the discriminator estimate of the probability when x come from the real training

data and G(z) is the generator output when given noise z. Ex and Ez are the expected values respec-

tively over the real data and generated fake instances G(z). The generator tries to minimize the above

loss function while the discriminator tries to maximize it. The min-max loss function is derived from

the cross entropy loss over actual and generated fake (noise) data distributions.

2.4 Kernel Methods in Machine Learning

Linear models can be computed efficiently and are well understood compared to non-linear models.

However, many real-world problems are inherently non-linear, and these problems are difficult to inter-

pret using linear models. One solution to visualize the non-linear data using linear models is to project

the data into a linear space. Now, all the linear models can be used to interpret the projected data.
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Figure 2.11: Projecting the data using a feature map. Here the projected data is linearly separable.

The projection has to preserve all the similarities in the original space to get a better interpretation. In

machine learning, feature maps offer a solution to this problem. Feature maps are based on the idea of

cover’s theorem, which states that a "complex pattern classification problem cast in a high dimensional

space non linearly is more likely to be linearly separable than in a low dimensional space".

2.4.1 Kernels and Feature maps

Feature map It is a mapping function φ : X → V , which maps the input data X into some higher

dimensional vector space V so that the data is linearly separable in the projected space and the projected

space is equivalent to the original input space. Here V is called the feature space. A feature map over

non-linear data is shown in figure 2.11. Here the projected data is linearly separable.

Kernel of a Function The kernel of a function F is an equivalence relation on the function’s domain

that roughly expresses the idea of "equivalent as far as the function F can tell". Let X and Y be two

sets and F be a function from X to Y . The elements x1 and x2 of X are said to be equivalent if F (x1)

and F (x2) are equal, i.e. they mapped to the same element in Y . Formally, if F : X → Y is a function

then kernel of F is defined as

ker(F ) = {(x1, x2) ∈ X ×X : F (x1) = F (x2)}

Kernels are used to find a similarity between the elements of a set with respect to a function defined

over that set.

Kernel Function A kernel is a function fromX×X to R. A kernel function κ : X×X → R which is

either continuous or has a finite domain is said to be a valid kernel (positive definite) if it is symmetric

and can be decomposed as
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κ(x1, x2) = 〈φ(x1), φ(x2)〉 (2.29)

where φ : X → F is a feature map from X to some higher dimensional feature space F and 〈.〉 is the

inner product in F .

or

It is a (i) Symmetric function (ii) Kernel matrix corresponds to any finite subset of X is a positive

definite matrix, i.e, ∀S = {x1, . . . , x|S|} ⊆ X , |S| < ∞; the kernel matrix κS,S is a positive definite

matrix, where κS,S ∈M|S|×|S|(R) and κS,S(i, j) = κ(xi, xj).

The kernel generally corresponds to a feature map over its input space. In feature maps, the similari-

ties in the projected space are computed using the associated kernel function. Since the dimension of the

feature space is usually high, the operations in the feature space require a huge computational cost. The

kernel trick allows us to do the computations in the feature space using kernel functions, which depend

on the dimension of the original space. Consider the problem of distance computation (Euclidean) in

the feature space F . It can be computed as

d(φ(x1), φ(x2))2 = (φ(x1)− φ(x2))T (φ(x1)− φ(x2))

= φ(x1)φ(x1)T − 2φ(x1)φ(x2)T + φ(x2)φ(x2)T

= κ(x1, x1)− 2κ(x1, x2) + κ(x2, x2)

Here, x1, x2 ∈ X and φ(x1), φ(x2) ∈ F . The computational cost of Euclidean distance in F depends

on the dimension of the projected samples (dim(F )). Using the kernel trick, now it only depends on the

dimension of original space (dim(X)).

Examples of Kernels

• Polynomial Kernel : κ(x1, x2) = 〈x1, x2〉d + c

• Gaussian Kernel : κ(x1, x2) = exp(−||x1−x2||
2

2σ2 )

• Tan hyperbolic Kernel : κ(x1, x2) = tanh(αx1x2 + c)
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Figure 2.12: Projection of the data into its corresponding Reproducing kernel Hilbert space.

2.4.2 Reproducing Kernel Hilbert Space (RKHS)

Let X be an arbitrary set and H be a Hilbert space of real or complex valued functions over X then

H is said to be a reproducing kernel Hilbert space (RKHS) if the linear map Fx : H → R defined as,

Fx : f → f(x) is continuous ∀x ∈ X .

Let H∗ be a dual space of H , consisting set of all continuous linear functions from H to R/C. For

every element g ∈ H , we can define a function ψg : H → R as

ψg(f) = 〈g, f〉∀f ∈ H (2.30)

The functions ψg, ∀g ∈ H are elements of H∗. From Riesz representation theorem, every element in

H∗ can be uniquely expressed in the above form (2.30). Since Fx is a continuous function over H , it

belongs to H∗. Thus it can be expressed as

f(x) = Fx(f) = 〈f,Kx〉,∀f ∈ H where Kx ∈ H (2.31)

This implies that ∀x ∈ X , there exists a functionKx ∈ H , such that f(x) can be evaluated by taking

its inner product with Kx. Since Kx is a function over X , it can be written as Kx(y). The space of all

these functions can be encoded into a single function κ : X ×X → R, which is defined as

κ(x, y) = Kx(y) (2.32)

This function is called the reproducing kernel for the Hilbert space H . It is completely determined

by the Hilbert space H . Since Kx(y) = κ(x, y), Kx(y) is a valid kernel. Every reproducing kernel

Hilbert space is associated with a unique valid kernel. Also, given a valid kernel κ, we can construct a
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feature spaceH (RKHS), such that k computes the dot product inH . In figure 2.12, we show a sample’s

projection into its corresponding reproducing kernel Hilbert space.

2.4.3 Kernels in Machine Learning

In Section 2.4.1, we have presented some examples of kernels over Rn, but kernels can also be

applied over other domains such as sets, text, strings, and graphs. This section presents examples of a

few popular kernels over different domains.

Kernels over Histograms The simplest way to represent the images is by using histograms. The

histogram intersection kernel is one of the popular kernels applied over histograms. Histogram inter-

section is a technique proposed in [157] for color indexing and successfully applied for object recog-

nition. It measures the degree of similarity between two histograms. For a given two histograms

H1 = (h11, . . . , h1n) and H2 = (h21, . . . , h2n), the histogram kernel is defined as

κ(H1, H2) =
n∑
i=1

min{h1i, h2i} (2.33)

Kernels over Sets Let D be any set and P(D) is its corresponding power set. For A1, A2 ∈ P(D), a

kernel over D can be defined as follows

κ(A1, A2) = 2|A1∩A2| (2.34)

where |A1 ∩A2| is the cardinality of A1 ∩A2.

Its corresponding feature map φ is defined as

φ(A)U =

 1 if U ⊆ A

0 otherwise

Here, the elements of φ(A)U are enumerated using the elements of P(D) and the dimension of

φ(A)U is |P(D)|.

Kernels over Text Let D be the set of documents, consider a dictionary which is the set of all words

in the documents. For a given document d ∈ D define a feature map as follows

φ(d) = (f(t1, d), f(t2, d), ..., f(tN , d)) (2.35)
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where N is the size of the dictionary and f(ti, d) is the frequency of ith word in the document d.

The corresponding kernel is defined as

κ(d1, d2) = 〈φ(d1), φ(d2)〉

=

N∑
i=1

f(ti, d1)f(ti, d2)

Kernels over Strings Consider an alphabet Σ consisting of m symbols. A string s = s1.....s|s| over

Σ is a finite sequence of symbols from Σ and Σn is the set of all strings of length n.

p-Spectrum Kernel For a given string s, the featuremap for the p-Spectrum kernel is defined as

φp(s) = (φpu)u∈Σp ;φ
p
u = |{(v1, v2) : s = v1uv2}| (2.36)

Here Σp is the feature space. The associated p-Spectrum kernel is defined as

κp(s, t) = 〈φp(s), φp(t)〉〉

=
∑
u∈Σp

φpu(s)φpu(t)

Fisher Kernel Let X be the given data, for a data sample x, P (x/θ) be a probability model where

θ is a vector of model parameter. δθ is the gradient operator with respect to θ, logeP (x/θ) is the log-

likelihood of x with respect to the model over the given set of parameters θ. The Fisher score for the

given data sample x is its gradient of the log-likelihood with respect to the set of model parameters θ.

Fx = δθlogeP (x/θ) (2.37)

The Fisher score gives an embedding into the feature space. The Fisher kernel [68, 118] over this

feature space is defined as

κ(x1, x2) = Fx1I
−1Fx2 (2.38)

where I is the Fisher information matrix. All the above kernels are standard kernels over different

domains. These kernels are problem dependent, a single kernel may not work well for all the problems.
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Figure 2.13: Projecting the data using non linear feature map. Here the projected data is linearly sepa-

rable.

2.4.4 Kernels in SVM

Kernels play an essential role in support vector machines (SVM). In SVM, the non-linearities present

in the data are handled using kernels and their associated feature maps. Since, for the non-linear sep-

arable data (figure 2.13(a)), it is not possible to find a separable hyperplane, SVM uses the concept of

a kernel induced feature space. In this, the data is projected into a higher dimensional feature space

where it is linearly separable. The projection is performed using the feature map associated with the

given kernel. In figure 2.13(b), we can observe that the projected data is linearly separable. The SVM

finds a separating hyperplane in the kernel induced projected space. One such separating hyperplane is

shown in figure 2.13(b). The computational problems arising from the high dimensional feature space

are handled using the kernel trick. The SVM formulation using kernels is given as

minw
‖w‖

2
(2.39)

subject to

yi(w
Tφ(xi) + b) > 1− ξi ∀i = 1 to n ; yi ∈ {+1,−1}

The main difference between the above formulation and the formulation given in Eq 2.12 is the usage

of the feature map. In the above formulation, the data is first projected using the feature map φ, then,
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the SVM formulation given in Eq 2.12 is applied over the projected data. The Lagrangian dual for this

formulation is given as

maxαi

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjk(xixj) (2.40)

subject to the constraints

(1)
n∑
i=1

αiyi = 0

(2)0 ≤ αi ≤ C for i = 1, 2, . . . , n

In this formulation, the inner product between the feature maps φ(xi) and φ(xj) is replaced using its

corresponding kernel function κ(xi, xj). This avoids the computations in the higher dimensional feature

space. It is called kernel trick.

importance of positive definite kernels in SVM If the kernel is not a positive definite, then the

Lagrangian formulation given in 2.40 will not be convex, which does not guarantee a unique global

optimal solution [28]. The uniqueness of the solution gives the superiority of SVM over other classifiers

like nearest neighbor classifier and neural networks.

2.4.5 Indefinite kernels

In machine learning, there is a large class of kernels that are not positive semidefinite (indefinite),

such as sigmoid kernel [61] and hyperbolic tangent kernels [149]. Also, the kernels induced from sim-

ilarity measures like edit distance [90], canonical correlation analysis (CCA) [18], and dynamic time

warping (DTW) [146] are not positive definite. Even though these kernels are indefinite, their corre-

sponding similarity measures found applications in many problems. For example, the kernel computed

using the edit distance, κ(s, s
′
) = edit(s, s

′
), where edit(s, s

′
) is the edit distance between the strings

s ands
′

is not positive definite. However, edit distance is a widely used similarity measure for classi-

fying biological sequences. It is successfully used with the nearest neighbor classifier. Although these

similarity measures have applications in many problems, they can not be used as kernels in SVM (as dis-

cussed in Section 2.4.4), which limits their applicability. This is mainly due to their indefinite property.

The positive definite kernels over similarity measures allow us to explore the non-linearities in the given

data. Since these kernels can be used with SVM, it guarantees a unique global optimal solution for the
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given problem compared to the nearest neighbor classifier. For a given problem, these kernels with SVM

perform well compared to its corresponding similarity measure with the nearest neighbor classifier.

Indefinite kernels are previously explored in SVMs [38, 61, 90, 169]. Lin and Lin [61] converted the

indefinite sigmoid kernel into a conditionally positive definite kernel using some restrictions on kernel

parameters. They solved the resultant non-convex dual problem using SMO type decomposition meth-

ods. Cheng et al. [115] represented the indefinite kernels in reproducing kernel Krein spaces. Due

to its non-positivity, they stabilize the loss function instead of minimizing it. Some previous meth-

ods [38, 169], directly used the indefinite kernels with SVM. Although these methods perform well, the

convergence of SVM with these kernels to the unique global optimal solution is not guaranteed. This is

mainly due to the non-convexity of SVM with indefinite kernels.

The kernel over edit distance, κ(s, s
′
) = edit(s, s

′
) is not positive definite. However, Haifeng et

al. [90] converted this indefinite kernel in to a positive definite kernel by defining it as,

κ(s, s
′
) = e−β edit(s,s

′
) (2.41)

The positive definiteness depends on the value of β, which is data dependent. In general, the DTW

distance does not yield a positive definite kernel. This is mainly due to its non-metric property. However,

few kernels are defined over DTW distance using different techniques [12, 54, 146, 183]. In [54], the

authors corrected the negative definite kernel matrix by its square. There are also some attempts where

minor changes are incorporated in the definition of DTW distance for defining a positive definite kernel.

Hayashi et al. [56] projected the time series into a Euclidean space such that the resulting representation

approximates the DTW distance.
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Chapter 3

Fast Surrogate DTW: A Surrogate Approximation of DTW Distance

This chapter presents a surrogate approximation for dynamic time warping (DTW). The proposed

surrogate approximation is a linear approximation of the DTW distance. The main goal of this chapter

is to speed up the computation of DTW using its surrogate approximation. This is achieved by intro-

ducing the global principal alignments, which avoids the computation of optimal alignments for new

query images. These pre-computed global principal alignments capture all the correlations in the given

dataset. The proposed linear approximation technique makes the DTW based document image retrieval

computationally feasible. The performance of the proposed method is as good as naive DTW distance

and computationally performs equally as simple Euclidean-based matching. Using the proposed surro-

gate approximation technique, we also present a linear approximation kernel over DTW, which can be

used with linear SVM.

3.1 Introduction

Distance (Similarity) functions play an important role in a wide variety of problems, including re-

gression, classification, and clustering. They are used to find the similarity/dissimilarity between the

samples. There are several distance functions available in machine learning literature like Euclidean,

Geodesic, Earth Movers Distance (EMD) [135], dynamic time warping (DTW) [12, 16, 146], and so on.

Each of these distance functions computes different types of similarity and is useful for different prob-

lems. For example, Euclidean distance is widely used to compare the sequences in the same dimensional

space. The main limitation of using Euclidean distance for time series data is that it does not capture

the local dependencies between neighboring states of the time series and is sensitive to distortion in the

time axis. For a given pair of sequences, it finds the optimal alignment by ignoring both global and
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local shifts in the time dimension. DTW distance is popularly used for comparing word image represen-

tations [130]. This is mainly due to its ability to capture local dependencies and handle variable-length

representations. DTW is often used in speech recognition [107] to determine the similarity between two

speech signals representing similar spoken words. In speech recognition, the length of the signals is

permitted to vary for a given same spoken word, but the overall speech signals are similar. In addition

to speech recognition, DTW has also been found useful in many other disciplines [79], including word

recognition [21, 128], bioinformatics [1], data mining and gesture recognition. DTW is commonly used

in data mining as a distance measure between time series.

For a pair of given two sequences, to compute their DTW distance, we need to find the optimal

alignment which has the least cost of all the possible alignments. This is the computationally expensive

operation in DTW distance. For a given two sequences of length n andm respectively, the computational

complexity for DTW is O(nm). The Euclidean distance can be computed in linear time, however its

main limitation is that it does not capture the local dependencies. In the first part of this work, we try

to speed up the DTW distance by learning the optimal alignment from the given training data. As far

as we know, none of the previous methods have exploited the hidden structure of the alignments. We

approximate the DTW distance as a sum of multiple weighted Euclidean distances, which are known

to be amenable to indexing and efficient retrieval. We call this approximated DTW distance as Fast

Surrogate DTW distance.

For a given set of sequences, there are similarities between the top alignments (least cost alignments)

of different pairs of sequences. This work explores these similarities by learning a small set of global

principal alignments from the training data. To compute the global principal alignments, first, we com-

pute the top alignments for all pairs of samples from the given training data. Then the global principal

alignments are computed from these top alignments. We use 2D-PCA for computing the global principal

alignments from the training data. In our experiments, we observe that we can represent the internal

structure of the alignments using these global principal alignments. Instead of computing the optimal

alignments for a given new query, we use only these precomputed global principal alignments for com-

puting the Fast Surrogate DTW distance. Since we avoid the computation of alignments, the proposed

Fast Surrogate DTW is computationally efficient compared to naive DTW distance.

Over the last decade, SVM has emerged as the most popular approach in classification. This is

mainly due to its state-of-the-art performance on a wide variety of computer vision problems [57, 73,

80] like image classification, recognition and retrieval. In SVM, kernels act as the similarity measure.
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A wide variety of similarity measures are available in the literature for computing various types of

similarities. Unfortunately, most of these similarity measures may not yield positive definite kernels

and thus cannot be used along with SVM. Positive definiteness of the kernels guarantees global optima

in SVMs. Although these similarity measures do not yield positive definite kernels, they have popular

applications in many fields. For example, DTW distance does not yield a positive definite kernel, but it

works well on many time series classification problems with Nearest Neighbour (NN) classifier [175].

In general, SVM performs well compared to NN classifier if the appropriate choice of kernel exists [167].

Due to its superiority, it is reasonable to use DTW distance with SVM. However, due to its non-metric

property, DTW distance does not yield a positive definite kernel.

Non-positive definite (indefinite) kernels are previously used in SVM [38, 169] using different tech-

niques. Even though the kernel over DTW distance is indefinite, few kernels are defined over DTW

distance [12, 54, 146, 183]. In [54], the authors corrected the negative definite kernel matrix by its

square. There are also some attempts where minor changes are incorporated in the definition of DTW

distance for defining a positive definite kernel [33]. Hayashi et al. [56] projected the time series into a

Euclidean space such that the resulting representation approximates the DTW distance. Although we can

define the kernels over DTW distance [12, 54, 146, 183] with some approximations/modifications in the

original formulation, the resulting kernels are computationally expensive. This limits the use of kernels

over DTW distance for large datasets. Since the computational complexity of computing the DTW dis-

tance between two time series of length n and m respectively is O(nm), the resulting kernels over DTW

distance have quadratic complexity. This is computationally prohibitive for large time series containing

thousands of data points. Note that such large length time series commonly arises in many domains like

speech, bioinformatics, and text processing. We propose a linear kernel over DTW distance in the next

part of this work. The proposed kernel is defined using Gaussian functions over Fast Surrogate DTW

distance.

Since the Gaussian is a non-linear function, the kernel defined over Fast Surrogate DTW distance is

also a non-linear kernel. We compute its linear approximation using explicit feature maps [98,125,126,

166] and we refer to the proposed linear approximation kernel as Fast Surrogate DTW kernel. An explicit

feature map is a popular technique for speeding up the non-linear kernels. It approximates the original

large dimensional (infinite-dimensional) feature map of non-linear kernels by a small finite-dimensional

feature map. This small dimensional feature map gives a linear approximation of the original non-linear

kernel. These linear kernels can be used with linear SVM, which are computationally faster and can
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be computed in linear time compared to non-linear SVMs. Explicit feature maps are quite popular for

different non-linear kernels like intersection [98], Hellinger’s, χ2 and RBF kernels [126,166]. However,

this technique is not widely used in the time series community. In this work, we follow this line of

work and propose a novel approximate explicit feature map for the Fast Surrogate DTW kernel. We

compute its explicit feature map using the global principal alignments. In [140], the authors proposed a

dynamic time warping algorithm for the computation of DTW distance, which is linear in both time and

space. The algorithm finds a nearly optimal warp path between two time series. However, it cannot be

transformed into a valid kernel. Our proposed Fast Surrogate DTW kernel is computationally efficient

compared to other kernels over DTW distance.

We evaluate the proposed Fast Surrogate DTW distance and Fast Surrogate DTW kernel over a wide

variety of problems. For Fast Surrogate DTW distance, we demonstrate its utility for retrieving word

images from the popular George Washington database and Indian language datasets. We show its supe-

riority by comparing it with naive DTW distance, Euclidean distance, and metric DTW. The proposed

Fast Surrogate DTW distance makes DTW based document image retrieval computationally feasible. The

proposed technique is computationally efficient compared to DTW distance and metric DTW with a mi-

nor drop in retrieval performance. On multi-language datasets, we show a speed-up of more than 40×

compared to DTW distance and metric DTW. The performance of Fast Surrogate DTW distance is as

good as DTW distance and computationally performs equally as simple Euclidean based matching. For

Fast Surrogate DTW kernel, we compare our proposed kernel with the GA kernel [33] and Gaussian DTW

kernel [12] over popular machine learning datasets. The Fast Surrogate DTW kernel is computationally

efficient compared to GA kernel [33] and Gaussian DTW kernel [12] with a minor drop in classification

performance.

The major contributions of this chapter are: (i) A novel framework for approximating the optimal

alignment for given sequences using a set of global principal alignments computed from the training

data, (ii) A Fast Surrogate DTW distance using global principal alignments, which is a linear approx-

imation of the popular DTW distance, (iii) In addition, we also propose a Fast Surrogate DTW kernel

using Fast Surrogate DTW distance, which is a linear kernel over DTW distance.

3.2 Related Works

Euclidean distance is an efficient similarity measure for computing the similarity between time series

or sequences. However, the main limitation of Euclidean distance is that it cannot be applied if the
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sequences have variable lengths. Also, it cannot capture the local dependencies between neighboring

states of the sequences. A successful method to compare time series or sequences is dynamic time

warping (DTW) [12, 139, 146]. For a given two sequences, the DTW yields an optimal alignment from

all possible alignments. This optimal alignment is being used to find the corresponding regions between

the given sequences. It can also be used to find the similarity between the given sequences. The DTW

measure is the difference between the two sequences after they have been mapped together with the

optimal alignment.

Given two sequences, X = (x1, . . . , xn) and Y = (y1, . . . , ym) of lengths n and m respectively, an

alignment π of length |π| = p is a pair of increasing p-tuples (π1, π2) such that

1 = π1(1) ≤ . . . ≤ π1(p) = n,

1 = π2(1) ≤ . . . ≤ π2(p) = m

with unitary increments and no simultaneous repetitions. That is, for ∀1 ≤ i ≤ p− 1,

π1(i+ 1) ≤ π1(i) + 1, π2(i+ 1) ≤ π2(i) + 1

(π1(i+ 1)− π1(i)) + (π2(i+ 1)− π2(i)) ≥ 1.

Intuitively, an alignment π between X and Y describes a way to associate each element of X to one or

possibly more elements in Y , and vice-versa. Let A(X,Y ) be the set of possible alignments between

X and Y . The DTW distance between the sequences X and Y is given as the minimum distance over all

possible alignments.

