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Abstract

In AI, the ability of intelligent agent to model human player in games such as Backgammon, Chess
and Go has been an important metric in benchmarking progress. Fundamentally, the games mentioned
above can be characterized as competitive and zero-sum. In contrast, games such as Pictionary and
Dumb Charades falls into the category of ‘social’ games. Unlike competitive games, the emphasis is on
cooperative and co-adaptive game-play in a relaxed setting. Such social games can form the basis for
the next wave of game-driven progress in AI. Pictionary™ is a wonderful example of cooperative game
play to achieve a shared goal in communication-restricted settings. This popular sketch-based guessing
game, which we employ as a use case, provides an opportunity to analyze shared goal cooperative game
play in restricted communication settings.

To enable the study of Pictionary and to understand various aspects associated with the game play,
we designed a software ecosystem for web-based online game of Pictionary dubbed PICTGUESS. To
overcome several technological and logistic barriers, which the actual game presents, we implemented
a simplified setting for PICTGUESS wherein a game consists of a time-limited episode involving two
players - a Drawer and a Guesser. The Drawer is tasked with conveying a given target phrase to a
counterpart Guesser by sketching on a whiteboard within that time limit.

However, occasionally some players in Pictionary draw atypical sketch content. While such content
is occasionally relevant in the game context, it sometimes represents a rule violation and impairs the
game experience. To address such situations in a timely and scalable manner, we introduce DRAW-
MON, a novel distributed framework for automatic detection of atypical sketch content in concurrently
occurring Pictionary game sessions. We build specialized online interfaces to annotate atypical sketch
content, resulting in ATYPICT, the first ever atypical sketch content dataset. We use ATYPICT to train
CANVASNET, a deep neural atypical content detection network. We utilize CANVASNET as a core
component of DRAWMON. Our analysis of post deployment game session data indicates DRAWMON’s
effectiveness for scalable monitoring and atypical sketch content detection. Beyond Pictionary, our con-
tributions can also serve as a design guide for customized atypical content response systems involving
shared and interactive whiteboards.

vi



Contents

Chapter Page

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Manual Annotation of Sketch Data . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.3 Scalable and time-efficient Framework for sketch content-based alert generation 3

1.3 Thesis Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 PICTGUESS: Software Ecosystem for Web-based Online Game of Pictionary . . . . . . . . . 5
2.1 PICTGUESS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 ATYPICT: Dataset of Atypical Whiteboard Content . . . . . . . . . . . . . . . . . . . . . . 10
3.1 Atypical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Data Annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 CANVASNET: A Deep Neural Network for Atypical Activity Detection . . . . . . . . . . . . 15
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 CanvasNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2.1 Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2.2 CANVASNET Deep Network . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.3 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3.1 BiLSTM+CRF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3.2 SketchsegNet+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3.3 CRAFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4.1 Atypical content detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

vii



viii CONTENTS

5 DRAWMON: A Distributed System for Sketch Content-based Alert Generation . . . . . . . . 33
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2 DrawMon User Study Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3 Scalability Studies and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.4 Application Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41



List of Figures

Figure Page

1.1 Some examples of atypical sketch content in Pictionary game sessions are shown as
canvas screenshots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 System model for online Pictionary game. . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Screenshots of our game portal showing Drawer (left) and Guesser (right) activity during
a Pictionary game. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 System architecture for Pictionary game setup. . . . . . . . . . . . . . . . . . . . . . 8

2.4 Some examples of atypical sketch content in Pictionary game sessions are shown as
canvas screenshots. The content instances span text highlighted in red, numbers (cyan),
question marks (green), arrows (blue), circles (Maroon) and other icons (e.g. tick marks,
addition symbol) highlighted in orange. . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Examples of atypical content text, numbers, question marks, arrows, circles and other
icons (e.g. tick marks, addition symbol). . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 An illustration of the annotation of a session using the CANVASDASH interface. ‘RUN-
NING HAND LETTERS’, ‘CIRCLES’, ‘QUESTION MARKS’, ‘MISC’(Miscellaneous),
‘SKETCH’(regular sketch strokes), ‘INDIVIDUAL LETTERS’ and ‘NUMBERS’ are
the canvas activity categories. Each of these categories are further classified under 4
broad atypical categories (see table-3.1, section-3.1). ‘Select current stroke’, ‘Dese-
lect current stroke’ and ‘Split current stroke’ are used for grouping and splitting SVG
curves. The current stroke/group is highlighted in the main canvas and zoomed in the
side canvas to assist the annotators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 Illustration of the multi-stroke annotation feature. The annotator has grouped strokes
’M’, ’icrop’, ’h’ and ’one’ belonging to the word ’Microphone’. To assist the annotator,
the tool has highlighted each selected stroke. . . . . . . . . . . . . . . . . . . . . . . . 13

