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Abstract

Deep Neural Networks (DNNs) have shown remarkable performance in a broad range of computer
vision tasks, including in the medical domain. With the advent of DNNs, the medical community
has witnessed significant developments in segmentation, classification, and detection. But this success
comes with a cost of heavy reliance on the abundance of data. Medical data, however, is often highly
limited in volume and quality due to sparsity of patient contact, variability in medical care, and privacy
concerns. Hence, to train large networks we seek data from different sources. In such a scenario, it is of
interest to design a model that learns continuously and adapts to datasets or tasks as and when they are
available.

However, one of the important steps to achieve such a never-ending learning process is to overcome
Catastrophic Forgetting (CF) of previously seen data or tasks. CF refers to the significant degradation in
performance on the old task/dataset. To avoid confusion, we call a training regime Continual Learning
(CL) when CAD systems have to handle a sequence of datasets collected over time from different sites
with different imaging parameters/populations. Similarly, Incremental Learning (IL) is when CAD
systems have to learn new classes as and when new annotations are made available. The work described
in this thesis address core aspects of both CL & IL and has been compared against the state-of-the-art
methods.

In this thesis, we assume that access to the data belonging to previously trained datasets or tasks is
not available which makes both CL and IL processes even more challenging. We start with developing
a CL system that learns sequentially on different datasets and handles CF using the Uncertainty mech-
anism. The system consists of an ensemble of models which are trained or finetuned on each dataset
and considers the prediction from the model which has the least uncertainty. We then investigate a new
way to tackle CF in CL by manifold learning, inspired by the defense mechanisms against adversarial
attacks. Our method uses a ‘Reformer’ which is essentially a denoising autoencoder that ‘reforms’ or
brings the data from all the datasets together towards a common manifold. These reformed samples are
then passed to the network to learn the desired task.

Towards IL, we propose a novel approach that ensures that a model remembers the causal factor
behind the decisions on the old classes, while incrementally learning new classes. We introduce a
common auxiliary task during the course of incremental training, whose hidden representations are
shared across all the classification heads. All the experiments for both CL and IL are conducted on
multiple datasets and have shown significant performance over the state-of-the-art methods.
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Chapter 1

Introduction

Medical imaging is a process of visualizing the human body’s interior to monitor and diagnose med-
ical conditions. There are various medical imaging techniques, also referred to as modalities, that use
a broad spectrum of Electromagnetic waves for image acquisition: Radio frequency in MRI; Visible
range in Endoscopy, Optical Coherence Tomography (OCT), and fundus photography; Sound in Ul-
trasound Scans; X-rays in radiography, CT Scans; Gamma-rays in Nuclear SPECT, PET imaging as
shown fig 1.1. Computer-Aided Diagnosis (CAD) systems assist medical practitioners in interpreting
these medical images and swiftly making decisions based on the analysis.

Figure 1.1: Sample Medical Images: (a) Chest X-Ray (b) CT scan of abdomen (c) MRI scan of Brain

(d) OCT image (e) Endoscope image of colon (f) Ultrasound (g) Fundus image (h) Dermoscopic image

With the advent of Deep Neural Networks (DNNs), the medical research community has witnessed
significant developments in segmentation, classification, and detection, paving the way to better CAD
systems. Despite these rapid technical advancements, only a few CAD systems have successfully de-
ployed on clinical premises, and part of the reason is the lack of robustness in the CAD systems. The
following are some of the crucial factors that affect the performance of CAD systems.

1. Lack of data: Medical data is often highly limited in volume and quality due to the sparsity of
patient contact, variability in medical care, and privacy concerns [8].
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2. Data from different sources: To accumulate more data, we rely on multiple sources for image
acquisition, and hence, the differences in distribution among sources due to changes in acquisition
systems, the subject’s demography, the quality/resolution, etc., are inevitable.

3. Expert annotation: Developing a medical dataset requires significant human effort, including
acquisition and annotation. Hence, the process is usually slow and can take up to several months.

4. Purging policies: Medical data is subjected to multiple privacy regulations, and hence the data
needs to be purged after the stipulated amount of time. Consequently, we can no longer access
old data for joint training or enhancing the neural network model.

To address the above issues and to facilitate the early deployment of CAD systems, developing a model
that learns and improves on the data as and when it is available is desirable. This is the problem ad-
dressed in this thesis.

1.1 Continual And Incremental Learning

Figure 1.2: Illustration of a lifelong learning system that uses old knowledge to learn the new tasks,

while maintaining the old knowledge without forgetting

The ability of the model to use the knowledge acquired from previous tasks in learning new tasks
without losing the previously acquired knowledge is commonly referred to as Lifelong Learning. As
illustrated in Figure 1.2, with an incoming stream of new data with a task Tn and a datasetDn, the model
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should leverage the knowledge gained from old tasks and datasets without forgetting. We identified two
main branches of Lifelong learning:

1. Continual Learning (CL): It refers to learning from a sequence of datasets that differ only in
distributions but not the tasks. The changes in the distributions, for example, a change in the
scanner, may not be discernible to humans, but a neural network will see a big change via small
aggregated changes. In a CL setting, given two tasks Ti and Tj along with their corresponding
datasets Di and Dj , we have Ti = Tj and Di ̸= Dj

2. Incremental Learning (IL): It refers to learning new classes from the dataset without forgetting
old classes. In this case, the dataset distribution may or may not change, but the tasks are different,
i.e., Ti ̸= Tj .

1.1.1 Catastrophic Forgetting

The Continual and Incremental Learning paradigms suffer from a phenomenon called Catastrophic
Forgetting (CF) [35] which is performance degradation of old tasks when the model is adapted to learn
new tasks. When a neural network model undergoes training, the weights of the model change such that
it is optimal to the new task. However, these new weights may no longer be optimal for the old tasks,
which leads to forgetting. Mitigating CF is the primary goal of any CL/IL framework.

1.1.2 The Stability - Plasticity tradeoff

A model is said to be stable when the decisions on the old tasks do not change despite being subjected
to CL/IL on new tasks. Very high stability conditions lead to zero CF and, at the same time, zero learning
on new tasks. On the contrary, a highly plastic model learns and adapts to new tasks very well, leading
to very high CF on the old tasks.

An ideal solution is to have a trade-off between stability and plasticity of the model such that the
model learns new tasks and remembers the knowledge acquired from old tasks.

1.2 Approaches

The existing approaches that deal with CF can be broadly divided into three categories: (i) Regularization-
based methods, (ii) Memory-based methods, and (iii) Structure-based methods.

• Regularization-based methods: As the name implies, these methods regularize the change in
parameters of the model during CL/IL, which are essential for the model to do well on the old
experiences. EWC [26] and SI [54] identify these important parameters by computing the Fisher
Importance matrix after every task; any change to the parameters with high importance is penal-
ized. LWF [30] algorithm penalizes the model when there is a change in the model’s probabilities
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Figure 1.3: Venn diagram of popular CL/IL methods based on their approaches: EWC [26], SI [54],

LWF [30], LWM [9], MAS [2], GEM [32], A-GEM [7], MER [44], iCARL [43], PNN [46], DEN [53],

PC [47], PackNet [34], FearNet [21]

on old tasks. Enforcing that model gives the same output on old tasks even after learning new
tasks makes the model learn not to change parameters critical to the old tasks. LWM [9] is similar
to LWF but also ensures that the class attention maps of the old tasks remain the same after learn-
ing new tasks, thereby mitigating CF even further. Regularization methods can help alleviate CF
only to some extent as the stability-plasticity tradeoff breaks when the number of new tasks to be
learned increases. These methods are highly suitable in scenarios where access to data from old
tasks is unavailable and with a fixed learning capacity.