DTW (X,Y ) = minπ∈A(X,Y )

|π|∑
i=1

ϕ(Xπ1(i), Yπ2(i)) (3.1)

where, ϕ(Xπ1(i), Yπ2(i)) is the ground distance between the given sequences indexed by the alignment

π. In general, Euclidean distance is used for computing the ground distance. The resulting alignment is

the optimal path between the given two sequences. The DTW algorithm computes the optimal alignment

as follows: For a given pair of sequencesX = {x1, . . . , xn} and Y = {y1, . . . , ym}, where xi, yi ∈ Rk,

of length n and m respectively, it first constructs a cost matrix C of dimension n × m. The (i, j)th

element of the cost matrix C is the Euclidean distance between the elements xi and yj . The X-axis

and Y -axis of the matrix C represent time domain for the sequences X and Y . Each warp path in the

cost matrix represents an alignment between the sequences X and Y . The sum of elements through the
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alignment gives the cost of the alignment. The DTW finds an optimal warp path that has the minimum

cost.

For comparing two sequences X and Y of length n and m, respectively, the time and space com-

plexity of DTW is O(nm). The quadratic complexity mainly involves finding the optimal alignment

from a large set of possible alignments. The quadratic complexity is particularly prohibitive for large

length time series. The time series containing a few thousand measurements requires much memory

and is computationally unattractive. In practice, heuristic constraints speed up DTW [65, 139], instead

of searching the entire space for the optimal path, they restrict the search space into a constraint win-

dow. If constraints are used, the DTW algorithm finds the optimal path, which passes only through the

constraint window. It speeds up the DTW computation by a constant factor, but the quadratic complexity

remains. In addition, using these methods, the optimal path cannot be found if it does not pass through

the constraint window. The constraints work well only if the optimal path is expected closer to the

diagonal.

DTW distance is popularly used with nearest neighbor (NN) classifier. Since SVMs often outperforms

NN classifiers [167], it is desirable to use DTW distance with SVMs. For using DTW in SVMs, we need

to define a valid kernel over DTW distance. Several kernels have been proposed over DTW distance [12,

54, 146, 183]. For example, in [12], the authors proposed the Gaussian DTW (GDTW) kernel based on

DTW distance and defined as,

κgdtw = exp
(
−min

π∈A(X,Y )

1

|π|

|π|∑
i=1

‖Xπ1(i) − Yπ2(i)‖22
)

(3.2)

Similar to Gaussian kernel, in [146], the authors defined another kernel over DTW, which is given as

κDTW1 = max
π∈A(X,Y )

1

|π|

|π|∑
i=1

e
−1

σ2
‖Xπ1(i)−Yπ2(i)‖

2
2 (3.3)

In [35], Cuturi et al. proposed Group Alignment (GA) kernel. The kernel is not based on the optimal

alignment but takes advantage of the scores obtained from all the possible alignments. The GA kernel is

defined as,

κGA(X,Y ) =
∑

π∈A(X,Y )

|π|∏
i=1

κ(Xπ1(i), Yπ2(i)) (3.4)
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where, κ(Xi, Yj) = e−ϕ(Xi,Yj). GA kernel becomes positive definite if κ
κ+1 is positive definite. Rather

than considering the optimal alignment (simple minimum of the objective function), the kernel considers

softmax of the scores of all possible alignments. Intuitively, the kernel considers the optimal alignment

and all the alignments closer to it. In the paper, the authors argue that two sequences are similar if they

have a single common alignment with a high score and share a wide set of other alignments. Since the

GA kernel considers all the alignments or alignments near the diagonal, it performs well compared to

other DTW kernels. Using the constraint windows [124] for DTW distance, Triangular Global Alignment

(TGA) kernel is proposed in [33] for speeding up the GA kernel. This reduces the computational cost

by a constant factor and the resulting path may be suboptimal. All the above kernels [33, 35, 146] are

non-linear kernels and have quadratic complexity. Its quadratic complexity mainly involves finding the

optimal alignment or near-optimal alignments.

In general, SVMs with non-linear kernels over large data sets are computationally slower compared to

linear kernels. It requires efficient solvers to optimize the given problem. A linear SVM (SVM with linear

kernel) is given by the inner product F (X) = 〈w,X〉 between the data sample X and a weight vector

w. On the other hand, a non-linear SVM is given by the expansion F (X) =
∑M

i=1 αiκ(X,Xi), where κ

is the given non-linear kernel, Xis are support vectors and M is the number of support vectors. In most

of the cases, evaluating the inner product 〈w,X〉 is more efficient than evaluating the kernel κ(X,Xi).

This makes the linear SVM atleast M times faster compared to non-linear SVM, which is a significant

gain especially on large datasets. The training time is also effected in the similar way. A successful way

to speed up the non-linear SVM is with the help of explicit feature maps [166]. For a given non-linear

kernel κ, there exists a feature map φ such that κ(X,Y ) = 〈φ(X), φ(Y )〉. However, in most of the

cases, the feature map φ is of infinite dimension. In explicit feature map, it finds a finite dimension

approximation φ
′

of the feature map φ such that κ(X,Y ) ' 〈φ′(X), φ
′
(Y )〉. Given a positive definite

kernel κ(X,Y ) and a data density p(X ), where X,Y ∈ XD for some input space X , the approximation

finds the feature map φ
′
, which minimizes the following functional

E(φ
′
) =

∫
XD×XD

(κ(X,Y )− 〈φ′(X), φ
′
(Y )〉)2p(X)p(Y )dXdY (3.5)

where, the components φ
′
k(X) (k = 1, 2, . . .) are eigenfunctions of the kernel κ. In general, the data

density p(X ) is approximated by a finite sample set and correspondingly eigenfunctions are replaced

with eigenvectors. The eigenfunctions (vectors) play an important role in the approximation of the

kernels.
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Metric DTW distance DTW distance computes all the linear and non-linear similarities between the

given sequences; however, it is not a metric. There is a widely used metric DTW distance, which is used

in kernel settings, especially with SVM. The metric DTW considers all the possible alignments compared

to DTW distance, which uses only optimal alignment. Since it uses all the alignments to compute the

distance, it performs better than DTW distance. However, it is computationally costly. The metric DTW

is defined as follows

κDTW = exp
(
−

∑
π∈A(X,Y )

1

|ρ|

|π|∑
i=1

‖xπ1(i) − yπ2(i)‖22
)

(3.6)

where A(X,Y ) is the set of all alignments between X and Y .

3.3 Approximation of DTW distance

In general, DTW distance has quadratic complexity in the sequence length. This section presents a

novel framework for computing the linear approximation to the DTW distance. We refer to this proposed

linear approximation as Fast Surrogate DTW distance.

For a given data, there are similarities between the optimal alignments of different pairs of sequences.

For example, if we take two different classes, the top alignments (least cost alignments) between the

samples from these classes always have some similarities. We plot 3 top alignments between two se-

quences in Figure 3.1(a); these are the top 3 least-cost alignments. We show the similarity between

the top alignments over a subset of samples from the Libra dataset in Figure 3.1(b). Here, we plot the

top alignments between the samples from two classes. The figure shows that all the top alignments are

passing through a small window. There is no single alignment that is completely different from other top

alignments. Since the top alignments follow some structure, for a given new pair of sequences, we can

approximate their optimal alignment using these alignments. Based on this idea, we compute a set of

candidate top alignments from the training data and use these alignments to approximating the optimal

alignment between new test sequences. This avoids the computation of optimal alignments. We call

these candidate top alignments as global principal alignments. For the new test sequences, we use these

global principal alignments for computing their DTW distance. Now, the DTW distance becomes the

sum of the Euclidean distances over the global principal alignments. This gives a linear approximation

of the DTW distance. These alignments capture all the similarities in the sequential data.
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(a) (b)

Figure 3.1: (a) The top 3 alignments between two time seriesX and Y of length 90 and 140 respectively.

These alignments have least cost compared to other alignments. These alignments are not completely

different from each other. (b) Optimal warp paths between the sequences of a subset of Libra dataset.

This work introduces two methods for computing the global principal alignments from the given

data. In the first method, we compute the global principal alignments from the top alignments of the

given data. For a given pair of sequences, their top alignments are computed from the cost matrix. Since

there are similarities between the top alignments for different pairs of sequences, there exist similarities

between their corresponding cost matrices. Instead of computing global principal alignments from the

top alignments, we compute a representative cost matrix for the given data in the second method, and

global principal alignments are computed from this cost matrix.

3.3.1 Approximation using Top Alignments (ATA)

We use principal component analysis (PCA) for modeling the global principal alignments for the

given data. The objective of our work is to compute the global principal alignments using the set of

all alignments such that the computed alignments should be well enough for approximating the DTW

distance between any new pair of sequences. This is similar to the concept of PCA, where for a given

data, it finds the principal directions in which the variance is maximum. PCA explores the dependencies

between the variables in the given data. Using these dependencies, it converts the set of correlated vari-

ables into a set of uncorrelated variables called principal components (eigenvectors). These principal
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components capture the maximum variability in the given data. It better represents the given data. The

global principal alignments in our work resemble the principal components in PCA. The alignments are

better represented in 2D space. Since PCA works only on one-dimensional (1D) data, so we cannot

directly apply it over top alignments to compute the global principal alignments. If we want to apply it

over two-dimensional (2D) data, it must be transformed into 1D data. This creates a large dimensional

covariance matrix, and computing the eigenvalues and eigenvectors for this matrix will be computa-

tionally expensive. Similar to PCA, a two-dimensional principal component analysis (2DPCA) [179] is

proposed to overcome these issues. 2DPCA is based on 2D matrices rather than 1D vectors. In this work,

we use 2DPCA for computing the global principal alignments. To compute the global principal align-

ments for a given data, we first represent each alignment using a 2D matrix and then global principal

alignments are computed by applying 2DPCA over these matrices.

To apply 2DPCA, we need to represent each alignment using a 2D matrix. An alignment π between

two time series of lengths n and m can be represented using an n ×m grid. Equivalently, it can also

be represented using an n ×m binary matrix (alignment matrix), where the elements are either 0 or 1.

This representation is given in Figure 3.2. The entries in the matrix through which the alignment passes

are 1, and for other entries, it is 0. Since for every pair of sequences there exist many alignments, it

corresponds to many binary matrices. For a given pair of sequences X and Y , denote their possible

alignments as π1, π2, . . . , πl, where l is the total possible number of alignments. Assume that these

alignments are arranged according to their cost, i.e., π1 is the optimal alignment with the least cost and

πk is the top kth alignment between X and Y . For the sequences X and Y , we define their alignment

matrices as follows

BX,Y = ∪lk=1B
k
X,Y

where, Bk
X,Y is the alignment matrix correspond to the top kth alignment for the time series X and Y ,

and l is the total number of possible alignments.

For a given dataset, we first construct these alignment matrices for every pair of sequences. Since

there exist possibly many alignments for every pair of sequences and only top alignments have sig-

nificance in approximating the DTW distance, we take only top t alignments for computing the global

principal alignments. For a given dataset D, we construct its alignment matrices as follows,

Pt = ∪X,Y ∈D(∪tj=1B
j
X,Y )
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Figure 3.2: Alignment matrix representation. The entries in the matrix where the alignment passes is 1,

and for others entries it is 0.

It contains only top t alignment matrices between every pair of sequences. The set Pt contains the best

possible alignment matrices for the given dataset. We compute the global principal alignments from

this set of alignment matrices using 2DPCA. If the dataset contains alignments of variable length, the

set Pt contains matrices of variable dimension. In this case, we cannot apply the above procedure for

computing the global principal alignments. To overcome this, we first scale the alignments to a fixed

size. Then, the alignment matrices are computed from these scaled alignments. Now, the resulting

alignment matrices have the same dimension. Finally, we apply 2DPCA over these matrices and find the

eigenvectors. These eigenvectors give the global principal alignments for the given dataset.

3.3.2 Approximation using Cost Matrix (ACM)

For computing the global principal alignments in ATA, we need to compute the top alignments for

every pair of samples. It is computationally unattractive for large datasets. To avoid this, we propose

another technique that computes a global cost matrix from the given data, from which we derive the

global principal alignments.

We construct the global cost matrix for the given data as follows. We first compute the cost matrix

for every pair of sequences from the given data and normalize each cost matrix by the maximum cost

of that matrix. The mean of all these cost matrices is taken as the global cost matrix for the given data.

If the dataset contains alignments of variable length, the cost matrices will have variable dimensions.

In this case, we cannot compute the global cost matrix as discussed above. To overcome this, we first

scale the alignments to a fixed size and then cost matrices are computed from these scaled alignments.

Now, the resulting cost matrices will have the same dimension. The top alignments computed from

51



the global cost matrix give the global principal alignments for the given data. These alignments are

sufficient enough for comparing any two given sequences.

Since we avoid learning the global principal alignments from a large set of top alignments, the

approximation technique ACM is computationally faster than the approximation ATA. However, as we

are computing the global principal alignments from the single global cost matrix, it may not capture

all the correlations in the given data. Due to this, the approximation ACM performs slightly inferior

compared to the ATA in terms of accuracy.

Let GD be the set of all global principal alignments computed from the given dataset D. For the

sequences X and Y , the Fast Surrogate DTW distance over GD is defined as

FastDTW (X,Y ) =
∑
π∈GD

|π|∑
k=1

(Xπ(k) − Yπ(k))
2

=
∑
π∈GD

Euclidπ(X,Y )

(3.7)

where |π| is the length of the alignment π. Euclidπ(X,Y ) is the Euclidean distance between X and

Y over the alignment π. Notice that, the DTW distance between two samples is the Euclidean distance

(ground distance) over the optimal alignment.

Computational time: From the Eq 3.7, we can observe that Fast Surrogate DTW distance is the sum

of the Euclidean distances over the global principal alignments. It means Fast Surrogate DTW distance

can be computed in a linear time compared to the quadratic complexity of naive DTW distance. In

summary, the performance of the proposed method is as good as DTW distance and computationally is

on par with simple Euclidean distance.

3.4 Dynamic Time Warping Kernels

This section presents our proposed Fast Surrogate DTW kernel, which is a linear approximation of the

non-linear DTW kernel. Like Fast Surrogate DTW distance, the Fast Surrogate DTW kernel is also defined

over the global principal alignments. LetGD be the set of all global principal alignments computed from

the given dataset D. For the sequences X and Y , the Fast Surrogate DTW kernel over GD is defined as

κFastdtw(X,Y ) =
∑
π∈GD

e−β
∑|π|
k=1(Xπ(k)−Yπ(k))2 (3.8)
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The Fast Surrogate DTW kernel defined in Eq 3.8 is the sum of RBF kernels over the global principal

alignments. Since it is the sum of RBF kernels, the resulting kernel is non-linear. We compute its linear

approximation using explicit feature maps. From the work on explicit feature map for RBF kernel [166],

the explicit feature map of dimension n for RBF kernel is given as follows

φRBF (X) =
1√
n

[e−i〈ω1,X〉, . . . , e−i〈ωn,X〉] (3.9)

where ω1, . . . , ωn are sampled from the Gaussian density. Since the Fast Surrogate DTW kernel defined

in Eq 3.8 is the sum of RBF kernels over the global principal alignments, its explicit feature map is given

as follows,

φFastDTW (X) =
1√
n

[e−i〈ω1,Xπ1 〉, . . . , e−i〈ωn,Xπ1 〉, . . . ,

e−i〈ω1,Xπm 〉, . . . , e−i〈ωn,Xπm 〉]

(3.10)

where π1, . . . , πm are the global principal alignments and m is the total number of global principal

alignments. The linear approximation of the Fast Surrogate DTW kernel is given as

κlinFastDTW (X,Y ) = 〈φFastDTW (X), φFastDTW (Y )〉 (3.11)

3.5 Experiments

This portion evaluates various components of the proposed Fast Surrogate DTW distance and Fast

Surrogate DTW kernel. We demonstrate the utility of the Fast Surrogate DTW distance for document

word image retrieval problem. For Fast Surrogate DTW kernel, we evaluate using SVM classifier over

popular machine learning datasets.

3.5.1 Efficient Word Image Retrieval using Fast Surrogate DTW Distance

3.5.1.1 Datasets and Evaluation Protocols

In this sub-section, we discuss the datasets and the experimental settings we follow in our experi-

ments. We show the results on the popular George Washington (GW) database. In the experimental

section, to demonstrate the utility of the proposed method across different languages, we also exem-

plify the results on various Indian language datasets. These datasets contain two other Indian languages
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Dataset # Classes # Images

D1 125 16145

D2 268 30164

D3 100 14306

George Washington Database (GW) 1471 4894

Table 3.1: Details of the datasets considered in the experiments.

(Hindi (D1) and Telugu (D2)), and English (D3) with a significant change in structure. One of the

Indian languages have a headline and the other does not. One of them is an Aryan language, while the

other is Dravidian. Details of the dataset are given in Table 3.4. For the datasets D1, D2 and D3, the

ground truth is created using the methodology discussed in [69].

Multiple query images are generated to evaluate the quantitative performance. The criteria for the

selection of query images are (i) query images need to occur multiple times in the database, (ii) are

mostly functional words (iii) also should have no stop words. The performance is measured by mean

Average Precision (mAP). The mAP is the mean of the area under the precision-recall curve for all the

queries. For every pair of sequences, we take t = 10, i.e., we choose the top 10 alignments. We take

the number of global principal alignments for all the datasets based on their size. The number of global

principal alignments for each of the datasets is given in Table 3.5. Since we compute the global principal

alignments using 2D-PCA, we need fixed-size alignment matrices. Since the size of the images is not

fixed in our datasets, we scale each word image into a fixed size. All experiments were carried out on a

single core of a 2.1 GHz AMD 6172 processor with 12 GB RAM.

3.5.1.2 Feature Extraction

In this work, we use the split profile features [131] for representing the word images. We first di-

vide the image horizontally into two parts for computing these features. From these images, we extract

the following features, (i) vertical profile i.e., the number of ink pixels in each column, (ii) location of

lowermost ink pixel, (ii) location of uppermost ink pixel, and (iv) number of ink to background transi-

tions. The profile features are calculated on binarized word images obtained using the Otsu thresholding

algorithm.
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D1 D2 D3 GW

# Samples 16145 30164 14306 4894

# Global Alignments 60 100 60 40

Table 3.2: Number of global principal alignments for the datasets used in the experiments. Here, the

number of global alignments are based on the size of the dataset.

Figure 3.3: Few sample results. Top-5 retrieval results for given query images. First column shows the

query image. For each query, its top 5 retrieval images are shown from left to right. In each row, query

image is marked in green colour and its corresponding wrong retrieval images are marked in red colour.
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DTW distance Proposed Metric DTW Euclidean

D1 0.9038 0.8927 0.9127 0.8059

D2 0.8382 0.8204 0.8438 0.7123

D3 0.8193 0.8072 0.8319 0.7329

GW 0.5173 0.5019 0.5361 0.3271

Table 3.3: Performance of the proposed technique as compared to the DTW distance, metric DTW and

Euclidean distance. Here, the mAP score is compared for all the methods.

In the first experiment, we evaluate the performance of the proposed Fast Surrogate DTW distance by

comparing it with naive DTW distance, Euclidean distance, and metric DTW. The comparative results

over the given datasets are given in Table 3.3. We compare the mAP score over all the datasets. The

results show that the Fast Surrogate DTW distance is comparable with naive DTW distance over all

the datasets. It performs significantly better compared to Euclidean distance. Metric DTW performs

well compared to other methods over all the datasets as it considers all the alignments to compute the

distance. Sometimes, only optimal alignment may not be sufficient for computing the similarity. In that

case, considering all the alignments or a few top alignments enhances the performance. The minor drop

in performance of Fast Surrogate DTW distance compared to DTW distance is due to the scaling involved

in resizing the images and the approximation of optimal alignments using global principal alignment

To explore the speed up of the proposed Fast Surrogate DTW distance, we compare its retrieval time

with naive DTW distance, Euclidean distance, and metric DTW over all the datasets. The results are given

in Figure 3.4. Here, the retrieval time is shown over a log scale. Fast surrogate DTW distance is signifi-

cantly faster than DTW distance and metric DTW and is comparable to Euclidean distance. This is mainly

due to the length of the final feature representations obtained from the global principal alignments. We

project the feature vectors into more than one principal direction in the Fast Surrogate DTW distance.

This results in larger dimensional feature representations compared to the original representation. The

speed-up of our proposed technique mainly comes from the global principal alignments, which avoids

the computation of optimal alignments. In DTW distance, for a given query, we need to compute the

optimal alignments for all the images in the database to retrieve its similar images. In the Fast Surrogate

DTW distance, we use precomputed global principal alignments for computing the distance. Due to
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Figure 3.4: Retrieval time for a given query image for all the four methods over the given datasets. Here,

the retrieval time is shown over log scale.

this, the Fast Surrogate DTW is computationally efficient compared to other methods. Note that being

computationally attractive, our method achieves comparable performance to DTW based retrieval.

To evaluate the applicability of Fast Surrogate DTW distance across various languages, we show

experimental results on printed Indian language datasets, namely D1 and D2. In general, these languages

need rich features for better representation. However, in this experiment, we use only simple profile

features and do not apply any learning techniques to obtain better representation. The results are given

in Table 3.3. From the results, we can observe that, the Fast Surrogate DTW distance for the two

Indian language datasets is comparable with the DTW distance. The proposed approach is language-

independent as it performs equally well in other Indian languages.

3.5.1.3 Qualitative Results

We show the qualitative performance of Fast Surrogate DTW distance on the George Washington

database in Figure 3.3. Here, we show some of the example queries and their top-5 retrieved word

images. We have marked the query image in green and incorrect retrieval images in red. Note that the

current work does not use any learning feature models or any other post-processing techniques, and the

main aim of this work is to show the scalability of DTW-based retrieval methods.
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Database dimension length classes # samples

Libra 2 45 15 945

Auslan 22 45-136 95 2465

JV 12 7-29 9 640

HC 3 60-182 20 2858

PEMS 963 144 7 440

Table 3.4: Details of the datasets considered in the experiments Libra, Auslan, Japanese Vowels (JV)

and Handwritten Characters (HC). Here, Libra dataset contains fixed length time series, whereas all

other datasets describes multivariate time series.

3.5.2 Evaluation of Fast Surrogate DTW kernel

3.5.2.1 Datasets and Evaluation Protocols

This evaluation aims to demonstrate the efficiency of the proposed Fast Surrogate DTW kernel on

a wide range of time-series datasets. We evaluate our proposed kernel over popular machine learning

datasets Libra, Auslan, Japanese vowels, handwritten Characters, and PEMS database of freeway traffic.

Except for Libra dataset, all the other datasets contain multivariate time series of variable length. In

addition to these small datasets, we also evaluate our Fast Surrogate DTW kernel on large-scale time-

series datasets obtained from UCR Time Series Data Mining Archive. Since the proposed method is only

applicable for fixed-length sequences, we scale the variable-length sequences to a fixed length using

standard scaling techniques. We compare the proposed Fast Surrogate DTW kernel with GDTW [12]

kernel and GA kernel [33] for all these datasets. The details of these datasets are given in Table 3.4.

