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Abstract

The task of saliency prediction focuses on understanding and modeling human visual attention
(HVA), i.e., where and what people pay attention to given visual stimuli. Audio has ideal properties
to aid gaze fixation while viewing a scene. There exists substantial evidence of audio-visual interplay in
human perception, and it is agreed that they jointly guide our visual attention. Learning computational
models for saliency estimation is an effort to inch machines/robots closer to human cognitive abilities.
The task of saliency prediction is helpful in many digital content-based applications like automated
editing, perceptual video coding, human-robot interactions,etc.

The field has progressed from using hand-crafted features to deep learning-based solutions. Efforts
on static image saliency prediction methods are led by convolutional architectures. The ideas were ex-
tended to videos by integrating temporal information using 3D convolutions or LSTM’s. Many sophis-
ticated multimodal, multi-stream architectures have been proposed to process multimodal information
for saliency prediction.

Despite existing works of Audio-Visual Saliency Prediction (AVSP) models claiming to achieve
promising results by fusing audio modality over visual-only models, most of these models only con-
sider visual cues and fail to leverage auditory information that is ubiquitous in dynamic scenes. In this
thesis, we investigate the relevance of audio cues in conjunction with the visual ones and conduct exten-
sive analysis to analyse the cause of AVSP models being superior by employing well-established audio
modules and fusion techniques from diverse correlated audio-visual tasks. Our analysis on ten diverse
saliency datasets suggests that none of the methods worked for incorporating audio. Our endeavour
suggests that augmenting audio features ends up learning a predictive model agnostic to audio . Fur-
thermore, we bring to light, why AVSP models show a gain in performance over visual-only models,
though the audio branch is agnostic at inference.

Our experiments clearly indicate that visual modality dominates the learning; the current models
largely ignore the audio information. The observation is consistent while using three different audio
backbones and four different fusion techniques and contrasts with the previous methods, which claim
audio as a significant contributing factor. The performance gains are a byproduct of improved training
and the additional audio branch seems to have a regularizing effect. We show that similar gains are
achieved while sending random audio during training. Overall our work questions the role of audio in
current deep AVSP models and motivates the community to a clear avenue for reconsideration of the
complex architectures by demonstrating that simpler alternatives work equally well.
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Chapter 1

Introduction

Figure 1.1: Example frames from a multi-person conversation video (first column) and the correspond-

ing saliency (second column). ViNet is a visual-only saliency prediction model, and AViNet is an

audio-visual saliency prediction model. AViNet gives better predictions in this example. On the first

reflection, it appears that audio plays a key role. However, when performing inference with zero audio

[AViNet-0] and random audio [AViNet-R], the output predictions are identical. Clearly, the audio is ob-

solete at inference. Our work finds that the audio branch may merely act as a regularizer and motivates

a review of multi-modal interaction in audio-visual saliency prediction models.
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1.1 Motivation and Background

The human visual attention (HVA) mechanism facilitates diverse information processing in our sur-
roundings by localizing the most prominent (salient) region[26]. Predicting the salient regions in a scene
is a fundamental ability, which empowers primates to rapidly analyze/interpret the complex surround-
ings by locating and devoting the focus only on sub-regions of interest [30]. Mimicking this ability in
machines is a fundamental research problem [5] and is actively pursued in the domains of computer
vision, cognitive science, robotics, and human-computer interaction. A primary way to address the
problem is to first compile ground truth regarding where viewers gaze in the scene via eye-tracking hard-
ware, train machine learning models, and perform prediction on novel unseen video computationally.
This task is commonly referred as saliency prediction and is shown to be effective in many downstream
applications such as video surveillance [72], cinematic editing [47], video captioning [49], virtual real-
ity [57], video compression[25], human-robot interaction [20], scene classification[4], region tracking
[21], proposal refinement[10], etc., owing to it’s ability to prioritize the video information across space
and time.

(a) RGB Image (b) Saliency Map (c) Fixation Map

Figure 1.2: An example of Saliency and Fixation Map

From a theoretical perspective, saliency prediction with computational models of saliency correspond
to the mechanism that results in deployment of human attention to a region in an image or video.
For saliency prediction, the ground-truth data is a fixation density map (saliency map) obtained from
eye movements of human observers (Fig. 1.2). Audio-visual eye tracking data is required in order to
build a multi-modal saliency model, e.g. for training and evaluation, and investigating the contribution
of modalities. In other words, one has to record fixations of observers while both audio and visual
modalities are presented simultaneously and synchronously.

Initial efforts on the problem of video saliency predictions were limited to visual-only input. For
instance, larger datasets like DHF1K [68] discard audio information during ground truth collection
and ask users to look at silent videos. However, discarding audio information contrasts with our real-
life behavior, where we simultaneously perceive visual and audio modalities. Psychological studies
[52] , [67] indicate the impact of audio in directing the human gaze. To understand the role of audio,
comprehensive eye-tracking analysis [17, 43] demonstrates that while observing a dynamic scene, the
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sound will influence HVA. Audio with distinct categories, e.g., object sound, music, human voice,
surrounding noise, etc., have different degrees of influence [59].

Plethora of datasets [68, 38, 14, 46, 40, 55, 35, 24, 44, 31, 62] have emerged with encouraging re-
sults and claim audio as a strong cue for multi-modal (audio-visual) video saliency prediction. These
datasets have tried to capture audio-visual sequences of moving objects, dynamic natural scenes with
multiple auditory conditions, short clips of actions, movie clips, unstructured user-made videos by tra-
ditional well controlled psychological experiments. Coutrot et al.[16], introduced a dataset claiming
the improvement of only speed and accuracy of eye movement using audio-visual stimuli , compared
to just audio or visual modality, according to which eyes tend to fixate more on the regions of sound
sources. Benefiting from the growth of data volume, the last decade has witnessed remarkable progress
in saliency detection, and plenty of methods have been proposed and achieved superior performances,
especially the deep learning-based methods that have yielded a qualitative leap in performance.

A series of audio-visual saliency prediction methods followed based on the feature integration theory
(FIT). i.e. individual modalities are mapped into a feature space and a saliency map is obtained by
combining these features. Tavakoli et al. [62] proposed an audio-visual deep learning model (DAVE),
where the audio and visual features are both encoded using a 3D Resnet, concatenated and sent to a
decoder. Min et al. [45] predicts audio saliency by canonical correlation of visual and audio features
and then fuses it with deep learning-based saliency models. Most state-of-the-art methods rely on 3D-
CNN blocks to capture multi-level visual features. Alongside, audio features are obtained by feeding
spectrograms into CNNs. [65, 74, 63] tried to model sound localization for incorporating semantically
rich audio features.

Contextual analysis [62] of the audio-visual saliency model claims that the gain in performance is
due to the model’s ability to locate the sound source, showcasing a similar behavior to humans[22] in
attending to the objects in a scene. STAViS [65] models the spatial sound source localization and obtains
the feature maps that concatenate with the visual features in SUSiNet’s [32] (visual saliency model)
and investigates three different ways to fuse the audio modality.The audio branch is initialized by the
weights trained for audio classification on the speech command database[69], whereas the video branch
is initialized by the weights trained on the Kinetics Dataset[29]. Some recent efforts, have focused on
face saliency, i.e. predicting the salient face in multi face videos. Liu et al. [35] concatenates feature
from three different streams (one for faces, one for visual embedding and one for audio) and decodes
saliency maps using it. In [54] they further extend their idea by bifurcating visual encoder into motion
and textual features and also adding a loss function for sound localization. These works endorse audio
as a significant contributing cue by reporting gains over visual-only modality that goes in line with the
behavioral studies [52, 67].

Figure 1.2 shows sample frames from a multi-conversation video and the corresponding ground-
truth saliency. On the first reflection of comparing visual-only and audio-visual prediction, it appears
that audio plays a key role. However, when the audio-visual model (AViNet in this case) is inferred with
different types of audio (zero and random), the output predictions appear identical, implying that the

3



audio branch is obsolete at inference. This motivated us to investigate the relevance of audio cues in
conjunction with visual ones in the existing Audio-Visual Saliency Prediction models. Despite audio-
visual models showcasing a gain in performance over the visual-only models, the audio information is
largely ignored and AVSP models end up utilizing the visual information in a better way.

1.2 Contributions

In this thesis, we revisit these methods in audio-visual saliency and make three major observations:

1. We find that a visual-only baseline either outperforms or provides comparable performance to the
state-of-the-art audio-visual saliency prediction methods.

2. We observe that the audio branch is obsolete at inference i.e., the resulting saliency maps are the
same irrespective of sending zero audio, random audio, or the actual audio corresponding to the
video (Fig. 1.1). We find that the observation is true for different fusion methodologies presented
in the prior art.

3. Now, the interesting question is that if audio does not play any role, why does adding the audio
branch lead to performance gains, at least on some datasets, as reported in previous efforts? Based
on our experiments, we hypothesize that the additional branch acts as a regularizer, and the actual
audio data has no role in performance improvement. We observe similar performance gains while
sending randomly shuffled audio during training, which is unrelated to the video. To our surprise,
a similar performance gain is observed by training an AVSP model on a visual-only dataset with
random audio.

