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Abstract

Video is a complex modality consisting of multiple events, complex action, humans, objects and their
interactions densely entangled over time. Understanding videos has been the core and one of the most
challenging problem in computer vision and machine learning. What makes it even harder is the lack
of structured formulation of the task specially when long videos are considered consisting of multiple
events and diverse scenes. Prior works in video understanding have tried to address the problem only in a
sparse and a uni-dimensional way, for example action recognition, spatio-temporal grounding, question
answering and, free form captioning. However it requires holistic understanding to fully capture all the
events, actions, and relations between all the entities, and represent any natural scene with the highest
detail in the most faithful way. It requires answering several questions such as who is doing what to
whom, with what, how, why, and where.

Recently, Video Situation Recognition (VidSitu) through semantic role labeling is framed as a task
for structured prediction of multiple events, their relationships, and actions and various verb-role pairs
attached to descriptive entities. This is one of the most dense video understanding task posing several
challenges in identifying, disambiguating, and co-referencing entities across multiple verb-role pairs,
but also faces some challenges of evaluation due to the free form captions for representing the roles.
In this work, we propose the addition of spatio-temporal grounding as an essential component of the
structured prediction task in a weakly supervised setting, without requiring ground truth bounding boxes.
Since evaluating free-form captions can be difficult and imprecise this not only improves the current
formulation and the evaluation setup, but also improves the interpretability of the models decision,
because grounding allows us to visualise where the model is looking while generating a caption.

To this end we present a novel three stage Transformer model, VideoWhisperer, that is empowered to
make joint predictions. In stage one, we learn contextualised embeddings for video features in parallel
with key objects that appear in the video clips to enable fine-grained spatio-temporal reasoning. The
second stage sees verb-role queries attend and pool information from object embeddings, localising
answers to questions posed about the action. The final stage generates these answers as captions to
describe each verb-role pair present in the video. Our model operates on a group of events (clips)
simultaneously and predicts verbs, verb-role pairs, their nouns, and their grounding on-the-fly. When
evaluated on a grounding-augmented version of the VidSitu dataset, we observe a large improvement in
entity captioning accuracy, as well as the ability to localize verb-roles without grounding annotations at
training time.
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Chapter 1

Introduction

Note: this work [12] is published at NeurIPS 2022 and the text in the paper is repeated.

At the end of The Dark Knight, we see a short intense sequence that involves Harvey Dent toss a
coin while holding a gun followed by sudden action. Holistic understanding of such a video sequence,
especially one that involves multiple people, requires predicting more than the action label (what verb).
For example, we may wish to answer questions such as who performed the action (agent), why they are
doing it (purpose / goal), how are they doing it (manner), where are they doing it (location), and even
what happens after (multi-event understanding).

While humans are able to perceive the situation and are good at answering such questions, many
works often focus on building tools for doing single tasks, e.g predicting actions [8] or detecting ob-
jects [2, 4] or image/video captioning [21, 32]. We are interested in assessing how some of these
advances can be combined for a holistic understanding of video clips. In particular, we foresee that suc-
cessful systems could have wide-ranging applications from teaching embodied agents to understand and
interact with the world [46], to video retrieval [22] and question-answering [43], and even fine-grained
movie understanding [11, 38].

A recent and audacious step towards this goal is the work by Sadhu et al [31]. They propose Video
Situation Recognition (VidSitu), a structured prediction task over five short clips consisting of three
sub-problems: (i) recognizing the salient actions in the short clips; (ii) predicting roles and their entities
that are part of this action; and (iii) modelling simple event relations such as enable or cause. Similar
to the predecessor image situation recognition (imSitu [45]), VidSitu is annotated using Semantic Role
Labelling (SRL) [25]. A video (say 10s) is divided into multiple small events (∼2s) and each event is
associated with a salient action verb (e.g hit). Each verb has a fixed set of roles or arguments, e.g agent-
Arg0, patient-Arg1, tool-Arg2, location-ArgM(Location), manner-ArgM(manner), etc, and each role is
annotated with a free form text caption, e.g agent: Blonde Woman, as illustrated in Fig. 1.1.

Grounded VidSitu. VidSitu poses various challenges: long-tailed distribution of both verbs and text
phrases, disambiguating the roles, overcoming semantic role-noun pair sparsity, and co-referencing of
entities in the entire video. Moreover, there is ambiguity in text phrases that refer to the same unique en-
tity (e.g “man in white shirt” or “man with brown hair” A model may fail to understand which attributes

1



Video 1                 Video 2                 Video 3                 

Ev
en

t 1
Ev

en
t N

Event 1, Verb: ROLL 
Arg0 (Roller) Boy in striped shirt

Arg1 (Thing rolled) Himself

ArgM (Direction) Back and forth

Arg Scene Backyard

Event N, Verb: RUB 

Arg0 (Rubber) Person in blue shirt

Arg1 (Thing rubbed) Dog

Arg2 (Surface) Hand

Arg Scene Backyard

Event 1, Verb: HIT 
Arg0 (Hitter) Man in armor

Arg1 (Thing hit) Bald man

Arg2 (Instrument) Spear

Arg Scene Arena

Event N, Verb: WINCE 
Arg0 (Wincer) Bald man

Arg Scene Arena

Event 1, Verb: LIFT

Arg0 (Elevator) Blonde woman

Arg1 (Thing lift) Her phone

ArgM (Direction) Up

ArgM (Manner) Quickly

Arg Scene An open field

Event N, Verb: TALK 
Arg0 (Talker) The kneeling man

Arg1 (Hearer) Blonde woman

Arg2 (Manner) Confidently

Arg Scene An open field

Figure 1.1 Overview of GVSR: Given a video consisting of multiple events, GVSR requires recognis-

ing the action verbs, their corresponding roles, and localising them in the spatio-temporal domain. This

is a challenging task as it requires to disambiguate between several roles that the same entity may take

in different events, e.g in Video 2 the bald man is a patient in event 1, but an agent in event N. More-

over, the entities present in multiple events are co-referenced in all such events. Colored arguments are

grounded in the image with bounding boxes (figure best seen in colour).

are important and may bias towards a specific caption (or pattern like shirt color), given the long-tailed
distribution. This is exacerbated when multiple entities (e.g agent and patient) have similar attributes
and the model predicts the same caption for them (see Fig. 1.1). To remove biases of the captioning
module and gauge the model’s ability to identify the role, we propose Grounded Video Situation Recog-
nition (GVSR) - an extension of the VidSitu task to include spatio-temporal grounding. In addition to
predicting the captions for the role-entity pairs, we now expect the structured output to contain spatio-
temporal localization, currently posed as a weakly-supervised task, i.ewe don’t require any ground truth

2



bounding box supervision during training. The supervision comes only from the ground truth semantic
role captions.
Joint structured prediction. Previous works [31, 42] modeled the VidSitu tasks separately, e.g the
ground-truth verb is fed to the SRL task. This setup does not allow for situation recognition on a new
video clip without manual intervention. Instead, in this work, we focus on solving three tasks jointly:
(i) verb classification; (ii) SRL; and (iii) Grounding for SRL. We ignore the original event relation
prediction task in this work, as this can be performed later in a decoupled manner similar to [31].