3.4 Illustration of the split-stroke feature. The stroke SE is shown with starting point S,
and ending point E. The two marked split points P1, P2 splits the stroke into three parts
SP1, P1P2 and P2E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1 Some examples of atypical sketch content in Pictionary game sessions are shown as
canvas screenshots. The content instances span text highlighted in red, numbers (cyan),
question marks (green), arrows (blue), circles (Maroon) and other icons (e.g. tick marks,
addition symbol) highlighted in orange. . . . . . . . . . . . . . . . . . . . . . . . . . 16

ix



x LIST OF FIGURES

4.2 Examples of augmentation of atypical data. In each example, the image at bottom is the
source image from which an instance of atypical activity is extracted and the left image
is the one which is being augmented with that instance. . . . . . . . . . . . . . . . . . 17

4.3 Architecture of CANVASNET deep neural network. Refer to Sec. 4.2.2 for details. . . . 18
4.4 BiLSTM+CRF architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.5 Sketchsegnet+ architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.6 Architecture of modified CRAFT based on [3] . . . . . . . . . . . . . . . . . . . . . . 24
4.7 Examples of atypical content detection by CANVASNET. False negatives are shown as

dashed rectangles and false positives as dotted rectangles. . . . . . . . . . . . . . . . 28
4.8 CANVASNET detections for Text class . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.9 CANVASNET detections for Number class . . . . . . . . . . . . . . . . . . . . . . . . 30
4.10 CANVASNET detections for Icon class . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.11 CANVASNET detections for Circle class . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.1 A pictorial overview of DRAWMON - our distributed atypical sketch content response
system. Also see Fig. 5.2 for additional architectural details. . . . . . . . . . . . . . . 34

5.2 System architecture for Pictionary game setup and DRAWMON. . . . . . . . . . . . . 35



List of Tables

Table Page

2.1 Statistics of dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Statistics of atypical sketch content categories in game sessions. . . . . . . . . . . . . 14

4.1 Detailed CANVASNET Architecture. Each dense block has growth rate k = 48 and
width = 4. dep-conv and sep-conv denotes depthwise convolution and separable con-
volution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Features extracted from strokes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 CANVASNET performance for atypical content classes. IoU=0.5 refers to detection

threshold. Refer to Sec. 4.4.1 for details. . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.4 Performance comparison with baselines. mAP = mean Average Precision, mAR = mean

Average Recall, #Parameters = the number of trainable weights in the corresponding
deep network in millions, ADT = average detection time per image in milliseconds. . . 26

4.5 Performance scores for CANVASNET ablative variants (Text). . . . . . . . . . . . . . . 27

5.1 User study statistics with DRAWMON deployed. . . . . . . . . . . . . . . . . . . . . . 35
5.2 DRAWMON throughput comparison while keeping system resources fixed and increas-

ing the number of concurrent virtual sessions. . . . . . . . . . . . . . . . . . . . . . . 36
5.3 DRAWMON throughput comparison on varying system resources for a fixed set of 1000

game sessions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

xi



Chapter 1

Introduction

In the history of Artificial Intelligence, computer-based modelling of human player games such
as Backgammon, Chess and Go has been an important research area. The accomplishments of well-
known game engines (e.g. DeepBlue, AlphaGo) and their ability to mimic human-like game moves
has been a well-accepted proxy for gauging progress in AI. Fundamentally, the games mentioned above
can be characterized as competitive and zero-sum(one player loses while the other wins). In contrast,
there are other games such as Pictionary and Dumb Charades which fall into the category of ’social’
games. Unlike competitive games, the emphasis is on cooperative and co-adaptive game-play in a
relaxed setting. Such social games can form the basis for the next wave of game-driven progress in
AI. However, such games need a rethink in terms of agent and game play modelling. In this work, we
explore the design space for such games using pictionary as a use-case. The game of pictionary uses a
shuffled deck of cards with guess-words printed on them. The participants first group themselves into
teams and each team takes turns. For a given turn, a team’s member selects a card. He/She then attempts
to draw a sketch corresponding to the word printed on the card in such a way that the teammates can
guess the word correctly. The rules of the game forbid any verbal communication between the drawer
and team-mates. Thus, the drawer conveys the intended guess-word primarily via the sketching process.