In our proposed approximation kernel, for every pair of time series, we take t = 10, i.e., we choose

the top 10 alignments. In both the proposed approximation techniques ATA and ACM, we consider an

equal number of global principal alignments, and it is based on the size of the dataset. The number of

global principal alignments for the given datasets is given in Table 3.5. For both the techniques ATA and

ACM the kernel computational time is the same. In all our experiments, for comparing computational

time with other kernels, we refer to our proposed kernel as the Fast Surrogate DTW kernel. All the

kernels are implemented in Matlab. All experiments are carried out on a single core of a 2.1 GHz AMD
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Libra Auslan PEMS HC JV

# Samples 945 2465 440 2858 640

# Global Principal Alignments 14 24 8 24 12

Table 3.5: Number of global principal alignments for the datasets used in the experiments. Here, the

number of global principal alignments are based on size of the dataset.

Libra Auslan PEMS HC JV

ATA 12.2±0.29 43.1±2.3 25.2±0.8 45.2±2.8 17.1±0.3

ACM 7.7±0.21 28.9±1.2 19.5±0.3 36.3±1.8 12.3±0.2

Table 3.6: Training time (Hrs) for ATA and ACM over the given datasets. Only top 1 alignment is

considered in this experiment.

6172 processor with 12 GB RAM. For comparison, the runtime is measured using the system clock with

minimal background processes running.

3.5.2.2 Accuracy of Fast Surrogate DTW Kernel

We compare the accuracy of the Fast Surrogate DTW kernel with GA kernel and GDTW kernel

over the given datasets in Figure 3.5. For the Fast Surrogate DTW kernel, we present the results obtained

from both the approximation techniques ATA (Method-1) and ACM (Method-2). We present the results

for both the equal length time-series data (Libra) and variable-length time series data (Auslan, PEMS,

HC, JV). Our proposed methods achieve better accuracy on the Libra dataset than the GDTW kernel and

perform equally well compared to the GA kernel. Our results are superior to the GDTW kernel on other

datasets and comparable to the GA kernel. This shows that our proposed kernel performs equally well,

if not better than GA kernel over equal length time series. The drop in the performance for variable-

length time series is due to the scaling step we are performing for converting the data to equal length.

In the scaling step, we lose some information from the data, which causes the degraded performance.

However, our proposed kernel performs well compared to GDTW kernel, which is exponential of DTW

distance over all the datasets.
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Figure 3.5: Comparison of the proposed approximation methods (Method- 1 and Method- 2) with

the GA kernel and GDTW kernel over Libra, Auslan, PEMS, HC (Hand written Characters) and JV

(Japanese Vowels) datasets.

3.5.2.3 Computation Time

This section explores the efficiency of the Fast Surrogate DTW kernel over small and large datasets.

We compare Fast Surrogate DTW kernel with GA kernel [33] and GDTW kernel [12] in all the experi-

ments. The first experiment compares the training time for the approximations, ATA, and ACM over the

given datasets. The results are given in Table 3.6. It shows that the approximation ACM is computation-

ally faster compared to ATA over all the datasets. In ATA, we must compute the top alignments for every

pair of sequences. As a result, ATA is computationally slower than ACM in training. We compare the

computational time of the proposed Fast Surrogate DTW kernel with the GA kernel and GDTW kernel

over all the datasets in Figure 3.6. The results show that the Fast Surrogate DTW kernel is computation-

ally faster than the GA kernel and GDTW kernel over all the datasets. For the Libra dataset, the smallest

dataset in our experiments, both the Fast Surrogate DTW kernel and GA kernel are performing equally

well. However, for other datasets, which have more sequences than to Libra, Fast Surrogate DTW kernel

has a significant gain in performance compared to GA kernel. Also, the proposed Fast Surrogate DTW

kernel outperforms GDTW kernel over all the datasets. On the handwritten characters dataset, the Fast

Surrogate DTW kernel is nearly ten times faster than GDTW kernel. The speed-up of our proposed kernel

mainly comes from the explicit feature maps, which give the linear approximation for the Fast Surrogate

DTW kernel.
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Figure 3.6: Comparison of computational time for proposed Fast Surrogate DTW kernel with GA kernel

and GDTW kernel over the given datasets. Here, computational time is given seconds.

Libra Auslan PEMS HC JV

Unimodal Bimodal Unimodal Bimodal Unimodal Bimodal Unimodal Bimodal Unimodal Bimodal

ATA 83.5±0.9 83.6±0.8 85.3±1.0 86.9±1.2 72.1±0.4 72.5±0.5 87.1±1.3 87.4±1.5 86.1±0.7 87.1±0.9

ACM 83.5±0.8 83.6±0.7 84.5±0.9 86.2±1.1 71.4±0.3 72.1±0.5 86.2±1.0 87±0.9 84.9±0.6 86.9±0.9

Table 3.7: Comparison between Unimodal and Bimodal distributions over Libra, Auslan, PEMS, HC

(Handwritten Characters) and JV (Japanese Vowels) datasets. GA kernel does not use Bimodal distri-

bution.

We test the proposed kernel over the UCR time series data mining archive to further explore the

Fast Surrogate DTW kernel over large length sequences. This dataset contains time series of lengths

from 1000 to 0.1 Million. In Figure 3.7, we compare the computational time of the Fast Surrogate

DTW kernel with the GA kernel over a varying length of time series. For better comparison, we show

the computational time on a log scale. Both Fast Surrogate DTW kernel and GA kernel are performing

equally well for small-length sequences. The Fast Surrogate DTW kernel’s performance is least affected

by the increased length of sequences. On the other hand, for the GA kernel, the computational time

increases significantly with the increase in the length of sequences. For time series of length 0.1 Million,

the Fast Surrogate DTW kernel can be computed in around one minute, whereas for GA kernel, it took

nearly one hour. This suggests that the Fast Surrogate DTW kernel is more computationally efficient

than the GA kernel and is suitable for large datasets and large time series.
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Figure 3.7: Comparison of Fast Surrogate DTW kernel with GA kernel over a varying length of time

series. Here, the computational time is given in minutes and is shown on log scale.

3.5.2.4 Ablation Studies

The alignments may not always follow the unimodal distribution. PCA works well if the data fol-

lows the unimodal distribution. If the data does not follow unimodal distribution, then the principal

components may not capture the maximal variance in the data. In such cases, if we directly apply PCA

over the alignments, we may not get the best candidate global principal alignments. The results of these

studies are given in Table 3.7. We present the results for both unimodal and bimodal distribution. We

apply the PCA over each distribution separately in bimodal distribution, and global principal alignments

are computed from these distributions. From the results, we can observe that global principal align-

ments computed from the bimodal distribution perform better compared to unimodal distribution. In

unimodal, the resulting global principal alignments cannot capture all the correlations in the given data.

This suggests that we get better performance if the global principal alignments are computed based on

the given data distribution. The global principal alignments computed from the unimodal and bimodal

distributions are performing equally well for the Libra dataset. In this case, the global principal align-

ments computed from the unimodal distribution are sufficient enough for encoding the correlations in

the data.

Role of the number of Global Principal Alignments Since we select the number of global prin-

cipal alignments based on the size of the dataset, we show the effect of the number of global principal

alignments on the accuracy in Table 3.8. To show the role of the number of global principal alignments,
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Libras Auslan PEMS HC JV

Accuracy Test time Accuracy Test time Accuracy Test time Accuracy Test time Accuracy Test time

Top 1 Alignment 82.2 0.9 83.8 2.3 71.0 2.2 86.2 3.1 84.9 2.4

Top 3 Alignments 82.5 0.9 84.1 2.3 71.5 2.2 86.1 3.1 85.5 2.4

Top 5 Alignments 83.1 0.9 84.4 2.3 71.8 2.2 86.3 3.1 85.6 2.4

Top 8 Alignments 83.4 0.9 85.0 2.3 72.1 2.2 86.7 3.1 85.8 2.4

Top 15 Alignments 83.5 0.9 85.1 2.3 72.1 2.2 87.0 3.1 86.1 2.4

GDTW Kernel 83.4 2.4 84.6 13.2 71.6 14.7 86.1 29.3 85.4 13.2

GA Kernel 83.6 1.1 87.3 5.1 73.8 5.2 89.3 11.2 88.7 4.8

Table 3.8: Performance of the Fast Surrogate DTW kernel over varying number of global principal

alignments. Here, the performance is measured in-terms of accuracy (%) and test time (seconds). Fast

Surrogate DTW kernel is compared with GA kernel and GDTW kernel.

we compare Fast Surrogate DTW kernel with the GA kernel and GDTW kernel over a varying number of

global principal alignments. From the results, we can observe that the accuracy improves as we increase

the number of alignments. This suggests that we need to consider more global principal alignments to

get better results. The results also show that if we further increase the number of alignments, there is no

improvement in accuracy.

3.6 Summary

In this work, we proposed a linear surrogate approximation to the non-linear DTW distance. The main

aim of this work is to explore the hidden structure of the alignments for approximating the non-linear

DTW kernel by a linear kernel. In addition, we also propose an explicit feature map for the proposed

approximation kernel. For computing the explicit feature map, we exploit the hidden internal structure

of the alignments. The optimal alignment between the given time series is represented using global

top alignments. The proposed representation reduces the computational cost of DTW kernel by a huge

factor.
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Chapter 4

Efficient Query Specific DTW Distance for Document Retrieval

In this chapter, we present a novel application built using the Fast Surrogate DTW distance proposed

in Chapter 3. These applications widen the scope of our work and also validates the robustness of the

proposed Fast Surrogate DTW distance. In this chapter, we address the problem of faster indexing in

classifier-based retrieval methods using Fast Surrogate DTW distance. We introduce the Query specific

Fast Surrogate DTW distance for faster indexing, which has linear time complexity. We validate the

proposed Query specific Fast Surrogate DTW on Direct Query Classifier (DQC) [128] for faster indexing

in document image datasets. In addition to this, we also present an application built using the Fast

Surrogate DTW distance in the deep learning framework. In this chapter, we propose, FastDTWNet,

where the Fast Surrogate DTW distance is applied as a feature extractor in CNN.

4.1 Document Retrieval

Retrieving relevant documents (pages, paragraphs, or words) is a critical component in information

retrieval solutions associated with digital libraries. The problem has been looked at in two settings:

recognition based [110, 147] like OCR and recognition free [131, 177]. Most present day digital li-

braries use optical character recognizers (OCR) to recognize digitized documents and thereafter employ

a text-based solution for information retrieval. Though OCRs have become the de facto preprocess-

ing for the retrieval, they are realized as insufficient for degraded books [160], incompatible for older

print styles [47], unavailable for specialized scripts [74] and very hard for handwritten documents [72].

Commercial OCRs may provide highly unacceptable results in practice even for printed books. The

best commercial OCRs can only give word accuracy of 90% on printed books [177] in modern digital

libraries. This means that every 10th word in a book is not searchable. Recall of retrieval systems built
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on such erroneous text is thus limited. Recognition-free approaches have gained interest in recent years.

Word spotting [131] is a promising method for recognition free retrieval. In this method, word images

are represented using different features (eg. Profile, SIFT-BOW), and the features are compared with

the help of appropriate distance measures (Euclidean, Earth Movers [135], DTW [117]). Word spotting

has the advantage that it does not require prior learning due to its appearance-based matching. These

techniques have been popularly used in document image retrieval.

Konidaris et al. [160] retrieve words from an extensive collection of printed historical documents.

A search keyword typed by the user is converted into a synthetic word image which is used as a query

image. Word matching is based on computing the L1 distance metric between the query feature and

all the features in the database. Here the features are calculated using the density of the character

pixels and the area that is formed from the projections of the upper and lower profile of the word. The

ranked results are further improved by relevance feedback. Sankar and Jawahar [74] have suggested a

framework of probabilistic reverse annotation for annotating a large collection of images. Word images

were segmented from 500 Telugu books. The word images are matched using the DTW approach [130].

Hierarchical agglomerative clustering was used to cluster the word images. Exemplars for the keywords

are generated by rendering the word to form a keyword image. Annotation involved identifying the

closest word cluster to each keyword cluster. This involves estimating the probability that each cluster

belongs to the keyword. Yalniz and Manmatha [177] have applied word spotting to scanned English

and Telugu books. They can handle noise in the document text using SIFT features extracted on salient

corner points. Rath and Manmatha [130] used projection profile and word profile features in a DTW

based matching technique.

Recognition-free retrieval was attempted in the past for printed and handwritten document collec-

tions [63, 74, 99, 177]. Since most of these methods were designed for smaller collections (few hand-

written documents as in [99]), computational time was not a major concern. Methods that extended this

to a larger collection [6,13,162] used primarily (approximate) nearest neighbor retrieval. For searching

complex objects in large databases, SVMs have emerged as the most popular and accurate solution in the

recent past [99]. For linear SVMs, training and testing have become very fast with the introduction of ef-

ficient algorithms and excellent implementations [145]. However, there are two fundamental challenges

in using a classifier based solution for word retrieval (i) A classifier needs a good amount of annotated

training data (both positive and negative) for training. Obtaining annotated data for every word in every
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style is practically impossible. (ii) One could train a set of classifiers for a given set of frequent queries.

However, they are not applicable for rare queries.

In [128], Ranjan et al. proposed a one-shot classifier learning scheme (Direct query classifier). The

proposed one-shot learning scheme enables the direct design of a classifier for novel queries without

having access to the annotated training data, i.e., classifiers are trained for a set of frequent queries and

seamlessly extended for the rare and arbitrary queries, as and when required. The authors hypothesize

that word images, even if degraded, can be matched and retrieved effectively with a classifier based

solution. A properly trained classifier can yield an accurate ranked list of words since the classifier

looks at the word as a whole and uses a larger context (say multiple examples) for matching. The

results for this method are significant since (i) It does not use any language specific post-processing for

improving the accuracy. (ii) Even for a language like English, where OCRs are relatively advanced and

engineering solutions were perfected, the classifier based solution is as good, if not superior to the best

available commercial OCRs .

In the direct query classifier (DQC) scheme [128], the authors used DTW distance for indexing the

frequent mean vectors. Since the DTW distance is computationally slow, the authors do not use all the

frequent mean vectors for indexing. For comparing two word images, DTW distance typically takes one

second [131]. This limits the efficiency of DQC. To overcome this limitation, the authors used Euclidean

distance for indexing. The authors use the top 10 (closest in terms of Euclidean distance) frequent mean

vectors for indexing. Since the DTW distance better captures the similarities compared to Euclidean

distance for word image retrieval, this restricts the performance of DQC.

The Fast Surrogate DTW [109] distance can be used for efficient indexing in DQC classifier. However,

it gives sub-optimal results. For best results, it needs query specific global principal alignments. In this

work, we introduce query specific DTW distance, which enables the direct design of global principal

alignments for novel queries. Global principal alignments are computed for a set of frequent classes and

seamlessly extended for the rare and arbitrary queries, as and when required, without using language

specific knowledge. This is a distinct advantage over an OCR engine, which is challenging to adapt to

varied fonts and noisy images and requires language-specific knowledge to generate possible hypotheses

for out-of-vocabulary words. Moreover, an OCR engine can respond to a word image query only by first

converting it into text, which is prone to recognition errors. In [85, 155], deep learning frameworks are

used for word spotting. In [5], an attribute based learning model PHOC is presented for word spotting.

In the training phase, each word image is to be given with its transcription. Both word image feature
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vectors and its transcriptions are used to create the PHOC representation. An SVM is learned for each

attribute in this representation. Our approach bears similarities with the PHOC representation based

word spotting [5]. In the sense that both the approaches are designed for handling out-of-vocabulary

queries. Our work takes advantage of granular description at ngrams (cut-portion) level. This somewhat

resembles the arrangement of characters used in the PHOC encoding. However, training efforts for PHOC

are substantial, with a large number of classifiers (604 classifiers) being trained and require complete

data for training, which is huge for large datasets. In our work, the amount of training data is restricted

to only frequent classes, which is very less compared to PHOC. Further, PHOC requires labels in the form

of transcriptions, whereas in our work, the labels need not be transcriptions. Also, PHOC is language-

dependent [50], and challenging to apply in different languages. The method proposed in this work is

language independent, it can be applied to any language.

4.2 Direct Query Classifier (DQC)

In [128], Ranjan et al. proposed Direct Query Classifier (DQC), a one-shot learning scheme for

dynamically synthesizing classifiers for novel queries. The main idea is to compute an SVM classifier

for the query class using the classifiers obtained from the frequent classes of the database. The number

of possible words in a language could be huge and it would be difficult to build a classifier for each word.

However, all these words come from a small set of ngrams. The words corresponding to the frequent

queries are expected to contain the n-grams that cover the full vocabulary. Exemplar SVM classifiers are

computed for the frequent queries (word classes) and then appropriately concatenated to create novel

classifiers for the rare queries. However, this process has its challenges due to

(i) Variations due to nature of script and writing style,

(ii) Classifiers for smaller ngrams could be noisy.

The authors address these limitations by building the SVM classifiers for most frequent queries and

using classifier synthesis only for rare queries. This improves its overall performance. They use Query

Expansion (QE) for further improving the performance. An overview of the direct query classifier is

given in the following sections.
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4.2.1 DP DQC: Design of DQC using Dynamic Programming

Given a set of classifiers for frequent classesWw = {w1, w2, . . . , wN} and a query vector Xq, the

query classifier wq is designed as a piecewise fusion of parts (n grams) from the available classifiers

fromWw. Let p be the number of portions to be selected for computing the query classifier wq. These

portions are characterized by the sequence of indices a1, . . . , ap+1. The classifier synthesis problem

is formulated as that of picking up the optimal set of classifiers {ci} and the set of segment indices

{ai} such that {ai} form a monotonically increasing sequence of indices. This involves the following

optimization:

max
{ai},{ci}

p∑
i=1

ai+1∑
k=ai

wkciX
k
q (4.1)

where wci corresponds to the weight vector of the cthi classifier that we choose and the inner summation

applies the index k in the range (ai, ai+1) to use the kth component wkci from the classifier ci. The index

i in the outer summation refers to the cut portions, and p is the total number of portions we need to

consider.

In [99], Malisiewicz et al. proposed the idea of exemplar SVM (ESVM), where a separate SVM

is learnt for each example. Almazan et al. [67] use ESVMs for retrieving word images. ESVMs are

inherently highly tuned to their corresponding example. Given a query, it can retrieve highly similar

word images. This constrains the recall unless one has significant variations of the query word. Another

demerit of ESVM is the large overall training time since a separate SVM needs to be trained for each

exemplar. One way to reduce training time is to make the negative example mining step offline and

select a common set of negative examples [100]. Gharbi et al. [104] provide another alternative for fast

training of exemplar SVM in which the hyperplane between a single positive point and a set of negative

points can be seen as finding the tangent to the manifold of images at the positive point.

Given a query q, the similar vectors in the dataset are identified by adopting the ESVM formulation

proposed by Gharbi et al. [104], which yields an approach equivalent to Linear Discriminant Analysis. It

involves a fast computation of the weight vector by adopting a parametric representation of the negative

examples approximated as a Gaussian modeled on the complete set of training points. The normal to

the Gaussian at the query point q is computed using the covariance matrix to yield the weight vector wq

as follows:

wq = Σ−1(µq − µ0) (4.2)
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where Σ and µ0 are the covariance and mean computed over the entire dataset. Since Σ and µ0 are

common for entire data, finding wq requires finding the mean vector µq of the class to which the query q

belongs to. Let us define the set of class mean vectors for the frequent classes asWµ = {µ1, . . . , µN}.

The mean vector µq for the class of the query q is computed by making use of appropriate cut portions

from the mean vectors of the frequent classes. Optimizing (4.1) for variable length cut portions entails

high computational complexity. Therefore, instead of matching variable-length n grams the method

divides Xq into p number of fixed length portions.

1. The class mean vectors of the most frequent 1000 classes are concatenated.

2. Now, each query cut portion Xk
q is searched in the concatenated mean vector using subsequence

dynamic time warping [106]

3. The most similar segment in the concatenated mean vector is taken as the corresponding portion

of the query class mean µkq .

4. The concatenation of these query class mean cut portions µkq synthesizes the query class mean

µq = [µ1
q , . . . , µ

p
q ].

Since DTW is computationally slow, applying subsequence DTW in this case is computationally expen-

sive.

4.2.2 NN DQC: Design of DQC using Approximate Nearest Neighbour

A speed-up is obtained using approximate nearest neighbor search instead of DTW.

• Instead of concatenating the class mean vectors, each class mean vector is now divided into the

same p number of fixed length portions. An index is built over frequent class means cut portions

using FLANN.

• Each cut portion ofXq is compared with frequent class means cut portions using nearest neighbor

search with Euclidean distance.

• The best matching cut portions of the mean vectors are used to synthesize the mean vector for the

query class.
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Figure 4.1: The figure shows a few query words and their corresponding retrieval results. The first

column shows the query image, and the corresponding images in each row are its retrieval results. The

first two rows show frequent query results. The first row show the results for NN DQC, and the second

row show the results for DP DQC. Row 3 to Row 5 show the retrieval results for a rare query. Row 3

shows the results for NN DQC and, row 4 show the results for DP DQC and Row 5 show the results for

query expansion.

However, using nearest neighbour (NN DQC) instead of subsequence DTW based scheme (DP DQC)

compromises the optimality of the classifier synthesis.

Few qualitative examples for the two versions of DQC are given in Figure 4.1. We have shown the

retrieval results for frequent queries and rare queries. For each case, we have compared the retrieval

results for NN DQC and DP DQC. For rare queries, we have also shown the results for Query expansion

(QE).

4.3 Query Specific Fast DTW Distance

In Fast Surrogate DTW distance (section 3.3), the global principal alignments are computed from the

given data. Here, no class information is used while computing the alignments, and also, these align-

ments are query independent, i.e., query information is not used while computing the global principal

alignments. In this section, we introduce Query specific DTW distance, which is computed using query

specific (global) principal alignments. The proposed query specific DTW distance has been found to

perform much better when used with the direct query classifier.
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Let X be the given data and all the samples are scaled to a fixed size. Let {C1, C2, . . . , CN} be

the most frequent N classes from the data and µ1, . . . , µN be their corresponding class means. The

matching process using the query specific principal alignments is as follows:

(i) Divide each sample from the frequent classes into a fixed number p of equal size portions. Let

xi1 , . . . , xi|ci| be the samples (sequences) from the ith class ci, where |ci| is the number of samples

in class ci. The cut portions for the class means µi are denoted as µi1, . . . , µ
i
p, where each cut

portion is of length d. Similarly, divide the query Xq into the same number p of fixed length

portions.

(ii) For each class, compute the global principal alignments for each cut portion separately. These

alignments corresponds to the cut specific principal alignments for the class. For ith class and jth

cut portion the cut specific principal alignments are computed from {xji1 , . . . x
j
i|ci|
} and these are

denoted as Gji . These alignments are computed for all the cut portions for each class.

(iii) The final step computes the cut specific principal alignments for the given query Xq as follows.