We propose VideoWhisperer, a new three-stage transformer architecture that enables video under-
standing at a global level through self-attention across all video clips, and generates predictions for the
above three tasks at an event level through localised event-role representations. In the first stage, we
use a Transformer encoder to align and contextualise 2D object features in addition to event-level video
features. These rich features are essential for grounded situation recognition, and are used to predict
both the verb-role pairs and entities. In the second stage, a Transformer decoder models the role as a
query, and applies cross-attention to find the best elements from the contextualised object features, also
enabling visual grounding. Finally, in stage three, we generate the captions for each role entity. The
three-stage network disentangles the three tasks and allows for end-to-end training.

To evaluate the proposed framework for multi-event multi-role grounding we annotate the validation
set with ground truth bounding boxes, and propose a new IoU based metric.

1.1 Contributions

The contributions of the thesis are as follows:

• We present a new framework that combines grounding with semantic role labeling (SRL) for
end-to-end Grounded Video Situation Recognition (GVSR).

• We formulate the new grounded SRL task, which includes localization of each role entity across
the entire video spanning multiple events in a single shot.

• We release the grounding annotations and also include them in the evaluation benchmark for
GVSR.

• We design a new three-stage Transformer based model- VideoWhisperer for joint verb prediction,
semantic-role labelling through caption generation, and weakly-supervised grounding of visual
entities.

• We propose role prediction and use role queries contextualised by video embeddings for SRL,
circumventing the requirement of ground-truth verbs or roles, enabling end-to-end GVSR.

• We propose to combine object features with video features and highlight multiple advantages
enabling weakly-supervised grounding and improving the quality of SRL captions leading to a 22
points jump in CIDEr score in comparison to a video-only baseline.
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• Finally, we present extensive ablation experiments to analyze our model. Our model achieves the
state-of-the-art results on the VidSitu benchmark.

1.2 Organization of Thesis

The rest of the thesis is organized as follows.

• In Chapter 2, we discuss the related works in image and video situation recognition literature. We
also discuss the limitations and challenges in the existing frameworks.

• In Chapter 3, we formulate the GVSR task and describe the VideoWhisperer model in detail. Then
we discuss the training and inference strategy.

• In Chapter 4, we discuss the dataset, metrics and, the evaluation setup. Then we explain the 2
frameworks emerging from the model 1) Framework 1: Using ground truth roles for grounded
SRL. And 2) Framework 2: End-to-end prediction of Verbs, SRL and, grounding. We show all
the experiments and ablation studies for both the frameworks in detail.

• Chapter 5 presents the concluding thoughts and future works.
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Chapter 2

Related Works

2.1 Image Situation Recognition

Situation Recognition in images was first proposed by [10] where they created datasets to understand
actions along with localisation of objects and people. Another line of work, imSitu [45] proposed
situation recognition via semantic role labelling by leveraging linguistic frameworks, FrameNet [3]
and WordNet [23] to formalize situations in the form of verb-role-noun triplets. Recently, grounding
has been incorporated with image situation recognition [27] to add a level of understanding for the
predicted SRL. Situation recognition requires global understanding of the entire scene, where the verbs,
roles and nouns interact with each other to predict a coherent output. Therefore several approaches
used CRF [45], LSTMs [27] and Graph neural networks [16] to model the global dependencies among
verb and roles. Recently various Transformer [36] based methods have been proposed that claim large
performance improvements [6, 7, 40]. In the next subsections we will look into this task more closely
and discuss several State-of-the-art approaches mentioned above.

2.1.1 Visual Semantic Role Labeling for Image Understanding

This work introduces situation recognition [45], the problem of producing a structured and a concise
summary of the situation happening in an image that includes: (1) the main activity (e.g., clipping), (2)
the participating actors, objects, entities, and locations (e.g., man, shears, sheep, wool, and field) and (3)
the roles these participants play in the activity (e.g., the man is clipping, the shears are his tool, the wool
is being clipped from the sheep, and the clipping is in a field). To define the verbs and roles, the authors
use FrameNet, a verb and role lexicon devel- oped by linguists, to define a large space of possible
situations and collect a dataset containing over 500 activities, 1,700 roles, 11,000 objects, 125,000
images, and 200,000 unique situations. The authors also introduce a structured prediction baseline
using Conditional Random Fields and show that, situation-driven prediction of objects and activities
outperforms independent object and activity recognition. CRF was used to model dependencies between
verb-role-noun pairs. In particular, a neural network was trained in an end-to-end fashion to both,
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predict the unary potentials for verbs and nouns, and to perform inference in the CRF. While their
model captured the dependency between the verb and role-noun pairs, dependencies between the roles
were not modeled explicitly.

Figure 2.1 [45] Multiple images depicting situations where actors, objects, substances, and locations

play different roles in an activity. Below each image is a semantic role frame that describes the situation:

the left columns (blue) list verb or action specific roles that are predefined from FrameNet- a broad

coverage verb lexicon, while the right columns (green) list the values of each role from ImageNet

classes. Three different activities are shown, for 6 different scenes, which highlights that even in the

same activity visual properties vary widely between role values (e.g., clipping a dog’s nails looks very

different from clipping a sheep’s wool).

2.1.2 Situation Recognition with Graph Neural Networks

This work addressed the problem of recognizing situations in images and propose a model based on
Graph Neural Networks that allows to efficiently capture joint dependencies between roles using neural
networks defined on a graph. [16] Their approach is able to propagate information between verbs and
roles together and significantly outperforms the previous CRF and RNN based baselines. The authors
stressed that the information of the verb and roles heavily depends on each other and hence they propose
to model these dependencies through a graph G = (A,B). Where the nodes in graph a ∈ A are of two
types of verb or role, and take unique values of V or N , respectively. Since each image in the dataset
is associated with one unique verb, every graph has a single verb node. Edges in the graphs b = (a′, a)

encode dependencies between role-role or verb- role pairs, and can be directed or undirected. Fig.2.1.2
shows an example of such a graph where verb and role nodes are connected to each other. They design
a Gated Graph Neural Networks (GGNNs) that learns the representation of a graph, which is then used
to predict node or graph-level output. Each node of a GGNN is associated with a hidden state vector
that is updated in a recurrent fashion. At each time step, the hidden state of a node is updated based
on its history and incoming messages from its neighbors. These updates are applied simultaneously to
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all nodes in the graph at each propagation step. The hidden states after T propagation steps are used to
predict the output. They adopt the GGNN framework to recognize situations in images. Each image
is associated with one verb v that corresponds to a semantic role frame f with a set of roles Ef which
is predefined. Then they instantiate a graph Gf for each image that consists of one verb node, and Ef

(number of roles associated with the frame) role nodes. To capture the dependency between roles to
the full extent, they propose creating undirected edges between all pairs of roles. This approach led to
state-of-the-art results and was the first one to establish that situation recognition requires dense and
fully connected processing of verbs and roles, which led to the rise of several Transformer based models
for situation recognition [6, 7, 40].

Figure 2.2 [16] Understanding an image involves more than just predicting the most salient action.

We need to know who is performing this action, what tools he may be using, what is the location etc.