We perform comprehensive experiments to support the aforementioned claims. Our experiments
comprise ten different datasets, four different fusion mechanisms, three different audio backbones, and
varying experimental setups (no audio, real audio, zero audio, randomly shuffled audio, random vectors
as audio). We would like to emphasize that we are not claiming any architectural novelty in this work;
the goal is primarily to understand the multi-modal learning and provide essential cues that will help
better design and evaluation of future audio-visual saliency prediction models. This work questions
the role of audio in current end-to-end trained deep learning saliency prediction methods. It motivates
reconsideration of the complex architectures for audio-visual saliency prediction by demonstrating that
the simpler alternatives work equally well. It encourages a more rigorous evaluation of the saliency
prediction methods in the multi-modal setting. And finally, it highlights the limitations of the current ef-
forts and motivates exploration of ways to actually exploit the audio information for the task of saliency
prediction.
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1.3 Thesis Outline/Organization

The rest of the thesis is organized as follows:

• Chapter 2 discusses the related work(psychological studies and computation modeling) and con-
temporary architectures of multi-modal Saliency Prediction that demonstrate the performance
gains by adding audio.

• Chapter 3 discusses our methodology to analyze the role of audio in existing state-of-the-art
saliency prediction models and validate the efficacy of audio branch. We hypothesize that the
audio module acts as a regularizer and produce experimental validation for the same.

• Chapter 4 presents the datasets, training procedure and evaluation metrics used.

• Chapter 5 focuses on extensive experiments performed to examine the role of audio in current
AVSP models. The study is carried out on ten different audio-visual saliency datasets and also
attempts to investigate the cause for incremental gains in current AVSP models over the visual-
only models.

• Chapter 6 summarizes our work and presents the concluding thoughts with future direction by
highlighting the limitations of the current efforts and exploring ways to exploit the audio infor-
mation for the task of saliency prediction.
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Chapter 2

Related Works

Humans are intelligent multi-sensory creatures, capable of spotting and focusing on certain parts of
audio or visual stimuli in a cluttered environment (i.e., have attentional behavior). It is, hence, unsurpris-
ing that inspired by such observations psychologists and neuroscientists have been studying attentional
mechanisms underlying auditory, visual, and auditory-visual attention. Several decades of research on
attention mechanisms have amassed a rich literature on the topic. The last decade has witnessed remark-
able progress in saliency detection, and plenty of methods have been proposed and achieved superior
performances, especially the deep learning-based methods that have yielded a qualitative leap in per-
formance. Covering the whole literature is, thus, beyond the scope of this thesis. Instead, to stress the
influence of audio on multi-modal attention models, the following sections provide a brief account of
relevant studies.

2.1 The role of audio in HVA

Hearing and sight, which mainly are relied on by humans when perceiving the world, occupy a con-
siderable portion of the received external information[37]. Our brain comprehensively understands the
environments by integrating these multi-modal signals with different forms and physical characteristics.
For example, in the cocktail party scenario with many speakers, we can locate the one of interest and
enhance the received speech with the aid of his/her lip motion. Hence, audio-visual learning is essen-
tial to our pursuit of human-like machine perception ability. Its purpose is to explore computational
approaches that learn from audio-visual data.

The span of behavioral studies on audio-visual attention is broad and covers a wide range of exper-
iments on primates and humans. In such experiments, an observer is often presented with a stimulus
and his neural and/or behavioral responses are recorded (e.g.using single unit recording, brain imaging,
or eye tracking). Audio matters in Human Visual Attention (HVA). Papai et al. [51] points everyday
examples like stopping in our tracks at the sudden car honk while absentmindedly crossing a street.
However, is it still crucial while watching a video with a monaural audio? Numerous studies suggest
that it is. Chen et al. [11] captured eye gaze on images with no audio, coherent audio and incoherent
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audio. They found that coherent audio information is an important cue for enhancing the feature-specific
response to the target object. Eye tracking experiments in previous works [14, 64] also verify the impact
of audio signal on human attention. Audio-Visual interactions like The McGurk effect[41] showed how
mismatched auditory and visual stimuli when combined give a changed perception. Burg et al. [66]
also showed that non-spatial temporal audio signal when interacted with a visual event made the visual
target more salient. The work in [15, 39] finds noticeable differences in spatial distributions of visual
attention on same video content, when viewed with and without audio. Eye tracking experiments by
Coutrot et al. [15] further suggest that in conversational video, increasing saliency of speakers’ face
greatly improves the model prediction. Other similar studies [17, 18, 58] also confirm the impact of
soundtrack on gaze while watching videos. Our work investigates if a similar behaviour is observed in
deep learning based saliency prediction models.

2.2 Computational Saliency Prediction

Figure 2.1: Frames (top row), Ground Truth Saliency (bottom row). Same object moving in a scene in

a video clip usually attracts visual attention.

Videos contain spatial information in frames and temporal information between frames. In videos,
human attention is guided by low-level cues and semantic context in a single frame, as well as by
relations of features in frames. For example, the same object moving in a scene in a video clip usually
attracts visual attention(Fig. 2.1). Consequently, it is crucial for video saliency prediction (VSP) to
synchronously exploit spatial and temporal information.

2.2.1 Generic Image and Video Saliency Prediction

Early methods related to VSP mainly explored static and motion information using low-level hand-
crafted features such as intensity, color, orientation channels, etc. However, these were not powerful
enough to model dynamic saliency, after which several deep learning-based VSP models emerged. Ini-
tial deep learning-based saliency prediction methods were limited to visual information. Bak et al. [2]
proposed a two-stream network, using convolutional backbones, with RGB images and optical flow
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maps as inputs, respectively, to extract spatiotemporal information and fused them for final saliency
inference. Recent methods can be largely classified into two categories :

Figure 2.2: Method pipeline of the long short-term memory (LSTM) based approaches which usually

follow the single stream methodology.

• The LSTM based models, which build on image-based saliency and aggregate frame-wise predic-
tion using an LSTM [19, 70] (Fig. 2.2). LSTMs were adopted to extend the temporal information
as opposed to the optical flow network, which only considers the temporal relationships between
subsequent frames. This approach usually uses convolutional neural networks (CNN) to compute
deep spatial features for each frame. Then, to sense temporal information, all deep features com-
puted individually via CNN are fed into the input gate of LSTM. Finally, a decoder is applied to
produce the pixel-wise fixation prediction.

Gorji et al. [23] employed multi-stream LSTMs and merged each static saliency map for VSP.
DeepVS [28] leveraged sub-networks of object and motion to extract intra-frame saliency infor-
mation, and modeled temporal correlation between frames by convLSTMs. Besides, ACLNet
[68] adopted an attention module in a CNN-LSTM structure, which was supervised with im-
age SP datasets. STRA-Net [33] proposed a two-stream model, by employing dense residual
cross-connection to enrich interactions between motion and appearance stream during feature ex-
traction, and incorporated an attention mechanism to enhance the spatio-temporal information.
SalEMA [34] modified the static SP model by using an exponential moving average instead of
LSTM for feature fusion in the temporal domain, resulting in a low-parametric architecture. Later,
Zhang et al. [73] utilized spatial and channel attention to select and re-weight spatiotemporal in-
formation, and employed an attentive convLSTM to model relations between frames. SalSAC
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[70] designed a correlation-based convLSTM for VSP, in which adjacent frames were weighted
according to the similarity between them i.e. balancing the saliency alteration by the change of im-
age characteristics in consecutive frames. The main drawback with all LSTM-based approaches
is that they overlay temporal information on top of spatial information rather than utilizing both
kinds of information simultaneously, which is essential for VSD.

Figure 2.3: Method pipeline of the 3D convolution-based approaches and the major highlight of these

approaches is their capability of sensing both spatial and temporal information

• The 3Dconv based models, which rely on action detection networks as their backbone and pri-
marily use 3D convolutional layers in the encoder and the decoder [42, 27](Fig. 2.3). Compared
with LSTM-based architectures, which process spatial and temporal information separately, a 3D
network encodes and decodes spatio-temporal information in a collective way.

TASEDNet [42] proposed a 3D fully-convolutional encoder-decoder network for VSP by adopt-
ing S3D network as encoder and the decoder uses 3D deconvolution and unpooling so as to
continuously enlarge the image to obtain the saliency map, and achieved promising performance
by considering the influence of space, time and scale. Moreover, ViNet [27] designed a UNet-like
encoder-decoder network based on a 3D backbone, in which features from multiple levels were
upsampled with trilinear upsampling and concatenated along the temporal channel. In HD2S [3],
multilevel features from a 3D encoder are separately decoded to obtain single-channel conspicu-
ity maps, and integrates all the decoded feature maps to obtain the final saliency map. Besides,
TSFP-Net [8] employs a feature pyramid structure with top-down feature integration on a 3D con-
volutional backbone, and combines the multi-level spatiotemporal features to reason the saliency
result for a video frame.