• Memory-based methods: These methods alleviate CF by storing a few samples from previous
experience, either explicitly or implicitly. In the explicit memory-based methods, raw samples
from old tasks are stored in the memory, which is used for rehearsal during CL/IL. In the im-
plicit memory-based methods, samples from old tasks are generated by networks like GAN [17]s,
autoencoders, etc., to do pseudo-rehearsal. Some notable state-of-the-art techniques in this cat-
egory include GEM [32], A-GEM [7], MER [44], iCARL [43], etc. These methods reduce CF
effectively but require an additional memory buffer

• Structure-based methods: The structure-based methods (PNN [46], DEN [53], PC [47]) in-
crease the model’s capacity by attempting to modularize the neural network models. Task-specific
modules are created for each task, and the CF is mitigated by storing and freezing the modules
belonging to old tasks. Structure-based methods have shown remarkable performance in mitigat-
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ing CF and can be used in cases where large tasks are to be learned, or dynamic growth of model
size is tolerable.

Due to various data privacy and purging policies, we cannot hold access to medical data for longer
times. Hence this thesis mainly focuses on the scenario where the data belonging to the old tasks are
unavailable while training on new tasks. The contributions made are presented in different chapters of
the thesis as described below.

A crucial part of intelligence is not to act/decide when one is uncertain. We build on this idea
in Chapter 2 and propose a Continual Learning system based on an ensemble of models to reject the
predictions done by models with high uncertainty and thereby routing the image to the correct model
which was trained on a similar input distribution to that of an unseen image. The models in the ensemble
are built with Bayesian Neural Networks, as they facilitate the derivation of uncertainty. At the test time,
the output of the model which has the least uncertainty is chosen as the final prediction for an unseen
image.

In Chapter 3, a novel approach is proposed to address CF in computer aided diagnosis (CAD) system
design in the medical domain. CAD systems often need to handle a sequence of datasets collected over
time from different sites with different imaging parameters/populations. The solution we propose is to
move samples from all the datasets closer to a common manifold via a reformer at the front end of a
CAD system. The utility of this approach is demonstrated on two common tasks, namely segmentation
and classification, using publicly available datasets.

Chapter 4 deals with the class incremental learning (IL): learn new classes as and when new data or
annotations are made available and old data is no longer accessible. We propose a novel approach that
ensures that a model remembers the causal factor behind the decisions on the old classes, while incre-
mentally learning new classes. We introduce a common auxiliary task during the course of incremental
training, whose hidden representations are shared across all the classification heads. Since the hidden
representation is no longer task-specific, it leads to a significant reduction in CF.
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Chapter 2

A Continual Learning system based on Uncertainty using Bayesian

Neural Networks

2.1 Introduction

Learning typically involves three stages: 1. Encoding, which is how the information is learned,
2. Storing or maintaining that information over time, and 3. Retrieval which is accessing the learned
information. While successful remembering involves all the three stages, the key stage is retrieval since
inability to retrieve renders information useless however well it is learnt and stored. Two types of errors
occur should any of the three stages fail: Forgetting and Misremembering [36], both being the reasons
for CF.

We propose a method that uses an ensemble of models to overcome the above limitations by using
uncertainty as a measure, to route the incoming data to the model which was trained on a similar input
distribution to that of the given data. Intuitively, humans express uncertainty about the things they
forget and the crucial aspect of intelligence is not to act/decide when uncertain, which is not possible in
deep neural networks (DNN). This is because most of the DNN output single point predictions rather
than a distribution of predictions. In order to calculate uncertainty in DNNs, we propose to use Bayesian
Neural Networks (BNN) that learn probability distributions over parameter space. An ensemble of BNN
models can be created with each model trained on a separate dataset with a varied distribution. During
inference, the uncertainty measure can be used to reject the predictions done by models with high
uncertainty. This is in effect will allow for a model whose training dataset had a similar distribution
to that of the test image to be chosen for the final prediction. The ensemble therefore represents a
collection of old and new knowledge which can be efficiently retrieved using the uncertainty measure.
We show that by following the steps of Learning, Storing and Retrieving knowledge efficiently, CF can
be avoided. We next present some background on BNN, uncertainty followed by details of the proposed
system.
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2.2 Bayesian Neural Networks

A neural network can be viewed as a deterministic model p(y|x, ω) that assigns a probability for
each possible output y given the weights ω. These weights are learned by maximum likelihood es-
timation (MLE) i.e. ω∗ = argmax(log(P (D|ω))). This results in point-estimates, thereby ignoring
any uncertainty present in those weights. Bayesian neural networks are the extension of standard neu-
ral networks with a posterior distribution p(ω|D) over the network weights ω, given the training data
D. Assuming a prior distribution p(ω) over the weights and bias, the posterior distribution is given as
follows:

p(ω|D) = p(D|ω)p(ω)
p(D)

=

∏N
i=1 p (yi|xi, ω) p(ω)

p(D)
(2.1)

The predictive distribution of unseen data x̂ is calculated as:

P (ŷ|x̂) = EP (ω|D)[P (ŷ|x̂, ω)] (2.2)

The above equation is intractable as the expectation over the posterior distribution of weights is
equivalent to using an uncountably infinite number of neural networks [5]. Several solutions have been
proposed to estimate the approximate inference like Markov Chain Monte Carlo sampling [28], Varia-
tional Inference [24], Bayes By Backpropagation [5]. In our experiments, we utilized Bayesian CNNs
from Tensorflow Probability [10] that use a stochastic variational inference [25] on the distribution in-
tegrating over kernel and bias in the CNN layer.

2.3 Uncertainty

A DNN framework such as a regression model estimates the mapping from the input f(x) to continu-
ous output variable y and classification models output a probability vector, where elements of the vector
represent the probability for each of the output classes. This probability vector is often misinterpreted
as the model’s confidence because a model can be highly uncertain even when giving a high softmax
output for a particular class.

BNN framework allows for a distribution over model parameters/weights ω. Thus a new set of
features is formed each time a prediction ŷ is made on unseen data x∗. The variance of this predictive
distribution is a measure of the model’s confidence about its prediction on the given data. It has been
shown [48] that the variance can be formulated as the sum of types of uncertainty: Aleatoric uncertainty
and Epistemic uncertainty.

Aleatoric uncertainty captures the noise which is inherent in observations. This can be due to ac-
quisition systems which cannot be reduced even if we add more data from the same source. Aleatoric
uncertainty can be further divided into homoscedastic uncertainty and heteroscedastic uncertainty. Ho-
moscedastic uncertainty assumes identical observation noise for each input x, hence it stays constant.
On the other hand, Heteroscedastic uncertainty depends on inputs to the model, with some inputs having
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higher uncertainty than others [22]. Epistemic uncertainty captures variance in the model’s parameters,
which accounts for our ignorance about how we generated the model. This uncertainty can be reduced
with more data collection. Together, these uncertainties can help to capture the confidence of a model
on different inputs which can be interpreted as a model’s way of expressing “I don’t know”.