All these information are dependent on each other, and coherently understanding situations requires to

model all the verb, roles, and the corresponding nouns together. The figure shows a glimpse of the

model that uses a graph to model dependencies between the verb and its roles.
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Figure 2.3 [27] A Two examples from our dataset: semantic frames describe primary activities and

relevant entities. Groundings are bounding-boxes colored to match roles. B Output of our model (dev

set image). C Top-4 nearest neighbors to B using model predictions. Beyond visual similarity, these

images are clearly semantically similar. D Output of the conditional model: given a bounding-box

(yellow-dashed), predicts a relevant frame. E Example of grounded semantic chaining: given query

boxes the model can chain situations together. E.g. the teacher teaches students so they may work on a

project

2.1.3 Grounded Image Situation Recognition

This work introduced Grounded Situation Recognition(GSR) [27], is an extension of the previously
defined image situation recognition task where in addition to producing structured semantic summaries
of images describing: the primary activity, entities engaged in the activity with their roles (e.g. agent,
tool), it also grounds the corresponding role entities using bounding box prediction. To study this new
task the authors create the Situations With Groundings (SWiG) dataset which adds 278,336 bounding-
box groundings to the 11,538 entity classes in the imSitu [45] dataset. They propose a Joint Situation
Localizer that jointly predicts situations and groundings, this allows for a role’s noun and grounding to
be conditioned on the nouns and groundings of previous roles and the verb. This end-to-end training
outperforms independent training. The authors use RNN without fusion approach for joint prediction
of situations and grounding. The embeddings are extracted from ResNet-50, and are used for verb
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prediction, then an LSTM sequentially predicts the noun and the bounding boxes for each role in the
frame. Moreover the authors show initial findings on three future directions- conditional querying,
visual chaining, and grounded semantic aware image retrieval as shown in Figure 2.1.3.

2.2 Video Situation Recognition

2.2.1 Visual Semantic Role Labeling for Video Understanding

Figure 2.4 [31] A sample video and annotation from VidSitu. The figure shows a 10-second video

annotated with 5 events, one for each 2-second interval. Each event consists of a verb (like “deflect”)

and its arguments (like Arg0 (deflector) and Arg1 (thing deflected)). Entities that participate in multiple

events within a clip are co-referenced across all such events (marked using the same color). Finally, all

events are related to the central event (Event 3).

Recently, imSitu was extended to videos as VidSitu[31], a large scale video dataset based on short
movie clips spanning multiple events. Compared to image situation recognition, VidSRL not only re-
quires understanding the action and the entities involved in a single frame, but also needs to coherently
understand the entire video while predicting event-level verb-SRLs and co-referencing the entities par-
ticipating across events. The videos are represented as a set of related events, wherein each event consists
of a verb and multiple entities that fulfill various roles relevant to that event. VidSitu consists of 29K
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10-second movie clips richly annotated with a verb and semantic-roles every 2 seconds. Entities are
coreferenced across events within a movie clip and events are connected to each other via event-event
relations. Clips in VidSitu are drawn from a large collection of movies (3K) and have been chosen to be
both complex (4.2 unique verbs within a video) as well as diverse (200 verbs have more than 100 an-
notations each). The authors proposed to use standard video backbones for feature extraction followed
by multiple but separate Transformers to model all the tasks individually, using ground-truth of previ-
ous the task to model the next. For feature extraction and verb prediction per event, they use SlowFast
[8] pretrained on Kinetics [5] and then finetuned on the VidSitu videos. For Semantic role labeling, a
transformer encoder is used to contextualise all the event representations and an autoregressive decoder
starting with a ground truth verb is used to predict all the captions for each semantic role one by one.

2.2.2 Hierarchical Self-supervised Representation Learning for Movie Understanding

Figure 2.5 [42] Overview of the hierarchical pretraining methods. The left shows how contrastive

learning is used to pretrain the video feature backbone — features vanchor and vpositive produced from

two clips of the same video are pulled together to each other, whereas the feature vnegative, computed

from a clip sampled from another video, is pushed away. Whereas the right shows how to pretrain the

transformer feature contextualizer using mask prediction — in this sequence of 5 tokens, input tokens

v2 and v3 are masked out and fed to the contextualizer, and then forward through to get the outputs v̂i.

Then the learning objective is set to minimize the distance between the output tokens (v̂2, v̂3) and the

masked-out input tokens (v2, v3).
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This work proposed a self-supervised video representation learning approach for movie understand-
ing [42]. The authors proposed a novel hierarchical pretraining strategy that separately pretrains each
level of the hierarchical situation recognition model proposed by [31]. The low-level video feature ex-
tractor is trained using contrastive learning. Specifically they use InfoNCE objective, with the goal of
pulling together the representations of two clips sampled from the same video, while pushing apart those
clips that are sampled from different videos. The high level transformer video contextualising encoder is
pretrained using event mask prediction tasks resulting in large performance improvements on SRL. Our
goals are different with respect to these previous works in video situation recognition, as we propose to
learn and predict all three tasks simultaneously. To achieve this, we predict verb-role pairs on the fly and
design a new role query contextualised by video embeddings to model SRL. This eliminates the need
for ground-truth verbs and enables end-to-end situation recognition in videos. We also propose to learn
contextualised object and video features enabling weakly-supervised grounding for SRL, which was not
supported by the previous works.

2.3 Video Understanding

Video understanding is a broad area of research, dominantly involving tasks like action recogni-
tion [5, 8, 9, 33, 39, 41], localisation [18, 19], object grounding [30, 44], question answering [35, 47],
video captioning [29], and spatio-temporal detection [9, 34]. These tasks involve visual temporal under-
standing in a sparse uni-dimensional way. Where as, dense video understanding tasks like captioning
[49] provides fine-grained details but in an unstructured way, which makes it difficult to evaluate and
take decision upon. In contrast, GVSR involves a hierarchy of tasks, coming together to provide a fixed
structure, enabling dense situation recognition. The proposed task requires global video understanding
through event level predictions and fine-grained details to recognise all the entities involved, the roles
they play, and simultaneously ground them. Note that our work on grounding is different from classi-
cal spatio-temporal video grounding [48, 44] or referring expressions based segmentation [13] as they
require a text query as input. In our case, both the text and the bounding box (grounding) are predicted
jointly by the model.
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Chapter 3

Grounded Video Situation Recognition

3.1 Problem Formulation

Preliminaries Given a video V consisting of several short events E = {ei}, the complete situation in V ,
is characterised by 3 tasks. (i) Verb classification, requires predicting the action label vi associated with
each event ei; (ii) Semantic role labelling (SRL), involves guessing the nouns (captions) Ci = {Cik} for
various roles Ri = {r|r ∈ P(vi)∀r ∈ R} associated with the verb vi. P is a mapping function from
verbs to a set of roles based on VidSitu (extended PropBank [25]) and R is the set of all roles); and
(iii) Spatio-temporal Grounding of each visual role-noun prediction Cij is formulated as selecting one
among several bounding box proposals B obtained from a pretrained object detector applied over sub-
sampled keyframes of the video. We evaluate this against ground-truth annotations done at a keyframe
level. No ground truth bounding boxes are used during training.

3.2 VideoWhisperer

We now present the details of our three stage Transformer model, VideoWhisperer. A visual overview
is presented in Fig. 3.1. For brevity, we request the reader to refer to [36] for now popular details of
self- and cross-attention layers used in Transformer encoders and decoders.

3.2.1 Contextualised Video and Object Features (Stage 1)

GVSR is a challenging task, that requires to coherently model spatio-temporal information to under-
stand the salient action, determine the semantic role-noun pairs involved with the action, and simulta-
neously localise them. Different from previous works that operate only on event level video features,
we propose to model both the event and object level features simultaneously. We use a pretrained video
backbone ϕvid to extract event level video embeddings xe

i = ϕvid(ei).