Needless to say, the 3Dconv-based architectures borrow common ideas from deep learning research
like using features from different hierarchies, skip connections, transfer learning, multi-branch architec-
tures, UNet like encoder-decoder [56] etc. Most methods, first train the saliency prediction model using
DHF1K dataset and then fine-tune it on other datasets. The current state-of-the-art landscape is domi-
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nated by 3DConv-based architectures. We rely primarily on the ViNet [27] model for our experiments,
owing to its simplicity and decent performance.

2.2.2 Audio-Visual Saliency Prediction

Some recent architectures have begun to explore the impact of multi-modal information on saliency(mainly
Audio-Visual). The Audio-Visual saliency prediction methods fuse the visual branch with audio infor-
mation. Several fusion methodologies have been studied in prior art. Tavakoli et al. [62] uses a 3D
Resnet to encode both visual and audio information. They employ a simple concatenation operation
on the encoded features. Chen et al. [9] also use concatenation operations, while using features from
different visual hierarchies. STAViS [65] fuses the audio features by performing a spatial sound source
localization onto the SUSiNet [32] visual encoder. They employ three different fusion methodologies
namely cosine similarity, weighted inner product and bilinear transformation. Zhu et al. [74] employ
a linear weighted fusion of audio and visual saliency maps. The audio saliency maps are computed
using canonical correlation of visual and audio features. Jain et al. [27] experiment with similar fusion
methods to [32] on the ViNet backbone.

Some saliency prediction efforts have focused on conversational multi-face videos. Liu et al. [35, 54]
employ multi-stream end-to-end trainable deep learning architectures. They propose a large scale
MVVA dataset allowing efficient training. Several non deep learning methods have also been ex-
plored [15].

Most of the aforementioned audio-visual saliency prediction methods claim that fusing audio leads
to noticeable performance gains. Jain et al. [27] were the first to question this claim, by showing
that an optimally trained visual backbone, can match the performance of audio-visual methods. They
demonstrate that the performance gains by adding audio are not statistically significant. We make a
more comprehensive effort in this direction, performing experiments with different audio backbones
and a variety of fusion methodologies. Our work also provides insights on why performance gains are
observed by fusing audio in training, their role at inference and a comparison to other regularization
techniques.
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Chapter 3

Methodology

Figure 3.1: Audio-Visual Saliency Prediction model in general.

We analyze role of audio in existing state-of-the-art saliency prediction models (Section 3.1) and
validate the efficacy of audio branch. We then evaluate the effectiveness of different encoding (Section
3.2) and fusing strategies (Section 3.3) towards the same. Furthermore, we corroborate the underlying
cause for incremental gains in all existing AVSP models. We hypothesize that the audio module acts as
a regularizer (Section 3.4) and produce experimental validation for the same.

3.1 Audio-Visual Saliency models

Existing deep audio-visual saliency models can be interpreted as an encoder-decoder framework
(Fig. 3.1). For this study, we choose STAViS[65] and AViNet[27] networks that fuse spatio-temporal
visual and auditory information to obtain a final saliency map.

3.1.1 STAViS

STAViS is an end-to-end spatio-temporal audiovisual saliency network that combines visual saliency
and auditory features, and learns to appropriately localize sound source by fusing the two saliencies to
obtain a final saliency map. We train STAViS [65] that extends the SusiNet [32] visual saliency model
by fusing an audio modality (Fig. 3.2). The visual branch consists of spatio-temporal module based on
3D-ResNet Blocks pre-trained on Kinetics-400 dataset [7]. This is followed by a Deeply Supervised At-
tention Module (DSAM) where hierarchical features from multiple layers of visual encoder are passed
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Figure 3.2: STAViS architecture: the Spatio-Temporal Audio-visual network is based on the ResNet

architecture and has a spatio-temporal visual branch, auditory branch and their fusion.

and concatenated at highest level, i.e., element-wise multiplication of the output of each block(feature
map) and the attention map, to enhance the most salient regions of the feature maps. In parallel, seman-
tically rich audio features are obtained using SoundNet [1] , a state-of-the-art CNN for acoustic event
classification, and then combined with visual encoder feature map to obtain a final saliency map. The
pre-processing is done similar to [65]. The model is trained on a weighted combination of three loss
functions :

Li
sal(W ) = w1Li

CE + w2Li
CC + w3Li

NSS

where Li
CE ,Li

CC and Li
NSS are Cross-Entropy, Linear Correlation Coefficient and Normalized Scan-

path Saliency loss function and w1, w2, w3 are the weights of each loss type respectively. For our case,
w1, w2, w3 empirically decided as 0.1, 2, 1 respectively by [36] is used.

3.1.2 AViNet

We train AViNet (Fig. 3.3), a U-Net like encoder-decoder network with a visual branch based on a
S3D [71] backbone pre-trained on Kinetics-400 action recognition dataset [7] and lacks explicit inputs
such as optical flow, or additional modules for detecting motion, object, attention, etc. Features from
multiple levels are upsampled with trilinear interpolation and combined along the temporal channel.
Inspired by STAViS, the SoundNet[1] module is used as an auditory feature extractor. The audio features
are fused with visual features by simple concatenation and Bilinear techniques. Inputs are processed
similar to [27]. The model is trained on KLdiv loss:

KLdiv(A,B) =
∑
i

Bi log(ϵ+
Bi

Ai + ϵ
)

here A,B are predicted and ground truth maps respectively and ϵ is a regularization term.
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Figure 3.3: Overview of the AViNet architecture. ViNet is the architecture that results from removing

the audio branch.

3.2 Audio Modules

To analyze the role of audio, we perform ablation across three different audio modules, i.e.SoundNet[1],
VGG-Vox[12] and AVID[48]. These modules have shown significant performance in diverse correlated
audio-visual tasks.

3.2.1 SoundNet

For sound representation, we employ SoundNet[1] (Fig. 3.4) to leverage visual and sound synchro-
nized information in the videos. It uses a student-teacher model that transfers discriminative visual
information from well-established visual recognition models, employing a massive source of unlabelled
video as a bridge. High-level feature embeddings are then extracted from the seventh layer of SoundNet
with dimension of 1024 × 3, followed by temporal max-pooling layer. This module is fine-tuned by
end-to-end training for our AVSP task.

3.2.2 VGG-Vox

We also employ VGG-Vox[12] (Table 3.1) as an audio module, which is a modified version of a
speaker recognition network VGG-M. The input to this network is a short-term amplitude spectrogram
extracted from raw audio (with same duration as of input video) using a 512-point FFT , resulting in
a spectrogram of size 512 × 300. Each frequency bin of the spectrogram is normalized and fed to
the audio module, which aggregates frame-level feature vectors to obtain a fixed-length utterance-level
embedding of dimension 4096. The VGG-Vox model pretrained on Voxceleb2[12] dataset is fine-tuned
for our task by end-to-end training of AVSP model.
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Figure 3.4: SoundNet Architecture overview

Layer Support Filter dim. # filts. Stride Datasize

conv1 7× 7 1 96 2× 2 254× 148

mpool1 3× 3 - - 2× 2 126× 73

conv2 5× 5 96 256 2× 2 62× 36

mpool2 3× 3 - 256 2× 2 30× 17

conv3 3× 3 256 384 1× 1 30× 17

conv4 3× 3 384 256 1× 1 30× 17

conv5 3× 3 256 256 1× 1 30× 17

mpool5 5× 3 - - 3× 2 9× 8

fc6 9× 1 256 4096 1× 1 1× 8

apool6 1× n - - 1× 1 1× 1

fc7 1× 1 4096 1024 1× 1 1× 1

fc8 1× 1 1024 1251 1× 1 1× 1

Table 3.1: VGG-Vox architecture overview.

3.2.3 AVID

Furthermore to verify the role of audio in the aforementioned task, we employ AVID[48] module
to learn audio representations by using contrastive learning for cross-modal discrimination between the
two modalities in a self-supervised manner. Audio is processed by sampling with a time-frame of input
video sequence, and a log spectrogram of size 100 × 129 is obtained where 100 is the number of time
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steps, and 129 is the number of frequency bands choosen in our case. This spectrogram is then passed
through 9 layers of 2D ConvNet and projected to 128 dimensions using a multi-layer perceptron (MLP)
composed of 3 fully connected layers with 512 hidden units. We fine-tune the pretrained AVID model
by end-to-end training of resulting AVSP model.

3.3 Fusion of Multi-Modalities

We exploit different fusion techniques (Fig. 3.5) for our analysis, owing to their ability to generalize
well across multiple domains, thereby leveraging multi-modal information.