It is important to contrast pictionary with the typical two-player, zero-sum games for which AI
agents exist. Pictionary is complicated by additional factors such as multi-modal game play (guesser
uses speech/lexical modality while drawer uses visual modality), asynchronous turn-taking and only
high-level notions of what constitutes a ‘win’ (e.g. target word is ‘airplane’, but guesser’s proposal of
‘warplane’ may be considered acceptable). Since our objective is to analyze and explore design space
of pictionary from computer-based modelling perspective, it is important to collect a large repository
of actual game sessions. However, data collection for the actual game setting has several technological
and logistic barriers. Therefore, we propose a simplified yet realistic setting wherein a game consists
of a time-limited episode involving two players - a Drawer and a Guesser. The Drawer is tasked with
conveying a given target phrase to a counterpart Guesser by sketching on a whiteboard [14]. The larger
the number of target phrases correctly identified and the earlier the phrases are identified from the drawn
sketch, greater the number of points accrued for the participating players.
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Figure 1.1: Some examples of atypical sketch content in Pictionary game sessions are shown as canvas
screenshots.

The rules of Pictionary forbid the Drawer from writing text on the whiteboard. This is usually
not an issue when players are physically co-located. In the anonymized, web-based version of the
game, however, the Drawer may cheat by writing text related to the target word on the digitally shared
whiteboard, thus violating the rules. Apart from malicious game play, atypical sketch content(such as
text) can also exist in non-malicious, benign scenarios. For instance, the Drawer may choose to draw
arrows and other such icons to attract the Guesser’s attention and provide indirect hints regarding the
target word (see Fig. 1.1).

1.1 Thesis Contributions

In this thesis, we address the requirement for a framework which can respond to a variety of atypical
whiteboard sketch content in a reliable, comprehensive and timely manner. To this end, we make the
following contributions:

• We introduce PICTGUESS - a web-based online game based on a realistic two-player setting of
the game of Pictionary.

• We introduce ATYPICT - the first ever dataset of atypical whiteboard content, collected using
PICTGUESS.

• We introduce CANVASDASH - a custom-designed, browser-based annotation and visualization
tool to annotate atypical whiteboard content.

• We introduce CANVASNET - inspired by the success of deep networks which attempt to detect text
in photos [29, 44, 27], we adopt a similar efficient approach for our CANVASNET deep network
to detect atypical sketch instances on a drawing canvas.
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• We introduce DRAWMON - a distributed system for sketch content-based alert generation. We
analyze sessions with DRAWMON deployed for Pictionary setting and demonstrate its effective-
ness.

1.2 Challenges

1.2.1 Data collection

Existing sketch datasets (e.g. TU-Berlin [11], Sketchy [40], QuickDraw [21]) have been created
primarily in the context of sketch object recognition problem – assign a categorical label to a hand-
drawn sketch. The category labels correspond to objects (nouns). Therefore, these datasets lack abstract
sketches which tend to be drawn when words from other parts of speech (verbs, adjectives) are provided
as targets. Existing datasets are also unnatural because they do not include canvas actions such as
erase strokes or location emphasis. Also, no intermediate guess words are associated with sketched
content. For a similar reason, these datasets do not contain atypical activities unlike the dataset we
introduce. Sarvadevabhatla et al. [42] explore neural network based generation of human-like guesses,
but for pre-drawn object sketches. However, they do not accommodate interactivity and non-sketch
drawing canvas activities (e.g. erase, pointing emphasis). The Kondate dataset [32] contains on-line
handwritten patterns of text, figures, tables, maps, diagrams etc. The OHFCD dataset [2] pertains to
online handwritten flowcharts. Although challenging in their own way, these datasets are considerably
more structured than our setting. Additionally, they share the sketch datasets’ shortcoming of being too
cleanly curated because actions such as erase are absent. To address these challenges, we collected our
data using PICTGUESS - our custom designed browser-based game portal to play simplified setting of
Pictionary, which gives participants ability to erase, highlight or make multiple guesses during game
sessions. As a unique aspect, our combination of such game settings and a fixed time limit per game
session unleashes greater diversity and creativity, causing sketches in our dataset to be more spontaneous
and less homogeneous compared to existing datasets.