For representing objects, we subsample frames F = {ft}Tt=1 from the entire video V . We use a
pretrained object detector ϕobj and extract top M object proposals from every frame. The box locations
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Figure 3.1 VideoWhisperer: We present a new 3-stage Transformer for GVSR. Stage-1 learns the

contextualised object and event embeddings through a video-object Transformer encoder (VO), that is

used to predict the verb-role pairs for each event. Stage-2 models all the predicted roles by creating

role queries contextualised by event embeddings, and attends to all the object proposals through a role-

object Transformer decoder (RO) to find the best entity that represents a role. The output embeddings

are fed to captioning Transformer decoder (C) to generate captions for each role. Transformer RO’s

cross-attention ranks all the object proposals enabling localization for each role.

(along with timestamp) and corresponding features are

B = {bmt},m = [1, . . . ,M ], t = [1, . . . , T ] , and {xo
mt}Mm=1 = ϕobj(ft) respectively. (3.1)

The subset of frames associated with an event ei are computed based on the event’s timestamps,

Fi = {ft|estart
i ≤ t ≤ eend

i } . (3.2)
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Specifically, at a sampling rate of 1fps, video V of 10s, and events ei of 2s each, we associate 3 frames
with each event such that the border frames are shared. We can extend this association to all object
proposals based on the frame in which they appear and denote this as Bi.

3.2.1.1 Video-Object Transformer Encoder (VO)

Since the object and video embeddings come from different spaces, we align and contextualise them
with a Transformer encoder [36]. Event-level position embeddings PEi and TE type embeddings are
added to both representations, event xe

i and object xo
mt (t ∈ Fi). In addition, 2D object position

embeddings PEmt and frame number embedding FEt are added to object embeddings xo
mt. Together,

they help capture spatio-temporal information. The object and video tokens are passed through multiple
self-attention layers to produce contextualised event and object embeddings:

[. . . ,o′mt, . . . , e
′
i, . . .] = TransformerVO ([. . . ,xo

mt + PEi + PEmt + FEt + TEo, . . . ,

xe
i + PEi + TEv, . . .] . (3.3)

3.2.1.2 Verb and role classification

Each contextualised event embedding e′i is not only empowered to combine information across
neighboring events but also focus on key objects that may be relevant. We predict the action label
for each event by passing them through a 1-hidden layer MLP,

v̂i = MLPe(e
′
i) . (3.4)

Each verb is associated with a fixed set of roles based on the mapping P(·). This prior information
is required to model the SRL task. Previous works [31, 42] use ground-truth verbs to model SRL
and predict both the roles and their corresponding entities. While this setup allows for task specific
modelling, it is not practical in the context of end-to-end video situation recognition. To enable GVSR,
we predict the relevant roles for each event circumventing the need for ground-truth verbs and mapped
roles. Again, we exploit the contextualised event embeddings and pass them through a role-prediction
MLP and perform multi-label role classification. Essentially, we estimate the roles associated with an
event as

R̂i = {r|σ(MLPr(e
′
i)) > θrole} , (3.5)

where σ(·) is the sigmoid function and θrole is a common threshold across all roles (typically set to 0.5).
Armed with verb and role predictions, v̂i and R̂i, we now look at localising the role-noun pairs and
generating the SRL captions.

3.2.2 Semantic Role Labelling with Grounding (Stage 2, 3)

A major challenge in SRL is to disambiguate roles, as the same object (person) may take on different
roles in the longer video V . For example, if two people are conversing, the agent and patient roles
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will switch between speaker and listener over the course of the video. Another challenge is to generate
descriptive and distinctive captions for each role such that they refer to a specific entity. We propose to
use learnable role embeddings {rik}

|Ri|
k=1 which are capable of learning distinctive role representations.

As mentioned earlier, roles such as agent, patient, tool, location, manner, etc. ask further questions
about the salient action.

3.2.2.1 Creating role queries

Each role gets updated by the verb. For example, for an action jump, the agent would be referred to
as the jumper. We strengthen the role embeddings by adding the contextualised event embeddings to
each role, instead of encoding ground-truth verbs. This eliminates the dependency on the ground-truth
verb-role pairs, and enables end-to-end GVSR. Similar to the first stage (VO), we also add event-level
temporal positional embeddings to obtain role query vectors

qik = rk + e′i + PEi . (3.6)

Depending on the setting, k can span all roles R, ground-truth roles Ri or predicted roles R̂i.

3.2.2.2 Role-Object Transformer Decoder (RO)

It is hard to achieve rich captions while using features learned for action recognition. Different from
prior works [31, 42], we use fine-grained object level representations instead of relying on event-based
video features. We now describe the stage two of our VideoWhisperer model, the Transformer decoder
for SRL. Our Transformer decoder uses semantic roles as queries and object proposal representations as
keys and values. Through the cross-attention layer, the event-aware role query attends to contextualised
object embeddings and finds the best objects that represent each role.

We incorporate an event-based attention mask, that limits the roles corresponding to an event to
search for objects localised in the same event, while masking out objects from other events. Cross-
attention captures local event-level role-object interactions while the self-attention captures the global
video level understanding allowing event roles to share information with each other.

We formulate event-aware cross-attention as follows. We first define the query, key, and value tokens
fed to the cross-attention layer as

q′
ik = WQqik, k′

mt = WKo′mt, and v′
mt = WV o

′
mt . (3.7)

Here, W[Q|K|V ] are learnable linear layers.

Next, we apply a mask while computing cross-attention to obtain contextualised role embeddings as

r′ik =
∑
mt

αmtv
′
mt, where αmt = softmaxmt(⟨q′

ik,k
′
mt⟩ · 1(ft ∈ Fi)) , (3.8)
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where ⟨·, ·⟩ is an inner product and 1(·) is an indicator function with value 1 when true and −∞ other-
wise to ensure that the cross-attention is applied only to the boxes Bi, whose frames ft appear within
the same event ei.

After multiple layers of cross- and self-attention, the role query extracts objects that best represent
the entities for each role.

[. . . , zik, . . .] = TransformerRO([. . . ,qik, . . . ; . . . ,o
′
mt, . . .]) . (3.9)

3.2.2.3 Captioning Transformer Decoder (C)

The final stage of our model is a caption generation module. Specifically, we use another Transformer
decoder [36] whose input context is the output role embedding zik from the previous stage and unroll
predictions in an autoregressive manner.

Ĉik = TransformerC(zik) . (3.10)

The role-object decoder in stage 2 shares all the necessary information through self-attention, and allows
us to generate the captions for all the roles in parallel; while [31, 42] generate captions sequentially ,
i.e for a given event, the caption for role k is decoded only after the caption for role k − 1. This makes
VideoWhisperer efficient with a wall-clock runtime of 0.4s for inference on a 10s video, while the
baseline [31] requires 0.94 seconds.