Figure 3.5: Different Fusion Techniques

3.3.1 Bi-linear Fusion and Concatenation

Inspired by the recent works of audio-visual fusion for Saliency, we apply bi-linear fusion and con-
catenation techniques used in [65, 27]. Bilinear fusion method captures the pairwise interactions across
the feature dimensions. For bi-linear fusion, after applying the max-pool layer in the last layer of en-
coder, the visual and audio features are flattened to form a vector of dimension xv ∈ R1024×xo and
xa ∈ R1024×yo respectively. It is formulated as :

y = xTv Axa + b

where A ∈ Rxo×x×yo and b ∈ Rx×1 are parameters and x is the desired output dimension.

We also performed our experiments with a simple concatenation technique used in [65, 27]. To match
the dimensions for concatenation , audio features are repeated and combined based on the number of
channels. This fusion is followed by a 1× 1 convolution to reduce the channel dimension.
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3.3.2 Self-Attention and Cross Attention

Instantaneous sound content and activities in the scene may not always be precisely time-aligned,
thereby causing the two modalities to possess distinct dynamics. Motivated by [61], proposed initially
for speaker detection, we employ a cross-attention and self-attention module to capture the dynamic
visual-audio interaction along the temporal dimension (Fig. 3.6). Attention based mechanism synergis-
tically combines the two modalities. Cross attention ensures that attention features from one modality
are used to highlight the features of other modality , thereby capturing the inter-modality interaction.
Subsequently, self-attention is applied to capture long-term temporal dependencies, where the attention
mask highlights its own spectral features. Self-attention mechanisms can extract features globally, which
is more potent for modeling the long-range correlations between video frames in temporal sequences.
The cross-attention module projects the processed audio and visual features on the same feature space.

(a) cross-attention network (b) self-attention network

Figure 3.6: Fig. 3.6a and Fig. 3.6b represents the attention layer in Cross and Self-Attention network

respectively. Considering the audio embeddings Fa as the source and the visual features Fv as the target,

we generate audio attention feature Fa→v as the output. In a similar way, visual attention feature Fv→a

is generated
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As audio and visual flow each has its own dynamics, they need to be more precisely time aligned.
So, we employ cross-attention networks along the temporal dimension to dynamically describe such
audio-visual interaction. The core part of the cross-attention network is the attention layer, which is
shown in Fig. 3.6a. The inputs are the vectors of query (Qa, Qv),key (Ka,Kv), and value (Va, Vv)

from audio and visual embeddings respectively, projected by a linear layer. The outputs are the audio
attention feature Fa→v and visual attention feature Fv→a as formulated in Eq. (3.1) and (3.2), where d

denotes the dimension of Q,K and V :

Fa→v = softmax(
QvK

T
a√

d
)Va (3.1)

Fv→a = softmax(
QaK

T
v√

d
)Vv (3.2)

As formulated in Eq. (3.1) and (3.2), to learn the interacted new audio feature Fa→v, the attention
layer applies Fv as the target sequence to generate query, and Fa as the source sequence to generate key
and value, and to learn Fv→a vice-versa. The feed-forward layer follows the attention layer. Residual
connection and layer normalization are also applied after these two layers to generate the whole cross-
modal attention network. The outputs are concatenated together along the temporal direction.

A self-attention network is applied after the cross-attention network to model the audio-visual utterance-
level temporal information. As shown in Fig. 3.6b , this network is similar to the cross-attention network
except that now the query Qav, key Kav, and value Vav in the attention layer all come from the joint
audio-visual feature Fav

3.3.3 RNA Loss

Though multiple modalities may provide additional information, CNNs’ ability to effectively extract
valuable information from them is limited due to one modality being ”privileged” over the other during
training, limiting its generalization ability. To this end, Planamente et al. [53] brought into light the
problem of ”norm unbalance” and reported L2-norm as the metric to measure the unbalance between
the information content of the training modalities. The mean-feature-norm distance (δ) between the two
modality norms fv and fa can be computed as:

δ(h(xvi ), h(x
a
i )) = |E[h(Xv)]− E[h(Xa)]|

where E[h(Xm)] corresponds to the mean features norm for each modality. Figure 3.7 illustrates the
norm h(xvi ) of the ith visual sample and h(xai ) of the ith audio sample, by means of segments of different
lengths arranged in a radial pattern.The mean feature norm of the kth modality is represented by the
radius of the two circumferences, and δ is represented as their difference. The objective is to minimize
the δ distance by means of a new loss function, which aims to align the mean feature norms of the two
modalities. In the case of Audio-Visual modality, the objective is to minimize the difference between
the radius of respective norms forcing them to lie on a hyper-sphere of a fixed radius. Planamente et
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Figure 3.7: The norm h(xvi ) of the ith visual sample (left) and h(xai ) of the ith audio sample (right) are

represented, by means of segments of different lengths. The radius of the two circumferences represents

the mean feature norm of the two modalities, and δ their discrepancy. By minimizing δ, audio and visual

feature norms are induced to be the same.

al. [53] proposed a Relative Norm Alignment (RNA) loss that aims to align the mean feature norms of
the two modalities from various source data, resulting in domain-invariant audio-visual features. RNA
loss can be defined as :

LRNA =

(
E[h(Xv)]

E[h(Xa)]
− 1

)2

,

where E[h(Xm)] = 1
N

∑
xm
i ∈χm

h(xmi ), for the mth modality and N denotes the number of samples of

the set χm = {xm1 , . . . , xmN}. In order to induce an optimal equilibrium between the two embeddings,
the dividend/divisor structure is adjusted to encourage a relative balance between the norm of the two
modalities. Furthermore, the square of the difference pushes the network to take larger steps when the
ratio of the two modality norms is too high resulting in faster convergence.

3.4 Regularization over Visual-Only Models

Dropout [60] is a regularization technique to ameliorate over-fitting in neural networks. Specifically,
during the training phase, dropout randomly discard nodes with a given probability. In this way, the
network can be hypothesized as an ensemble of small sub-networks, thus achieving a good regularization
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effect. For our visual only model, we use high dropout of 85%. (value of Dropout is decided empirically
based on Table 5.6)
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Chapter 4

Experiments

4.1 Dataset

We carry out the tests and comparisons on :

• three most popular visual-only saliency datasets - DHF1K, Hollywood-2, and UCF Sports

• six audio-visual saliency datasets - AVAD, Coutrot1, Coutrot2, DIEM, ETMD, SumMe

• two multi-face datasets - Coutrot2, MVVA.

4.1.1 Visual-only Datasets

During the ground-truth collection of visual-only datasets, the audio was discarded. Therefore, users
were asked to look at silent videos.

4.1.1.1 DHF1K

DHF1K [68] is a large dataset with diverse content and variable length comprising 1000 videos split
into 600, 100, and 300 as training, validation, and testing sets. Each video is 30 fps with 640x360
spatial resolution, and eye-tracking data annotated by 17 observers. The dataset is mainly classified into
7 categories: humans (daily activities, sports, social activities, and art), animals, artifacts, and scenery.
The ground truths of testing videos are held out for evaluation on the benchmark website .

4.1.1.2 Hollywood-2

Hollywood-2 [40] is the largest dataset in terms of the number of videos, consisting of 1707 ac-
tion videos from the Hollywood-2 action recognition dataset with eye-tracking data annotated by 19
observers. The dataset has short video sequences from a set of 69 Hollywood movies containing 12
different human action classes, ranging from answering the phone, eating, driving, running, etc. We use
the standard split of 823 training videos and 884 test videos.
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4.1.1.3 UCF Sports

UCF Sports [55] dataset consists of a set of actions collected from various sports which are typically
featured on broadcast television channels. The dataset includes a total of 150 sequences with a resolution
of 720 x 480. It includes 10 actions, i.e., diving, golf swing, kicking, lifting, riding a horse, running,
skateboarding, swing-bench, swing-side, and walking. We use a standard split with 103 videos for
training, and 47 videos for testing.

4.1.2 Audio-Visual Datasets

4.1.2.1 DIEM

DIEM [46] consists of 84 videos with varying genres based on g advertisements, documentaries,
game trailers, movie trailers, music videos, news clips, and time-lapse footage. The eye-tracking data
are annotated by about 50 observers in a free-viewing manner. We use a standard split with 20 videos
for testing and the remaining videos for training.

4.1.2.2 Coutrot

Coutrot [14, 38] databases are divided into Coutrot1 and Coutrot2.

• Coutrot1 contains 60 clips with dynamic natural scenes of four visual categories: one/several
moving objects, landscapes, and faces.

• Coutrot2 contains 15 clips of 4 persons in a meeting. Videos have a resolution of 720 x 576 pixels
and a frame rate of 25. The corresponding eye-tracking data are annotated by 70 observers.

4.1.2.3 SumMe

SumMe [24] dataset contains 25 unstructured videos, i.e., mostly user-made videos and their corre-
sponding multiple-human created summaries, which were acquired in a controlled psychological exper-
iment. The corresponding eye-tracking data are annotated by 10 observers.