For each cut portion of Xq we compute the DTW distance (Euclidean distance over the cut spe-

cific principal alignments) with the corresponding cut portions of all the class means using their

corresponding cut specific principal alignments. The distance between the jth cut portion of Xq

i.e., Xj
q and the jth cut portion of the ith class mean i.e., µji is denoted as

Disji =
∑
π∈Gji

Euclidπ(Xj
q , µ

j
i ) (4.3)

For each cut portion of Xq, we compute the minimum distance mean cut portion over all the class

mean vectors. The corresponding cut specific principal alignments of the closest matching mean

cut portions are taken as the cut specific principal alignments of the query cut portion. Also, the

corresponding class mean cut portion is taken as the matching cut portion for constructing the

query mean. Let the jth cut portion of the query best match with the jth cut-portion of the class

with index c.

c = arg min
i

Disji (4.4)

Here the minimum distance is computed over all the frequent classes. We thus have
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GjXq ←− G
j
c and µjq ←− µjc (4.5)

Here GjXq is the cut specific principal alignments for the jth cut portion of Xq.

Together, all these query mean cut portions give the query class mean. The query class mean µq

is given as µq = (µ1
q , µ

2
q , . . . , µ

p
q). This query class mean µq is then used as in Equation 4.2 to

compute the LDA weight wq (query classifier weight).

The query specific (qs) DTW distance between the query Xq and a sample X from the data is

given as

dtw
qs

(Xq, X) =

p∑
i=1

dtwGiXq
(Xi

q, X
i) (4.6)

where p is the number of cut portions.

Fig 4.2 shows all the processing stages of the nearest neighbour DQC. To summarize, we generate

query specific principal alignments on the fly by selecting and concatenating the global principal align-

ments corresponding to the smaller n grams (cut portions). Our strategy is to build cut-specific principal

alignments for the most frequent classes; these are the word classes that will be queried more frequently.

These cut-specific principal alignments are then used to synthesize the query specific principal align-

ments (see Figure 4.3). The results demonstrate that our strategy gives good performance for queries

from both the frequent word classes and rare word classes.

In general, the alignments trained on one dataset may not work well on another dataset. This is

mainly due to the print and style variations. To adapt to different styles, we use query expansion (QE),

a popular approach in the information retrieval domain in which the query is reformulated to improve

the retrieval performance further. An index is built over the given sample vectors from the database,

and using an approximate nearest neighbor search, the top 10 similar vectors to the given query are

computed. These top 10 similar vectors are then averaged to get the new reformulated query. This

reformulated query is expected to capture the variations in the query class better. In our experiments,

this further improves the retrieval performance. Approximate nearest neighbors are obtained using

FLANN [96].
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Figure 4.2: Overall Scheme for NN DQC. In an offline phase, the mean vectors for the frequent word

classes are computed and their cut-specific principal alignments are computed. To process a query word

image, it is divided into cut portions and Fast Surrogate DTW matching is used to get the best matching

cut-portions from the frequent class mean vectors with the cut-portions of the query image. These best

matching cut-portions are used to construct the mean vector for the query class and the query specific

principal alignments. Fast SurrogateDTW [109] matching between the query image and the database

images is done using the query specific principal alignments.

4.4 Results and Discussions

In this section we validate the DQC classifier using query specific Fast Surrogate DTW distance for ef-

ficient indexing on multiple word image collections and also demonstrate its quantitative and qualitative

performance.

4.4.1 Datasets and Evaluation Protocols

In this subsection we discuss datasets and the experimental settings that we follow in the experiments.

Our datasets, given in Table 4.1, comprise scanned English books from a digital library collection. We

manually created ground truth at the word level for the quantitative evaluation of the methods. The first

collection (D1) of words is from a reasonably clean book. The Second dataset (D2) is larger in size

and is used to demonstrate the performance in the case of heterogeneous print styles. The third data

set (D3) is a noisy book and is used to demonstrate the utility of the performance of our method in

degraded collections. We have also given the results over the popular George Washington dataset. For

the experiments, we extract profile features [130] for each of the word images. In this, we divide the

image horizontally into two parts, and the following features are computed: (i) vertical profile i.e., the
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Figure 4.3: Synthesis of query specific principal alignments. (a) Cut specific principal alignments corre-

sponding to "ground" and "leather" are joined to form the principal alignments for "great". Note that the

appropriate cut portions are automatically found. (b) In a general setting, query specific principal align-

ments gets formed from multiple constituent cut specific principal alignments computed for frequent

classes.

number of ink pixels in each column, (ii) location of lowermost ink pixel, (ii) location of uppermost ink

pixel and (iv) number of ink to background transitions. The profile features are calculated on binarized

word images obtained using the Otsu thresholding algorithm. The features are normalized to [0, 1] so

as to avoid dominance of any specific feature.

To evaluate the quantitative performance, multiple query images were generated. The query images

are selected to have multiple occurrences in the database are mostly functional words and do not include

the stop words. The performance is measured by mean Average Precision (mAP), which is the mean of

the area under the precision-recall curve for all the queries.

4.4.2 Experimental Settings

For representing word images, we prefer a fixed length sequence representation of the visual content,

i.e., each word image is represented as a fixed length sequence of vertical strips. A set of features f1,. . .,

fL are extracted, where fi ∈ RM is the feature representation of the ith vertical strip and L is the

number of vertical strips. This can be considered as a single feature vector F ∈ Rd of size d = LM .

We implement the query specific alignment based solution as discussed in Section 4.3. For the query
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Dataset Source Type # Images # Queries

D1 1 Book Clean 14510 100

D2 2 Books Clean 32180 100

D3 1 Book Noisy 4100 100

Table 4.1: Details of the datasets considered in the experiments. The first collection (D1) of words is

from a book which is reasonably clean. The second dataset (D2) is obtained from 2 books and is used

to demonstrate the performance in case of heterogeneous print styles. The third data set (D3) is a noisy

book.

expansion based solution, we identify the five most similar samples to the query using an approximate

nearest neighbor search and compute their mean.

Each dataset contains certain words which are more frequent than others. The number of samples

in the frequent word classes are more compared to the rare classes. The retrieval results for frequent

queries give better performance because the number of relevant samples available in the dataset are

more. It is worth emphasizing that for the method proposed in this work (QS DTW), the degradation in

the performance for rare queries is much less compared to other methods.

4.4.3 Results for Frequent Queries

Table 4.2 compares the retrieval performance of the direct query classifier DQC with the nearest

neighbour classifier using different options for distance measures. The performance is shown in terms

of mean average precision (mAP) values on three datasets. For the nearest neighbour classifier, we

experimented with five distance measures: naive DTW distance, Fast Surrogate DTW distance [109],

query specific DTW (QS DTW) distance, Salvador et al. [140] and Euclidean distance. We see that QS

DTW performs comparably with DTW for all the datasets. It performs superior compared to Salvador et

al.. Fast Surrogate DTW distance [109] performs significantly better than Euclidean distance.

For DQC, we experimented with four options for indexing the frequent class mean vectors: subse-

quence DTW [128] (sDTW), approximate nearest neighbour NN DQC [128] (aNN), Fast Surrogate DTW,

and QS DTW. We use the cut-portions obtained from the mean vectors of the most frequent 1000 word

classes for (i) computing the cut-specific principal alignments in case of QS DTW, (ii) computing the
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Dataset

Retrieval Results (mAP) for Frequent Queries

Using Nearest Neighbour Classifier Using DQC (Exemplar SVM)

DTW Fast Surrogate DTW [109] QS DTW Euclidean Salvador et al. [140] sDTW aNN Fast Surr DTW QS DTW

D1 0.94 0.92 0.92 0.81 0.91 0.98 0.98 1 1

D2 0.91 0.89 0.9 0.75 0.87 0.96 0.95 0.97 0.99

D3 0.83 0.79 0.81 0.67 0.76 0.91 0.92 0.93 0.96

Table 4.2: Retrieval performance of various methods for frequent queries.

closest matching cut-portion (i.e., one with the smallest distance, which can be Euclidean or DTW) with

a cut-portion from the query vector, in case of aNNor Fast Surrogate DTW.

However, since sDTW has computational complexityO(n2), we restrict the number of frequent words

used for indexing to 100. The QS DTW distance improves the performance of the DQC classifier. This is

mainly due to the improved alignments involved in the QS DTW distance. The query specific alignments

better capture the variations in the query class. Moreover, unlike the case of sDTW distance the QS

DTW distance has linear complexity and therefore we are able to index all the frequent mean vectors

in the DQC classifier. Thus, the proposed method of QS DTW enhances the performance of the DQC

classifier [128].

The experiments revealed that the QS DTW gets the global principal alignments from the mean vec-

tor of the same (query) class for frequent queries. Since the alignments are coming from the query

class, it gives a minimum distance only for the samples which belong to its class. Therefore, the re-

trieved samples largely belong to the query class. The performance is therefore improved compared to

sDTW distance. In contrast, the Fast SurrogateDTW distance [109] computes the global principal align-

ments using all samples in the database, without exploiting any class information. The computed global

principal alignments, therefore, include alignments from classes that may be different from the query

class. For this reason, it performs inferior to the proposed QS DTW distance.

Dataset

Retrieval Results (mAP) for Rare Queries

Using Nearest Neighbour Classifier Using DQC (Exemplar SVM)

DTW Fast Surrogate DTW [109] QS DTW Euclidean Salvador et al. [140] sDTW aNN Fast Surr DTW QS DTW QE

D1 0.82 0.77 0.83 0.69 0.75 0.91 0.90 0.91 0.95 0.98

D2 0.81 0.74 0.80 0.65 0.74 0.89 0.90 0.90 0.94 0.95

D3 0.73 0.66 0.71 0.59 0.62 0.80 0.78 0.80 0.91 0.96

Table 4.3: Retrieval performance of various methods for rare queries.
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4.4.4 Results for Rare Queries

The faster indexing offered by using QS DTW with DQC allows us to use the mean vectors of all the

1000 frequent classes. This gives us much improved performance of the DQC on rare queries compared

to sDTW [128], which uses mean vectors from 100 frequent classes. Table 4.3 shows the retrieval

performance of DQC with a nearest neighbour classifier using different options for distance measures.

The performance is shown in terms of mean average precision (mAP) values on rare queries from three

datasets. For the nearest neighbour classifier, we experimented with five distance measures: naive

DTW distance, Fast Surrogate DTW distance [109], query specific DTW (QS DTW) distance, Salvador et

al. [140] and Euclidean distance. We see that QS DTW performs comparably with DTW distance for all

the datasets. It performs better than the Fast Surrogate DTW distance [109], Salvador et al. [140] and

significantly better than Euclidean distance.

For DQC, we observe that QS DTW improves the performance compared to sDTW. This improvement

of QS DTW over sDTWis more for rare queries compared to that for frequent queries. This shows that

QS DTW can be used for faster indexing for both frequent and rare queries.

For rare queries, the query specific DTW distance outperforms Fast SurrogateDTW [109] distance.

This happens because the Fast SurrogateDTW computes the global principal alignments from the database

and its performance depends on the number of samples. Also, these alignments are query independent,

i.e., they do not use any query information for computing the global principal alignments. For a given

query, it needs enough samples from the query class to get novel global principal alignments. However,

in any database the number of samples for frequent classes dominates the number of samples for rare

classes. The global principal alignments for frequent queries are likely to dominate the rare queries.

Therefore, the precomputed global principal alignments in Fast SurrogateDTW may not capture all the

correlations for rare query classes. In the proposed QS DTW distance, the global principal alignments

are learned from the ngrams (cut-portions) of frequent classes. These ngrams are in abundance and also

shared with rare queries, thus there are enough ngram samples for learning the cut-specific alignments.

The computed query specific alignments for the cut-portions outperform the alignments obtained from

Fast SurrogateDTW.

It is worth mentioning that Salvador et al. [140] is an approximation method attempt to compute

the DTW distance efficiently. It does not consider cut portion similarities, which may be influenced by

various printing styles. Hence, these approaches are not applicable in our setting where the dataset can
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Average of DTW distance

For given query For Reformulated Query

n=2 n=5 n=7 n=10

2.67 ±0.19 2.69±0.23 2.52±0.13 2.58±0.21 2.94±0.29

Table 4.4: The table gives the average sum of DTW distance for the given query and the reformulated

query with varying number of samples n from the query class.

have words printed in varied printing styles and thus can result in marked degradation of performance for

rare queries. Since query specific DTW finds the approximate DTW distance using cut specific principal

alignments, it can exploit properties that cannot be used by other DTW approximation methods.

To summarize, the experiments demonstrate that the proposed query specific DTW performs well for

both frequent and rare queries. Since it is learning the alignments from ngrams, it performs comparable

to sDTWdistance for rare queries. For some queries, it performed better than the DTW distance.

4.4.5 Results for Rare Query Expansion

The results for QS DTW enhanced with query expansion (QE) using the five best matching samples

are also given in Table 4.3. It is observed that QE further improves the performance of our proposed

method. To show the effectiveness of query expansion, we have computed the average of the DTW

distance between the given query and all database samples that belonged to the query class. Likewise,

we computed the average of the DTW distance for the reformulated query. Table 4.4 shows a comparison

of the averaged DTW distance for the given query and the reformulated query using 2, 5, 7, and 10 most

similar (to the query) samples from the database. From the results, we can observe that compared to the

given query, the reformulated query using five best matching samples gives the lowest averaged DTW

distance to the samples from the query class. This means the reformulated query is a good representative

of the given query. However, using nine best matching samples for reformulating the query leads to a

higher average of DTW distances. This means some irrelevant samples to the query come in the top

similar samples.
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Dataset
mAP using nearest neighbour mAP using DQC

DTW Fast Surrogate DTW [109] QS DTW Euclidean sDTW Fast Surr DTW QS DTW

GW 0.51 0.50 0.52 0.32 0.62 0.63 0.70

Table 4.5: Retrieval performance on the George Washington (GW) dataset. The DQC makes use of top

800 frequent classes for indexing the cut-portions.

Length of cut portion D1 D2 D3

1 0.81 0.78 0.7

10 0.86 0.83 0.74

20 0.86 0.82 0.75

30 0.82 0.77 0.72

Table 4.6: The table shows change in retrieval performance with change in the length of cut portion over

all the datasets (D1, D2, D3).

4.4.6 Results on George Washington Dataset

The George Washington (GW) dataset [7] contains 4894 word images from 1471 word classes. This

is one of the popular datasets for word images. We applied our proposed method of DQC using QS DTW

for word retrieval on the GW dataset. Table 4.5 provides comparative results for seven methods. Exper-

iments are repeated for 100 random queries and the average over these results are reported in the table.

We can observe that for the DQC the proposed QS DTW gives better performance than DTW. We can also

observe that for the nearest neighbour classifier, QS DTW distance is performing slightly superior to the

DTW distance and Fast SurrogateDTW distance. The superiority is because of the principal alignments,

which are query specific.

4.4.7 Setting the Hyperparameters

The proposed method has few hyperparameters, like the length of the cut portion and the number

of cut specific principal alignments. For tuning these parameters, we randomly choose 100 queries for

each dataset and validate the performance over these queries. Queries included in the validation set are

not used for reporting the final results.
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Number of cut specific mAP for different datasets

Principal Alignments D1 D2 D3

10 0.92 0.89 0.81

20 0.93 0.89 0.81

30 0.91 0.88 0.78

Table 4.7: Retrieval performance on the 3 datasets D1, D2 and D3 for varying number of cut specific

principal alignments.

In Table 4.6, we report the effect of varying the cut portion length on retrieval performance. The

mAP score is less for smaller cut portion length. In this case, the learned alignments are not capturing

the desired correlations. This happens because the occurrence of smaller cut portions is very frequent in

the word images. For length more than 30, the mAP is again decreased. This is because the occurrences

of larger cut portions are rare. Cut portion lengths in the range of 10 to 20 give better results. In this case,

the cut portions are good enough to yield global principal alignments that can distinguish the different

word images.

We assessed the effect of varying the number of cut-specific principal alignments on the retrieval

performance of the three datasets and the results are given in Table 4.7. It is seen that the performance

degrades for all the datasets when the number of alignments is chosen as 30. This can be attributed to

some redundant alignments getting included in the set of principal alignments. Increasing the number of

alignments from 10 to 20 improves performance for dataset D1, but has no effect on the performance for

datasets D2 and D3. Therefore, we can conclude that restricting the number of principal alignments in

the range of 10 to 20 would give good results. In all our experiments, we set the number of cut-specific

principal alignments as 10.

4.4.8 Computation Time

Table 4.8 gives the computational time complexity for the methods based on DTW. The main com-

putation involved in the use of QS DTW is that of computing the cut specific principal alignments for the

frequent classes. Figure 4.4 shows the time for computing the cut specific principal alignments for the 3

datasets. The computation of these cut specific principal alignments can be carried out independently
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Figure 4.4: Computation time for computing the cut specific principal alignments for all the datasets. It

includes the computation of cut specific principal alignments for all the frequent classes over all the cut

portions.

for all the classes. Since we can compute these principal alignments in parallel with each other, the

proposed QS DTW scales well with the number of samples compared to Fast Surrogate DTW [109].

Unlike the case of QS DTW, where the global principal alignments are computed for the small cut

portions, in Fast Surrogate DTW, the principal alignments are computed for the full word image rep-

resentation. Further, in Fast Surrogate DTW, the principal alignments are computed from the entire

dataset, unlike the case of QS DTW in which the principal alignments are computed for the individual

classes. For these reasons, Fast Surrogate DTW is computationally slower compared to the QS DTW.

For a given dataset, computing the cut specific principal alignments for the frequent classes is an

offline process. When performing retrieval for a given query, DQC involves computing the query mean

by composing together the nearest cut portions from the mean vectors of frequent classes. Further,

the query specific principal alignments are not explicitly computed, but rather constructed using the

cut-specific principal alignments corresponding to the nearest cut portions. Once the query specific

principal alignments are obtained, computation of QS DTW involves computing the Euclidean distance

(using the query specific principal alignments) with the database images.

Methods sDTW Fast Surrogate DTW [109] Salvador et al. [140] QS DTW

Computational Complexity O(n2) O(n) O(n) O(n)

Table 4.8: Computational complexities of DTW-based methods for distance computation. Here n is the

length of the cut-portion of the feature vector.
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For given two samples x and y of lengthN , Salvador et al. [140] computed the DTW in the following

way. First, these two samples are reduced to a smaller lengths (1/8 times), and the naive DTW distance is

applied over the reduced length samples to find the optimal warp path. Next, both the optimal path and

the reduced length samples from the previous step are projected to be higher (2 times) resolution. Instead

of filling all the entries in the cost matrix in the higher resolution, only the entries around a neighborhood

of the projected warp path, governed by a parameter called radius r, are filled up. This projection step

is continued till the original resolution is obtained. The time complexity of the approximated DTW

proposed in [140] is N(8r + 14), where r is the radius. Its performance depends on the radius r. The

higher the value of r, the better the performance is. The time complexity of QS DTW/Fast Surrogate

DTW is N ∗ p, where p is the number of principal alignments. In general, p << 8r+ 14, for getting the

similar performance in both the methods.

4.5 Recent Advances in DTW Distance

In this section, we discuss few recent advances in DTW distance.

4.5.1 DTW Distance as a Differentiable Loss Function for Time Series

In the domain of sequence data analysis, compared to the Euclidean distance, the DTW distance

reveals the true similarity between target samples. This is mainly due to invariance against shifting and

scaling in the time axis (Doppler effect). However, it has limited applicability for the problems where we

need the gradient of the corresponding similarity function. These gradients are needed for the problems

like clustering and multistep-ahead prediction. The DTW distance is not differentiable with respect to its

input variables. Due to the non-differentiable behavior of DTW distance, Euclidean distance is preferred

for the problems where we need its corresponding gradient.

4.5.1.1 Soft-DTW

In [34], a differentiable learning loss between time series is proposed, which turns the popular DTW

discrepancy into a full fledged loss function. It widens the applicability of DTW distance. Consider two

multivariate time series x = (x1, . . . , xn) ∈ Rp×n, y = (y1, . . . , ym) ∈ Rp×m and their cost matrix

C(x, y), the γ-soft-DTW is defined as
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dtwγ = minγ{〈A,C(x, y)〉, A ∈ An,m} (4.7)

where, An,m is the set of all alignment matrices between x and y. The min operator minγ with a

smoothing parameter γ ≥ 0 is defined as

minγ{b1, . . . , bn} =


mini≤nbi, if γ = 0

−γlog
n∑
i=1

e
− bi
γ , γ > 0

(4.8)

If γ = 0 then the soft-DTW is same as the naive DTW distance.

4.5.1.1.1 Differentiation of soft-DTW If γ = 0, then dtw0 is the minimum over a finite set of linear

equations of C. Therefore, dtw0 is locally differentiable w.r.to the cost function C [137]. The gradient

of dtw0 w.r.to x is computed using the chain rule

∇xdtw0(x, y) =
(∂C(x, y)

∂x

)T
Aop (4.9)

where,
∂C(x, y)

∂x
is the jacobian of C w.r.to x and Aop is the optimal alignment matrix between x and

y.

For γ > 0, the gradient of soft-DTW is given as

∇xdtwγ(x, y) =
(∂C(x, y)

∂x

)T
Eγ [A] (4.10)

where, Eγ [A] =
1∑

A∈An,m e
−〈A,C(x,y)/γ〉

∑
A∈An,m e

−〈A,C(x,y)/γ〉A is the average alignment matrix

under the Gibbs distribution pγ = e−〈A,C(x,y)〉/γ . The gradient computation given in Eq 4.10 is inspired

from the derivative of Edit distance [119, 143].

For the problems like clustering and multistep-ahead prediction, soft-DTW loss produces better re-

sults compared to Euclidean loss [34]. Soft-DTW loss can be applied for the problems where we use

Euclidean loss. In [26], a discriminative differentiable dynamic time warping (D3TW) is proposed to

solve video alignment and segmentation problems in a weakly supervised setting.
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4.5.2 Dynamic Time Warping Networks (DTWNet)

Over the past few years, there has been increasing interest in deep learning methods, and they have

produced state-of-the-art results over various problems. Although DTW is one of the important similarity

measures for temporal data and is useful in data analysis, it is not explored much in the deep learning

domain. In [23], the DTW distance is successfully used in the deep learning framework. The authors [23]

proposed the DTWNet, where the DTW distance is applied as a feature extractor. Unlike the convolution,

the DTW handles the Doppler effect and has the non-linear transformation property [23]. In DTWNet,

the DTW kernels are learned using standard stochastic gradient descent on the warping path. For an

input sequence x ∈ Rl, the objective is to learn a kernel k ∈ Rm(m ≤ l) such that it has best warping

path with x, i.e. k = argminz dtw(x, z). The kernel k is initialized randomly. For the problems like

data decomposition, it outperforms standard convolutional kernels.

In DTWNet, the DTW computation is applied in the DTW layers. The DTW is computed between the

input and the kernels. The DTWNet contains multiple DTW layers, each of which contains multiple DTW

kernels, which extract important features from the input. In sliding window, similar to the convolutional

kernels, the DTW kernel produces multiple distance outputs. Since the entries along the warping path

(optimal path) contribute to the final DTW distance, in DTWNet, the differentiation is performed only

along this warping path. It makes the differentiation of DTW distance faster. For two sequences of length

l and m, the gradient along the warping path takes O(l+m) time. The soft-DTW [34] takes O(lm) time

for computing the gradient.

4.6 FastDTWNet

In DTWNet [23], the gradient is computed along the warping path. For two sequences of length l and

m, the warping path computation takes O(lm) time. This slows down the training process in DTWNet.