3.2.2.4 Grounded Semantic Role Labelling

The entire model is designed in a way to naturally provide SRL with grounding in a weakly-
supervised way, without the need for ground-truth bounding boxes during training. Cross-attention
through the Transformer decoder RO scores and ranks all the objects based on the role-object relevance
at every layer. We extract the cross-attention scores αmt for each role k and event ei from the final layer
of TransformerRO, and identify the highest scoring box and the corresponding timestep as

b̂∗m, b̂∗t = argmax
m,t

αmt . (3.11)

3.3 Training and Inference

Training. VideoWhisperer can be trained in an end-to-end fashion, with three losses. The first two
losses, CrossEntropy and BinaryCrossEntropy, are tapped from the contextualis ed event embeddings
and primarily impact the Video-Object Transformer encoder

Lverb
i = CE(v̂i, vi) and Lrole

i =
∑
r∈Ri

BCE(r ∈ R̂i, r ∈ Ri) . (3.12)
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The final component is derived from the ground-truth captions and helps produce meaningful SRL
outputs. This is also the source of weak supervision for the grounding task,

L
caption
ik =

∑
w

CE(Ĉw
ik, C

w
ik) , (3.13)

where the loss is applied in an autoregressive manner to each predicted word w. The combined loss for
any training video V is given by

L =
∑
i

Lverb
i +

∑
i

Lrole
i +

∑
ik

L
caption
ik . (3.14)

Inference. At test time, we split the video V into similar events ei and predict verbs v̂i and roles R̂i for
the same. Here, we have two options: (i) we can use the predicted verb and obtain the corresponding
roles using a ground-truth mapping between verbs and roles P(v̂i), or (ii) only predict captions for the
predicted roles R̂i. We show the impact of these design choices through experiments.
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Chapter 4

Experiments

We evaluate our model in two main settings. (i) Framework 1: This setup mimics VidSitu [31],
where tasks are evaluated separately. We primarily focus on (a) Verb prediction, (b) SRL and (c) Grounded
SRL. This setting uses ground-truth verb-role pairs for modelling (b) and (c). (ii) Framework 2: End-
to-end GVSR, where all the three tasks are modelled together without using ground truth verb-roles.

4.1 Dataset and Metrics

Dataset. We evaluate our model on the VidSitu [31] dataset that consists of 29k videos (23.6k train,
1.3k val, and others in task-specific test sets) collected from a diverse set of 3k movies. All videos
are truncated to 10 seconds, have 5 events spanning 2 seconds each and are tagged with verb and SRL
annotations. There are a total of 1560 verb classes and each verb is associated with a fixed set of roles
among 11 possible options, however not all are used for evaluation due to noisy annotations (we follow
the protocol by [31]). For each role the corresponding value is a free-form caption.
Metrics. For verb prediction, we report Acc@K, i.e event accuracy considering 10 ground-truth verbs
and top-K model predictions and Macro-Averaged Verb Recall@K. For SRL we report CIDEr [37],
CIDEr-Vb: Macro-averaged across verbs, CIDEr-Arg: Macro-averaged across roles, LEA [24], and
ROUGE-L [17]. For more details on the metrics pleas refer to [31].

4.2 Implementation details.

We implement our model in Pytorch [26]. We extract event (video) features from a pretrained Slow-
Fast model [8] for video representation (provided by [31]). For object features, we use a FasterRCNN
model [28] provided by BUTD [2] pretrained on the Visual Genome dataset [15]. We sample frames at
1 fps from a 10 second video, resulting in T = 11 frames. We extract top M = 15 boxes from each
frame, resulting in 165 objects per video.

All the three Transformers have the same configurations - they have 3 layers with 8 attention heads,
and hidden dimension 1024. We use the tokenizer and vocabulary provided by VidSitu [31] which uses
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byte pair encoding. We have 5 types of learnable embeddings: (i) event position embeddings PEi with
5 positions corresponding to each event in time; (ii) object localization 2D spatial embedding; and (iii)
role embeddings, for each of the 11 roles. The verb classification MLP has a single hidden layer of 2048
d and produces an output across all 1560 verbs. (iv) Object and Video type embeddings, TEo and TEv

respectively. (V) Frame number embedding FEt from frame 1 to 11.
The role classification MLP also has a single hidden layer of 1024 d and produces output in a multi-

label setup for all the 11 roles mentioned above. We threshold role prediction scores with θrole = 0.5.
We use the Adam optimizer [14] with a learning rate of 10−4 to train the whole model end-to-end.

As we use pretrained features, we train our model on a single RTX-2080 GPU, batch size of 16.

4.3 Grounding SRL: Annotation and Evaluation

As free form captions and their evaluation can be ambiguous, we propose to simultaneously ground
each correct role in the spatio-temporal domain. To evaluate grounding performance, we obtain anno-
tations on the validation set. We select the same T = 11 frames that are fed to our model sampled at
1fps. For each frame, we ask annotators to see if the visual roles (agent, patient, instrument), can be
identified by drawing a bounding box around them using the CVAT tool [1] (see Appendix 4.10 for a
thorough discussion). For each event i and role k, we consider all valid boxes and create a dictionary
of annotations Gik with keys as frame number and value as bounding box. During prediction, for each
role r ∈ R̂i, we extract the highest scoring bounding box as in Eq. 3.11. The Intersection-over-Union
(IoU) metric for an event consists of two terms. The first checks if the selected frame appears in the
ground-truth dictionary, while the second compares if the predicted box has an overlap greater than θ

with the ground-truth annotation,

IoU@θ =
1

|Ri|

|Ri|∑
k=1

1[b̂∗t ∈ Gik] · 1[IoU(b̂∗m,Gik[t]) > θ] . (4.1)

4.4 Framework 1: Using ground truth roles for Grounded SRL

We evaluate our model in two main settings. This setup mimics VidSitu [31], where tasks are evalu-
ated separately, and ground truth from the previous task are used to model the next task. We primarily
focus on (a) Verb prediction, (b) SRL and (c) Grounded SRL, and only require ground truth roles for
each ground truth verb to model the SRL and grounded SRL task.

4.4.1 Grounded SRL Ablations

We analyze the impact of architecture choices, role query embeddings, and applying a mask in the
cross-attention of the role-object decoder. All ablations in this section assume access to the ground-truth
verb or roles as this allows us to analyze the effect of various design choices. Similar to [42] we observe
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Table 4.1 Architecture ablations. All the models use event-aware cross-attention. + indicates stages

of the model. V: Video encoder, VO: Video-Object encoder, VOR: Video-Object-Role encoder, RV:

Role-Video decoder, RO: Role-Object decoder, and C: Captioning Transformer.

# Architecture Query Emb. CIDEr IoU@0.3 IoU@0.5

1 RV + C Role + GT-verb 47.91 ± 0.53 - -

2 RO + C Role + GT-verb 70.48 ± 1.09 0.14 ± 0.01 0.06 ± 0.003

3 VOR + C Role + Event 67.4 ± 0.81 0.22 ± 0.00 0.09 ± 0.002

4 V + RO + C Role + Event 69.15 ± 0.62 0.23 ± 0.03 0.09 ± 0.01

5 VO + RO + C Role + Event 68.54 ± 0.48 0.29 ± 0.013 0.12 ± 0.01

large variance across runs, therefore we report the average accuracy and the standard deviation over 3
runs for all the ablation experiments and 10 runs for the proposed model (VO+RO+C).