4.1.2.4 AVAD

AVAD [44] dataset comprises 45 short clips of 5-10 sec duration with several action scenes, like
dancing, guitar playing, birds singing, etc. The corresponding eye-tracking data are annotated by 16
observers.
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4.1.2.5 ETMD

ETMD [31] dataset consists of 12 videos from 6 different Hollywood movies. The corresponding
eye-tracking data are annotated by 10 observers.

4.1.3 Multi-Face Datasets

4.1.3.1 MVVA

MVVA [35] dataset consists of 300 dubbed Multiple-face Videos. The corresponding eye-tracking
data are annotated by 34 observers. During the eye-tracking experiment, both video and audio were
presented to the annotators. A random split of 240 videos for training and 60 videos for testing is used.

4.1.3.2 Coutrot2

Discussed in Section 4.1.2.2

4.2 Training procedure

For training AViNet, a similar training procedure is incorporated, as discussed in [27]. 32 consecutive
frames are randomly selected from each clip of the dataset with their corresponding audio stream. Each
frame is resized to 224 × 384 and trained with a batch size of 8. The optimizer used is Adam with an
initial learning rate of 1e-4 and Kullback-Leibler divergence as the loss function. The network is initially
trained on DHF1K dataset with corresponding validation data used for early stopping. The network with
pre-trained weights of DHF1K dataset is fine-tuned for all other datasets with their respective validation
datasets being used for early stopping.
For a fair comparison, the training procedure of STAViS is adopted as discussed in [65]. The network
takes 16 consecutive frames as input with a resolution of 112 X 112 and is trained with a batch size of
128 with their corresponding audio stream. A random flipping data augmentation technique is applied
during training. The optimizer used is SGD with a momentum of 0.9, dampening factor of 0.9, weight
decay of 1e-5, and learning rate set to 1e-2. The loss function is a weighted combination of cross-entropy
loss, linear correlation coefficient (CC), and normalized scanpath saliency(NSS).

4.3 Evaluation Metrics

We evaluated our task on distribution-based and location-based metrics [6] (Table 4.1). Distribution-
based metrics compute the similarity between predicted and ground truth distributions (assuming that
the ground truth fixation locations are sampled from an underlying probability distribution). We chose
KLDiv, Similarity, and Correlation(CC) for distribution-based analysis. The location-based metrics
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measure the accuracy of saliency models at predicting discrete fixation locations. NSS and AUC met-
rics are chosen as location-based metrics in our analysis.

Table 4.1: Distribution-based metrics consider both predicted saliency maps and ground truth fixation

maps as continuous distributions, while Location-based metrics account for saliency map values at

discrete fixation locations. High values for similarity metrics and low values for dissimilarity metrics

are characteristics of good saliency models.

Metrics Location-based Distribution-based

Similarity AUC, sAUC , NSS SIM, CC

Dissimilarity X KLDiv

4.3.1 Distribution-based metrics

4.3.1.1 KLDiv

Kullback-Leibler divergence treats saliency maps as probability distributions and measures the loss
of information between the predicted saliency map and the ground truth saliency map by the difference
between two distributions

KLdiv(A,B) =
∑
i

Bi log(ϵ+
Bi

Ai + ϵ
)

here A,B are predicted and ground truth maps respectively and ϵ is a regularization term. Lower value
indicate better approximation of predicted saliency map with the ground truth saliency map.

4.3.1.2 CC

The Pearson’s Correlation Coefficient(CC) measures the correlation between two variables. CC can
be used to interpret saliency and fixation maps, A and BD as random variables and measure the linear
relationship between them.

CC(A,BD) =
σ(A,BD)

σ(A)× σ(BD)

where σ(A,BD) represents covariance between A and BD. It is a symmetric metric and penalizes false
positives and negatives equally. It is invariant to linear transformations. The pixels where both predicted
and ground truth saliency maps have similar values gives high CC values. CC value can vary from -1 to
1.
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4.3.1.3 SIM

The Similarity metric (SIM) measures the similarity between two distributions, viewed as histograms
(so, also referred to as histogram intersection). SIM is computed as the sum of the minimum values at
each pixel, after normalizing the input maps. Given a saliency map A and a continuous fixation map
BD :

SIM(A,BD) =
∑
i

min(Ai, B
D
i )

where
∑
i
Ai =

∑
i
BD

i = 1, by iterating over discrete pixel locations i. A similarity score of one

indicates that the maps are identical, and zero indicates that they are entirely dissimilar.

4.3.2 Location-based metrics

4.3.2.1 NSS

Normalized Scanpath Saliency (NSS) aims to quantify the saliency map values at the fixated loca-
tions and normalize them with the predicted map variance. Given a saliency map P and a binary map of
fixation locations QB:

NSS(P,QB) =
1

N

∑
i

P̄i ×QB
i

where N =
∑
i

QB
i and P̄ =

P − µ(P )

σ(P )

Here, i indexes the ith pixel, P̄ is the normalized saliency map, and N is the total number of fixated
pixels. NSS is sensitive to false positives, general monotonic transformations and relative differences
in saliency across the image. However,since the mean saliency value is subtracted during computation,
NSS is invariant to linear transformations. High-valued prediction at fixated locations gives a higher
NSS score.

4.3.2.2 AUC-Judd

The Area Under the ROC Curve (AUC) is the most widely used metric for evaluating saliency maps.
The saliency map is treated as a binary classifier of fixations at various threshold values (level sets), and
a ROC curve is swept out by measuring the true and false positive rates under each binary classifier. Its
value can vary from 0 to 1.

4.3.2.3 sAUC

It penalizes models that include the bias of the emergence of a central Gaussian distribution when
averaging fixations over many images by sampling negatives from fixation locations from other images
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instead of uniformly at random. Its value can vary from zero to one and higher the value better are the
predictions.
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Chapter 5

Results and Discussions

We conducted a comprehensive series of experiments to analyze the role of audio in audio-visual
saliency prediction (AVSP) models. Our investigation involved evaluating the performance of AVSP
models on ten different audio-visual saliency datasets. Additionally, we explored the underlying reasons
for the observed incremental gains of AVSP models over visual-only models, aiming to gain insights
into the contributing factors for the improved performance of AVSP models.

5.1 Audio-visual Dataset

5.1.1 Role of Audio in SOTA models

To analyze the influence of audio in AVSP models, we conduct a simple experiment by setting the
sound signal to zero (a silent sound), and random (a random noise) at inference. From Table 5.1, we find
that the model inferred with different sound signals gives notably similar performance, thus showing an
agnostic behavior of both the SOTA models with audio on all the audio-visual datasets.

For instance, when examining the Coutrout 2 dataset, we observed that AViNet consistently demon-
strated the highest gains in performance compared to ViNet. Intriguingly, even when the audio input was
set to zero or a random audio vector, AViNet’s performance remained unchanged. These results suggest
that AViNet may not effectively utilize audio information for saliency prediction. Despite the absence
of meaningful audio input, AViNet’s performance was on par with its performance when provided with
actual audio input, indicating a lack of sensitivity to audio information.

This behaviour suggest that the SOTA models are unable to utilize audio module at it’s best and limits
the performance of AVSP models. Motivated by these findings, we aimed to explore different techniques
to better incorporate audio information in AVSP models. We choose ViNet (being an outperforming
model over STAViS) as base model for all our further experiments.
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Table 5.1: Comparison of metrics on passing zero and random sound signal. Here [STA-0] and [STA-R]

denotes the inference of STA on zero and random sound signal respectively. Similarly [AViNet-0] and

[AViNet-R] denotes the inference of AViNet on zero and random sound signal respectively.

DIEM Coutrot1 Coutrot2

CC sAUC AUC NSS SIM CC sAUC AUC NSS SIM CC sAUC AUC NSS SIM

STAViS(ST) 0.567 0.664 0.879 2.190 0.472 0.459 0.576 0.862 1.990 0.384 0.653 0.689 0.941 4.190 0.447

STAViS(STA) 0.579 0.675 0.883 2.260 0.482 0.472 0.585 0.868 2.110 0.394 0.735 0.710 0.958 5.280 0.511

STAViS(STA-0) 0.576 0.673 0.883 2.249 0.484 0.471 0.584 0.867 2.112 0.396 0.731 0.708 0.956 5.242 0.526

STAViS(STA-R) 0.576 0.673 0.883 2.250 0.484 0.472 0.584 0.867 2.112 0.396 0.731 0.708 0.956 5.233 0.525

ViNet 0.626 0.723 0.898 2.470 0.483 0.551 0.633 0.886 2.680 0.423 0.724 0.739 0.950 5.610 0.466

AViNet 0.632 0.719 0.899 2.530 0.498 0.560 0.635 0.889 2.730 0.425 0.754 0.742 0.951 5.950 0.493

AViNet-0 0.619 0.717 0.897 2.484 0.486 0.558 0.636 0.889 2.727 0.424 0.760 0.748 0.959 6.009 0.494

AViNet-R 0.619 0.717 0.897 2.484 0.486 0.558 0.636 0.889 2.727 0.424 0.760 0.748 0.959 6.010 0.495