In this section, we propose FastDTWNet. Compared to DTWNet, FastDTWNet employs Fast Surrogate

DTW distance, which increases the training speed. In Fast Surrogate DTW distance, we approximate

the warping path using global principal alignments. In FastDTWNet, instead of computing the warping

path between the input and kernels, we approximate it using the global principal alignments (defined in

Chapter 3). Now, the gradient is computed along these global principal alignments. It will increase the

training speed in FastDTWNet. We show the speed up on the popular Libra dataset. For both the DTWNet

and FastDTWNet, we take 5 DTW layers. We compare the training time for DTWNet and FastDTWNet in
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Training Time (mins) Accuracy

DTWNet (Actual warping path) 51 97.8

FastDTWNet (Approximated warping path) 32 97.6

Table 4.9: Comparison of training time for DTWNet using Actual Warping path and Approximated

Warping path (FastDTWNet). In Actual Warping path, the warping path is computed using dynamic

programming. In Approximated Warping path, the warping path is computed using global principal

alignments.Training time is given in minutes.

Table 4.9. From the results, we can observe that the warping path approximated using global principal

alignments speeds up the training in DTWNet. In terms of accuracy, the DTWNet using global principal

alignments (FastDTWNet) is performing equally well compared to the DTWNet using the actual warping

path.
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Chapter 5

CCK: A Surrogate Kernel Approximation of Canonical Correlation

Analysis (CCA)

In our previous chapter (Chapter 3), we presented a surrogate kernel over DTW (Fast Surrogate DTW

kernel), enabling us to use DTW with a linear SVM. In this chapter, we present a surrogate kernel CCK

over canonical correlation analysis (CCA). It enables us to use CCA in kernel framework, which further

improving its performance. The kernel function works well for action recognition as it embeds the

temporal context in the videos. We have also shown that multiple features can be seamlessly integrated

into the surrogate kernel to enhance the recognition performance further. It seamlessly integrates the

advantages of lower dimensional representation of videos with a discriminative classifier like SVM. This

chapter presents a novel application built using the proposed surrogate kernel CCK in the deep learning

setting. We propose CCKNet, where CCK is used as a feature extractor in CNN.

5.1 Introduction

Recent advances in action recognition are propelled by (i) the use of local as well as global fea-

tures [87, 170], which have significantly helped in object and scene recognition by computing them

over 2D frames [64, 170] or over a 3D video volume [37] (ii) the use of factorization techniques over

video volume tensors [83,94] and defining similarity measures over the resulting lower dimensional fac-

tors [18]. In this work, we try to take advantage of both approaches by defining a canonical correlation

kernel computed from tensor representation of the videos. This also enables seamless feature fusion by

combining multiple feature kernels.

Wang et al. [170] demonstrated the successful use of multiple features defined over relatively densely

extracted tracks. Motivated by the success of dense features for object recognition [39, 171], we do a
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further dense feature extraction on a regular grid of pixels which helps us to obtain a rich and robust

set of descriptors. However, we avoid any explicit tracking across frames. Though there have been

many previous attempts in using spatio-temporal descriptors in the past [156], our focus is to explore

the utility of well-understood 2D image descriptors. Our method captures the temporal information as

well as correlation across the frames while computing the low-dimensional representations of tensors.

Spatio-temporal shape and texture of the action videos are well represented in a number of low-rank

representations computed out of the tensors with various factorization techniques [94, 95]. This tensor

computation has been successfully applied in many vision tasks including action classification in the

past [83, 94, 95]. Recognition is often carried out on the prominent components obtained by the factor-

ization or dimensionality reduction of the videos. Kim et al. [83] represent the video as a tensor and

compute the similarities using canonical correlation [18] with specially selected discriminative correla-

tion coefficients. These tensorial representation methods [83, 94, 95] often use pixel values directly as

observations to build the data tensor. However, [81] uses SIFT for tensor representation. One of the in-

gredients of the success of our method is the use of rich feature descriptors in the tensorial representation

of the video. We also define a canonical correlation kernel that seamlessly integrates the advantages of

lower dimensional representation of videos with a discriminative classifier like SVM. This also enables

us to weigh the features differently to improve the recognition performance.

Wolf and Shashua [173] extended the notion of canonical correlation analysis (CCA) to introduce a

kernelized version of the same in KCCA. This is considerably different from what we do in this work.

Rather than kernelizing CCA, we are interested in defining a kernel that can be used in many situations

where canonical correlation is used. However, by computing similarities over projections on nonlinear

manifolds we find that the correlation analysis with the help of KCCA also provides useful information

for action recognition. We simultaneously consider the correlations computed over linear as well as

nonlinear manifolds of the video data tensor. While the individual correlation coefficients can not be

used as a valid measure for comparing two action videos in a kernel setting, their sum becomes a valid

measure. Our kernel is simple to compute and visualize, starting from canonical correlation analysis.

However, this enables a host of useful tricks. (i) we can use SVM along with CCA/KCCA based

feature extraction (ii) we can simultaneously compute similarities over multiple features in a single

framework (iii) we can optimally fuse the advantages of the bag of words representation (as in [171])

and tensor based methods (as in [83, 95]) for action recognition. Multiple feature kernels are often

combined using multiple kernel learning (MKL) [86] framework. MKL techniques [172] have been
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used in action recognition for combining different contextual features. Our kernel yields superior results

with simple (say pixel values) features, it allows comparing videos without hand coding or tracking. An

illustration of the framework of the proposed method is shown in Figure 5.1. The method has 3 steps,

a given video is represented using a 3D tensor in the first step. In the second step, this 3D tensor is

decomposed into three 2D tensors/matrices. Finally, for the given two videos, CCK is computed from

their corresponding 2D tensors, which involves CCA and KCCA. This results in a set of correlation

coefficients. The sum of these correlations gives the CCK for the given two videos.

Our approach is evaluated on four popular action video data sets. Our single feature representa-

tion (with pixel values as features) outperforms most competitive methods, which use more powerful

features. We also show that recognition performance improves by the intuitive and seamless fusion of

multiple feature kernels. Our proposed canonical correlation kernel is explained in Section 5.3. Experi-

mental results are discussed in detail in Section 5.4.

5.2 Related Work

A broad spectrum of features and representations has been used for action recognition in the past.

Initial attempts like Motion Intensity/History Images represented the whole video as a single image and

used traditional feature extraction for recognizing actions. Such features typically capture global motion

information in a compact manner. On the other extreme, local information captured using features like

SIFT [156], HOG [64, 170], LBP [78] and MBH were also used for describing video frames and

found to be useful for action recognition. The need for defining a set of distinct descriptors for video

(from images) was realized, and many features like SIFT and HOG got extended to video by defining

them over a volume rather than over a 2D grid [156]. However, a successful direction has been to

track the features over frames and to compute the descriptors over this track to represent the action

content [101, 103]. By making these tracks denser, Wang et al. [170] obtained excellent results on

popular data sets. We argue that such dense and feature rich representations can result in superior

results when used along with the learned representations from video volumes.

A video can be represented as a third order data tensor denoted as V ∈ RX×Y×Z . Where, X and

Y are spatial dimensions, which gives spatial information and Z is a time axis, which gives temporal

information of a video. This representation is bulky and noisy for deriving effective representations for

action recognition. A wide variety of decomposition techniques [83,94,95] were used for deriving lower
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Figure 5.1: An illustration of the proposed method. In the first step, videos are represented using 3D

tensors. Next, these 3D tensors are flattened to obtain three 2D matrices. Finally, CCK is computed as

the sum of correlations between the flattened matrices obtained from CCA and KCCA.

dimensional representations from these data tensors. A successful method [83] is to start with projec-

tions of these tensors over multiple dimensions resulting in matrices and deriving algorithms that work

on these matrices. Often matrix projections on the spatial and temporal axes are represented as points

on a manifold [94]. Canonical correlation analysis represents an action video with the help of a vec-

tor of a discriminatively selected subset of correlation coefficients defined over a linear manifold [18].

The kernalized version of CCA [173] measures the correlation on a nonlinear implicit manifold. Alter-

nate techniques for representing the action videos include those based on tangent bundles [94], product

manifolds [95], etc. In tangent bundles [94], data tensors are factorized to a set of tangent spaces on a

Grassmann manifold. In product manifold [95], each tensor is considered as a point on a product mani-

fold and the tensor is factorized using a modified High Order Singular Value Decomposition. Naoki et

al. [3] represent the gait dynamics trained from multiple training videos by a standard manifold.

Once the video is represented in a lower dimension, a similarity measure is defined to compare

two videos. This similarity/dissimilarity measure could be simple Euclidean or cosine similarity as in

canonical correlation. Our canonical correlation kernel is based on the principal angles between the
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Figure 5.2: Flattening of Tensor representation. A third order tensor is flattened into 3 second order

tensors (2D matrices) X×YZ, Y×XZ and Z×XY. Here, X, Y are spatial axes and Z is a time axis. The

first tensor matrix (X×YZ) (a) is obtained by keeping X fixed and flattening YZ into a single dimension.

The other decomposition matrices are also obtained in a similar way.

points on a manifold [18] resulting from the tensor decomposition of two videos. This is a simple, yet

powerful generalization of the similarity computation in a canonical correlation analysis.

Canonical correlation analysis [18] has been successfully applied for image set comparison in robust

object recognition, and later extended for action recognition [83, 94]. It gives the linear relationships

between two set of random variables (or two matrices) in terms of correlations. Given two matrices,

CCA finds two projections one for each of the matrices such that the correlation between projections

of the matrices is maximized. The correlation constants (correlations) between the projections of the

matrices gives a similarity measure between original matrices. For any given two matrices, its canonical

correlations can be computed in two ways. One is from the singular values of given matrices and other

is using the eigendecomposition of the matrix which is obtained by pre and post multiplying the cross-

covariance matrix by the inverse square root of the covariance matrix of given matrices. In this work, we

have followed the SVD based solution [18]. For the matrices P and Q of dimension n × d1 and n × d2

(n > min{d1, d2}), we denote their orthonormal matrices as P̄ and Q̄ of dimension n× rank(P ) and

n × rank(Q). The d correlation constants (ρ1, ρ2, . . . , ρd), where d = min{rank(P ), rank(Q)}, for

the matrices P and Q, can be computed as the singular values of the matrix P̄ T Q̄.

Our definition of the canonical correlation kernel is motivated by the need to use tensorial represen-

tation framework along with a discriminative classifier like SVM. Diverse set of features can also be

used for tensorial representation.
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5.3 Canonical Correlation Kernels

We start with a tensor representation of the video volume. To begin with, let us consider that elements

of the tensor are the pixel (or intensity) values. However, this representation can easily scale to other

dense representations, where more powerful feature descriptors (e.g., SIFT) are used to encode the

local information. Our objective is to define an effective similarity measure that can scale for multiple

features. We achieve this with the help of a canonical correlation kernel defined based on the canonical

correlation analysis [18], which has already been used in action recognition [83]. Our kernel is far

more effective than the discriminatively selected (using boosting) correlation coefficients used in [83]

for comparing videos, as can be seen in Section 5.4.

The use of CCA for defining a kernel for the action recognition task is motivated by multiple fac-

tors: (i) Canonical correlation allows us to define a kernel, which can be used in a maximum margin

discriminative framework like SVM, and used for a seamless combination of multiple features and rep-

resentations. For example, in Section 5.4, we show that Bag of Words based methods can be used along

with the tensor based ones (ii) TCCA based method had shown some success in recognizing actions in

the past [83]. (iii) similarity of the videos can be computed by projecting them over a linear manifold in

CCA and a nonlinear manifold in KCCA in the same framework. (iv) correlation coefficients measure

the similarity more intuitively compared to the popular distance functions like Euclidean. We find this

to be very effective for comparing videos. Note that the principal angle based similarity computation

(cosine similarity) is widely used in the text domain and has proven to be more appropriate than the Lp

norms in a wide range of problems.

5.3.1 Canonical Correlation Kernel (CCK)

Given two random vectors x and y, canonical correlation analysis measures the similarity by finding

the correlation of these two vectors after a set of linear transformations. Assume x gets linearly trans-

formed with u as x′ = utx and y as y′ = vty, then canonical correlation is defined as the maximum

possible correlation over all possible transformations u and v. For a video recognition problem, this

implies that the video is getting transformed (or features are getting extracted) such that the correlation

in the most appropriate feature space is maximized. Thus, we simultaneously learn the most appropriate

features and the similarity in that feature space. The method remains same irrespective of whether x and

91



y are vectors, matrices or tensors. Correlation coefficients ρi measures the similarity in the projected

space as the cosine of the angles between the linear manifold.

A limitation of the above is the use of linear transformation while extracting features. Wolf and

Shashua [173] addressed this problem by kernelizing the canonical correlation by defining the trans-

formation in an implicit feature space. For example, a kernel κ(x,u) = φ(x)Tφ(u) does the feature

extraction by finding a manifold instead of a linear subspace. This generalizes the classical canonical

correlation and provides a mechanism for extracting a richer set of features. In our implementation,

we use an exponential kernel (for KCCA) as κ(x,y) = e−βd(x,y). Here also, similarity is measured

using correlation coefficients ρ′i computed for nonlinear manifolds. For our experiments, we use the

similarities computed over both linear as well as nonlinear manifolds i.e., ρi and ρ′i, simultaneously.

Our video representation is essentially a third order tensor. While working with pixel values, we scale

the video to a smaller size, as explained in the experimental section. While using feature representations

(e.g. SIFT descriptors), we sample the image/frame further and compute the features at smaller set of

grid points. A tensor thus obtained from pixel values or feature descriptors is first flattened to obtain

a matrix. Here, we use three kinds of flattening corresponding to the spatial and time axis. This is

done similarly to many of the previous works [83, 94, 95]. This flattening is explained in Figure 5.2.

For a given video of size l × m × n , where n is the number of frames and l × m is the size of each

frame, the flattening corresponding to the time axis leads to a matrix of size d1× n . Each column in the

matrix corresponds to a video frame and the number of columns is same as the number of frames in the

video/tensor. Here d1 is the length of the feature descriptor obtained from each frame; for pixel values,

this is equal to l ·m . The computation of feature descriptors is explained in Section 5.3.2. Similarities

between two videos is then computed with the help of canonical correlations coefficients between the

corresponding flattened matrices, which are the principal angles between the subspaces.

Given two videos V1 and V2 denote their ith (i = 1, 2, 3) flatten matrices as V i
1 , V i

2 , we define the

canonical correlation kernel corresponding to the ith flatten matrices as the sum of all the correlation

coefficients obtained from both CCA and KCCA over V i
1 and V i

2 . i.e.,

K
′
(V i

1 , V
i

2 ) =

d∑
j=1

ρj +

d∑
j=1

ρ′j (5.1)

where, d = min{rank(V i
1 ), rank(V i

2 )} and ρi, ρ′i are the correlation coefficients obtained from CCA

and KCCA over V i
1 and V i

2 . We flatten the third order tensor video into three second order matrices

(tensor). Our final canonical correlation kernel between two videos is the sum of canonical correlation
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kernels obtained from three flattening matrices. i.e.,

CCK(V1,V2) =

3∑
i=1

K
′
(V i

1 , V
i

2 ) (5.2)

5.3.2 Feature Kernels

CCK can be computed for pixel values and other extracted features. In both cases, the procedure of

computation remains the same. For every feature, we first compute its feature matrices corresponding

to three flattenings then CCK is computed over these matrices. For a given feature, its feature matrix

corresponding to time axis flattening over a video of n frames is an d×n matrix. The i th column in this

matrix represents the feature descriptor obtained from the i th frame and d is the descriptor length. In

addition to the pixel values, we use the features SIFT [93], HOG (histograms of oriented gradients) [36],

MBH (motion boundary histogram) [37] and HOF (histograms of optical flow) [87]. Among these

descriptors, HOG and HOF have shown to give good results for action recognition [171]. HOG captures

static local information whereas HOF captures motion information. Dalal et al. [37] proposed MBH for

human detection, it captures the relative motion between the pixels. In our experiments, these feature

descriptors are extracted as follows,

• For SIFT, we divide a frame into fixed grids, where the size of each grid is 4×4, and SIFT is

extracted at each grid location. The final descriptor for the corresponding frame is obtained by

concatenating all the SIFT descriptors.

• For HOG, we compute HOG descriptor using a window of size 4×4 and a bin size 9. Concate-

nation of all the local histograms is taken as the final representation.

• For MBH, similar to SIFT, we divide a frame into grids of size 4×4 and MBH is computed at

each of the grid locations. We take bin size of 8 and patch size 32.

• For HOF, we divide the frame into grids of size 6×6 and HOF descriptors are computed at each

grid locations with a neighborhood size of 24×24 and concatenation of all these descriptors is

taken as the final feature descriptor. Here, we quantize the orientations into 9 bins.

All the descriptors are normalized to zero mean and unit variance.
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CCK is reasonably insensitive to various factors such as temporal misalignment, scale variations

and background variations. Temporal misalignment comes from the affine invariance property of CCA.

Since CCK is computed after normalizing the videos, scale variation is also taken care of. When the

background changes significantly, insensitivity depends on the features used. In our experience, CCK

defined over HOF and MBH is practically insensitive to this.

5.3.3 Classifier

We use a support vector machine (SVM) classifier. Feature kernels are combined [48] by giving

equal weights to all the kernels or by giving high weight to one kernel and zero weightage to all other

kernels. One can also use multiple kernel learning (MKL) [27] for combing the feature kernels. If

κj(·, ·) is the canonical correlation kernel computed using jth descriptor, then the final kernel is obtained

as the linear combination of all the kernels

κ(x,y) =
∑
j

djκj(x,y) (5.3)

If all the djs are equal then the final kernel κ will be the simple average of given kernels. In all our

experiments, we use libsvm [25] package for the SVM classifier.

5.4 Experiments

This section presents a detailed evaluation of our proposed kernel (CCK). CCK is based on canonical

correlation analysis and can be used to compare the videos for action recognition. We evaluate various

components of the proposed kernel to justify our choices. We compare our results with the previously

published works.

We report our results on four publicly available standard action datasets: Cambridge gesture, KTH

human action, Youtube and UCF sports action datasets. Some sample frames from the datasets are

shown in Figure 5.3. For multiclass classification, in all our experiments, we use a one-vs-rest SVM

classifier and select the class with the highest score. We perform the experiments on raw video represen-

tation using pixel values as well as on feature representations. For combining the feature representations,

we use the simple weighted scheme as discussed in Section 5.3.3. The kernel matrices obtained over the

given datasets are positive definite in all our experiments. For the given four datasets, average accuracy

over all the classes is reported as the performance measure.
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Set 1 set2 set3 set4 set5

Boxing Handwaving Handclapping Running Walking

Diving Horseriding Kicking Walking Weightlifting

Basketballshooting Biking Golf swinging Swinging Volleyball spiking

Figure 5.3: Some sample frames from video sequences on Cambridge Gesture (first row), KTH (second

row), UCF (third row) and Youtube (fourth row) datasets. For cambridge, background is uniform in

most of the sequences. For KTH, background is homogenous and static. UCF and youtube videos have

non uniform background. Youtube dataset has large variations in camera motion

5.4.1 Datasets and Experimental Setting

Cambridge Gesture Dataset: The cambridge gesture dataset [82]1 consists of 900 video sequences

belonging to nine action classes. These videos are captured using five different lighting conditions

from two subjects. The data is divided into five sets (one for each illumination setting), where each

set contains a total of 180 video sequences. we use 10 random videos from each class in set5 (plain

illumination setting) for training and all videos from the remaining sets (set1, set2, set3 and set4) for

1ftp://mi.eng.cam.ac.uk/pub/CamGesData
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testing as reported in [83,94,95]. For our experimental setup, we use tensors of size 20×20×20, where

20 frames from each sequence were obtained by uniform sampling. Each frame in the sequence is

resized to 20×20. Classifier is trained using the randomly chosen 90 videos. Accuracies are reported

by taking the average over ten trials.

KTH Dataset: The KTH dataset [142]2 contains 600 videos from 6 human action classes. In most of

the videos, background is homogeneous and static. Each type of action is performed by 25 different

actors in indoor and outdoor settings. We extract the human actions by following the procedure used

in [94, 95]. Our tensor formulation is identical to [82, 94] by constructing tensors of size 20×20×32.

Experiments are carried out using leave one out cross-validation, which is performed by dividing the

dataset into 25 folds (each fold containing 24 videos of the same person).

UCF Sports Action Dataset: The UCF sports action dataset [97]3 contains 150 videos from 10 differ-

ent sports action classes. The number of videos for each class varies from 6 to 22. This dataset has large

intra-class variability. Similar to [94], we use tensors of size 32×32×64 where each frame is resized to

32×32. Similar to the KTH dataset, experiments are performed using leave-one-out cross-validation,

where each video is taken as a separate fold and the remaining 149 videos are used for training.

Youtube Dataset: The youtube dataset [91]4 contains 1168 videos from 11 different classes. It is one

of the challenging datasets. This is mainly due to significant camera motion, viewpoint transitions,

varying illumination conditions and cluttered backgrounds in the videos. Videos for each class are

divided into 25 folds based on the persons performing that action. We use tensors of size 32×32×64,

where each frame is resized to 32×32. Accuracies are reported using leave one out cross validation over

the predefined 25 folds.

5.4.2 Results and Discussions

The methods we compare with our proposed method, can be divided into two categories. Methods

that uses tensor decomposition representation for videos [83,94,95] and which use the feature represen-

tations [64, 88, 170].

5.4.2.0.1 CCK on individual Features We report the individual feature accuracies using CCK in

Table 5.1. We compare the results with dense trajectories [170] feature kernels, which are computed

2http://www.nada.kth.se/cvap/actions/
3http://www.cs.ucf.edu/vision/public_html
4http://www.cs.ucf.edu/~liujg/YouTube_Action_dataset.html

96



Figure 5.4: Classwise accuracies on KTH and Youtube (in first row), UCF and Cambridge (in sec-

ond row). For KTH, we compare with Tangent Bundle (TB) [94], Product Manifold (PM) [95] and

TCCA [83]. For Youtube, we compare with Dense Trajectories (DT) [170] and Ikizler [64]. For UCF, we

compare with Tangent Bundle (TB) [94]. For Cambridge, we compare with Tangent Bundle (TB) [94]

and Product Manifold (PM) [95].

using χ2 kernel [87] and kernels are combined in a multichannel approach similar to [164]. CCK

perform better than the dense trajectories for HOG and HOF over all the four datasets. This indicates

the strength of CCK, the superiority comes from the temporal context it embeds from the videos. Thus,

it best suits for the action recognition task over other kernels.

5.4.2.0.2 CCK using Pixel values Pixel value accuracies are reported in Table 5.2. Using pixel

values alone, we achieve a significant improvement of 2.1% and 5.3% for Cambridge and UCF datasets

over previous work. We report 97.5% on KTH dataset, which is an improvement of 0.5% over [94].