4.4.1.1 Architecture design

We present SRL and grounding results in Table 4.1. Rows 1 and 2 use a two-stage Transformer
decoder (ignoring the bottom video-object encoder). As there is no event embedding e′i, role queries
are augmented with ground-truth verb embedding. Using role-object pairs (RO) is critical for good
performance on captioning as compared to role-video (RV), CIDEr 70.48 vs. 47.91. Moreover, using
objects enables weakly-supervised grounding. Row 3 represents a simple Transformer encoder that
uses self-attention to model all the video events, objects, and roles (VOR) jointly. As before, role-object
attention scores are used to predict grounding. Incorporating videos and objects together improves
the grounding performance. We switch from a two-stage to a three-stage model between rows 1, 2,
3 vs. 4 and 5. Rows 2 vs. 5 illustrates the impact of including the video-object encoder. We see
a significant improvement in grounding performance 0.14 to 0.29 for IoU@0.3 and 0.06 to 0.12 for
IoU@0.5 without significantly affecting captioning performance. Similarly, rows 4 vs. 5 demonstrate
the impact of contextualizing object embeddings by events. In particular, using contextualised object
representations o′mt seems to help as compared against base features xo

mt.

4.4.1.2 Role query embeddings design

Prior works in situation recognition [7, 31, 40] use verb embeddings to identify entities from both
images or videos. In this ablation, we show that instead of learning verb embeddings that only capture
the uni-dimensional meaning of a verb and ignore the entities involved, event (or video) embeddings
remember details and are suitable for SRL. In fact, Table 4.2 (architecture: VO + RO + C) row 2 vs. 3
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Table 4.2 Comparing role query embeddings.

# Query Emb. CIDEr IoU@0.3 IoU@0.5

1 Role only 68.61 ± 0.61 0.27 ± 0.011 0.11 ± 0.009

2 Role + GT-verb 68.71 ± 1.06 0.25 ± 0.02 0.10 ± 0.01

3 Role + Event 68.54 ± 0.48 0.29 ± 0.013 0.12 ± 0.01

show that event embeddings are comparable and slightly better than GT-verb embeddings when evalu-
ated on SRL and Grounding respectively, eliminating the need for GT verbs. Somewhat surprisingly, we
see that the role embeddings alone perform quite well. We believe this may be due to role embeddings
(i) capture the generic meaning like agent and patient and can generate the correct entities irrespective
of the action information; and (ii) the role query attends to object features which are contextualised by
video information, so the objects may carry some action information with them.

4.4.1.3 Masked cross-Attention in RO decoder

We use masking in event-aware cross-attention to ensure that the roles of an event attend to objects
coming from the same event. As seen in Table 4.3 (model: VO + RO + C, query is role + event
embedding), this reduces the object pool to search from and improves both the SRL and Grounding

Table 4.3 Impact of masking in RO decoder.

Mask CIDEr IoU@0.3 IoU@0.5

No 67.02 ± 0.51 0.25 ± 0.02 0.10 ± 0.012

Yes 68.54 ± 0.48 0.29 ± 0.013 0.12 ± 0.01

4.4.2 Grounded SRL SoTA comparison on the validation set

In Table 4.4, we compare our results against VidSitu [31] and a concurrent work that uses far better
features [42]. We reproduce results for VidSitu [31] by teacher-forcing the ground-truth role pairs
to make a fair comparison while results for work [42] are as reported in their paper. Nevertheless,
we achieve state-of-the-art performance with a 22 points gain in CIDEr score over [31] and a 8 point
gain over [42], while using features from [31]. Moreover, our model allows grounding, something not
afforded by the previous approaches.
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Table 4.4 SoTA comparison, results for SRL and grounding with GT verb and role pairs.

Method CIDEr C-Vb C-Arg R-L Lea IoU@0.3 IoU@0.5

SlowFast+TxE+TxD [31] 46.01 56.37 43.58 43.04 50.89 - -

Slow-D+TxE+TxD [42] 60.34 ± 0.75 69.12 ± 1.43 53.87 ± 0.97 43.77 ± 0.38 46.77 ± 0.61 - -

VideoWhisperer (Ours) 68.54 ± 0.48 77.48 ± 1.52 61.55 ± 0.79 45.70 ± 0.30 47.54 ± 0.55 0.29 ± 0.013 0.12 ± 0.01

Human Level 84.85 91.7 80.15 39.77 70.33 - -

4.4.3 SRL SoTA comparison on the test set

We evaluate our model on the test set from the evaluation servers of VidSitu [31]. A constant im-
provement over [31] can be seen in Table 4.5. The trend is similar when compared with Table 4.4 from
the main paper that reports performance on the validation set.

Note that we do not report grounding metrics as the ground-truth nouns are not available. We are
currently working with the authors of VidSitu [31] to establish this as part of the benchmark.

Table 4.5 Results of SRL with GT verb and role pairs on the test dataset. VidSitu’s [31] results are as

reported in their paper.

Method CIDEr C-Vb C-Arg R-L Lea IoU@0.3 IoU@0.5

SlowFast+TxE+TxD [31] 47.25 52.92 45.48 43.46 50.88 - -

VideoWhisperer (Ours) 68.04 81.23 62.19 46.15 48.77 - -

Human Level 83.68 87.78 79.29 40.04 71.77 - -

4.5 Framework 2: GVSR- Joint Prediction of Video Situations

The primary goal of our work is to enable joint prediction of the verb, roles, entities, and grounding.

4.5.1 Verb prediction

is an extremely challenging problem due to the long-tail nature of the dataset. In fact, to alleviate
this challenge, verb metrics are computed by comparing predictions against 10 ground-truth human
annotations. In Table 4.6, we evaluate verb prediction performance when training the model for verb
prediction only (rows 1-3) or training it jointly for GVSR (rows 4, 5). Using a simple video-only
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Table 4.6 Verb prediction performance. Rows 1-3 train only for verb prediction. Rows 4, 5 are trained

for GVSR.

# Architecture Acc@1 Acc@5 Rec@5

1 Baseline [31] 46.79 75.90 23.38

2 V 48.82 78.01 23.32

3 VO 49.73 78.72 24.72

4 V + RV + C 40.83 70.73 24.37

5 VO + RO + C 45.06 75.59 25.25

transformer encoder boosts performance over independent predictions for the five event clips (46.8% to
48.8%, rows 1 vs. 2). Including objects through the video-object encoder (row 3) provides an additional
boost resulting in the highest performance at 49.73% on Accuracy@1.

A similar improvement is observed in rows 4 to 5 (V vs. VO stage 1 encoder). Interestingly, the
reduced performance of rows 4 and 5 as compared against rows 1-3 is primarily because the best epoch
corresponding to the highest verb accuracy does not coincide with highest SRL performance. Hence,
while the verb Accuracy@1 of the GVSR model does reach 49% during training it degrades subse-
quently due to overfitting. Nevertheless, we observe that the macro-averaged Recall@5 is highest for
our model, indicating that our model focuses on all verbs rather than just the dominant classes. In sec-
tion 4.6, we show the challenges of the large imbalance and perform experiments that indicate that clas-
sic re-weighting or re-sampling methods are unable to improve performance in a meaningful mannner.
Addressing this aspect is left for future work.

4.5.2 Understanding role prediction

The verb-role prediction accuracy is crucial for GVSR, since the SRL task is modelled on role-
queries. In Table 4.7 we analyse role prediction in various settings to understand its effect on SRL.
Previous work [31] used ground-truth verbs for SRL, while roles and their entities or values are predicted
sequentially. This setting is termed “GT, Pred” (row 2) as it uses the ground-truth verb but predicts
the roles. We argue that as the verb-role mapping P is a deterministic lookup table, this setting is
less interesting. We enforce a “GT, GT” setting with ground-truth verbs and roles in [31] by teacher-
forcing the GT roles while unrolling role-noun predictions (row 1). Another setting is where the verb is
predicted and roles are obtained via lookup, “Pred, GT map” (row 3). Note that this enables end-to-end
SRL, albeit in two steps. The last setting, “Pred, Pred” predicts both verb and role on-the-fly (row 4).