To quantify these uncertainties, we followed the procedure described in [27]. The proposed method
calculates uncertainty based on variability and is computationally less expensive compared to other
methods [22], [48]. The uncertainty is defined as:

Uncertainty =
1

T

T∑
t=1

diag (p̂t)− p̂2t︸ ︷︷ ︸
aleatoric

+
1

T

T∑
t=1

(p̂t − p̄)2︸ ︷︷ ︸
epistemic

(2.3)

Where T is the number of samples, p̄ =
∑T

t=1 p̂t/T , p̂t = p (ω̂) = Softmax {fω (x∗)} and fω (x∗)

denotes the pre-activated output of BNN which is a function of parameter ω

2.4 Proposed Method

In a continual learning (CL) system, we have a collection of datasets D = (D1, D2, . . . , Dn) that
arrive sequentially such that there may be a change in distribution from one dataset to another. The
assumption is that access to old datasets is not there once training is done on them and there is no prior
information on the distribution of the upcoming datasets.

We propose creating an ensemble of BNN models, each trained on different distributions of datasets.
It is computationally undesirable to add a new model to the ensemble each time a new dataset arrives.
Also, one of the key aspects of CL is the forward transfer of knowledge gained from the old experience
to the new one. Hence, creating a new model without utilizing knowledge from previous experiences
is unreasonable. At the same time, choosing a random model from the ensemble to initialize the new
model does not offer any guaranteed advantages, because the random model might have been trained on
a completely different distribution from the upcoming dataset.

To address the above issues, we propose Algorithm 1 where uncertainty is used as a measure to
identify/retrieve the model in the ensemble whose training data distribution is close to the upcoming
dataset’s distribution. We use this as the base-model (mB) for transfer learning and at the end of the
training on the new dataset, if the difference between the uncertainties of mB and the newly trained
model is less than a threshold t, then it implies that the new dataset has a similar distribution to that
of mB’s training data. Hence, we remove mB from the Ensemble (as it is redundant) and add the new
model to the Ensemble. If the difference in uncertainties is higher than t, then it is safe to assume that
the new dataset has a very different distribution when compared to earlier ones, and hence this model is
added to the Ensemble. In this way, we eliminate the need to create new model for every dataset.

During test time, we select a model from the Ensemble which has the least uncertainty on the unseen
data; as described in the algorithm 2. In both the algorithms 1 and 2, the uncertainty measure is used

8



Algorithm 1 Training procedure for Continual Learning
Input: Datasets D = (D1, D2, . . . , Dn) where Di = (x, y), Threshold t

Ensemble← ϕ for each Di in D do

if Ensemble is empty then

Train model m on Di ; // Since it is the first model, train from

scratch

Ensemble.add(m)

else

uncertaintyList← ϕ for each model mj in Ensemble do
Calculate uncertainty u of model mj on the dataset Di using equation 2.3

uncertaintyList.add(u)

end

mb ← Ensemble[argminu(uncertaintyList)] ; // Select a model with least

uncertainty

Initialize new model mn with mb for Transfer Learning

Train mn on Di

Calculate uncertainty un of model mn on the dataset Di using equation 2.3

if |un − ub| ≤ t then

Ensemble.remove(mb) ; // Remove redundant model

end

Ensemble.add(mn)

end

end

Algorithm 2 Test algorithm
Input: Ensemble, Unseen data x∗

Output: y∗ as the final prediction on x∗

uncertaintyList← ϕ

for each model mi in Ensemble do
Calculate uncertainty u of model mi on the data x∗ using equation 2.3

uncertaintyList.add(u)

end

mk ← Ensemble[argminu(uncertaintyList)] y
∗ = mk.predict(x

∗)

9



(a) (b)

(c)

Figure 2.1: Variability across distributions in the PH2 and ISIC datasets. (a) Width and (b) height

distributions; (c) TSNE plot, with red and blue indicating PH2 and ISIC images.

to route the data to the right model for transfer learning and final predictions respectively. Since the
Ensemble has both old and new models, all trained on different distributions, we need not worry about
the stability-plasticity dilemma.

2.5 Results

The proposed system was used to develop solutions for three major problems: Classification of 2D
images (Malaria Disease), Segmentation on 2D images (Skin Lesion) and Segmentation on 3D images
(ventricles from neuro images/MRI). The above choice of experiments is done to illustrate that our
approach to CL is generic and not restricted to just one set of problems. In all the experiments, to
evaluate the process of CL, we calculate and report a metric for a model on a dataset X , and again
after transfer learning on the dataset Y . The change in performance on X is an indicator of CF or the
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effectiveness of CL and hence is also reported. It is to be noted that the results reported for our system
(last row of all Tables) is that of an ensemble.

2.5.1 Skin Lesion Segmentation

The public data sets ISIC 2017 [4] and PH2 [38] were used for Skin lesion analysis towards melanoma
detection. The ISIC dataset, with 2000 training images and 150 test images, is sourced from multiple
clinical centers internationally and acquired from a variety of devices within each center. The dataset
contains images of resolutions ranging from 152x152x3 to 4500x7000. Thus, the dataset itself contains
a good mix of possible distributions. The dermoscopic images in the PH2 dataset were obtained at
the Dermatology Service of Hospital Pedro Hispano (Matosinhos, Portugal) under the same conditions
through the Tuebinger Mole Analyzer system using a magnification of 20x. They are 8-bit RGB color
images with a resolution of 768x560 pixels. It is split into 200 training and 150 test sets.

The data description of the two datasets indicate that they vary in terms of resolution which is appar-
ent in the image width/height distributions shown in Fig. 2.1) (a) and (b). From the TSNE plot in Fig.
2.1) (c), we can see that the two datasets form two different clusters in latent space. Apart from these
differences, there may be some imperceptible differences among the images which can potentially lead
to drastic changes in weights during training.

In our experiments, in order to mimic real-world scenarios, where we get multiple sets of data each
with the same or different distributions we do the following. We start with the ISIC dataset which is large
and split it randomly into 2 parts ISIC-1 and ISIC-2. Then setD = {D1, D2, D3}whereD1, D2, D3 are
taken to be ISIC-1, PH2 and ISIC-2 respectively. Training is done in the following order: D1, D2, D3

datasets. Each of datasets in D are again split into 80/20% for training/testing. A simple U-NET model
with the middle order replaced with BCNNs [48] was used for training. The threshold t was set to be
10 for the algorithm 1 to determine if the model is to be retained in the ensemble. We will next explain
how the algorithm proceeds to create the ensemble, in detail.

Initially, after training on D1, we have a single model m1 in Ensemble. Later when D2 arrives, a
new model m2 is created by taking m1 and doing a transfer learning on D2. At the end of training,
since bothD1 andD2 have different distributions, we will have two models in the ensemble: {m1,m2}.
When D3 arrives it will have a similar distribution to D1. Hence, m1 is chosen as a base model again
for transfer learning by the algorithm 1 and m3 is created. At the end of transfer learning, change in
uncertainty of m1 and m3 will be less than threshold, t and hence m1 is discarded from ensemble and
m3 is added. So, finally the ensemble contains {m2,m3}. The performance of the proposed system
was tested and compared with other approaches to CL. The results on the respective test sets are given
in Table ??. The results show that our method has performed superior to LWF and EWC and on par
with MER techniques in terms of CL. As mentioned earlier, MER has the additional baggage of storing
random samples in memory which is undesirable.
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Methods ISIC-1 PH2
Change on

ISIC-1
ISIC-2

Change on

ISIC-1

Change on

PH2

FT 91.16 91.69 -14.00 91.24 -8 -11.00

LWF 91.16 91.93 -8.93 91.11 +0.23 -5.27

EWC 91.16 66.86 -33.63 58.21 -34.46 -9.14

MER 91.16 91.75 -1.80 91.03 +0.15 -2.98

Ours 90.12 92.24 -0.06 90.06 0.00 +0.06

Table 2.1: Consolidated report of Dice scores (in %) and percentage change in the same during Contin-

ual Learning on ISIC-1, PH2 and ISIC-2 datasets (in the same order) evaluated using Fine Tuning (FT),