1.2.2 Manual Annotation of Sketch Data

As mentioned earlier, existing sketch datasets assign a categorical label to a hand-drawn sketch
which makes them unsuitable for the purpose of detecting the exact position and categories(3.1) of
atypical content. To be able to detect aforementioned categories of atypical content in a sketch, manual
annotation of each stroke of a sketch as belonging to one of the category is a necessity.

1.2.3 Scalable and time-efficient Framework for sketch content-based alert generation

Consider a scenario with multiple online Pictionary game sessions in progress. We require a frame-
work for automatic and concurrent monitoring of these game sessions for any atypical activities and
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issue instant alerts to the multiple end users for rule violation(e.g. such as writing text on canvas). To
meet these requirements, a framework needs to be reliable, scalable and time-efficient.

1.3 Thesis Layout

The compilation of thesis is as follows.
Chapter 2 discuss PICTGUESS, a software ecosystem for web-based online game based on a realistic

two-player setting of the game of Pictionary.
Chapter 3 Provides insights into ATYPICT - our custom dataset of atypical whiteboard content.

All major components of ATYPICT are explained in detail along with the proposal of tools for data
annotation.

Chapter 4 discuss CANVASNET, a novel deep neural network to detect atypical sketch content on a
drawing canvas. A detailed explanation of network architecture and training methodology is provided
with quantitative and qualitative results.

Chapter 5 discuss DRAWMON, a framework for automatic, concurrent monitoring of pictionary
game sessions for any atypical activities. It also discusses the brief user-study to quantify the efficacy
of DRAWMON. Detailed description of the user-study setup and observations are also provided.

Chapter 6 concludes this thesis by consolidating all the contributions of this thesis. We also discuss
some potential extensions of our system for the researchers working in this field to pursue.
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Chapter 2

PICTGUESS: Software Ecosystem for Web-based Online Game of

Pictionary

The social game Pictionary, is a wonderful example of cooperative gameplay in a communication
restricted settings [15, 51, 38] and it also presents scenarios involving atypical sketched content. Unlike
other zero-sum games, pictionary is complicated by additional factors such as multi-modal game play,
asynchronous turn-taking and only high-level notions of what constitutes a ‘win’. Due to above men-
tioned reasons we employ Pictionary as a use case for exploring design space of such social games. For
doing that, it is important to collect a large repository of actual game sessions. However, data collec-
tion for the actual game setting has several technological and logistic barriers. Therefore, we propose a
simplified setting wherein a game consists of a time-limited episode involving two players - a Drawer
and a Guesser. The Drawer is tasked with conveying a given target phrase to a counterpart Guesser by
sketching on a whiteboard [14]. The larger the number of target phrases correctly identified and the
earlier the phrases are identified from the drawn sketch, greater the number of points accrued for the
participating players. For playing the above described simplified setting of Pictionary to collect data,
we designed a custom browser-based game portal dubbed PICTGUESS.

2.1 PICTGUESS

2.1.1 System Design

After carefully assessing offline Pictionary game and end users needs, we gathered design require-
ments for our 2 player simplified setting of Pictionary (See Figure 2.1). To realise the requirements
shown in Figure 2.1, we designed PICTGUESS to be compatible with mouse and touch inputs. We ob-
tain consent and provide game instructions when a player accesses the system for the first time. Our
system is scalable and can handle up to 50 multiple concurrent sessions. Players are assigned random
names and paired randomly as Drawers and Guessers.

5



Figure 2.1: System model for online Pictionary game.

For the Guesser, a text box is provided for entering guess phrases. For the Drawer, the interface
provides a canvas with tools to draw, erase and highlight locations (via a time-decaying spatial animation
‘ping’) for emphasis (see Fig. 2.2). The targets provided to the Drawers are sampled from a dictionary
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of 200 guess phrases. We re-emphasize that the target phrases can be nouns (e.g. airplane, bee, chair),
verbs (e.g. catch, call, hang) or adjectives (e.g. happy, lazy, scary). To ensure uniform coverage across
the dictionary, the probability of a guess phrase being selected for a session is inversely proportional to
the number of times it has been selected for elapsed sessions. The game has a time limit of 120 seconds.
The game ends when the Guesser enters a word deemed ‘correct’ by the Drawer or when the time limit
is reached. In addition, - and , buttons enable Drawer to provide ‘hot/cold’ feedback on guesses. For
instance, if the Guesser’s guess is close to the target word (e.g. ‘pen’ for the target word ‘pencil’), the
Drawer might provide - as feedback. A question (å) button is provided to the Guesser for conveying
that the canvas contents are not informative and confusing. The canvas strokes are timestamped and
stored in Scalable Vector Graphic (SVG) format for efficiency. In addition to canvas strokes (drawing
and erasure related), secondary feedback activities mentioned previously (, ,- , å, highlight) are also
recorded with timestamps as part of the game session. See Figure 2.2 for screenshots from our game
portal.