The CCK using pixel values is comparable to state-of-the-art [170] on Youtube dataset. This indicates
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Cambridge UCF KTH Youtube

CCK DT [170] CCK DT [170] CCK DT [170] CCK DT [170]

Pixel Values 93.1 - 93.5 - 97.5 - 82.5 -

HOG 89.0 - 83.8 83.8 98.3 86.5 83.2 74.5

SIFT 95.1 - 85.7 - 98.6 - 79.1 -

HOF 95.2 - 81.5 77.6 94.3 93.2 80.4 72.8

MBH 75.1 - 80.4 84.8 98.9 95.0 80.1 83.9

Combined 96.4 - 93.5 88.2 98.9 94.2 86.3 84.2

Table 5.1: Comparison of our proposed canonical correlation kernel (CCK) with DT (Dense trajecto-

ries) [170] over different feature descriptors on Cambridge, UCF, KTH and Youtube datasets. Results

are reported on pixel values, HOG, SIFT, HOF and MBH. For each dataset, we report average accuracy

over all the classes. Final accuracies after combining the features are also displayed. Dense trajecto-

ries [170] have not used pixel values and SIFT. Accuracies are reported in %.

that pixel values alone are good enough for CCK to get the better results. The main reason behind

this is that, for tensorial representation, the actions in the videos are well represented using pixel values

compared to other features. This gives the superiority of CCK.

5.4.2.0.3 CCK using multiple features We combine the feature descriptors to enhance the accuracy

further. Features are combined using a simple weighted scheme as discussed in Section 5.3.3. We

report the combined feature accuracies using the weighted scheme in Table 5.2, which compares our

results with the previous methods. We achieve an improvement of 5.4%, 5.3%, 1.9% and 2.1% over

Cambridge, UCF, KTH and Youtube datasets. This indicates that videos can be well represented using

multiple features in a tensorial representation framework. One can also use MKL [84] for combining the

feature descriptors.

Accuracy over the combination of canonical correlation feature kernels and DT (dense trajectory) [170]

feature kernels are shown in Table 5.2. It further improved the accuracy over all the datasets. This indi-

cates that CCK can be easily integrated with other features such as Bag of words histograms to further

improve accuracy. We also compare the classwise accuracies for all the datasets with other methods in

Figure 5.4. On KTH, CCK gives the best results for 5 out of 6 action classes, as compared to [95].
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Method Cambridge UCF KTH Youtube

TCCA [83] 82±3.5 - 95.33 -

Product Manifold [95] 88 - 97 -

Tangent Bundle [94] 91 88 97 -

Dense trajectories [170] - 88.2 94.2 84.2

Le et al. [88] - 86.5 93.9 75.8

Ikizler-Cinbis et al. [64] - - - 75.21

Jiang Wang et al. [172] - - 93.8 -

Proposed (Using pixel values ) 93.1 93.5 97.5 82.5

Proposed (Using multiple features) 96.4 93.5 98.9 86.3

Proposed (CCK feature kernels + DT feature kernels) 97.2 93.5 98.9 86.6

Table 5.2: Comparison of our proposed method with other state-of-the-art methods. Here, we give the

accuracy of our proposed kernel (CCK) over simple pixel values and using multiple features (pixel

values, HOG, SIFT and MBH). Accuracies over multiple features are obtained using simple weighting

scheme. Finally, combined accuracy using CCK feature kernels and of DT [170] feature kernels are

also reported. Accuracies are reported in %.

On Youtube, our method got the best results over 5 classes compared to [170]. For UCF, we got best

results for 9 out of 10 classes and for Cambridge, we got best results for all the classes compared to the

state-of-the-art.

In summary, our superiority comes from (1) The proposed CCK which embeds temporal context in

the videos into similarity measure (2) Seamless fusion of multiple features into tensor representation.

5.5 Conclusions

In this work, we have introduced the canonical correlation kernel (CCK), which enables the com-

parison of videos in a kernel framework. This kernel function works well for action recognition as it

embeds the temporal context in the videos. We have also shown that multiple features can seamlessly

integrate into CCK to further enhance recognition performance. We hope our work opens up scope for a
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class of action recognition algorithms which use, tensor representation, multiple feature description and

use a discriminatively max margin classification.

5.6 Recent Advances in CCA

In this section, we discuss few recent advances in Canonical Correlation Analysis (CCA).

5.6.1 Deep Canonical Correlation Analysis (DCCA)

CCA is a standard statistical technique for finding linear relations between two random vectors. It

gives the maximum correlation between the given random vectors in the linear space. Let (X1, X2) ∈

Rn1×n2 be the two random vectors (data views). For the given data views (X1, X2), the CCA finds a pair

of linear projections (w1, w2), such that (w1X1, w2X2) are maximally correlated. It can be expressed

as

(w∗1, w
∗
2) = argmax

(w1,w2)
corr(w1X1, w1X1) (5.4)

Let Σ11 and Σ22 are the covariances for the random vector X1 and X2 with a cross-covariance Σ12.

Define C = Σ
−1/2
11 Σ12Σ

−1/2
22 , and let Pk = [p1, p2, . . . , pk] and Qk = [q1, q2, . . . , qk], containing first k

left and right singular vectors of C (pj is the jth singular vector of C from left and qj is the jth singular

vector of C from right). Then the sum of singular values of C gives the total maximum correlation

between X1 and X2. It can also be defined as

corr(X1, X2) = trace(CTC) = ‖C‖tr (5.5)

Kernel canonical correlation analysis (KCCA) is an extension of CCA which gives the maximum

correlation between the two views in the non-linear projection space. If H1, H2 are the reproducing

kernel hilbert spaces of functions on Rn1 , Rn2 and κ1, κ2 are their associated kernels, then the optimal

non-linear projections f∗1 ∈ H1, f∗2 ∈ H2 are given as

(f∗1 , f
∗
2 ) = argmax

(f1∈H1,f2∈H2)
corr(f1(X1), f2(X2)) (5.6)

For the given data, KCCA allows learning of non-linear representations. However, these represen-

tations are limited by the given fixed kernel. Also, it is a non-parametric method. For the given data,
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the CCK [108] allows jointly learning both linear and non-linear representations. CCA and KCCA are

also used in feature learning for a single data view when another view is available in representation

learning [10, 19].

Over the past few years, there has been increasing interest in deep learning methods and they have

produced state-of-the-art results over a wide variety of problems. In [8], a deep canonical correlation

analysis (DCCA) is proposed for learning non-linear correlations between the given random vectors,

which have the maximum correlation. These representations are learned using a deep learning frame-

work. It gives the highly correlated representations compared to CCA and KCCA. Deep learning methods

have been successful in learning representations of a single data view [10,19]. Deep CCA simultaneously

learns two deep non-linear mappings for two data views that are maximally correlated. Let X1 ∈ Rn1

and X2 ∈ Rn2 are the different instances of the two data views. The objective of Deep CCA is to jointly

learn two deep networks g1 and g2 such that corr(g1(X1), g2(X2)) is as high as possible. If π1 and π2

are the parameters for the two networks g1 and g2 respectively, then their optimal parameters (π∗1, π
∗
2)

are given as

(π∗1, π
∗
2) = argmax

(π1,π2)
corr(g1(X1;π1), g2(X2;π2)) (5.7)

Here, it only learns the non-linear embeddings. Since Deep CCA is learning the non-linear represen-

tations, it can be viewed as learning a kernel for KCCA. Deep CCA is closely related to the multimodal

autoencoders [112] and multimodal restricted Boltzmann machines [154], where they learn a single net-

work connected to both the modalities (views). In Deep CCA, it learns two separate deep encodings for

the two modalities. The learned encodings have the maximum possible correlation.

5.6.2 Representational Similarity in Neural Networks using Canonical Correlation

In general, CCA, KCCA and DCCA are used to compute the correlation (similarity) between different

data representations. Understanding the function of neural networks is a challenging task, in particular,

comparing two neural network representations is a difficult task as the structure of these representations

changes vastly over the training. In [105], the authors developed a projection weighted CCA for un-

derstanding and comparing network representations across a group of CNN. Using projection weighted

CCA, the authors analyzed the converged solutions in CNNs. It is demonstrated that compared to narrow

networks, wider networks converge to similar solutions, and the networks which have identical topology
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but distinct learning rates converge to a small set of distinct solutions. The projection weighted CCA

is also useful in analyzing RNN representations over training. The authors proved that RNNs exhibit

bottom-up convergence and these representations vary nonlinearly. Here, the LSTMs are used for the

Penn Treebank (PTB) and WikiText-2 (WT2) language modelling tasks.

5.7 CCKNet

In general, the convolution operation is used as a feature extractor in CNN. However, recently these

convolution operations are replaced with other similarity measures [23] for feature extraction in CNN.

In [23], DTW distance is applied as a feature extractor. For the problems like data decomposition, it

outperforms standard convolutional kernels [23]. In this section, we propose CCKNet, where we applied

CCK [108] [108] as a feature extractor in deep learning framework. For a given input sequenceX ∈ Rn,

the objective is to learn a kernel (filter) K ∈ Rm such that it has the maximum correlation with X .

The kernel is initialized randomly and learned using standard gradient descent methods. For the input

sequence X , the CCK kernel (filter) K, is computed as

K = argmax
z

CCK(X, z) (5.8)

where,

CCK(X,K) = ‖C‖tr + ‖Cφ‖tr (5.9)

Cφ is computed in the feature space φ corresponding to the kernel κ in KCCA. CCK is the sum of the cor-

relations obtained from both CCA and KCCA. Denote CCK(X,K) = CCK1(X,K) +CCK2(X,K),

where CCK1(X,K) = ‖C‖tr and CCK2(X,K) = ‖Cφ‖tr.

The CCKNet contains the multiple CCK layers like convolutional layers in CNN. A CCK layer con-

sists of multiple CCK kernels that extract meaningful features from the input. Each CCK kernel generates

a correlation output by performing CCK computation between the kernel and the input sequences. In

sliding window, similar to the convolutional kernels, the CCK kernels produces multiple correlation out-

puts. These correlation outputs are combined in the subsequent layers. These outputs capture important

details in the input sequence. To learn the CCK kernel using gradient descent, we need the gradient of

CCK (eq 5.9). Let the singular value decomposition of C is C = PDQ and Cφ is Cφ = PφDφQφ.

Define Σ12 =
1

m− 1
XKT and Σ22 =

1

m− 1
KKT + r1I , where r1 is a regularization constant and

m = dim(K) (for 1-D), then the gradient of CCK1 is computed as [8]
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Training Time (mins) Accuracy

DTWNet 51 97.8

FastDTWNet 32 97.6

CCKNet 68 98.1

Table 5.3: Comarison of DTWNet, FastDTWNet and CCKNet. Training time is given in minutes.

∂CCK1(X,K)

∂K
=

1

m
(2∇22X +∇12K) (5.10)

where

∇12 = Σ
−1/2
11 PQΣ

−1/2
22 (5.11)

and

∇22 = −1

2
Σ
−1/2
22 QTDQΣ

−1/2
22 (5.12)

Similarly, we can compute the gradient of CCK2.

To validate the CCKNet, we compare it with the DTWNet [23] and FastDTWNet over the libra dataset.

In the DTWNet, the DTW distance is computed between the input and kernel. In the FastDTWNet, the

Fast Surrogate DTW distance is used to compute the similarity between the input and kernel. The results

are given in Table 5.3. For both the DTWNet and FastDTWNet, we take 5 DTW layers. For CCKNet, we

take 5 CCK layers. From the results, we can observe that, in terms of accuracy, the CCKNet is performing

well compared to the DTWNet and FastDTWNet. However, it is taking more time for the training. This

is mainly due to the computational time needed for computing both the CCA and KCCA.
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Chapter 6

Surrogate Loss Networks for Semantic Segmentation and Human Pose

Estimation

Supervised training of deep neural networks involves minimizing the loss function over the given

training data. However, in many domains, we are interested in performing well on metrics specific to

the application. Like average precision (AP) from information retrieval, intersection-over-union (IoU)

which is used in image labelling, normalized discounted cumulative gain (NDCG) which is popular in

ranking and percentage of correct parts (PCP)/percentage of correct keypoints (PCKh) which are used

in pose estimation for measuring the accuracy of detected joint locations. However, these metrics are

inherently non-differentiable by nature due to their discrete form and non-decomposable behavior. In

this chapter, we propose a novel method to automatically learn a surrogate loss function that approxi-

mates discrete and non-decomposable metrics - in particular, the IoU , PCP and PCKh loss and is hence

better suited for providing stronger performance. The proposed loss can be directly learned over any

base network. For IoU loss, we validated our method over semantic segmentation models [11, 92] on

the PASCAL VOC and Cityscapes datasets. On the PASCAL VOC, we got an improvement of 3.79 in IoU

over cross-entropy loss. For PCP loss, we validated our method over LSP dataset and for the PCKh loss,

we validated our method over MPII dataset. For the PCP and PCKh loss, we applied our method over

DeepPose [163] network. Our results on this work show consistent improvement over baseline methods.

On LSP dataset, we got an improvement of 2.1% on the PCP measure and on MPII dataset, we got an

improvement of 1.8% on the PCKh measure compared to the regression loss.
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6.1 Introduction

For the last few years, Convolutional Neural Networks (CNNs) have shown to be very effective for

a wide variety of problems, including classification [11], semantic segmentation [92, 133, 182], and

pose estimation [24, 163]. Loss functions play an important role in the performance of CNNs. The loss

function is used to guide the training process of CNNs, and training involves computing the gradient of

the loss function with respect to the parameters of the model. For the given problem, the network is

trained to minimize the training error, which is measured by the given loss function. The performance

of the CNN model is typically evaluated using the training and test error (or equivalent accuracy). How-

ever, in many problems which have gained importance in recent times, we are interested that the final

learned model performs well on metrics specific to the given application. Such metrics are, however,

often non-differentiable with respect to the output of the network. Examples of such metrics include av-

erage precision (AP), intersection-over-union (IoU ), normalized discounted cumulative gain (NDCG),

and percentage of corrected parts (PCP)/percentage of corrected keypoints (PCK)h. Many of these met-

rics are discrete and non-decomposable (which are not simple sums over the network outputs), and

are not readily differentiable. In such scenarios, the loss used to train the network is different (e.g.,

cross-entropy in semantic segmentation) from the actual performance metric (e.g., IoU in semantic seg-

mentation). In this work, we explore the non-differentiable behavior of discrete and non-decomposable

metrics - in particular, IoU , PCP and PCKh - and propose differentiable surrogate approximations using

neural networks. IoU is a discrete metric as it is defined over pixel counts which are discrete in nature,

while PCP and PCKh measures are non-decomposable metrics.

CNNs for semantic segmentation typically use the cross-entropy loss for training the network, given

as: LCE = − 1

N

∑c
i=1 yi log(y

′
i), where yi is the ground truth, y

′
i is the output class score predicted

from the network for the pixel i, c is the total number of classes, and N is the number of pixels in the

image. While the vision community uses pixel-wise cross-entropy loss to train networks for a semantic

segmentation task, the standard performance measure that is used for evaluation is intersection-over-

union (IoU ). For an object present in a given image, the IoU measure gives the overlap between the

predicted region and the ground truth region of the object. The IoU measure is popularly used for

semantic segmentation due to its ability to handle class imbalances [127].

Consider the example in Figure 6.1. For the given image, two segmentation results are given in Fig-

ures 6.1 (c) and 6.1 (d). The segmentation results in Figure 6.1 (c) classifies all the pixels as background.
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Figure 6.1: Illustration of cross entropy loss for semantic segmentation: (a) Original image (b) Ground

truth segmentation (c) All pixels predicted as background (d) Few pixels correctly predicted as fore-

ground.

The segmentation result in Figure 6.1 (d) correctly classifies few object pixels and classifies few back-

ground pixels as object pixels. These two results have the same cross-entropy loss. However, the IoU

measure for the segmentation result in Figure 6.1 (c) is zero, clearly indicating a gap between the loss

function used in training the network and the metric used for measuring the performance of the network.

The key limitation of not using IoU directly as a loss function in CNNs is its non-differentiability [127].

While there have been a few recent attempts to address this issue (described in Section 6.2) for IoU ,

these methods have their limitations and are handcrafted approximations.

Human pose estimation [24, 163] is another example where there is a gap between the loss function

used in training the network and the metric used for measuring the performance of the network. Human

pose estimation aims to localize each human part (key points). CNNs for pose estimation typically use

the regression loss for training the network, given as: LRL =
∑k

1 ||yi − y′i||2, where yi is the ground

truth location for ith part, y′i is the output location predicted by the network for the ith part, and k is

the number of human parts to be localized. It uses regression loss over the locations of body parts to

train the network. During training, regression loss enforces the network to detect the keypoint joint

locations. This helps to improve the training accuracy at the outset. However, if we observe any pose,

any pixel location in a small neighbourhood around the true joint location is also considered the correct

joint location. Due to this, the accuracy of pose estimation methods (networks) is measured using

metrics such as percentage of correct parts (PCP) [163], PCPm [24], and percentage of correct keypoints

(PCK) [127]. PCP measures the detection rate of limbs. In PCP, a limb is considered localized correctly

if the distance between the predicted and actual joint locations is at most half of the limb length. It

penalizes shorter limbs. PCK is the most widely used performance measure. It considers a detected
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joint to be localized correctly if the distance between the predicted and the true joint is within a certain

threshold. The threshold is defined as 50% of the head segment length. The corresponding metric is

defined as PCKh. The PCKh measure is popularly used for human pose estimation due to its ability to

evaluate joint positions for varying torso diameters. Since we are considering the locations around the

true joint location as correct predictions, training the network to detect exact joint locations as given

in the ground truth may not yield the best test performance when measured by such metrics as PCP

and PCKh. This suggests that regression loss used in contemporary deep pose networks may not be the

most appropriate loss function to train such models. The PCKh measure is an example of an ideal loss

function for training deep pose networks. However, both PCP and PCKh measures cannot be used as

a loss function directly in deep pose networks due to their non-differentiable nature, and the gradient

lacking a closed-form representation. So far to the best of our knowledge, there has been no effort to

address this issue.

In this chapter, we propose a novel method to automatically learn a surrogate loss function for non-

differentiable metrics such as IoU , PCP and PCKh that is aimed at attaining good performance. In

particular, we use a neural network to approximate these metrics, thereby providing a differentiable

approximation that can be directly used with CNNs. We call the corresponding proposed loss functions as

theNeuroIoU (for semantic segmentation),NeuroPCP andNeuroPCKh (for pose estimation) loss

functions, which can be integrated with any deep network. To the best of our knowledge, this is the first

such work that attempts to learn a loss function for this purpose. Further, there has been no such effort

for human pose estimation to the best of our knowledge. For NeuroIoU , we validated our method by

integrating theNeuroIoU loss in the FCN [92], SegNet [11] and UNet [133] models, and evaluated their

performance on the PASCAL VOC and Cityscapes datasets. For NeuroPCP and NeuroPCKh, we

integrated the corresponding loss in the popular DeepPose network [163] and evaluated our performance

on the LSP and MPII datasets. Our results show promise, and a consistent increase in the performance

across all models on all the datasets.

The remainder of this chapter is organized as follows. Section 6.2 reviews earlier related work,

including prior work on surrogate loss functions for semantic segmentation. The proposed surrogate loss

for semantic segmentation and human pose estimation, as well as the methodology to train CNNs using

the proposed loss, are presented in Section 6.4. Experiments and results are discussed in Section 6.5,

followed by concluding remarks in Section 6.6.
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6.2 Related Work

Existing efforts that have attempted to use surrogate loss functions to train deep neural networks

have largely focused on forms of functions that can be easily optimized [52, 89, 102, 150]. For exam-

ple, in [102], McAllester et al. show how to compute the gradient of complex non-differentiable loss

functions for linear models. In [150], this is extended to the non-linear case, in particular, to maximize

average precision for ranking problems using direct loss minimization techniques. These methods can-

not be directly used in a wide range of learning architectures and problems without significant effort.

Besides, these methods are often problem-specific, such as [150], and cannot be used for other problems

that use CNNs.

Non-decomposable loss functions have been previously used in the context of maximum-margin

methods [2,122,168,180]. In structured prediction problems, in which the output is multi-dimensional,

these efforts have attempted to develop maximum-margin training methods capable of minimizing an

upper bound on non-decomposable loss functions. Standard learning in this paradigm involves updating

the parameters such that the model assigns a higher score to the ground truth output than to any other

output. This is typically encoded by a constraint, enforcing that the ground truth score should be higher

than that of a selected, contrastive output. The latter is defined as the result of inference performed using

a modified score function that combines the model score and the task loss, representing the metric that

we care about for the application. This modified scoring function encodes that we should penalize higher

scoring configurations that are inferior in terms of task loss. These methods mainly try to incorporate

complex discrete loss functions into maximum-margin methods [2,122,168,180], and only optimize an

upper bound. Our focus in this work is on deep neural network models.

6.2.0.0.1 Semantic Segmentation. State-of-the-art models for semantic segmentation largely rely

on fully convolutional layers in the architectures [11, 92, 133, 182]. In these models, for a given input,

we obtain class scores for each pixel, and the class scores are mapped to probabilities using a softmax

layer. These probabilities also capture the likelihood of the pixels being the foreground (object/class)

or background. In all these models, the cross-entropy loss function is applied over this probability

map pixel-wise. The cross-entropy loss is closely tied to the overall classification accuracy. If the

number of examples for foreground and background are balanced, then the cross-entropy loss works

well. However, in a typical object category segmentation, these may not be balanced, thus raising
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questions on whether cross-entropy loss may be the best choice for loss functions in the object category

segmentation task.

As already mentioned, the IoU loss cannot be used in deep networks due to its non-differentiability [127].

In recent years, a few approximations to the IoU measure have been proposed for various applications.

These methods [2, 114, 121, 129, 159] attempt different techniques to optimize the IoU measure in the

given problem. In [129], the IoU measure is optimized specifically for the object detection and lo-

calization problem using joint kernel maps in a SVM context. They can only optimize over bounding

boxes of the object and not over full pixel-wise segmentation. In [159], structured Markov Random

Field models are used for the same purpose. In [114], special purpose message passing algorithms are

used for optimization. [114] provides a Bayesian framework for optimizing the IoU , in particular, an

approximate algorithm is proposed using parametric linear programming. In [121], a framework for

optimizing Expected IoU (EIOU) is proposed. In [2], instead of directly optimizing the model with

respect to IoU , the authors select a few candidate segmentations for optimization. However, in con-

trast to the proposed work, all these methods do not provide a differentiable approximation to the IoU

measure, which can be used for directly training contemporary deep learning models. In particular, all

these methods [2,114,121,129,159] optimize the IoU measure specific to certain problems and are not

generalizable across problems. In this work, we seek to obtain a differentiable approximation of IoU

that can be applied across problems and architectures. We also provide us with gradients of the measure

that we finally seek to maximize.

The work closest to ours in semantic segmentation is [127], which provides a differentiable ap-

proximation of the IoU measure, and hence can be used in training deep learning networks. Rah-

man and Wang presented a handcrafted approximation of the IoU measure in [127]. For a given

image I , let V = {1, . . . ,m} be the set of all its pixels and X be its probability map obtained

from the network. Let Y = {0, 1}V be the groundtruth of I , where 0 represents background and

1 represents foreground (object). Then, the approximated IoU measure defined in [127] is given as

IoU − Appx =

∑
vXv ∗ Yv∑

vXv + Yv −Xv ∗ Yv
. The authors showed that this a differentiable function. For

the given image, the numerator in IoU −Appx is the sum of true positive pixel probabilities. The value

in the denominator can be simplified as the sum of number of object pixels in the ground truth and false

positive pixel probabilities. We can observe that this expression approximates the IoU measure well if

the probabilities of background pixels are near zero and probabilities of object pixels are near 1, which

is not always practical. In this work, we instead propose a method to directly learn the loss function
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corresponding to good IoU performance for the given problem. We also compare the performance of

the proposed method with Rahman and Wang’s approach [127] to corroborate this claim. The proposed

loss can be integrated with any existing deep semantic segmentation network.