LWF, MER and ours

2.5.2 Malaria Disease Classification

The second problem in our study was malaria disease classification. Two public datasets of mi-
croscopy images were chosen: 1. Thin blood smear slide images from the repository developed as a
part of Malaria Screener research activity [42], hosted in NLM (National Library of Medicine) and 2.
Data collected by the Medical School of the University of Alabama at Birmingham [11]

The NLM dataset is based on a collection of 200 Giemsa-stained thin blood smear slides from 150
P. falciparum-infected and 50 healthy patients. A smartphone’s camera was used to acquire images
of slides for each microscopic field of view. The dataset has a total of 27,558 cell images with equal
instances of parasitized and uninfected cells. The Alabama dataset has RBC images acquired from
whole slide images (WSI) with 100x magnification. [11], reports that morphological transform was
done to separate cells and resize into 50x50 dimensions. This dataset has a total of 1034 infected and
1531 uninfected images.

Both these datasets have very different images due to variation in resolution, background, staining
color etc. (see Fig. 2.3). Thus, they form two different clusters in the latent space indicating differences
in distribution, as depicted in Figure 2.2.

Both the Alabama and NLM datasets were split into two equal parts randomly such that D =

{D1, D2, D3, D4} corresponds to A1, N1, A2 and N2, and training was done in the same order. At
the end of training, the goal is to have minimal forgetting and the number of models in the ensemble
should be limited to two since we are ideally using datasets from only two different distributions. We
used a simple 3 layer BCNN network for training these datasets and each of these datasets are divided
again into 80% of train and 20% of test sets.
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Figure 2.2: Variability across distributions in the Alabama and NLM datasets. (a) Width and (b) height

distributions; (c) TSNE plot, with red and blue indicating Alabama and NLM images.

Figure 2.3: (a) and (b) show the sample images from Alabama and NLM Datasets respectively
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By following algorithm 1, as and when data Di arrives we create a new model mi that is fine-tuned
with a base model mb. The base model can be discarded if the change in uncertainty is less than
threshold t, which is 10 in this experiment. At the end of training, we have {m2,m4} in the ensemble.

Results from Table 2.2 show that our method has performed consistently well across all datasets with
graceful forgetting. It is to be noted that the change in accuracy for A2 set after training on N2 using
Fine Tuning method is 0% because the model here failed to converge, consequently, there won’t be
any change in accuracy. Also, using the regularization methods EWC and LWF, we can see that model
immediately forgets the old knowledge after getting trained on a different distribution, and consequently
performs well on the datasets which has a similar distribution. This is the case of stability-plasticity
trade-off where plasticity won for both LWF and EWC in all phases of training.

Methods A1 N1
Change

on A1
A2

Change

on A1

Change

on N1
N2

Change

on A1

Change

on N1

Change

on A2

FT 96.88 94.60 -54.66 97.81 +0.32 -48.11 49.94 +0.32 -48.11 0

LWF 97.5 93.9 -43.61 95.01 -0.31 -47.14 95.40 -28.73 +0.31 -36.72

EWC 96.88 92.60 -33.65 95.63 -1.62 -46.99 92.39 -53.72 +0.530 -56.03

MER 97.50 88.03 -1.90 98.44 -0.95 -8.34 93.40 -2.85 +6.44 -2.90

Ours 97.91 93.82 -1.71 97.84 +0.06 -0.51 93.86 +0.73 -3.49 -0.01

Table 2.2: Consolidated report of Accuracies (in %) and percentage change in the same during Contin-

ual Learning on A1, N1, A2 and N2 (in the same order) evaluated using Fine Tuning (FT), LWF, MER

and ours

2.5.3 Brain Ventricle Segmentation

Ventricle segmentation from MRI is of interest in many applications. To demonstrate that our method
can also be used on 3D data, experiments were done on this segmentation task also. Three public
datasets were chosen: MICCAI [3], with 15, 1mm T1 weighted MRI scans, IBSR [51] with 18, 1.5mm
T1 weighted volumes and CANDI [23] 30, 1.5mm T1 weighted scans. These datasets have extreme
diversity in distributions: While MICCAI has higher resolution as compared with IBSR, the CANDI
dataset contains the MRI scans of only children and adolescent subjects which vary reasonably when
compared to that of adult scans in terms of size and anatomy.

For training, we used the M-NET model [37] and converted it into Bayesian M-NET by replacing
the middle order of the network with BCNNs. Table 2.3 shows the experiments conducted on the three
datasets {D1, D2, D3} which corresponds to: IBSR, MICCAI, and CANDI respectively for continual
learning using Fine Tuning (FT), LWF, MER and our method. Each of these datasets are split into 80%
of train and 20% of test sets.
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Since all three datasets have different distributions, at the end of training, we have three models
{m1,m2,m3} in the Ensemble. It is worth nothing that MER is not as effective. The performance is
lower on subsequent datasets (Di, i > 1) because the distributions between what is held in its memory
and the training dataset are extremely different. Similarly, a classic case of stability-plasticity trade-
off can be observed in LWF method, where the model is not plastic enough to learn new data, hence
the low dice score on CANDI dataset for LWF. We skipped EWC for this task because EWC involves
calculation of Fisher information, which is computationally very expensive. Our method has performed
consistently well across all the datasets with a little gracious forgetting.

Methods IBSR MICCAI
Change on

IBSR
CANDI

Change on

IBSR

Change on

MICCAI

FT 98.62 98.60 -19.44 98.43 -65.12 -56.95

LWF 97.90 72.37 -18.06 33.83 -64.25 -32.70

MER 97.90 92.26 -1.95 87.89 -26.33 -32.17

Ours 98.55 98.59 -2.34 98.37 -3.50 -4.58

Table 2.3: Consolidated report of Dice scores (in %) and percentage change in them during Continual

Learning on IBSR, MICCAI, CANDI (in the same order) evaluated using Fine Tuning (FT), LWF, MER

and our methods.

2.6 Conclusion

In this work, we proposed a novel approach to the problem of CL. Unlike existing approaches which
largely rely on modifying the regularisation component, our approach takes a more fundamental route
by addressing the problem at the network architecture level by employing Bayesian networks to com-
pute uncertainty in the decisions arrived at by the system. It enables (i) learning efficiently using old
knowledge as the knowledge is maintained by storing only non-redundant models and (ii) retrieval of
knowledge using an uncertainty measure. The experimental results show that our method outperforms
state-of-the-art methods like LWF, EWC, MER consistently over a variety of problems such as disease
detection and anatomy segmentation which pose different kinds of challenges for CL. A key advantage
of the proposed system is the utilization of existing models for transfer learning and wisely adding of
models in an ensemble which calls for a minimal amount of explicit memory required to store models
as compared to storing batches/episodes from previous datasets.
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Chapter 3

Manifold Learning to address Catastrophic Forgetting

3.1 Introduction

Catastrophic Forgetting (CF) mostly occurs in cases where the datasets lie on different manifolds
from each other as a result of which a single network will fail to converge on all of them when the
network is trained sequentially. Existing regularisation techniques do not take the dataset shifts into
account which is a core reason for CF. Dataset shift occurs when the joint distribution of any two datasets
are different, i.e. P1(x, y) ̸= P2(x, y). Dataset shift may appear as one of the following manifestations
[40]:

1. Covariate Shift: In this type of shift, the conditional probability P (y|x) remains the same, but the
input distribution P (x) changes from the current dataset to the future data i.e. P1(y|x) = P2(y|x)
and P1(x) ̸= P2(x)

2. Prior Probability Shift: It is considered as the reverse case of the Covariate Shift. In this type of
shift, the distribution of classes varies from one dataset to another. It is defined as the case where
P1(x|y) = P2(x|y) and P1(y) ̸= P2(y)

3. Concept Shift: Also referred to as Concept Drift, it occurs when the relationship between the
input and the class variables changes i.e. change in the concept to be learned. Mathematically, it
can be defined as P1(y|x) ̸= P2(y|x) and P1(x) = P2(x)

In this paper, we focus on this core aspect, specifically on the Covariate shift, where we assume that
datasets coming from different sources have different distributions because of acquisition, demographic
changes, quality, etc., but the underlying relationship between the images and class variables remain the
same i.e. there will be no concept drift and prior probability shifts.