Comparing within variants of [31], surprisingly, row 1 does not perform much better than row 2 on
CIDEr. This may be because the model is trained on GT verbs and is able to predict most of the roles
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Table 4.7 Role prediction in various settings. Role F1 is the F1 score averaged over all role classes.

# Architecture Verb Role V. Acc@1 Role F1 CIDEr

1

VidSitu [31]

GT GT - - 46.01

2 GT Pred - 0.88 45.52

3 Pred GT map 46.79 - 29.93

4 Pred Pred 46.79 0.47 30.33

5 RO+C GT GT - - 70.48

6 VO+RO+C Pred GT 45.06 - 68.54

7 VO+RO+C Pred GT map 45.06 - 51.24

8 VO+RO+C Pred Pred 44.05 0.44 52.30

correctly (row 2, Role F1 = 0.88). Subsequently, both rows 3 and 4 show a large performance reduction
indicating the over-reliance on ground-truth verb. We see similar trends for our models. Rows 7 and
8 with predicted verb-role pairs lead to reduced SRL performance as compared against rows 5 and 6.
Nevertheless, our “Pred, Pred” CIDEr score of 52.3 is still higher than the baseline “GT, GT” at 46.0.
Next Role Prediction discusses further challenges of multi-label and imbalance in predicting roles.

4.5.3 Role prediction

Role prediction is critical for end-to-end GVSR. We analyse its performance for each role separately.
As can be seen from Table 4.8 roles like Arg0, Arg1, Ascn, ADir, AMnr which appears a lot more
frequently than other roles in the dataset, have both high precision and recall, suggesting that role
prediction can be done with a reasonably high accuracy directly from the video features. Other roles
that appears less frequently have a good precision but a very low recall, which is expected due to the
long tail nature of roles.

4.5.4 GVSR Evaluation

We evaluate our end-to-end model for grounded video situation recognition. In order to enable end-
to-end GVSR in [31], we use it in the “Pred, Pred” setting discussed above, that allows verb, role,
and SRL predictions. Table 4.9 shows that our model improves SRL performance over Vidsitu [31]
by a margin of 22% on CIDEr score. In addition to that, our model also enables Grounded SRL, not
achievable in VidSitu [31].
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Table 4.8 Precision, Recall and, F1 score for role-prediction performance on all the role classes. Archi-

tecture is VO + RO + C in the “Pred Pred” mode.

Method Role-name Precision Recall F1

VideoWhisperer

Arg0 0.90 0.97 0.93

Arg1 0.79 0.93 0.86

Arg2 0.55 0.26 0.36

Arg3 0.30 0.05 0.09

Arg4 0.15 0.04 0.06

AScn 0.74 0.93 0.83

ADir 0.66 0.49 0.56

APrp 0.36 0.03 0.06

AMnr 0.71 0.66 0.68

ALoc 0.40 0.12 0.19

AGol 0.65 0.15 0.24

Table 4.9 GVSR: Results for end-to-end situation recognition. Our model architecture is VO+RO+C.

Model
Prediction Verb

CIDEr C-Vb C-Arg R-L Lea
IoU

Verb Role SRL Acc@1 0.3 0.5

VidSitu [31] ✓ ✓ ✓ 46.79 30.33 39.56 23.97 29.98 35.92 - -

VideoWhisperer
✓ ✓ ✓ 44.06 52.30 61.77 38.18 35.84 38.00 0.13 0.05

✓ GT ✓ 45.06 68.54 77.48 61.55 45.70 47.54 0.29 0.12

4.6 Long Tailed Verb Classification

The grounded SRL task depends heavily on the action information. In addition to complex scenes,
the VidSitu dataset encompasses a large number of verbs and has a long-tailed distribution. In fact, the
number of verbs, 1560, is 2-4x larger than popular large-scale video action recognition datasets (Kinet-
ics400 / Kinetics700). We believe that these are the key challenges that result in lower performance for
verb classification which inevitably affects the SRL.

We experiment with three common approaches to handle long-tailed distributions. (i) Loss re-
weighting applies weights corresponding to the inverse verb frequency to the cross-entropy loss; (ii) Fo-
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cal loss is applied as described in [20] (with gamma = 2.0); and (iii) Balanced sampling, we apply a
weight for each sample such that the DataLoader picks samples with a higher weight. The results are
presented in Table 4.10.

Table 4.10 Results of three common approaches to handle long-tailed distribution of verbs. V only

represents the Video encoder (no object features) trained only for verb prediction.

Method Verb Acc@1

V only 48.82

V only + Loss Re-weighting 48.91

V only + Focal loss 47.81

V only + Balanced sampling 35.38

Unfortunately, we do not see any significant improvement using these simple approaches. We have
observed that the dataset is very challenging and has complex movie events with fast shot changes and
many actions can be confusing. For example in Figure 4.1 the woman turns while walking, but the model
predicts “Walk” instead of “Turn” which is the dominant, but less significant action (if one considers
duration). Balanced sampling in particular leads to a significant drop since our sample consists of 5 event
clips, each with a verb. When rare verbs are oversampled, co-occurring event clips with potentially not-
so-rare verbs are also oversampled, leading to a skewed training dataset. This is similar to the challenges
of applying balanced sampling to multi-label classification.

4.7 Qualitative Evaluation

We visualize the predictions of VideoWhisperer (Pred-GT) in Fig. 4.1 for one video of 10 seconds1

and see that it performs reasonably well given the complexity of the task. VideoWhisperer correctly
predicts verbs for actions like “open” and “walk”. Given the large action space and complex scenes,
there can be multiple correct actions, e.g in Ev2 we see a reasonable “walk” instead of “turn”.

For SRL, the model generates diverse captions with good accuracy, like “woman in white dress”.
Even though the ground-truth is syntactically different, “woman wearing white”, they both mean the
same. In fact, this is our primary motivation to introduce grounding. In Ev3, the model incorrectly
predicts “walk” as the verb instead of ”reach”. While “walk” does not have the role Arg2, we are able
to predict a valid caption “to get to the door” while grounding the woman’s arm in Frame3. We see
that our model correctly understands the meaning of Arg2 as we use ground-truth role embeddings

1More examples on our project page, https://zeeshank95.github.io/grvidsitu/GVSR.html.
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combined with event features for SRL. This shows the importance of event embeddings, as they may
recall fine-grained details about the original action even when there are errors in verb prediction.

For grounding SRL, we see that the model is able to localize the roles decently, without any bounding
box supervision during training. While we evaluate grounding only for Arg0, Arg1, and Arg2 (when
available), we show the predictions for other roles as well. In Fig. 4.1, the model is able to ground
the visual roles Arg0 and Arg1 correctly. For non-visual roles like “Manner”, the model focuses its
attention to the face, often relevant for most expressions and mannerisms.

Figure 4.1 We show the results for a 10s clip that can be viewed here: https://youtu.be/q6j_

0vS_NNM?t=175. The video is broken down to 5 events indicated by the row labels Ev1 to Ev5. At

a 1fps sampling rate, we obtain boxes from 3 frames for each event (with Frame3 of event i − 1 being

the same as Frame1 of event i). On the right side of the table, we show the predictions for the verb and

various roles in the “Pred GT” mode, discussed in Table 4.7 (row 6). Predictions are depicted in blue,

while the ground-truth is in green. Each role is assigned a specific color (see table header), and boxes

for many of them can be found overlaid on the video frames (with the same edge color).