AVAD ETMD SumMe

CC sAUC AUC NSS SIM CC sAUC AUC NSS SIM CC sAUC AUC NSS SIM

STAViS(ST) 0.604 0.590 0.915 3.070 0.443 0.560 0.727 0.929 2.840 0.412 0.418 0.647 0.884 1.980 0.332

STAViS(STA) 0.608 0.593 0.919 3.180 0.457 0.569 0.731 0.931 2.940 0.425 0.422 0.656 0.888 2.040 0.337

STAViS(STA-0) 0.606 0.592 0.919 3.166 0.463 0.569 0.731 0.931 2.937 0.431 0.422 0.656 0.888 2.038 0.341

STAViS(STA-R) 0.605 0.592 0.919 3.160 0.462 0.569 0.731 0.931 2.936 0.431 0.423 0.656 0.888 2.037 0.340

ViNet 0.694 0.663 0.928 3.820 0.504 0.569 0.736 0.928 3.060 0.409 0.466 0.696 0.898 2.400 0.345

AViNet 0.674 0.658 0.927 3.770 0.491 0.571 0.733 0.928 3.080 0.406 0.463 0.692 0.897 2.410 0.343

AViNet-0 0.673 0.659 0.928 3.759 0.490 0.571 0.733 0.928 3.078 0.407 0.459 0.691 0.896 2.386 0.342

AViNet-R 0.673 0.658 0.928 3.760 0.490 0.570 0.733 0.928 3.074 0.407 0.459 0.692 0.896 2.386 0.342
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5.1.2 Analysis of Different Audio Modules

Audio module added to ViNet might not be able to capture contrasting features to video module.
We tried some SOTA audio modules that showcased high performance on audio-visual tasks i.e.sound
source localization[1], active speaker detection[61], audio-visual objects learning[48], etc. Table 5.2
shows the performance on different audio modules. We observe a similar performance across all, thus
limiting the learning ability of the network to some extent.

For instance, we observed that AViNet, when equipped with AVID audio module, exhibited the best
performance on the AVAD dataset, while SoundNet emerged as the top-performing audio module for the
Coutrot2 dataset. Remarkably, this consistent trend of minimal variance in performance among different
audio modules was observed across all datasets.

To this end, we adopt different fusion techniques to integrate the audio and visual features in a better
way.

Table 5.2: Comparison of metrics on AViNet with different audio modules. Here, [AViNetSoundNet] ,

[AViNetVGG-Vox] and [AViNetAVID] denotes AViNet with sound encoder as SoundNet, VGG-Vox and

AVID respectively.

DIEM Coutrot1 Coutrot2

CC sAUC AUC NSS SIM CC sAUC AUC NSS SIM CC sAUC AUC NSS SIM

ViNet 0.626 0.723 0.898 2.470 0.483 0.551 0.633 0.886 2.680 0.423 0.724 0.739 0.950 5.61 0.466

AViNetSoundNet 0.632 0.719 0.899 2.530 0.498 0.560 0.635 0.889 2.730 0.425 0.754 0.742 0.951 5.950 0.493

AViNetVGG-Vox 0.633 0.732 0.906 2.563 0.494 0.555 0.640 0.891 2.691 0.424 0.749 0.747 0.964 5.829 0.465

AViNetAVID 0.624 0.722 0.900 2.492 0.488 0.556 0.638 0.890 2.685 0.422 0.721 0.737 0.958 5.653 0.460

AVAD ETMD SumMe

CC sAUC AUC NSS SIM CC sAUC AUC NSS SIM CC sAUC AUC NSS SIM

ViNet 0.694 0.663 0.928 3.82 0.504 0.569 0.736 0.928 3.06 0.409 0.466 0.696 0.898 2.40 0.345

AViNetSoundNet 0.674 0.658 0.927 3.770 0.491 0.571 0.733 0.928 3.080 0.406 0.463 0.692 0.897 2.410 0.343

AViNetVGG-Vox 0.678 0.660 0.928 2.719 0.488 0.564 0.737 0.928 3.063 0.401 0.462 0.706 0.899 2.382 0.339

AViNetAVID 0.684 0.662 0.929 3.813 0.494 0.567 0.738 0.928 3.066 0.401 0.462 0.699 0.898 2.384 0.339

5.1.3 Analysis of Different Fusion Techniques

In multi-modal networks, the fusion technique plays a major role. We adopt different fusion tech-
niques that have shown encouraging performance in different multi-modal scenarios. Table 5.3 com-
pares the effect of different fusion techniques on network’s performance. For example, our experimen-
tal results showed that AViNet, when trained with RNA loss, achieved superior performance on the
Coutrot2 dataset, while the Attention-based mechanism network emerged as the top-performing fusion
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technique for the ETMD dataset. A minimalistic jitter in results is observed consistently across all
datasets, suggesting that different fusion techniques fail to leverage audio in AVSP models.

We believe that one possible reason is that audio information is futile to the video saliency with the
existing datasets. Furthermore, the other possible reason could be that the visual network is dominant.
This dominance problem might arise because of norm unbalance between the two modalities, so that
modality with greater feature norm (visual in our case) gets privileged while penalizing the other (audio).
To this end, we tried incorporating RNA loss[53] to bring out norm balance and leverage audio in a better
way. Table 5.4 shows the norm values before and after applying RNA Loss. The balanced norm suggests
that empowering the audio features doesn’t benefit the task and visual features are rich enough to predict
the final saliency.

Table 5.3: Comparison of metrics on AViNet with different fusion techniques. Here, [AViNet(B)],

[AViNet(C)], [AViNet(A)] and [AViNet(RNA)] denotes AViNet with fusion based on Bi-linear, Con-

catenation, Attention-based mechanism, and RNA loss respectively.

DIEM Coutrot1 Coutrot2

CC sAUC AUC NSS SIM CC sAUC AUC NSS SIM CC sAUC AUC NSS SIM

ViNet 0.626 0.723 0.898 2.470 0.483 0.551 0.633 0.886 2.680 0.423 0.724 0.739 0.950 5.610 0.466

AViNet(B) 0.632 0.719 0.899 2.530 0.498 0.560 0.635 0.889 2.730 0.425 0.754 0.742 0.951 5.950 0.493

AViNet(C) 0.631 0.720 0.897 2.500 0.497 0.556 0.636 0.887 2.680 0.426 0.753 0.743 0.951 5.810 0.486

AViNet(A) 0.6143 0.707 0.897 2.458 0.488 0.552 0.632 0.890 2.700 0.425 0.744 0.739 0.961 5.776 0.479

AViNet(RNA) 0.621 0.719 0.896 2.470 0.485 0.542 0.624 0.884 2.592 0.413 0.766 0.747 0.961 5.961 0.489

AVAD ETMD SumMe

CC sAUC AUC NSS SIM CC sAUC AUC NSS SIM CC sAUC AUC NSS SIM

ViNet 0.694 0.663 0.928 3.820 0.504 0.569 0.736 0.928 3.060 0.409 0.466 0.696 0.898 2.400 0.345

AViNet(B) 0.674 0.658 0.927 3.770 0.491 0.571 0.733 0.928 3.080 0.406 0.463 0.692 0.897 2.410 0.343

AViNet(C) 0.683 0.661 0.931 3.740 0.494 0.566 0.737 0.928 3.050 0.404 0.471 0.699 0.899 2.420 0.346

AViNet(A) 0.674 0.659 0.927 3.726 0.490 0.575 0.735 0.929 3.086 0.413 0.462 0.693 0.897 2.400 0.342

AViNet(RNA) 0.665 0.660 0.928 3.649 0.473 0.565 0.737 0.928 3.032 0.403 0.446 0.686 0.893 2.235 0.331

5.1.4 Why is AV network better than visual-only network?

From above experiments we observe, while audio-visual models achieve outstanding performance
compared to visual-only models there still remain an important issue, that is lacking the utilization of
audio features. Audio being agnostic, suggest that the AV model somehow empowers the potential
capacity of the visual only model. We believe that one possible reason is that the visual only models are
not optimal and a regularization technique on Visual model can help to learn the saliency of similar or
higher precision.
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Table 5.4: Mean and standard deviation of feature norm before and after applying RNA Loss

AViNet (with Bi-Linear Fusion) AViNet with RNA Loss

Audio Video Audio Video

AVAD 9.5142± 4.7232 29.0128± 3.9406 11.8473± 4.3091 14.2908± 2.6662

Coutrot1 9.3178± 4.9157 25.9076± 3.3296 11.6736± 4.4389 11.9309± 2.1535

Coutrot2 13.5336± 1.8181 26.6241± 1.3176 15.136± 2.1201 12.5556± 1.2305

DIEM 11.4565± 3.8720 28.3217± 5.4160 13.3933± 3.8439 12.5178± 2.1789

ETMD 11.3443± 4.1168 27.4783± 4.1482 13.4269± 3.4984 12.9234± 1.712

SumMe 10.0412± 4.6872 27.1688± 4.6831 12.7507± 4.4734 12.5161± 2.5662

5.1.5 Regularization of visual features

5.1.5.1 Random Blacking of Frames

To regularize the visual-only model based on temporal information, we tried a simple technique by
random blacking of frames, i.e., ViNet takes 32 frames as input. Here we randomly blacked 4,8,16
frames respectively. The visual-only network is forced to predict the saliency of the last frame by the
input as the last 32 frames. Thus the information on the saliency of last frames is highly biased on
some last frames as compared to the initial frames, there is a high chance of the network ignoring
the importance of all the temporal information and relying on a specific section of the frames. Here
blacking of frames validates the importance of each frame, as there might be a scenario where the last
frame information is being blacked. We tried experiments by different ablation studies on varying the
number of frames being randomly blacked: 4,8,16.