We propose a simple yet effective solution in the form of a Reformer which brings or ”reforms”
the data from all the datasets together towards a common manifold. These reformed samples are then
passed to the network to learn the task. This should enable the deep learning system to be robust to the
changes in dataset distributions and limit CF to a tolerable extent. The idea of a Reformer was originally
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introduced in [39] to defend against adversarial attacks in the image classification task. The proposed
approach is memory efficient as it doesn’t require storing of old samples. Unlike in other state-of-
the-art regularization-based techniques, using the proposed approach, the network can learn seamlessly
through the sequence of datasets without the necessity to undergo complex computations during the
training phase.

Figure 3.1: Proposed Framework in which a Refomer r(x) is trained on a dataset to learn the manifold

M. Given an input (x)ij , which represents jth sample from the dataset Di, the Reformer outputs (xr)ij

such that it is closer to the learned manifoldM. Finally, these reformed samples are fed to the target

classifier/segmentor network

3.2 Methodology

3.2.1 Manifold Learning using Autoencoders

Our strategy of learning of a common manifold across datasets is driven by a working assumption
that natural, high dimensional data concentrates close to a non-linear, low dimensional manifold. For
instance, if an ambient space represented as X has a probability distribution µ, then the support of µ
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Figure 3.2: The effect of autoencoder that projects the incoming sample x on to the learned manifold

(i.e. a set of possible values of that distribution) is a low-dimensional manifoldM given by:

M(µ) = {x ∈ X |µ(x) > 0} (3.1)

Autoencoder networks have been successfully used to learn this manifold structure of data and to
obtain a parametric representation of such a structure in various applications [29].

An autoencoder has two parts: Encoder and Decoder. The input to the encoder ψe is a sample x ∈ X
which gets mapped to its latent space representation, z ∈ Z such that, z = ψe(x). Therefore, given
a manifold M ⊂ X , the encoder is a mapping ψe : M −→ Z . The decoder, ψd : Z −→ X maps
the latent representation z to xr which is an approximation to x, such that xr = ψd(z) = ψd ◦ ψe(x).
Parametrized by θ, both encoder and decoder are trained together to minimize the reconstruction errors
using a loss function L(x, xr), given by:

min
θ
L(θ) = min

θ

1

n

n∑
i=1

∥∥∥xi − ψθ
d ◦ ψθ

e(x
i)
∥∥∥2 (3.2)

The result is an approximate manifold M̂ = ψθ
d ◦ ψθ

e(M) given an input manifoldM as illustrated in
Fig 3.2.

3.2.2 Proposed solution

In order to make the network learn seamlessly from all the datasets without undergoing CF, we pro-
pose a solution that moves or ”reforms” the data from all the datasets together towards a common mani-
fold using an autoencoder called Reformer. These reformed samples are used by the classifier/segmentor
network to learn the task, as illustrated in Fig 3.1.

The Reformer is a function r : x −→ xr that maps the input x to the reformed output xr. As elab-
orated in Algorithm 4, given a sequence of datasets {D0,D1, . . . ,Dk−1}, the Reformer r is trained on
the first dataset D0 to learn the manifoldM. When a sample from subsequent k − 1 datasets arrives, it
is passed as an input to this pre-trained reformer which moves/reforms the sample as shown in Fig 3.2.

A denoising autoencoder is chosen as the Reformer to learn meaningful representations of data in-
stead of a plain autoencoder that may merely copy its input by learning an identity function. Training the
Reformer is a critical task as the reformed outputs should not introduce additional artifacts and should
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Algorithm 3 Proposed Solution
Input: Reformer r : x −→ xr, Classifier/Segmentor network f and a sequence of k datasets

{D0,D1, . . . ,Dk−1}

for x in D0 do
xr ← r(x)

Optimize r(x) using L(x, xr) in equation 3.2

end

for each Di in {D0,D1, . . . ,Dk−1} do

for (x)ij in Di do
(xr)

i
j ← r((x)ij)

(y)ij ← f((xr)
i
j)

Optimize the network f using its corresponding loss function and optimizer

end

end

preserve important details in the input image. When the model is trained on the reformed images from
a new dataset, the weights/parameters of the model will not be changed drastically as these reformed
images lie on a common manifold on which the model has been trained before. Thus this enables the
model to learn seamlessly on the new datasets without CF.

Figure 3.3 depicts the effect of reformer in bringing samples belonging to two different datasets
(DRIVE and STARE datasets) to a common manifold. The t-SNE representation of DRIVE and STARE
images forms two separate clusters. However, when a reformer trained on the DRIVE dataset is used to
reform STARE images, the t-SNE representation of the latter gets closer to the cluster belonging to the
DRIVE dataset.

3.3 Experiments and Results

The Reformer was designed to be a 20-layer denoising auto-encoder with skip connections between
corresponding encoder and decoder layers. The bottleneck (latent space) layer had 128 features. All
convolutional layers had a kernel size of 3 with padding by 1. The Reformer was trained for 50 epochs
approximately using the Adam optimizer and MSE (Mean Squared Error) loss, with a learning rate of
0.001. The input image was of size 224×224×3 and each image was subjected to Gaussian noise with
a 0-mean and standard deviation of 0.25.
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Figure 3.3: t-SNE representation of DRIVE, STARE images, and the reformed images of STARE dataset

with the help of a reformer trained on DRIVE dataset.

The proposed solution for addressing CF was assessed using the above Reformer on two classical
problems of interest in CAD design: Segmentation (Retinal Vessel) and Classification (Skin Melanoma).
The classifier/segmentor was trained on a sequence of datasets with the assumption that there is no
access to previously used datasets.

For each of the problems, comparison with the regularization methods EWC, LwF, and SI was also
done by evaluating them with and without a reformer.

The CF in a network was quantified by computing the percentage change in the performance of the
network on the old dataset when it is trained on a new dataset. Ideally, this percentage change should be
greater than or equal to 0; increasing negative values indicate higher degree of CF in the model.

3.3.1 Retinal Vessel Segmentation

The task here is to segment the blood vessels in a given retinal image. We have used three publicly
available datasets: DRIVE [49], STARE [18], and HRF [6] for this task.