In another related work [15], Berman et al. presented a method for direct optimization of the mean

intersection over union loss (Jacard loss) in the context of semantic image segmentation in deep net-

works. It is based on the convex Lovasz extension of submodular losses. The authors developed a

specialized optimization method based on efficient computation of the proximal operator of the Lovász

hinge, yielding reliably faster and more stable optimization than alternatives. The loss is shown to per-

form better than cross entropy loss in the context of semantic segmentation. They specially designed

the optimization technique for IoU loss. However, it is practically very difficult to extend their tech-

nique to other non-differentiable loss functions which do not satisfy the submodular property, like the

PCP and PCKh measures in pose estimation [9, 41]. The PCP and PCKh measures do not have a closed

form expression. The main focus of this work is to propose a generalized framework that enables us to

use non-differentiable performance measures in CNN networks. The proposed surrogate neural network

approach can be used to find a differentiable approximation for any non-differentiable performance

measure.

6.2.0.0.2 Human Pose Estimation. State-of-the-art performance on the task of human pose estima-

tion has made significant progress in recent years. This has been largely due to the success of using

various CNN architectures for the task [24, 77, 161, 163, 176]. In pose estimation, the task is to find

the joint locations of body parts. In a widely used recent work [163], the problem is formulated as

a direct regression problem over joint locations. Here, the network output is the joint locations for

the body parts. In [24, 77, 161, 176], the network output is a discrete heatmap instead of continu-

ous regression. A heatmap predicts the probability of the joint occurring at each pixel. In these ap-

proaches [24,77,161,176], the model is trained by minimizing the Mean Squared Error (MSE) between

the predicted heatmap and the target heatmap. Both these types of models use either standard (MSE)

or other variants of regression loss. However, to evaluate the trained model in any of these methods,

the standard performance measures used include PCP [41], PCK [141], PCKh [9]. These performance

measures cannot be directly used for training the network due to their non-differentiable nature. Clearly,

there is a gap between the loss function and performance measure for state-of-the-art networks in pose
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estimation. To the best of our knowledge, the proposed approach is the first work in the direction of

bridging the gap between loss functions and performance measures in deep pose networks.

6.3 Surrogate Loss Networks

This section explains our overall idea of approximating loss functions and their derivatives using the

surrogate neural networks (NN)s. We present the proposed framework to train deep neural networks with

approximated gradients obtained from the surrogate neural network. Then, demonstrate its application

to semantic segmentation and human pose estimation.

Neural networks have established themselves as very good function approximators over the years [46,

58, 59, 66, 158] with as few as one hidden layer. In this work, we are interested in the computation of

the derivatives of approximated functions (in particular, performance measure functions, which can be

used to train a base network). Fortunately, neural networks can also be extended for the approximation

of derivatives [58, 59]. If we need to approximate a function f : RN → R using neural networks, we

need the input and output data for the given function. i.e. we needD = {(xi, yi) : i = 1, · · · , n}, where

xi ∈ RN , yi ∈ R, yi = f(xi) and n is the number of data points. Using a single hidden layer network,

for a given input x, the function is computed as the following:

f(x) =

l∑
i=1

wo
1iS(xTwh

i ) (6.1)

where ws are the weights of the neural network, and S : R → R is an activation function. We note

that the corresponding first-order derivatives of f can be computed w.r.t. the input x (also known as

backprop-to-image [151, 181]) can be computed as [58]:

∂f(x)

∂xj
=

l∑
i=1

wop
1iw

h
ijS
′
(xTwh

i ) j = 1, . . . , N (6.2)

where x = (x1, · · · , xj , · · · , xN ), l is the number of neurons in the hidden layer, wh ∈ Rl×N are the

weights in the hidden layer and wop ∈ Rl are the weights in the output layer. Any function can be

approximated by a neural network represented by Eqn 6.1, and its derivative can be approximated by

Eqn 6.2. It only remains to determine the weights wh and wop using the given data D. We call such

a network as a surrogate network for the given approximated function and denote it as Ψ in this work.

This is done by propagating the training data through a (potentially pre-trained) CNN and obtaining its
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Figure 6.2: Overview of the proposed framework for training the CNN using surrogate loss network.

outputs, which act as inputs to the Ψ. Then it is trained using the expected performance measure values

computed for training data.

This is done by propagating the training data through a (potentially pre-trained) CNN and obtaining

its outputs, which are used as inputs to the Ψ, which is then trained using the expected performance

measure values that can be computed for training data. As stated earlier, this approach leverages the fact

that neural networks can approximate continuous and non-differentiable functions (please see sample

results of our empirical studies in Section 6.5.2). This ∂f(x)
∂xj can now be used as the derivative of the

appropriate non-differentiable performance measure to train the original CNN. This can be done as

follows,

6.3.1 Training CNNs with Surrogate Networks

The main criterion for a function as a loss function in a CNN is its differentiability. If a function is

non-differentiable, we cannot compute its gradients for the network parameters. This restricts us from

using it as a loss function since the gradients of the loss function are required during backpropagation for

the updation of network weights. As discussed above, we can approximate a non-differentiable function

and its gradients (derivatives) using surrogate networks. We propose that an approach to use non-

differentiable functions as loss functions in CNNs is that the training of the CNN can be performed using

approximated gradients obtained from a surrogate network. In this subsection, we present a framework

for training a CNN (this can be generalized to any neural network, for that matter) using the gradients

obtained from the surrogate network.

We propose our methodology in a manner which allows us to use this framework with any existing

CNN (or neural network) architecture. We put forward a direct optimization technique for training a

CNN with surrogate loss networks. In direct optimization, we train the surrogate loss network a priori.
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6.3.1.1 Training using Direct Optimization

An overview of training a CNN using direct optimization is illustrated in Figure 6.2. In the first step,

the given non-differentiable loss function L is approximated using a surrogate loss network ΨLoss. We

then train the CNN using this surrogate loss network as follows. In the forward pass, given an image

Ii, we first compute the CNN output y
′
i. Using the trained surrogate loss network, we then compute the

loss between the network output y
′
i and target output yi, i.e L(y

′
i) using Eq 6.1. The parameters in the

CNN are then typically updated in the backpropagation step, which requires the computation of ∂L

∂y
′
i

, the

gradient of the loss function w.r.t the network output. We compute ∂L

∂y
′
i

using Eq 6.2, where the output

of the CNN is provided as input to the surrogate network, and the gradient of the refined loss function, as

approximated by the surrogate network, is computed using the backprop-to-image approach (Eq 6.2). In

the next step, the gradient of the loss function L w.r.t. the weights in the last layer, say fully connected

(FC) layer W fc, are computed using the chain rule as follows:

∂L

∂W fc
=
∂L

∂y
′
i

∂y
′
i

∂W fc
(6.3)

The weights in the FC layer are updated using these gradients, and the weights in the preceding layers

are updated using the standard chain rule. Given a pre-trained surrogate network (which is first trained

based on a given CNN model), the CNN is further refined using the aforementioned backpropagation

until convergence or the desired number of iterations. In summary, the availability of the gradients of

the non-differentiable loss function L w.r.t. the network output y
′
i

(
∂L

∂y
′
i

)
through the surrogate network

allows us to finetune the CNN parameters using chain rule.

We note that if the given loss function is differentiable, the gradients obtained from the surrogate

network would more or less be the same as its actual gradients. In this case, the above direct optimization

technique for training the CNN network would be equivalent to the usual training of the CNN. From this

perspective, one can view the regular training of CNN as a particular case of our proposed approach.

6.4 Surrogate Loss Network for Semantic Segmentation and Human Pose

Estimation

This section explains the proposed surrogate loss network framework for the discrete IoU and the

non-decomposable PCP and PCKh metrics, used in semantic segmentation and human pose estimation
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respectively. We begin with defining the loss functions in both cases, the corresponding surrogate net-

works, and finally describe the training methodology.

6.4.1 Defining the loss functions

In order to propose a surrogate loss network for the IoU , PCP and PCKh metrics, we need to define a

loss function over these performance measures. In this subsection, we begin with a discussion of a loss

function over IoU and PCKh measures.

6.4.1.0.1 IoU Loss For a given image, the widely used IoU measure gives the similarity between

the predicted region and actual region (ground truth) of the object present in the image, and is given by:

IoU =
TP

TP + FP + FN
, where TP , FP and FN denote the counts of true positives, false positives

and false negatives respectively. If the output of the semantic segmentation model exactly matches with

the ground truth, then its IoU becomes 1, which is desired. Owing to the discrete nature of the counts,

the IoU measure is inherently non-differentiable [127]. Instead of replacing the non-differentiable

IoU measure with proxies such as cross-entropy (which is the standard practice in existing semantic

segmentation work [11, 92, 133, 182]) or use other recently proposed measures [127], we use a neural

network as a function approximator to automatically learn the surrogate IoU loss to train models for

semantic segmentation. Note that to incorporate the IoU measure directly as a loss function to train

models, we need to minimize 1− IoU . We hence define the IoU loss, denoted by LIoU , as:

LIoU = 1− IoU = 1− TP

TP + FP + FN
=

FP + FN

TP + FP + FN
(6.4)

Since IoU is not differentiable, the IoU loss, LIoU (Eqn 6.4), is also non-differentiable. Hence, we

cannot directly compute its gradients, which restricts us from using it directly to train deep networks.

Instead we choose to approximate the IoU loss using a surrogate neural network, and obtain its deriva-

tive across this new network to get the required gradients (using the backpropagation-to-image trick as

explained earlier, Eqn 6.2.)

6.4.1.0.2 PCKh Loss For a given predicted human pose, the PCKh metric measures the percentage

of joints location predictions that is at maximum distance of 50% of the head size from the ground truth.

We use the following notations for defining pose of a human present in the given image. For a given

labeled image x, its pose is defined as xp = (l1, l2, . . . , lk), where li = (mi, ni) is the location of ith
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joint and k is the number of body joints. In a typical pose estimation CNN network [24, 163, 176, 176],

we generally train a model ψ such that, for the given image x, it outputs the pose presented in the image,

i.e. y = ψ(x, θ) ∈ R2k, where θ denotes model parameters. It outputs the locations of k body joints.

Since PCKh gives the prediction accuracy, if the output of the pose estimation model exactly matches

with the ground truth, then its PCKh becomes 100%, which is desired. During training, we normalize

these accuracy values between 0 to 1. However, PCKh measure is a non-decomposable metric, and

hence also non-differentiable. To incorporate the PCKh measure as a loss function to train the network,

we need to minimize 1−PCKh. We hence define the PCKh loss as:

LPCKh = 1− PCKh (6.5)

where PCKh is the PCKh measure for the given pose. Similar to what was discussed for the IOU loss

above, we approximate LPCKh using a surrogate neural network, and obtain its derivative across this

new network to get the required gradients.

Now we describe our methodology to automatically learn a differentiable approximation for both

IoU and PCKh loss functions using surrogate loss networks.

6.4.2 The Surrogate Loss Networks

Given the input-output data pairs D = {(xi, yi) : i = 1, · · · , n}, where yi = f(xi) and n is the

number of data points, we propose our methodology in a manner which allows us to use this framework

for any non-differentiable loss function.

6.4.2.0.1 Surrogate IoU Loss Network In semantic segmentation, the output of the CNN gives a

probability score map, i.e. for each pixel, it gives the probability of being part of each of the classes

considered. To approximate the IoU loss using neural networks, we need to define the input data over

the continuous domain. To this end, we define the outputs of the semantic segmentation CNN in terms

of probability counts TPpr, FPpr and FNpr as below:

TPpr =
∑
xi

P (xi), where xi ∈ TP, FPpr =
∑
xi

P (xi), where xi ∈ FP

FNpr =
∑
xi

P (xi), where xi ∈ FN
(6.6)

TPpr, FPpr and FNpr are the sums of probabilities of pixels in TP , FP and FN respectively (which

provide us a continuous-domain equivalent of the corresponding TP , FP and FN counts). Given a

115



CNN model, we can calculate TPpr, FPpr and FNpr using the available ground truth. Our IoU loss ap-

proximator network is hence defined by the input-output data pairs: D = {((TPpri , FPpri , FNpri), LIoUi) :

i = 1, · · · , n}, where LIoUi = 1− TPi
TPi+FPi+FNi

is the actual IoU loss computed from the pixel counts.

We generate the dataset D to train this IoU -loss approximator network as follows:

• For the given training data, we first train a CNN, ΘCE , using cross-entropy loss.

• After training, for each training image, we store the output probability map obtained from ΘCE .

• For each image, we compute its TPpr, FPpr, FNpr using Eq 6.6.

We now have the dataset D to train the approximator network. We call this surrogate neural network as

NeuroIoU , and the loss as NeuroIoU loss. We use the mean-squared error loss function, as defined

below, to train this network using this data:

E(w) =
∑
i

[NeuroIoU(TPpri , FPpri , FNpri)− LIoUi ]2 (6.7)

In semantic segmentation, it is possible that two different segmentation results may have the same IoU

score, i.e. two different sets of TP , FP and FN counts (or TPpr, FPpr, FNpr) may have the same

IoU value. This affects the approximation performance. To make the approximation more robust to

such issues, apart from TPpr, FPpr, FNpr, we also include TP , FP and FN counts as inputs to the

NeuroIOU network. In particular, we add
TPpr
|TP |

,
FPpr
|FP |

and
FNpr

|FN |
as inputs to the network, where,

|TP |, |FP |, |FN | are the counts of TP , FP and FN . Our empirical studies (detailed in Section 6.5)

showed that with more inputs, the network was more robust in the approximation.

Approximation using Prediction Loss: Instead of approximating the IoU loss using pixel counts

as discussed above, we can also approximate using the loss values obtained for each pixel during

the prediction obtained from the original model. We use hinge loss, and these values are obtained

from the classification layer. Hinge loss values have been previously used for approximating the

IoU loss [15]. In this new setting, input to the NeuroIoU loss are TPH , FPH and FNH , which

are computed as TPH =
∑

xi
h(xi), where xi ∈ TP , FPH =

∑
xi
h(xi), where xi ∈ FP and

FNH =
∑

xi
h(xi), where xi ∈ FN . h(xi) is the hinge loss for pixel xi.

6.4.2.0.2 Surrogate PCKh Loss Network As discussed in the previous section, to approximate

PCKh loss (LPCKh) using neural networks, we need its input-output data D. In pose estimation, for

a given image, the deep pose network models [24, 77, 163, 176] output the locations of body joints.
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Algorithm 1 Training a Semantic Segmentation Network using NeuroIoU Loss

Input: (i) Set of training images I and their ground truth labels G; (ii) NeuroIoU loss for each

training image (obtained from the surrogate-IoU neural network); (iii) Initial trained CNN model

ΘCE trained on standard cross entropy loss

Output: Updated semantic segmentation CNN model Θ
′

Let Θ
′

= ΘCE

Repeat until convergence

for x ∈ I do

(1). Compute Θ
′
(x), the probability score map for x

(2). Compute the TPpr, FPpr and FNpr for x using Equations 6.6

(3). Using Equations 6.9, compute
∂NeuroIoU

∂TPpr
,
∂NeuroIoU

∂FPpr
and

∂NeuroIoU

∂FNpr

(4). Using the gradients obtained from step (3), backpropagate through the Θ
′

network and update

the network weights

end for=0

The regression loss takes these joint locations as input and outputs its corresponding loss. Similarly,

we take the joint locations as input to our surrogate neural network. To get a more generalized loss

network, we need to consider the interactions between joint locations. Regression loss does not encode

these interactions. In the computation of PCKh measure, a part is considered detected only if two of

its joint locations are within a threshold from its true locations. This means connections between the

joint locations are also very important for improved accuracy. To encode the interactions between

the joint locations, we also take the midpoint of each part locations and a unit normal vector along

each part as inputs to our surrogate network. The midpoint of body parts and the unit normal vector

along the parts can also characterize the given pose. We also add a threshold for each part, which is

used for measuring the PCKh measure. These thresholds are calculated from the training data. Our

results showed that, the addition of interactions between joint locations enhance the performance of the

network. Thus, the input-output data for our surrogate network is defied as D = {(pi, LPCKh(pi) :

i = 1, . . . , t}, where pi is the detected pose and LPCKh(pi) is its PCKh loss. The pose pi is given as

(l1,m1, u1, t1, . . . , lk,mk, uk, tk), where lj is the location of jth joint. up is the unit normal vector for

the pth part and mp is its midpoint, and tp is its threshold. We generate the dataset D as follows:

• For the given training data, we first train a CNN, θreg, using regression loss
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• During training, for each training image, we store the detected pose obtained from θreg

• For each detected pose in the training image, we compute the unit vector for each part and its

midpoint

We now have the dataset D for training the surrogate network. We call this surrogate network as

NeuroPCKh and the loss as NeuroPCKh loss. Using the similar methodology, we can also com-

pute the surrogate loss network over the performance measure PCP. We call the corresponding loss as

NeuroPCP .

6.4.3 Training CNN networks with Surrogate Loss

This section presents the details of the methodology to train the original CNN using the proposed

surrogate loss. We describe this in the context of training deep semantic segmentation networks by

minimizing the corresponding NeuroIoU loss. A similar formulation is used for deep pose networks.

TheNeuroIoU loss takes TPpr, FPpr and FNpr as inputs and approximates the corresponding IoU

loss. Once we train the network, we use the backprop-to-image trick [181] to compute the derivative of

the NeuroIoU loss with respect to the outputs of the original CNN. These derivatives are computed as

follows. For simplicity, we consider a single hidden layer in the surrogate network (this can be easily

extended for multiple hidden layers). If S is the activation function used in the network, then for the

given input xi = (TPpri , FPpri , FNpri), NeuroIoU(TPpri , FPpri , FNpri) is computed as:

NeuroIoU(TPpri , FPpri , FNpri) =

k∑
j=1

wopj S(xTi w
h
j ) (6.8)

where k is the number of neurons in the hidden layer, wh ∈ Rk×3 are weights in the hidden layer and

wop ∈ Rk are the weights in the output layer. The derivatives of the NeuroIoU loss w.r.t. the CNN

outputs are given as:

∂NeuroIoU
∂TPpr

=

k∑
j=1

wopj w
h
j1S

′
(xTwhj ),

∂NeuroIoU
∂FPpr

=

k∑
j=1

wopj w
h
j2S

′
(xTwhj )

∂NeuroIoU
∂FNpr

=

k∑
j=1

wopj w
h
j3S

′
(xTwhj )

(6.9)

where S
′

is the derivative of the activation function S.

We now have the gradients of NeuroIoU with respect to TPpri , FPpri and FNpri , and can retrain

the initial CNN, ΘCE , using these gradients. The training procedure is summarized in Algorithm 1. We
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consider the semantic segmentation network ΘCE initially trained using cross-entropy loss. We then

finetune this network using NeuroIoU loss, by using the gradients of the NeuroIoU loss w.r.t. the

outputs of ΘCE in Equations 6.9. To this end, we remove the softmax layer from the ΘCE network. For a

given training image x, we compute its probability score map ΘCE(x) from the network. We then update

the network weights using backpropagation, by using the gradients of NeuroIoU loss with respect to

probability score maps. These steps are continued till convergence. In each iteration, the NeuroIoU

loss increases the pixel probabilities for true positive and false negative pixels, as well as decreases the

pixel probabilities for false positive pixels. This increases the true positive count and reduces the false

positive and false negative counts for each image, thus increasing overall IoU performance. We use

a similar formulation for training deep pose networks, except that the initial network is trained using

regression loss in this case.

6.4.4 Weighted Surrogate Loss Function

In the previous subsection, we defined the proposed NeuroIoU loss for semantic segmentation and

NeuroPCKh Loss for human pose estimation. In semantic segmentation, to leverage the additional

information obtained from the cross-entropy loss, we define the weighted NeuroIoU loss for semantic

segmentation as:

LwtNeuroIoU = LNeuroIoU + λLCE (6.10)

where LNeuroIoU is the NeuroIoU loss and LCE is the cross-entropy loss. λ is a tradeoff parameter

controlling the importance of cross-entropy loss.

Similarly, for human pose estimation, to leverage the additional information obtained from the re-

gression loss, we define the weighted NeuroPCKh loss as:

LwtNeuroPCKh = LNeuroPCKh + λLreg (6.11)

where LNeuroPCKh is the NeuroPCKh loss and Lreg is the regression loss. λ is a tradeoff parameter

controlling the importance of regression loss.
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6.5 Experiments

In this section, we validate the performance of the proposed NeuroIoU and NeuroPCKh loss

functions to train the corresponding state-of-the-art deep models for semantic segmentation and human

pose estimation.

6.5.1 Datasets and Experimental Settings

For semantic segmentation, we conducted our experiments on two popular datasets: PASCAL VOC

2011 [42] and Cityscapes [30]. For both datasets, we train the network on the provided benchmark

training and validation splits (the ground-truth for the test set is not publicly available and our focus is

on comparison to the baseline method, which is also evaluated in the same manner for fairness). For

the PASCAL VOC dataset, we resized the training images to 375 × 500, and for Cityscapes, we resized

the images to 512 × 1024. We integrated the proposed NeuroIoU loss into 3 contemporary semantic

segmentation networks, FCN [92], Segnet [11] and UNet [133]. We take the original FCN, Segnet and

UNet with cross-entropy loss as the baseline for studying the performance of our proposed NeuroIoU

loss, as well as compare our results to [127] on models that were validated in their work (FCN). In the

experiments, we refer to the proposed method asNeuroIoU , the approximation in [127] as IoU−Appx

and the deep networks trained with standard cross-entropy loss as CE.

For human pose estimation, we conducted all our experiments on Leeds Sports Dataset [71] (LSP) and

MPII datasets. These are images from sports activities and are quite challenging in terms of appearance

and especially articulations. In this dataset, for each person, the full body is labeled with total of 14

joints. The MPII dataset [9] (single person) contains images in diverse scenarios that contain many

real-world challenges such as crowding, scale variation, occlusion, and contact. For both datasets,

we train the network on the provided benchmark training set and test on the respective test set. We

integrated the proposed NeuroPCP and NeuroPCKh loss into DeepPose [163] network. We take

the original DeepPose [163] network with regression loss as the baseline for studying the performance of

our proposed NeuroPCKh loss. We evaluated the performance of NeuroPCP loss over LSP dataset

and NeuroPCKh over MPII dataset. For all our experiments, we used a fixed learning rate of 10−5,

momentum of 0.99 and weight decay parameter of 0.0005. In our surrogate neural network used to

approximate the IoU , PCP and PCKh measures, we use 4 hidden layers and 100 nodes in each layer.
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                           (a)                            (b)           

Figure 6.3: Approximation of a function (non-differentiable at x = 1) and its derivatives using neural

networks: (a) Approximation of the function; (b) Approximation of its derivatives.