4.8 More Qualitative Results

We show more qualitative results on six 10 second video clips taken from movies.
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Figure 4.2 We show the results for a 10s movie clip that can be viewed here: https://youtu.be/

VYQoxBs5N2A?t=120

Figure 4.3 We show the results for a 10s movie clip that can be viewed here: https://youtu.be/

lYtc2lvkpTw?t=45
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Figure 4.4 We show the results for a 10s movie clip that can be viewed here: https://youtu.be/

a_Txm9dQuhM?t=30

Figure 4.5 We show the results for a 10s movie clip that can be viewed here: https://youtu.be/

t9P2B7NUPfM?t=50
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Figure 4.6 We show the results for a 10s movie clip that can be viewed here: https://youtu.be/

YIF1gLpUZp8?t=65

Figure 4.7 We show the results for a 10s movie clip that can be viewed here: https://youtu.be/

2KfWymDaTmA?t=20
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4.9 Limitations

Limitations for our current model are with verb and role prediction and disambiguation, improving
the quality and diversity of captions to go beyond frequent words, and the division of attention towards
multiple instances of the same object that appears throughout a video. Nevertheless, we hope that this
work inspires the community to couple videos and their descriptions. We describe each challenge in
detail: (i) role disambiguation, (ii) descriptive caption generation, and (iii) localisation. We describe
each aspect in detail.

Role disambiguation directly depends on the event features, since we use role queries contextualised
by event embeddings. Event embeddings help in disambiguation of role even when the predicted action
is incorrect. But in many cases when the event embedding captures an action very far from the ground-
truth, the role query gets updated based on the incorrect action and this hampers role disambiguation, in
turn affecting the quality of SRL captioning and grounding.

Descriptive captioning. We are able achieve descriptive captioning by exploiting object features.
Our model is able to predict difficult long-tailed entities like “Monsters” and descriptive captions like
“Man in red towel”, with high accuracy. However, the presence of “Man in black jacket” or “AMnr:
with a smile” is undeniably high.

Localising roles in a weakly supervised manner is a very challenging task, it requires to disam-
biguate the roles and shift the attention to the right object out of a large pool of objects. Since the
supervision comes from captions, which are descriptive and may refer to multiple attributes of an ob-
ject, the attention is divided among many objects and it is difficult to get the most representative object
with high probability. Our model is able to ground the roles reasonably well, but leaves a lot of room
for improvement.

4.10 Annotations

Sampling frames and creating an annotation task for a video. In a video of 10 seconds consisting
of 5 events, we sample frames at 1fps, F = {ft}Tt=1 from the entire video V , resulting in 11 frames.
Then, from the SRL annotations, we extract the captions for the typically visual roles: agent, patient,
and instrument from all the 5 events. We retain all the unique captions from the selected ones and use
them as ground-truth labels for the video V . For each video we create a separate annotation task on the
CVAT tool [1], with video specific labels as shown in Fig 4.8.

4.10.1 Annotation process

We iterate over every frame in F , and find if any of the label is visually recognised. If it is we select
the label, and draw a bounding box around the visual entity as shown in Fig 4.9, 4.10, and 4.11. Some
labels might not be visually present in the frames, like Policeman is not visible in any of the frames in
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Fig. 4.10 or ground is not visible in Fig 4.12. Some entities are non-visual like up in Fig. 4.13. We do
not annotate boxes for such roles.

After the annotations are done, for each event i and role k in a video, we create a dictionary of
annotations Gik with keys as frame number of all the frames that has the role k annotated in it and
values as the coordinates of the bounding box corresponding to them. We will share the annotations for
further research on our project page.
Compensation. We fairly compensated the annotators for their efforts at almost twice the minimum
daily wage.

Figure 4.8 Example annotation task for a video. There are a total of 11 frames subsampled at T=1

second from a 10 second video. Text highlighted in red are the labels.

Figure 4.9 Select a label from the set of labels that can be visually recognised and draw a box around it.
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Figure 4.10 Labels Man on suit, Man in black, on a car bonnet and, Police car are visible in frame 09.

Four boxes are drawn around the corresponding four entities

Figure 4.11 Labels Man in black, on a car bonnet and, Police car are visible in frame 04

. Three boxes are drawn around the three corresponding objects.
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Figure 4.12 Label ground is not visible in frame 00, hence it is not annotated

Figure 4.13 Label up is a non-visual role, hence it is not annotated.
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Chapter 5

Conclusions and Future Works

5.1 Conclusions

In this thesis, we explore the domain of holistic and structured video understanding through a new
task: Video Situation Recognition. We introduce Situation recognition by discussing the pioneer works
in the domain of image understanding. We show that the unstructured nature of dense understanding
tasks like image captioning can be converted into a structured format using the theory of semantic role
labeling(SRL). SRL provides a structure to represent any situation using an action verb, all the entities
that are taking part in the action (nouns), and the role they play. This gave rise to the first structured and
dense image understanding framework: imsitu [45]. Later imsitu was extended to grounded situation
recognition [27], which added one more level of complexity, where in addition to predicting the verbs,
roles, and nouns, it is now required to ground each noun by drawing a bounding box in the image.

We then discuss Video Situation Recognition [31], framework for holistic video understanding
through semantic role labeling. We discussed several challenges of the existing framework mainly
(i) The free-form nature and the ambiguity of SRL captions, which makes it difficult to evaluate. And
(ii) Separately modeling the three tasks in VidSitu, requiring the Ground Truth of the previous task to
model the next. This limits the ability for end-to-end situation recognition. To alleviate the challenges
and provide another level of understanding we proposed a new framework- GVSR as a means for holistic
video understanding combining situation recognition - recognizing salient actions, and their semantic
role-noun pairs with grounding. Grounding helps remove the ambiguity in the captions and allows
ananother level of interpretability. Moreover grounding is performed in a weakly supervised setting,
without requiring ground truth bounding boxes. We approached this challenging problem by proposing
VideoWhisperer, which combines a video-object encoder for contextualized embeddings, video contex-
tualized role query for better representing the roles without the need for ground-truth verbs (enables
end-to-end situation recognition) and an event-aware cross-attention that helps identify the relevant
nouns and ranks them to provide grounding. We achieved state-of-the-art performance on the VidSitu
benchmark with large gains and proposed a new benchmark for grounding in a weakly-supervised man-
ner.
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5.2 Future Works

One of the most important future direction would be video representation learning, since videos in
the VidSitu dataset are extracted primarily from movies. The domain of videos is very different from
other general video understanding frameworks. It consists of multiple events with sudden shot changes
which is difficult to incorporate in the existing video representation learning models. To account for
shot changes, shot detectors can be used to improve the video representations. This will improve the
temporal consistency across shots and events, and hence better capture the semantic meaning of the
scene.

Another important direction would be towards improving the coreferencing abilities of the model.
VidSitu dataset allows for coreferencing multiple entities across multiple events in a video. Current
models fail to accurately corefer an entity which results in incoherent results. Identifying and corefer-
ncing each entity will allow to accurately track them across all the events and tremendously improve the
performance.
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