3.3.1.1 Implementation

Datasets - The DRIVE (Digital Retinal Images for Vessel Extraction) database has 40 images (di-
vided equally into train and test sets) obtained from a diabetic retinopathy screening program in The
Netherlands. The images are captured in digital form from a Canon CR5 nonmydriatic 3CCD camera
at a 45-degree field-of-view. The images are of size 768 × 584 resolution. The STARE (STructured
Analysis of the Retina) dataset has 20 retinal images. All these images were acquired using a TopCon
TRV-50 fundus camera at a 35-degree field-of-view and subsequently digitized at 605 × 700 pixels in
resolution. Finally, the HRF (High-Resolution Fundus) Image database has a total of 45 retina images
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acquired using a Canon CR-1 fundus camera with a 45-degree field-of-view digitized at 3504 × 2336

resolution.

Segmentation network - Attention-based U-net architecture [41] was used for segmenting the blood
vessels. The training was done using an Adam optimizer with an initial learning rate of 0.001 and with
5-fold cross-validation since the dataset was small. The model was trained sequentially on the datasets
in the following order one-by-one: Dataset D0: DRIVE, Dataset D1: STARE, and Dataset D2: HRF.
The Reformer was trained on Dataset D0 (DRIVE). The skip connections used in the Reformer helped
to retain intrinsic details, which is essential for tasks like vessel segmentation. This pretrained Reformer
was used to reform images from all the other subsequent datasets. The percentage change in Dice score
of the model before and after training on a new dataset is taken as the quantitative estimate of CF.

3.3.1.2 Segmentation Results

The results of the performance in CF reduction are given in Table 1 covering all possible settings
as per the training order. Here, Di −→ Dj denotes CF on the dataset Dj after the model is trained
sequentially on datasets {Di,Di−1, ...,Dj+1} where j < i

In the experiment, the order of the training is first with low resolution images and then high resolution
images. Hence, the segmentation network gets tuned to the dataset on which it is last trained on, and
consequently state-of-the-art methods suffer from high CF as indicated by large negative values. The
results for Finetuning with and without Reformer in Table 1 shows that there is a significant reduction
in CF when a Reformer is introduced. There is further boost in performance improvement when the
Reformer is used in conjunction with state-of-the-art methods.

Methods D1 −→ D0 D2 −→ D1 D2 −→ D0

Finetuning (FT) -51.60 -67.14 -69.99

FT + Reformer -0.84 -8.08 -3.04

EWC -49.30 -60.71 -67.04

EWC + Reformer +0.014 -5.56 -2.18

LwF -50.8 -58.28 -70.37

LwF + Reformer +0.81 -3.73 -1.4

SI -29.73 -29.53 -50.57

SI + Reformer -4.19 -0.77 -1.99

Table 3.1: Quantitative analysis of Catastrophic Forgetting (CF) in segmentation. Here, Di −→ Dj

denotes CF on the dataset Dj after the model is trained sequentially on datasets {Di,Di−1, ...,Dj+1}

where j < i. D0: DRIVE, D1: STARE, and D2: HRF
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3.3.2 Skin Melanoma Classification

For the melanoma classification task, we used three publicly available datasets: Derm7pt [20],
ISIC20 [14] and ISIC19 [16, 13, 1].

3.3.2.1 Implementation

Datasets - The ISIC20 dataset has 33,126 dermoscopic images of 2056 patients from Europe, North
America, and Australia with an average of 16 lesions per patient and 584 confirmed melanomas. The
ISIC’19 archive contains over 13,000 dermoscopic images collected from leading clinical centers world-
wide and acquired from a variety of devices within each center. The Seven point checklist dataset
for skin images (Derm7pt) includes over 2000 clinical and dermoscopy color images, along with cor-
responding structured metadata tailored for training and evaluating computer-aided diagnosis (CAD)
systems.

The melanoma classification system was trained in the following order: First on A, next on B and
then finally on C, where Dataset D0: Derm7pt, Dataset D1: ISIC20, and Dataset D2: ISIC19. The
reformer was trained on Dataset D0 (Derm7pt) and this pretrained reformer was used to reform images
from the remaining datasets.

Classfication network - EfficientNet-b6 architecture [50] was used to classify an image as melanoma
or benign; it was trained using Adam optimizer with an initial learning rate of 0.0001 and with Binary
Cross Entropy loss function. The percentage change in AUC scores before and after training on a new
dataset was taken as an estimate of CF.

3.3.2.2 Classification Results

In this experiment, along with the standard regularization methods like EWC, LwF and SI, we com-
pared our method with a recent paper on domain adaptation (DA) [31]. This method too, like ours,
assumes that old (source) data is not available when the new (target) data arrives. The method makes
the model adapt to target domain by freezing the classifier module of source data and learning the
target-specific feature extraction module.

The results given in Table 2, show that the Reformer is able to reduce CF even with Finetuning, with
the degree of reduction dependent on the order of training. Since the order of training goes from small
to the large size datasets, the model becomes generalized at the end, resulting in tolerable CF (moder-
ately low negative values) in all the cases. However, it can be observed that when the Reformer is used
in conjunction with regularization methods brings CF score close to zero, and in some cases, it serves
to improve the performance of the network on old datasets as indicated by the positive values. These
results are quite encouraging towards the development of effective classification systems across differ-
ent scenarios (limited training dataset with changing dataset distributions due to acquisition systems,
demography, resolution, etc.) Furthermore, this also opens up the possibility of using the latent features
of the Reformer as inputs to the network for the classification task.
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Methods D1 −→ D0 D2 −→ D1 D2 −→ D0

Finetuning (FT) -4.59 -6.97 -4.12

FT + Reformer -3.48 -0.45 -2.66

EWC -2.09 -2.17 -2.90

EWC + Reformer -0.93 +2.57 -1.03

LwF -1.04 +2.95 -3.61

LwF + Reformer -0.71 +5.30 -0.80

SI +2.07 +4.09 +0.57

SI + Reformer +4.91 +8.24 +8.07

DA -16.67 -2.87 -3.41

Table 3.2: Quantitative analysis of Catastrophic Forgetting (CF) in classification. Here, Di −→ Dj

denotes CF on the dataset Dj after the model is trained sequentially on datasets {Di,Di−1, ...,Dj+1}

where j < i; D0: Derm7pt, D1: ISIC20, and D2: ISIC19 datasets sequentially.

3.4 Conclusions

In this work, we presented a simple yet novel solution to alleviate CF when a model is trained on a
sequence of datasets with different distributions. We focused on a setting where the task and anatomy
are the same throughout the training process while the difference lies in the distributions of datasets.
Our method outperformed existing state-of-the-art methods by a large margin for both classification
and segmentation problems. This indicates that mapping the different datasets to a manifold is an
effective and efficient (since there is no additional memory requirement) solution to addressing CF.
We also examined the option of integrating the Reformer with state-of-the-art regularization methods.
Experimental results showed further improvement compared to when getting trained on original samples
alone which is quite attractive. It has to be noted that the proposed framework is only suitable for
scenarios where the images represent the same anatomy (or scene). While we used a simple denoising
autoencoder to implement the Reformer, other methods for learning a manifold can be explored in the
future. Similarly the approach can also be extended to multi-task learning on different datasets.
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Chapter 4

Incremental learning for a flexible CAD system design

4.1 Introduction

Deep Neural Networks (DNNs) have shown remarkable performance in a broad range of computer
vision tasks, including in the medical domain. With FDA approval for the first standalone Computer-
Aided Diagnostic (CAD) system in the recent past, incremental learning (IL) is of interest to increase
the scope of existing CAD systems. This is also of practical interest because annotations are labour
intensive to generate and hence annotations for different tasks may not be available at a time.