Figure 2.2: Screenshots of our game portal showing Drawer (left) and Guesser (right) activity during a

Pictionary game.

2.1.2 System Architecture

Figure 2.3 shows the system architecture of our browser-based game portal dubbed PICTGUESS.
Central Relay Server is responsible for pairing Drawer and Guesser from the pool of available players
and receiving and relaying information from browser client to Session Manager and Data Relay Server.
Each game session is managed by a central Session Manager which assigns a unique session id. For a
given session, whenever a sketch stroke is drawn, the accumulated canvas content (i.e. strokes rendered
so far) is timestamped and stored in SVG format in database via Data Relay Server. Data Relay Server
is also responsible for timestamping and storing guesses for a session in database.

7



Figure 2.3: System architecture for Pictionary game setup.

2.1.3 Data Collection

Via our portal, we successfully gathered 3220 timestamped episodes of diverse, realistic game play
involving a total of 479 participants in a large age range (14 years to 60 years) and educational demo-
graphics (middle and high school students, graduate and undergraduate university students and working
professionals). See Table 2.1 for additional statistics of the collected data.

2.2 Observations

Our combination of game settings in PICTGUESS such as time limit, highlight, erase tool, category
labels from all parts of speech (nouns, verbs, adjectives), capability to record timestamped guesses and
strokes (for associating guesses with sketched content) tackles all the limitations (no abstract sketches
as no target words from other parts of speech such as verbs or adjectives, no erase strokes or location

8



Table 2.1: Statistics of dataset

Number of sessions collected 3220

Number of users 479

Number of target words 200
Noun 138
Verb 51

Adjectives 11

Figure 2.4: Some examples of atypical sketch content in Pictionary game sessions are shown as canvas
screenshots. The content instances span text highlighted in red, numbers (cyan), question marks (green),
arrows (blue), circles (Maroon) and other icons (e.g. tick marks, addition symbol) highlighted in orange.

emphasis, no intermediate guess words) of existing datasets (e.g. TU-Berlin [11], Sketchy [40], Quick-
Draw [21]) and also unleashes greater diversity and creativity, causing sketches in our dataset to be more
spontaneous and less homogeneous compared to existing datasets.

On carefully analysing our sketch dataset, we detected significant instances of malicious gameplay
where Drawer cheated by writing text related to the target word on the digitally shared whiteboard, thus
violating the rules. Apart from malicious game play, we also detected sketch contents that are only used
as hints for Guesser to guess the target word. For instance, the Drawer may choose to draw arrows and
other such icons to attract the Guesser’s attention and provide indirect hints regarding the target word
(see Fig. 2.4). In next chapter, we shall discuss our data annotation procedure to annotate such sketch
contents which when applied on the above collected data (Table 2.1) resulted in ATYPICT - our custom
dataset of atypical whiteboard content.
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Chapter 3

ATYPICT: Dataset of Atypical Whiteboard Content

Shared digital whiteboards are becoming increasingly popular in educational and workplace settings
as a natural mechanism for collaboration and communication [20, 13, 8, 34, 1, 24]. The sharing aspect
offers tremendous scope for interaction and a richer session experience. Unfortunately, shared white-
boards sometimes present situations where malicious participants draw controversial content [49]. Such
activities tend to impair the collective experience of participants. Therefore, it is important to have
scalable system for efficiently identifying and responding to such activities.

Pictionary™, which we employ as a use case, also presents such scenarios. The rules of Pictionary
forbid the Drawer from writing text on the whiteboard. This is usually not an issue when players are
physically co-located. In the anonymized, web-based version of the game, however, the Drawer may
cheat by writing text related to the target word on the digitally shared whiteboard, thus violating the
rules. Apart from malicious game play, atypical sketch content (such as text) can also exist in non-
malicious, benign scenarios. For instance, the Drawer may choose to draw arrows and other such icons
to attract the Guesser’s attention and provide indirect hints regarding the target word. To create a system
to detect such atypical content in Pictionary, we need to annotate our sketch dataset. Next, we will first
classify atypical activities and then we will discuss our annotation procedure.