Table 5.5 shows the performance on applying different blackening schemes. Here, the minimalistic
performance drop in ViNet-4, ViNet-8, ViNet-16 respectively validates the temporal information uti-
lization of ViNet.Since, ViNet-4, ViNet-8 doesn’t show any significant performance gain we can claim
that ViNet itself is utilizing the temporal information and weighing each sequential frame with some
importance. The incorporation of regularization by random blacking of frames did not adversely impact
the performance of our model, nor did it compromise our primary objective of utilizing visual features
in a more optimal manner. Notably, consistent performance was observed across all datasets, including
DIEM, where the performance remained unchanged.

5.1.5.2 Regularization by Vanilla DropOut

In order to investigate the impact of audio on the fusion of audio-visual features, we analyzed the
output feature vectors from the audio module. We selected a single batch from our audio-visual dataset
and found that 77% (794 out of 1024 audio features)of the audio features were zero-valued. This
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Table 5.5: Comparison of metrics on the DIEM, Coutrot1, Coutrot2, AVAD, ETMD and SumMe test

sets. Here, ViNet-4, ViNet-8, and ViNet-16 refer to the model trained by random blacking of 4,8, and

16 frames, respectively.

DIEM Coutrot1 Coutrot2

CC sAUC AUC NSS SIM CC sAUC AUC NSS SIM CC sAUC AUC NSS SIM

ViNet 0.626 0.723 0.898 2.470 0.483 0.551 0.633 0.886 2.680 0.423 0.724 0.739 0.950 5.610 0.466

AViNet 0.632 0.719 0.899 2.530 0.498 0.560 0.635 0.889 2.730 0.425 0.754 0.742 0.951 5.950 0.493

ViNet-4 0.626 0.722 0.898 2.47 0.484 0.55 0.632 0.886 2.68 0.423 0.723 0.739 0.949 5.61 0.465

ViNet-8 0.625 0.723 0.897 2.47 0.483 0.549 0.632 0.885 2.68 0.422 0.723 0.738 0.949 5.6 0.464

ViNet-16 0.622 0.72 0.892 2.45 0.479 0.537 0.611 0.878 2.62 0.412 0.701 0.712 0.942 5.48 0.443

AVAD ETMD SumMe

CC sAUC AUC NSS SIM CC sAUC AUC NSS SIM CC sAUC AUC NSS SIM

ViNet 0.694 0.663 0.928 3.820 0.504 0.569 0.736 0.928 3.060 0.409 0.466 0.696 0.898 2.400 0.345

AViNet 0.674 0.658 0.927 3.770 0.491 0.571 0.733 0.928 3.080 0.406 0.463 0.692 0.897 2.410 0.343

ViNet-4 0.693 0.662 0.928 3.81 0.504 0.568 0.734 0.925 3.05 0.408 0.465 0.696 0.897 2.4 0.344

ViNet-8 0.692 0.662 0.927 3.81 0.502 0.567 0.734 0.924 3.04 0.408 0.464 0.695 0.896 2.38 0.342

ViNet-16 0.681 0.621 0.911 3.74 0.472 0.523 0.706 0.904 2.99 0.396 0.438 0.643 0.838 2.19 0.305

surprising observation suggests that during the fusion of audio and visual features, these zero-valued
audio features may nullify the visual features to a significant extent. This behavior is reminiscent of the
well-known technique called Dropout, which aims to regularize the model by randomly setting certain
feature values to zero during training. Based on this observation, we applied a variant of Dropout,
known as Vanilla Dropout, on our ViNet model across all datasets to further investigate and potentially
mitigate this behavior.

Vanilla DropOut is conventionally used to regularize deep CNNs. Table 5.6 illustrates the results
on varying dropout and using dropout of 0.85 gave better results on which all our further analysis
is carried out. The comparison of visual and audio visual models with regularized visual model are
presented in Table 5.7. The regularized model is able to recover most of the underlying performance
on current datasets. The results shows a similar behaviour in regularized model and the audio-visual
model with respect to the visual only model. On specific dataset like Coutrot2, where the audio visual
model seemed to gain significant improvement, our results indicates the similar significant gain by the
regularized model. Thus audio visual model can be surmised as some form of regularization applied
over visual only model.
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Table 5.6: Results on varying Dropout on Coutrot2 test set.

STAViS ViNet

Dropout CC sAUC AUC NSS SIM CC sAUC AUC NSS SIM

0.80 0.674 0.715 0.952 4.427 0.308 0.735 0.740 0.955 5.761 0.481

0.85 0.675 0.715 0.955 4.432 0.309 0.740 0.741 0.959 5.777 0.481

0.90 0.673 0.713 0.948 4.397 0.294 0.733 0.739 0.954 5.748 0.481

Table 5.7: Comparison of metrics on the DIEM, Coutrot1, Coutrot2, AVAD, ETMD and SumMe test sets.

Here, STAViS(STD) and ViNet-D refers to respective regularized models with 85% dropout

DIEM Coutrot1 Coutrot2

CC sAUC AUC NSS SIM CC sAUC AUC NSS SIM CC sAUC AUC NSS SIM

STAViS(ST) 0.566 0.664 0.879 2.190 0.471 0.458 0.576 0.861 1.990 0.384 0.653 0.689 0.940 4.190 0.447

STAViS(STA) 0.579 0.674 0.883 2.260 0.482 0.472 0.584 0.868 2.110 0.393 0.735 0.710 0.958 5.280 0.511

STAViS(STD) 0.609 0.693 0.890 2.329 0.406 0.509 0.593 0.876 2.202 0.338 0.675 0.714 0.955 4.432 0.309

ViNet 0.626 0.723 0.898 2.470 0.483 0.551 0.633 0.886 2.680 0.423 0.724 0.739 0.950 5.610 0.466

AViNet 0.632 0.719 0.899 2.530 0.498 0.560 0.635 0.889 2.730 0.425 0.754 0.742 0.951 5.950 0.493

ViNet-D 0.637 0.724 0.902 2.559 0.498 0.561 0.634 0.891 2.736 0.430 0.740 0.741 0.959 5.777 0.481

AVAD ETMD SumMe

CC sAUC AUC NSS SIM CC sAUC AUC NSS SIM CC sAUC AUC NSS SIM

STAViS(ST) 0.604 0.59 0.915 3.070 0.443 0.560 0.727 0.929 2.840 0.412 0.418 0.647 0.884 1.980 0.332

STAViS(STA) 0.608 0.593 0.919 3.180 0.457 0.569 0.731 0.931 2.940 0.425 0.422 0.656 0.888 2.040 0.337

STAViS(STD) 0.609 0.600 0.919 3.078 0.345 0.562 0.744 0.929 2.835 0.314 0.443 0.676 0.893 2.135 0.274

ViNet 0.694 0.663 0.928 3.820 0.504 0.569 0.736 0.928 3.060 0.409 0.466 0.696 0.898 2.400 0.345

AViNet 0.674 0.658 0.927 3.770 0.491 0.571 0.733 0.928 3.080 0.406 0.463 0.692 0.897 2.410 0.343

ViNet-D 0.682 0.661 0.929 3.835 0.497 0.578 0.740 0.930 3.128 0.416 0.467 0.700 0.899 2.425 0.347

5.1.6 Validation of our hypothesis

As Vanilla Dropout (in Section 5.1.5.2) was able to recover the gains of the Audiovisual model over
the visual-only model, we hypothesize that the audio module acts as a regularizer. To this end, we
tried a similar random audio regularization technique over different datasets. This random audio was
hand-crafted by three different techniques:

• Random vector: generated from normal distribution.
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Table 5.8: Results of all the experiments discussed, on a recently proposed large-scale multi-face

saliency dataset - MVVA.

MVVA

CC SIM NSS AUC KLDiv

AViNet(B) 0.7953 0.6006 3.5085 0.8855 0.7582

AViNet-0 0.7962 0.6005 3.5125 0.8856 0.7576

AViNet-R 0.7962 0.6007 3.5125 0.8856 0.7573

AViNet(A) 0.7919 0.5971 3.4919 0.8871 0.7666

AViNet(RNA) 0.7967 0.5991 3.5135 0.8898 0.7603

ViNet-D 0.7956 0.6047 3.5104 0.8849 0.7632

AViNetVGG 0.7927 0.6003 3.4912 0.8834 0.7534

AViNetAvid 0.7932 0.6034 3.4923 0.8848 0.7573

• Using Wolfram Algorithm: For mimicking the audio distribution of respective video clips, we
applied the wolfram algorithm to create random audio based on the distribution of original audio
vector.