When a pre-trained model is adapted to learn on newly added classes, its performance on old classes
generally drops drastically. This phenomenon is called Catastrophic Forgetting (CF) [35]. CF arises
due to the fact that during incremental learning, the weights which were optimal for the old classes can
undergo significant change in order to perform better on the new classes.

The solution we propose for IL to learn new tasks has two key parts a) introduction of an auxiliary
task that is common to the course of IL and utilise the features learnt in this auxiliary task to the class-
specific heads. The feature space of the auxiliary task is stable during IL and this ensures low/no CF
even with the addition of many new classes. b) imposition of a knowledge distillation loss and attention
loss on all the old classes; this ensures that the model remembers the causative factors behind all the
decisions.

LwM[9] also uses a similar loss, but considers only the loss from attention maps of the class that
has the highest probability, whereas we consider that of all classes. Intuitively, remembering the reason
behind why an image does not belong to certain classes should be as important as remembering why
it belongs to a specific class. This is critical in multi-label tasks, where each image can have multiple
labels, and it is necessary to remember all the decisions on old classes.

4.2 Proposed solution

We propose a model with a multi-head setting, where a unique classification head is created for each
task as depicted in Figure 4.1. When a model is trained sequentially on new tasks, the weights/parameters
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(a) Overall architecture (b) Task-specific head

Figure 4.1: The proposed architecture. (a) Overview of the multi-head model with an auxiliary recon-

struction task. (b) Detail of a task-specific head with corresponding attention map generation.

of the model will change to adapt to the new task which leads to CF. This is prevented using a train-
ing regime with the following components: (1) Mean Squared Error (MSE) loss for auxiliary task; (2)
Knowledge distillation loss; (3) Attention Loss. In addition to these losses, the network is made to learn
the new classes with the help of an additional loss term: Lclass which is a binary cross-entropy loss
between the predicted and ground truth labels.

4.2.1 Auxiliary Task

A potential reason behind CF is that weights learnt for a new task may not be optimal for the old
tasks. Hence, our strategy is to create an auxiliary task which is common through the IL process and feed
the hidden representation learnt from this task to the task-specific heads. The auxiliary task we choose
is the reconstruction of input images. Given that the anatomy is fixed across the tasks, the reconstruction
of images should not result in any drastic change of weights in its feature space. This in turn should
help reduce CF. The MSE loss between input image x and the reconstructed image xrecons is used as
loss for the auxiliary task Laux:

Laux(x, xrecons) =
1

mn

m∑
i=1

n∑
j=1

∥x(i, j)− xrecons(i, j)∥2 (4.1)

4.2.2 Knowledge Distillation Loss

A distillation loss is imposed on the probabilities of all the old classes when the model is trained on
a new class. This ensures that the model outputs the same decisions on old classes without forgetting
[30]. Let yo and ŷo be the recorded and current probabilities, respectively, on the old classes. Then, the
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knowledge distillation Loss Lkd is defined as follows:

Lkd(yo, ŷo, l) =

N∑
i=1

y
′(i)

o log ŷ
′(i)
o (4.2)

where, N is the number of old class labels; y
′(i)
o , ŷ

′(i)
o are the modified versions of y(i)o , ŷ

(i)
o respectively

and are computed as

y
′(i)
o =

(y
(i)
o )1/T∑

j(y
(j)
o )1/T

, ŷ
′(i)
o =

(ŷ
(i)
o )1/T∑

j(ŷ
(j)
o )1/T

(4.3)

where T is the temperature parameter. When T > 1, the probabilities become softer and thus give
information about those classes whose predictions are stable across the old and new models.

4.2.3 Attention Loss

Our intuition is that rather than just remembering the old decisions, ensuring that the model also
remembers the reason behind that decision would be a better strategy. We do this by imposing an addi-
tional loss called attention loss, Latt. It is an L1-loss between attentions of old classes before and after
training on the new class. This ensures that the reason behind the decisions, i.e. explanations/attentions
are preserved during incremental learning of new tasks.

Algorithm 4 Proposed Solution
Input: Input: Set of Tasks T = {T1, T2, . . . , Tc} where Ti represent the task of binary classification of

the class i that contains input image x and its corresponding class ground truth ygt as (x, ygt)

for each Ti in T do
fbase = f.copy()

xrecons, ŷ, Â = f(x), where x ∈ Ti

lc = Lclass(ygt, ŷ)

laux = Laux(x, xrecons)

if (i > 1) then
, y,A = fbase(x)

lkd = Lkd(y, ŷ, i− 1)

latt = Latt(A, Â, i− 1)

end

Ltotal = αlc + βlaux + γlkd + δlatt

end
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Using any explainable methodXAI like GradCAM [15], PCAM [52], the attention loss is computed
as below:

Latt(Ao, Âo, N) =
1

N

N∑
i=1

∥∥∥A(i)
o − Â(i)

o

∥∥∥ (4.4)

where N is the number of old classes; A(i)
o and Â(i)

o are the recorded and current attention maps of the
class i from the model f which can be obtained as follows:

A(i)
o = XAI(f(x(i))), Â(i)

o = XAI(f̂(x(i))) (4.5)

here, x represents the input image and f and f̂ represents the model before and after training on new
classes.

4.2.4 Algorithm

During the course of IL a new task-specific head is added as shown in Figure 4.1(b) whenever the
model is trained on a new task. Each head gives attention maps and auxiliary task output along with the
class probabilities. A total loss function Ltotal is calculated as weighted average of binary cross entropy
loss Lclass and 3 other losses defined earlier:

Ltotal = αLclass + βLaux + γLkd + δLatt (4.6)

where α+ β + γ + δ = 1. The step by step details are provided in Algorithm 4.

4.3 Experiments and Results

4.3.1 Dataset details

Experiments were done on CheXpert dataset, a large public dataset of chest X-rays, consisting of
224,316 chest radiographs of 65,240 patients. The images were collected from Stanford Hospital be-
tween 2002 and 2017 [12]. Though the dataset has 14 different categories, we focus only on 5 for
illustrative purposes: Cardiomegaly, Edema, Consolidation, Atelectasis, and Pleural Effusion.

4.3.2 Implementation details

The autoencoder network uses DenseNet121 [19] as the encoder and the corresponding decoder
is constructed connected through skip connections, similar to UNet [45]. The output of the encoder
(i.e. the latent space features) is given as input to the task-specific heads, each of which consists of a
convolution layer and a global pooling layer called PCAM [52] which helps generate localized attention
maps in chest x-rays. These maps are passed on to a final convolution layer with 1×1 kernel to generate
the logits of the network as shown in Figure 4.1(b). The model was trained on the 5 following classes
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Figure 4.2: (a) AUC values of all classes during incremental learning (b) FWT on class i after training

on class i− 1

sequentially, in the same order: Cardiomegaly, Edema, Consolidation, Atelecatsis and Pleural Effusion.
We used α = 0.4, β = 0.2, γ = 0.2, and δ = 0.2 as the weights for the total loss Ltotal in equation
4.6. We also report results of 3 state of the art methods in IL which are based on similar assumptions as
ours: LwM [9], LwF [30], EWC [26] )

4.3.3 Results

AUC was used to assess classification during the course of IL, while transfer metrics were used to
assess the influence of a new task on the older tasks.
Backward Transfer (BWT) [33]: BWT is the change in a model’s AUC value (yc(i)) on a task Ti after
learning sequence of new tasks ∀jTj where j > i.