6.5.2 Function Approximation using Neural Networks

In order to understand the usefulness of the Surrogate-IoU network for approximating the IoU

measure, we conducted simple experiments on the capability of neural networks to approximate a

discontinuous function and its derivatives. Consider f(x) =


2− x if x < 1

x+ 0.1 if x ≥ 1

and its derivative

f
′
(x) =


−1 if x < 1

1 if x > 1

. We can check that f(x) is not continuous and hence not differentiable at

x = 1. Results for this approximation using a simple one hidden-layer neural network are given in

Figure 6.3. Figure 6.3 (a) show the approximation of the function and Figure 6.3 (b) shows the approx-

imation of its derivatives. We can observe that the approximations obtained almost exactly matches the

original function. At x = 1, there is a sudden change in the derivative due to the discontinuity, but the

neural network is able to approximate this sudden peak with a smooth curve. Since f(x) is not differ-

entiable at x = 1, we did not plot its derivative value at x = 1. The approximation of the derivative at

x = 1 lies between −1 and 1.

6.5.3 Results on Semantic Segmentation

The results for FCN, Segnet and UNet on PASCAL VOC are shown in Figure 6.4. It shows the com-

parison of the proposed NeuroIoU loss and the baseline cross-entropy loss. We can observe that the

proposed NeuroIoU loss consistently outperforms the cross-entropy loss in all the categories, with a

performance gain for all three networks. This corroborates our claim that this approach can be integrated

into any existing deep learning network for improving its performance in semantic segmentation. From
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(a)             (b)               (c) 

       (a)              (b)                  (c) 

Figure 6.4: Results on PASCAL VOC: (a) FCN (b) SegNet (c) UNet. Here, CE is the network trained

using cross-entropy loss, and NeuroIoU is the network trained using proposed NeuroIoU loss.(a)             (b)               (c) 

       (a)              (b)                  (c) 

Figure 6.5: Results on CityScapes: (a) FCN (b) SegNet (c) UNet. Here, CE is the network trained using

cross-entropy loss, and NeuroIoU is the network trained using proposed NeuroIoU loss.

the Figure 6.4, we also notice that the performance improvements are more significant for some classes,

where the foreground to background pixel ratio is very small.

Similar results for FCN, SegNet and UNet on the Cityscapes dataset are presented in Figure 6.5. Once

again, we observe that the proposed NeuroIoU loss outperforms cross-entropy loss over all classes for

all three networks. Note again that the maximum performance improvement is obtained for classes

where the ratio of foreground to background pixels is very small. We also tested our method against

using weighted cross-entropy loss on a subset of classes with this foreground-background imbalance

from the Cityscapes dataset. One could argue that weighting cross-entropy loss suitably can account for

class imbalance in the training set. Using weighted cross-entropy, we obtained an IoU of 58.4, whereas

NeuroIoU gave an IoU of 60.2 for the same subset. The proposed NeuroIoU method does not need

such explicit reweighting since it implicitly learns what is necessary for overall IoU performance.
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(a) Image (b) Ground truth        (c) Cross Entropy       (d) Neuro IoU

Figure 6.6: Few qualitative results. (a) Original image (b) Ground truth segmentation (c) Segmentation

obtained from cross entropy loss (d) Segmentation obtained using NeuroIoU .

We also show some qualitative results in Figure 6.6. From the figure, we can observe that, in com-

parison to the cross-entropy loss, the proposed NeuroIoU loss tends to fill the gaps in the segmentation.

It means it tends to recover some of the false negative errors made by the cross entropy loss. In the 4th

image (Row-4), we can observe that NeuroIoU is able to localize small objects (pole), which the cross

entropy-trained model could not. In the 5th image (Row-5), we show a failure case for the NeuroIoU

loss. Here, NeuroIoU is not able to find the small traffic signals present in the image. Note that these

objects are also not detected by the model trained using cross-entropy loss.

6.5.3.0.1 Comparison to previous work Rahman and Wang proposed an approximation to the IoU

measure in [127] (as stated in Section 6.2). The results of comparing the proposed method to this

approximation are given in Table 6.1, where CE represents networks trained using cross-entropy loss.

The results are given for FCN over the PASCAL VOC dataset (as in [127]). The results for [127] are

obtained from our implementation of their work. The results for training the model using cross-entropy

loss (CE) are obtained for a fixed learning rate. Note that these performance numbers can be improved by

experimenting with different learning rates, weight decay and other parameters. Our objective is to show
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Aeroplane Cycle Bird Boat Bottle Bus Car Cat Chair Cow

CE 70.58 59.71 67.71 64.84 63.48 75.17 72.05 70.40 53.81 64.37

IoU-Appx [127] 72.72 61.78 68.61 67.29 64.31 76.57 73.03 70.82 54.18 64.06

NeuroIoU 73.68 61.84 69.80 67.83 64.49 77.73 73.57 71.28 54.82 65.38

NeuroIoUNo−Init 73.65 61.80 69.80 67.82 64.38 77.73 73.57 71.27 54.77 65.37

NeuroIoUHinge 75.14 63.35 70.71 69.75 65.84 79.80 74.97 73.03 55.47 66.16

NeuroIoUHinge −AO 75.16 63.35 70.72 69.73 65.87 79.81 74.97 73.00 55.48 66.16

NeuroIoUWtHinge 75.52 63.69 71.15 70.05 66.23 80.16 75.34 73.45 55.86 66.49

D.Table Dog Horse M.Bike Person P.Plant Sheep Sofa Train TV Mean

CE 64.12 65.71 58.64 70.61 77.28 62.27 66.85 56.73 72.27 64.79 66.06

IoU-Appx [127] 65.63 64.17 58.70 71.20 77.39 64.14 67.72 58.38 72.20 66.07 66.94

NeuroIoU 65.98 65.82 60.37 72.10 78.04 66.62 69.02 59.52 73.06 67.18 67.90

NeuroIoUNo−Init 65.97 65.82 60.37 72.04 78.03 66.62 68.98 59.52 73.03 67.18 67.87

NeuroIoUHinge 67.63 66.74 62.73 73.68 79.89 68.03 71.62 60.85 74.75 69.27 69.46

NeuroIoUHinge −AO 67.62 66.79 62.74 73.68 79.86 68.04 71.65 60.86 74.73 69.27 69.47

NeuroIoUWtHinge 67.97 67.23 63.18 74.03 80.20 68.45 72.07 61.40 75.06 69.53 69.85

Table 6.1: Comparison of NeuroIoU with cross-entropy loss and [127] on PASCAL VOC.

the relative performance gain for different methods over CE loss under the same training conditions. The

relative improvement in the performance of [127] over cross-entropy loss (CE) is what we intend to show,

rather than the absolute IoU value. Here, the NeuroIoU loss is used to retrain the network obtained

from training using the CE loss. It is evident that NeuroIoU loss outperforms this surrogate loss [127]

over all classes. Compared to the cross-entropy loss, the surrogate loss in [127] underperforms for some

classes. However, the proposed NeuroIoU loss consistently outperforms cross-entropy loss over all

classes.

We also compare other variants ofNeuroIoU ,NeuroIoUNo−Init,NeuroIoUHinge andNeuroIoUWtHinge

in Table 6.1. In NeuroIoUNo−Init, we train the network without any initialization, i.e., the model

trained using cross-entropy loss is not used to initialize the network. In NeuroIoUHinge, IoU is ap-

proximated using hinge loss values instead of probabilities from the final layer (as in Section 6.4.2). In

NeuroIoUWtHinge, the weighted surrogate loss is used as the final loss function (as in Section 6.4.4).

Here, we take λ= 0.1. From the Table 6.1, we can observe that the network trained without initial-
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RBF Tanh Sigmoid

IoU 67.58 67.76 67.90

Table 6.2: Comparison of RBF, Tanh and Sigmoid activation functions in NeuroIoU loss for semantic

segmentation.
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Figure 6.7: Comparison of performance of NeuroIoU with 3 inputs vs NeuroIoU with 6 inputs using

FCN on PASCAL VOC. While both performed better than CE, NeuroIoU-6 was more consistent.

ization from a pre-trained model (NeuroIoUNo−Init) can obtain similar performance as the network

trained using the initialization (NeuroIoU ) obtained using cross-entropy loss. We can also observe

that NeuroIoUHinge performs well compared to NeuroIoU and, NeuroIoUWtHinge outperformed

all other methods. Using NeuroIoUWtHinge, we obtained an IoU of 69.85, which is an improvement

of 3.79 IoU over cross-entropy. The superiority in the performance is due to the additional information

obtained from the cross-entropy loss while training the network. In all the above experiments, we use

direct optimization technique for training the segmentation network using NeuroIoU loss.

6.5.3.0.2 Ablation Studies: We show here the impact of various choices in the surrogate loss net-

work on the CNN performance. We show the results for NeuroIoU loss over semantic segmentation.

In all the experiments, the results are given for FCN over PASCAL VOC. Here, the FCN is trained using

NeuroIoU loss. We first evaluate the impact of different activation functions for the NeuroIoU loss

in Table 6.2.

From the results, we can observe that the Sigmoid function performs slightly better compared to RBF

and Tanh activation functions.

We studied the performance of the Surrogate-IoU neural network over different inputs in Figure 6.7.

In NeuroIoU − 6, the neural network is trained over 6 inputs TPpr, FPpr, FNpr,
TPpr
|TP |

,
FPpr
|FP |

and

FNpr

|FN |
, while the neural network is trained only on 3 inputs TPpr, FPpr, FNpr in NeuroIoU − 3.
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# Hidden layers 2 4 6 8

IoU 67.57 67.90 67.90 67.92

Table 6.3: Comparison of performance of NeuroIoU loss with varying number of hidden layers for

semantic segmentation.

NeuroIoU -Mapillary NeuroIoU -Cityscapes NeuroIoU -Map-City

IoU 61.86 62.18 62.41

Table 6.4: Performance of the NeuroIoU trained over Mapillary and Cityscapes datasets. In

NeuroIoU -Mapillary, NeuroIoU is trained on mapillary dataset. In NeuroIoU -Cityscapes,

NeuroIoU is trained on Cityscapes. In NeuroIoU -Map-City, NeuroIoU is trained on both map-

illary and Cityscapes.

The results are given for 15000 iterations. From the figure, we notice that NeuroIoU − 6 is better than

NeuroIoU−3 (we observed the same trend for other datasets too), while both outperform cross-entropy

loss. In this experiment, we take number of hidden layers as 4 in NeuroIoU .

In the next experiment, we evaluate the impact of the number of hidden layers in theNeuroIoU loss

for the given semantic segmentation problem. The results for comparing the performance on varying

number of hidden layers are given in Table 6.3. From the results, we can observe that there is an im-

provement in performance with the increase in the number of hidden layers. However, the improvement

is rather minimal. It means that our surrogate network can approximate the IoU measure with a fairly

low number of hidden layers. In all our experiments, a surrogate network with four hidden layers gives

reasonably good performance.

In all our experiments, for each dataset, we train the surrogate loss network on the same dataset. To

further evaluate our surrogate loss network, we initially train it on other datasets and test it on the given

dataset. In this experiment, we train our NeuroIoU in different configurations and test each case in

the Cityscapes. These results are given in Table 6.4. In NeuroIoU -Mapillary, NeuroIoU is trained

only on the Mapillary dataset. There is no training involved on Cityscapes dataset. In NeuroIoU -

Cityscapes, NeuroIoU is pre-trained on Cityscapes dataset. Here, there is no training involved on

the Mapillary dataset. In NeuroIoU -Map-City, NeuroIoU is initially pre-trained on the Mapillary

dataset and during the training of the segmentation model, it is finetuned on the Cityscapes dataset.
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Cross-Entropy Neuro-Cross-Entropy

IoU 66.06 66.07

Table 6.5: Performance of FCN trained with naive cross-entropy loss (cross-entropy) and cross-entropy

loss approximated using the proposed surrogate loss network (Neuro-Cross-Entropy) on PASCAL VOC.

From the results, we can observe that NeuroIoU -Map-City performs the best, thanks to the additional

information from the Mapillary. NeuroIoU -Mapillary has performance comparable to the other two

settings but has slightly lower performance since it is not exposed to the Cityscapes dataset, which is

used for testing.

The naive training in CNN is a particular case of our proposed approach. To demonstrate this, we

try to approximate the cross entropy loss using our proposed surrogate loss network and train the given

segmentation network using the trained surrogate loss network. We use (FCN) as the segmentation

network. Note that, the cross entropy loss is a differentiable function. The results over PASCAL VOC are

given in Table 6.5. In cross-entropy, FCN is trained using original cross entropy loss. In Neuro-Cross-

Entropy, cross-entropy itself is approximated using the surrogate network and FCN is trained using this

surrogate loss network. From the results, we can observe thatNeuro-Cross-Entropy performing equally

well compared to cross-entropy. In fact, it is slightly performing better compared to cross-entropy. It

shows that CNN training with differentiable loss functions is a particular case of our proposed technique.

This demonstrates that our proposed surrogate loss network is a more generalized version of existing

methods for training.

6.5.3.0.3 Training using Alternate Optimization In alternate optimization, we train both CNN and

surrogate loss network in parallel in an alternate manner. It is based on alternate optimization. The

training procedure (for semantic segmentation) is summarized in Algorithm 2. Unlike the direct opti-

mization, presented in Section 6.3.1.1 (where the surrogate network is trained completely before fine-

tuning the CNN), we alternately train the CNN and surrogate loss networks in this technique. The re-

sults for the alternate optimization technique are presented in Table 6.1 under NeuroIoUHinge − AO

and compared with NeuroIoUHinge. From the results, we observe that both NeuroIoUHinge and

NeuroIoUHinge − AO are performing equally well. In the alternative optimization technique, at each

step of training the segmentation network, we train the NeuroIoU for five iterations.
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Algorithm 2 Training using Alternate Optimization

Input: (i) Set of training images I and their ground truth labels G; (ii) Initial network Θ
′

(initialized

using a backbone network)

Output: Final model Θ
′

trained using alternate optimization technique

Repeat until convergence

for x ∈ I do

(1). Compute Θ
′
(x), the probability score map for x

(2). Compute the actual IoU loss for x using the pixel counts obtained from Θ
′
(x), LIoUi =

1− TPi
TPi+FPi+FNi

(3). Compute NeuroIoU loss using Equation 6.7 and its gradients w.r.to TPpr, FPpr and FNpr

(4). Using the gradients obtained from step (3), backpropagate through the surrogate network

(NeuroIoU ) and Θ
′

network, and update the network weights

end for=0

6.5.4 Results on Human Pose Estimation

The results for DeepPose network [163] using regression loss (Deep Pose) and the proposedNeuroPCP

loss (NeuroPCP ) on the LSP dataset are given in Table 6.6. We begin our analysis by reporting each ap-

proach’s overall pose estimation performance and summarize the results in Table 6.6. As given in [163],

we show results for the four most challenging limbs, lower and upper arms and legs to compare across

different loss functions. We also show the average value across these limbs. The NeuroPCP loss

achieves the best result of 61.3% PCP, followed by the regression loss with 60.7% PCP. We obtain

maximum improvement for lower arm, which has many variations compared to all other parts. We also

show the results for training DeepPose [163] using alternative optimization (NeuroPCP −AO) for the

proposedNeuroPCP loss in Table 6.6. In alternate optimization, we train both CNN and surrogate loss

networks in parallel in an alternate manner. The results show that the model trained using alternative

optimization slightly performs well compared to theNeuroPCP . InNeuroPCP , the model is trained

using direct optimization. We hypothesize that the slight superior performance for the alternative opti-

mization technique is due to the performance of the surrogate network trained for approximating PCP

measure as stated earlier for semantic segmentation. In alternative optimization, we gradually increase

the training set to train the surrogate network, whereas in direct optimization, we train the surrogate net-

work only once with complete training data. This causes a difference in performance. From the results,
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Upper Leg Lower Leg Upper Arm Fore Arm Ave

Deep Pose 77.2 71.4 56.1 38.2 60.7

NeuroPCP 77.8 71.8 56.6 39.1 61.3

NeuroPCP −AO 77.8 71.9 56.9 39 61.4

NeuroWtPCP 78.1 73.6 58.5 40.9 62.8

Table 6.6: Comparison of NeuroPCP loss with regression loss on LSP dataset. In NeuroPCP −AO,

CNN is trained using alternative optimization. In NeuroWtPCP , weighted NeuroPCP loss is used as

the loss function.

Head Sho Elb Wri Hip Knee Ank PCKh

Deep Pose 94.9 90.5 80.2 74.5 77.1 69.2 63.2 79.2

NeuroPCKh 95.3 90.9 80.4 75 77.7 69.7 63.8 79.7

NeuroPCKh −AO 95.6 90.8 80.4 75.2 77.6 69.8 64.1 79.9

NeuroWtPCKh 96.5 92.3 82.4 76.1 78.7 71.0 65.4 81.0

Table 6.7: Comparison of NeuroPCKh loss with regression loss on MPII dataset. In NeuroPCKh −

AO, CNN is trained using alternative optimization. In NeuroWtPCKh, weighted NeuroPCKh loss is

used as the loss function.

we can also observe thatNeuroWtPCKh, where the weighted surrogate loss (as in Section 6.4.4) is used

as the final loss function, outperformed all other variants of NeuroPCP . Here, we take λ=0.5. The

noticeable performance gain of 2.1% in PCP measure for NeuroWtPCKh compared to the regression

loss is due to the additional information obtained from the regression loss. It shows that the proposed

surrogate loss can be added with other loss functions to further enhance its performance.

The results for DeepPose network [163] using regression loss (Deep Pose) and the proposedNeuroPCKh

loss (NeuroPCKh − AO) on MPII dataset is given in Table 6.7. From the results, we can observe that

NeuroPCKh loss outperforms regression loss over all parts. For the NeuroPCKh loss, we get

79.7% PCKh, whereas regression loss obtained 79.2% PCKh measure, corroborating our claim. The

superior performance obtained for NeuroPCKh loss over regression loss is due to its ability to model
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Figure 6.8: Visualization of pose results obtained using NeuroPCKh loss on images from MPII. The

last two results shows some fail cases caused by combinations of extreme occlusion and rare poses.

the explicit interactions between the body joints. While training the network regression loss does not

capture these interactions; however, NeuroPCKh loss captures these interactions from the pose infor-

mation we provide using unit normal vectors while training the surrogate network. We also show the

results for training the DeepPose network using alternative optimization (NeuroPCKh − AO) for the

proposed NeuroPCKh loss in Table 6.6. The results show that the model trained using alternative

optimization performs better than the regression loss, and the model trained using direct optimization

(NeuroPCKh). We also compare the NeuroWtPCKh, where the weighted surrogate loss (as in Sec-

tion 6.4.4) is used as the final loss function with NeuroPCKh and NeuroPCKh − AO in Table 6.7.

From the results, we can observe that NeuroWtPCKh outperformed all other variants of NeuroPCP .

Here, we take λ=0.5. Using NeuroWtPCKh, we got an improvement of 1.8% in PCKh measure com-

pared to the regression loss. The superiority in the performance is again due to the additional infor-

mation obtained from the regression loss while training the network. We also show some qualitative

results in Figure 6.6. The results are obtained using NeuroPCKh loss. The figure shows that the

proposed NeuroPCKh loss copes well with both occlusions and difficult poses. We also show a few

failure cases in the last two images. The failure cases are mainly caused by the combinations of extreme

occlusion and rare poses.

130



6.6 Summary

In this work, we presented a new approach using surrogate neural networks for learning discrete

and non-decomposable loss functions, which are inherently non-differentiable. In particular, we learned

the loss functions over IoU , PCP and PCKh measures for the semantic segmentation and human pose

estimation tasks. Our experimental results demonstrate that the proposed loss function can be applied

to any existing network. For IoU loss, we demonstrated the effectiveness of the proposed method over

semantic segmentation models on the PASCAL VOC and Cityscapes datasets. For PCP loss, we validated

our method over LSP dataset and for the PCKh loss, we validated our method over MPII dataset. For both

the PCP and PCKh loss, we applied our method over DeepPose [163] network. Our results on this work

show consistent improvement over baseline methods, and the ablation studies presented also show the

robustness of the proposed method.
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Chapter 7

Conclusion

In this chapter, we conclude this thesis by discussing the contributions, impact, and comparisons of

our proposed approaches with contemporary methods.

7.1 Summary

This thesis targets the problem of surrogate approximations for similarity measures to improve their

performance in various applications. We have presented surrogate approximation for DTW distance,

canonical correlation analysis (CCA), Intersection-over-Union (IoU), PCP, and PCKh measures.

First, we propose a linear approximation for naive DTW distance. To compute the DTW distance for

any given sequence, we need to find the optimal warping path from all the possible alignments, which is

a computationally expensive operation and requires quadratic complexity. We try to speed up the DTW

distance computation by learning the optimal alignment from the training data. We learn a small set

of global principal alignments from the given training data, and for the new test sequences, the optimal

alignment is approximated using these alignments. As far as we are aware, none of the previous methods

have exploited the hidden structure of the alignments. We approximate the DTW distance as a sum

of multiple weighted Euclidean distances, which are known to be amenable to indexing and efficient

retrieval. The proposed FastDTW distance is as good as DTW distance and computationally performs

equally as simple Euclidean-based matching. Further, we also introduced a Fast Dynamic Time Warping

kernel (Fast Surrogate DTW kernel), which is a surrogate linear kernel over DTW distance. We have also

proposed an explicit feature map for the Fast Surrogate DTW kernel, which enables the proposed kernel

to be applied with linear SVM. The explicit feature map for the FastDTW kernel is computed using

the global principal alignments learned from the training data. We then presented an application using
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FastDTW distance, which widens the scope of our work. In this application, we address the problem of

faster indexing in classifier-based retrieval methods using FastDTW distance. We introduce the Query

specific FastDTW distance for faster indexing, which has linear time complexity. In addition to this, we

also present an application built using the Fast Surrogate DTW distance in the deep learning framework.

We propose, FastDTWNet, where the Fast Surrogate DTW distance is applied as a feature extractor in

CNN.

Our next contribution proposes a surrogate kernel approximation over canonical correlation analysis

(CCA). It enables us to use CCA in the kernel framework, further improving its performance. The

kernel function works well for action recognition as it embeds the temporal context in the videos. We

have also shown that multiple features can be seamlessly integrated into the surrogate kernel to enhance

recognition performance.

In our final contribution, we propose a method to automatically learn a surrogate loss function that

approximates the IoU, PCP and PCKh loss. Semantic segmentation is a popular task in computer vi-

sion today, and deep neural network models have emerged as the popular solution to this problem in

recent times. The typical loss function used to train neural networks for this task is cross-entropy loss.

However, the success of the learned models is measured using Intersection-Over-Union (IoU ), which is

inherently non-differentiable. This gap between performance measure and loss function results in a fall

in performance, which few recent efforts have also studied. In this work, we propose a novel method to

automatically learn a surrogate loss function that approximates the IoU loss and is better suited for good

IoU performance. To the best of our knowledge, this is the first such work that attempts to learn a loss

function for this purpose. The proposed loss can be directly applied over any network.
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