• Shuffled audio from different clips: Audio from different videos are shuffled and passed to the
network in form of random audio (noise or irrelevant audio).

As shown in Table 5.9, the performance of AViNet trained with random audio was found to be similar
to AViNet trained with actual audio, supporting the hypothesis that AViNet fails to effectively leverage
audio information and instead acts as a regularizer for the visual-only model. These findings provide
further evidence of the potential regularization effect of the audio module in AVSP models.

5.2 Multi-Face dataset (MVVA)

To validate and reinforce our findings, we conducted a rigorous set of experiments on the recently
proposed MVVA dataset, employing AViNet with the identical settings as described in the previous
sections. Notably, we observed that the performance of AViNet, when inferred with zero and random
audio inputs, remained similar to that with actual audio inputs, thereby substantiating the negligible
impact of audio information on audio-visual saliency prediction models. Subsequently, we performed
comprehensive experiments with diverse audio modules and fusion techniques, as discussed in Section
5.1.2 and 5.1.3, and found that the observations were consistent with our previous findings on other
datasets. No significant changes in performance were observed, further indicating that the choice of
audio module or fusion technique had minimal impact on the overall performance of AViNet on the
MVVA dataset. These results further consolidate our hypothesis and emphasize the limited significance
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Table 5.9: Comparison of metrics on the DIEM, Coutrot1, Coutrot2, AVAD, ETMD and SumMe test sets.

Here, ViNetrandom, ViNetWolfram and ViNetshuffled refer to models trained on audio vector generated from

a normal distribution, Wolfrom algorithm and shuffled audio respectively.

DIEM Coutrot1 Coutrot2

CC sAUC AUC NSS SIM CC sAUC AUC NSS SIM CC sAUC AUC NSS SIM

ViNet 0.626 0.723 0.898 2.470 0.483 0.551 0.633 0.886 2.680 0.423 0.724 0.739 0.950 5.610 0.466

AViNet-B 0.632 0.719 0.899 2.530 0.498 0.560 0.635 0.889 2.730 0.425 0.754 0.742 0.951 5.950 0.493

AViNet-C 0.631 0.72 0.897 2.5 0.497 0.556 0.636 0.887 2.68 0.426 0.753 0.743 0.951 5.81 0.486

ViNetrandom 0.63 0.719 0.898 2.51 0.498 0.557 0.635 0.888 2.71 0.425 0.754 0.741 0.951 5.94 0.492

ViNetWolfram 0.632 0.719 0.898 2.52 0.498 0.559 0.636 0.889 2.72 0.426 0.753 0.741 0.95 5.94 0.492

ViNetshuffled 0.631 0.719 0.898 2.53 0.498 0.558 0.635 0.889 2.72 0.426 0.754 0.742 0.951 5.94 0.492

AVAD ETMD SumMe

CC sAUC AUC NSS SIM CC sAUC AUC NSS SIM CC sAUC AUC NSS SIM

ViNet 0.694 0.663 0.928 3.820 0.504 0.569 0.736 0.928 3.060 0.409 0.466 0.696 0.898 2.400 0.345

AViNet-B 0.674 0.658 0.927 3.770 0.491 0.571 0.733 0.928 3.080 0.406 0.463 0.692 0.897 2.410 0.343

AViNet-C 0.683 0.661 0.931 3.74 0.494 0.566 0.737 0.928 3.05 0.404 0.471 0.699 0.899 2.42 0.346

ViNetrandom 0.673 0.659 0.928 3.77 0.491 0.57 0.732 0.927 3.07 0.405 0.462 0.69 0.896 2.4 0.342

ViNetWolfram 0.674 0.66 0.928 3.77 0.492 0.571 0.731 0.928 3.08 0.405 0.461 0.691 0.896 2.4 0.342

ViNetshuffled 0.673 0.659 0.927 3.77 0.49 0.57 0.733 0.927 3.07 0.406 0.462 0.691 0.896 2.41 0.342
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of audio information in the context of audio-visual saliency prediction models. Intriguingly, we observed
that dropout regularization appeared to inhibit the incremental gains in performance from ViNet to
AViNet (in Table 5.8). These results further validate our observations and provide additional evidence of
the impact of audio-visual integration and dropout regularization on the performance of AVSP models.

5.3 Visual Only Datasets

Our hypothesis was further validated through experiments conducted on visual-only datasets, where
the audio input was set to a random vector. The results, as shown in Table 5.10, clearly demonstrate that
AViNet exhibits performance that is similar to, or even better than, ViNet. Notably, on the UCF dataset,
a significant improvement can be observed, with the correlation coefficient (CC) increasing from 0.673
to 0.723, leading to state-of-the-art (SOTA) performance by simply adding a random audio module. Fur-
thermore, it is worth noting that the dropout regularization technique inhibits this behavior, suggesting
that the previously claimed audio-visual models may not effectively incorporate audio information, but
rather regularize the visual module.

These findings highlight the need for careful consideration of the role of audio information in audio-
visual models, and suggest that previously claimed audio-visual models may primarily function as reg-
ularizers for the visual module. Overall, our study provides insights into the nuanced interplay between
audio and visual modalities in audio-visual models, and contributes to a better understanding of the
underlying mechanisms and performance dynamics in this field.

Table 5.10: Comparison of metrics on the DHF1K(val), Hollywood-2 and UCF-Sports test sets.

DHF1K Hollywood-2 UCF-Sports

CC sAUC AUC NSS SIM CC sAUC AUC NSS SIM CC sAUC AUC NSS SIM

ViNet 0.521 0.732 0.919 2.956 0.388 0.693 0.813 0.930 3.730 0.550 0.673 0.810 0.924 3.620 0.522

AViNet 0.517 0.723 0.912 2.941 0.380 0.700 0.814 0.931 3.661 0.534 0.709 0.809 0.931 3.915 0.531

ViNet-D 0.521 0.729 0.914 3.000 0.379 0.703 0.815 0.930 3.778 0.551 0.723 0.812 0.936 3.956 0.533
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Chapter 6

Conclusions and Future Work

This thesis presents a comprehensive analysis to underline the role of audio in current deep AVSP
methods. Our experiments on 10 different datasets clearly indicate that visual modality dominates
the learning; the current models largely ignore the audio information. The observation is consistent
while using three different audio backbones and four different fusion techniques. The observations
contrast with the previous methods, which claim audio as a significant contributing factor. We show
the performance gains are a byproduct of improved training and the additional audio branch seems to
have a regularizing effect. We show that similar gains are achieved while sending random audio during
training.

The results demonstrate a clear gap between human learning and deep learning-based models. Sev-
eral psycho-visual studies show that audio impacts visual attention; however, neural networks seem to
discard this information. We believe there could be multiple reasons behind the finding. First, neural
networks behave differently than humans. For instance, in a multi-person conversation, humans exhibit
turn-taking behavior. In contrast, networks can process all faces (or lip movements) in parallel through
the convolution filters.

Limitations of the dataset could be the second reason for this. For instance, if the actions are highly
correlated with sound, localizing movement/actions can help predict saliency. Similarly, in datasets with
frontal face conversations, just picking the lip movement can help identify the speaker and aid saliency
prediction, and audio modality might be ignored. Finally, one major limitation of all works discussed
in the paper is that they use monaural audio, and hence the directional aspect is discarded. In contrast,
the ability of humans to sense the direction of the audio significantly aids the attention mechanism.
A future direction [13] could be to curate large-scale datasets with directional audio (stereo) and 360-
degree videos. The monaural audio and limited field of view can then be simulated from such datasets.
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(a) Original Image (b) Potential Loc. map (c) Human sound (d) Machine sound

Figure 6.1: Visualization of localization maps with several objects capable of producing sound in the

image and responding to an object that is n producing sound.

Also to effectively incorporate audio cues, there is a need to curate datasets in the direction of Sound
Source Localization [50] which falls in line with human attention and tends to fixate it in the surround-
ings by classifying audio to different objects. For example, as shown in the Figure 6.1, the localization
map of machine sound (Fig. 6.1d) tends to fixate on the machine, whereas the localization map of a
human’s sound fixates on the person operating the machine (Fig. 6.1c).

Overall, we believe the experiments presented in this thesis will help the community reflect upon
the role of audio in the current research landscape, identify the shortcomings, and help build improved
AVSP models.
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Figure 6.2: Qualitative Comparisons of our hypothesis on 6 Saliency Datasets for STAViS (Here dropout

is chosen as 85%)
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Figure 6.3: Qualitative Comparisons of our hypothesis on 10 Saliency Datasets for AViNet (Here

dropout is chosen as 85%)
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