BWT (c) = yc
(j) − yc(i) (4.7)

Ideally, BWT ≥ 0; high negative values indicate high degree of CF and a positive value indicates a
boost in the AUC for the old task after learning a new task.
Forward Transder (FWT) [33]: FWT measures the influence of IL on the new task Ti. Hence, it is
computed by assuming no IL or a randomly initialised network as a reference.

FWT (c) = yc
(i) − rc (4.8)

where rc is the AUC value of class c for a randomly initialized model before training and yc is the AUC
of the model before starting IL on task Ti. A positive FWT indicates that the model is able to exploit
the knowledge learned from previous tasks.

Table 4.1 lists the BWT for each class after incrementally learning new classes. Our method is seen
to outperform all the state-of-the-art methods by a good margin and for a few cases, IL seems to actually
have helped increase the performance of the old class as BWT is above zero.
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New class LwF LwM EWC Ours

On Cardiomegaly

Edema -0.047 -0.040 -0.040 -0.002

Consolidation -0.151 -0.058 -0.080 -0.005

Atelecatsis -0.123 -0.060 -0.136 0.004

Pleural Effusion -0.107 -0.091 -0.146 0.004

On Edema

Consolidation -0.018 -0.013 -0.023 0.001

Atelecatsis -0.078 -0.038 -0.025 -0.016

Pleural Effusion -0.179 -0.036 -0.060 0.003

On Consolidation

Atelecatsis -0.073 -0.018 -0.016 -0.01

Pleural Effusion -0.037 -0.029 -0.025 -0.02

On Atelecatsis

Pleural Effusion 0.057 -0.039 -0.004 0.012

Table 4.1: BWT on each class after training on new classes incrementally

New class A X D AD XD AX AXD

Edema -0.021 -0.035 -0.047 -0.007 -0.004 -0.004 -0.002

Consolidation -0.012 -0.013 -0.151 -0.009 -0.015 -0.009 -0.005

Atelecatsis -0.017 -0.02 -0.123 -0.006 -0.007 -0.007 0.004

Pleural Effusion -0.022 -0.019 -0.107 -0.002 -0.002 -0.001 0.004

Table 4.2: BWT values obtained in the ablation study. Column headings indicate the entities included

in the study. A:Attention loss (Modified LwM), X: Auxiliary task, D: Distillation loss (LwF), AD:

Attention and Distillation losses and so on.

Figure 4.2(a) shows a bar plot of AUC scores for all the classes which are learnt incrementally using
different methods. If a model struggles to achieve reasonable AUC score during the course of IL, we
can infer that it has poor plasticity i.e. it is unable to adapt to new tasks. In terms of plasticity, our
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method for IL is seen to be on par with the state-of-the-art methods; LwF is seen to cause less plasticity
as new classes have relatively low AUC score. This can be also be explained by the sudden surge in
BWT measure on Atelecatsis after training on Pleural Effusion class using the LwF method.

From Figure 4.2(b) it can be observed that our method gave highest FWT scores for all the classes
and it is due to presence of the auxiliary reconstruction task that the model has exploited to transfer old
knowledge to new classes.

4.3.4 Ablation Study

Our proposed has three important components: Auxiliary Task, Attention Loss and Knowledge Dis-
tillation loss. Each component plays a crucial role in IL. An ablation study was done to assess the
importance of these components in IL. The BWT values were computed for the Cardiomegaly class
after incrementally learning new classes. These are listed in Table 4.2. It is notable that the results of
the using ’A’ alone, which corresponds to our Modified LwM approach, is much better than the original
LwM proposed in [9]. This attests to our intuition that it is important to also remember why an image
does not belong to certain classes. From the ablation study results, it can be established that inclusion
of the auxiliary module along with either attention or distillation loss serves to increase the BWT value.
The reason for this is that the presence of a common auxiliary task acts as a regularizer preventing dras-
tic change of weights during IL. The proposed method calls for all 3 components in the design and it is
seen to yields the best BWT value.

4.4 Conclusion

In this work, we proposed a new method for IL to alleviate CF. It was based on a reasoning that the
network should remember not only the decisions but also its causation. We also introduced an auxiliary
task to provide task-invariant features to the task-specific heads to reduce the CF further. Our idea was
validated on a fairly difficult problem of detecting multiple diseases from chest X-rays. The proposed
method performed best in terms of BWT with higher values in all cases with even a boost in performance
on an old task after learning a new task in a few cases. These results are encouraging for considering a
potential extension of the scope of a existing CAD system.
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Chapter 5

Conclusions

In this thesis, we explored two main areas of Lifelong learning: (i) Continual Learning where the
goal is to adapt to a sequence of datasets with different distributions without forgetting the knowledge
acquired through old datasets and (ii) Incremental Learning where the model learns new classes with-
out while maintaining the performance on the old classes. The summary of our proposed solutions is
enumerated below:

• Chapter 2: Our solution is based on the idea of learning in three stages: Encoding, Storing and
Retrieval. We argue that the crucial aspect of intelligence is not to act/decide when uncertain
which can be quantified using Bayesian Neural Networks (BNN) that learn probability distribu-
tions over parameter space. We encode the knowledge in the form BNN models and store them
as an ensemble. During inference, to retrieve the relevant knowledge out of the ensemble, we
use the uncertainty measure that can reject the predictions done by models with high uncertainty.
We evaluated our proposed solution on three major problems: Malaria disease classification, Skin
lesion segmentation, and Brain MRI ventricle segmentation and our method has outperformed
other state-of-the-art techniques by a significant margin.

• Chapter 3: We proposed an approach to handle a sequence of datasets from multiple sources
with different acquisition systems. As these datasets lie on a different manifold, a single neural
network will fail to converge on all the datasets with a mere finetuning approach. With the help
of a Reformer, which is a denoising auto-encoder, we propose to move the samples from differ-
ent datasets are moved to a common manifold. This step helps the model to adapt to different
datasets and limits CF to a tolerable extent. The approach is assessed on two classical problems:
Retina Vessel Segmentation and Skin Melanoma Classification. We compared our method with
other state-of-the-art regularization-based methods and the experiment results indicate that using
a Reformer as a prior step to CL training effectively addresses CF.

• Chapter 4: We proposed a solution for IL that has three major components: (i) An auxiliary task
common to all the tasks enforces the model to generate task-invariant features, (ii) Distillation
Loss on the decisions of old classes and (iii) Attention Loss on the attention maps belonging to
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old classes ensures that model remembers its previous decisions and causative factors behind all
the decisions. We demonstrate our approach by incrementally learning 5 different tasks on Chest-
Xrays and compare the results with the state-of-the-art regularization methods. Our approach
performs consistently well in reducing CF in all the tasks with almost zero CF in most of the
cases unlike standard regularisation-based approaches.

5.1 Future Directions

In this thesis, we assumed that data belonging to the old tasks will no longer be accessible while
learning new tasks. With the same assumption, we identified following areas to extend our work in
future:

1. Incremental Learning with overlapping classes: As explained in Chapter 4, we have a ded-
icated head for each new task in a typical IL framework. However, having a different head is
redundant if there are common classes among these tasks. Our proposed method can be extended
further to cover the above practical scenario efficiently.

2. Few-shot Continual Learning: In the Chapters 2, 3, 4 we subject the model to IL/CL by training
on new ”datasets” without forgetting the knowledge from old ”datasets”. These are standalone
datasets with enough samples to perform supervised learning. However, in the real world, the
data is not available in large amounts at a time. Hence, a few-shot CL system that continuously
learns from only a few samples at a time while maintaining overall performance is desirable.
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