3.1 Atypical Data

Atypical content can be thought of as a subsequence of sketch curves relative to the larger sequence
of curves that comprise the game session. By carefully analyzing our sketch dataset, we categorized
atypical content usually encountered in Pictionary sessions as follows:

• Text: Drawer directly writes the target word or hints related to the target word on the canvas.

• Numerical: Drawer writes numbers on canvas.

• Circles: Drawers often circle a portion of the canvas to emphasize relevant or important content.

10



Figure 3.1: Examples of atypical content text, numbers, question marks, arrows, circles and other icons
(e.g. tick marks, addition symbol).

• Iconic: Other items used for emphasizing content and abstract compositional structures include
drawing a question mark, arrow and other miscellaneous structures (e.g. double-headed arrow,
tick marks, addition symbol, cross) and striking out the sketch (which usually implies negation of
the sketched item).

Examples can be viewed in Fig. 3.1. It is important to remember that we consider only Text writing
as a rule violation in Pictionary. Other categories mentioned above are atypical but their presence is not
considered a violation of game rules.

3.2 Data Annotation

Having identified the different types of atypical data, the question then arises, "how do we detect
them?". To enable the creation of a system which can detect atypical activities, we need to annotate the
collected data. To facilitate this annotation, we built our custom-designed, browser-based annotation
and visualization tool dubbed CANVASDASH (see Fig. 3.2). The annotation interface displays strokes
of a session in the temporal order in which they were recorded. The annotator can navigate through
strokes using arrow keys. To assign labels, the annotator can choose from among the categories present
in the menu bar (denoted ‘Category Choices’) at the bottom of the interface.

CANVASDASH also enables annotators to split a single sketch stroke into multiple sub-strokes. For
example, a word written in running hand can be split into individual letters and annotated (See Figure
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Figure 3.2: An illustration of the annotation of a session using the CANVASDASH interface. ‘RUNNING
HAND LETTERS’, ‘CIRCLES’, ‘QUESTION MARKS’, ‘MISC’(Miscellaneous), ‘SKETCH’(regular
sketch strokes), ‘INDIVIDUAL LETTERS’ and ‘NUMBERS’ are the canvas activity categories. Each
of these categories are further classified under 4 broad atypical categories (see table-3.1, section-3.1).
‘Select current stroke’, ‘Deselect current stroke’ and ‘Split current stroke’ are used for grouping and
splitting SVG curves. The current stroke/group is highlighted in the main canvas and zoomed in the side
canvas to assist the annotators.

3.4). By clicking on the split-stroke button, a point appears at the beginning of the stroke. The point
can be moved on the stroke using arrow keys. The current position of the point can be marked as a split
point by pressing select button. After all the split points (being highlighted by the tool) are marked on
the stroke, pressing the split-stroke button will split the stroke accordingly.
To enable instance-level annotation for a category consisting of multiple strokes (e.g. a word written
as a combination of running hand and isolated letters), the interface provides an option for selecting a
subsequence of strokes. To assist annotators with such multi-stroke annotation, the tool highlights each
stroke that belongs to the selected subsequence (see Fig. 3.3).

For ease of verification and correction, a replay mechanism is also included which color-codes and
shades strokes based on annotation category label (see Fig. 3.2). Atypical activities tend to be infre-
quent. Therefore, all strokes are initially labelled as valid sketch strokes. The session stroke sequence
is consequently navigated to identify and label atypical activities as described above.
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Figure 3.3: Illustration of the multi-stroke annotation feature. The annotator has grouped strokes ’M’,
’icrop’, ’h’ and ’one’ belonging to the word ’Microphone’. To assist the annotator, the tool has high-
lighted each selected stroke.

Figure 3.4: Illustration of the split-stroke feature. The stroke SE is shown with starting point S, and
ending point E. The two marked split points P1, P2 splits the stroke into three parts SP1, P1P2 and
P2E

3.3 Summary

Using the described annotation procedure, we obtain our atypical Pictionary sketch dataset ATYPICT.
The occurrence statistics of atypical sketch categories across game sessions can be viewed in Table 3.1.
Representative visual examples can be viewed in Fig. 3.1. Accurately localizing such activities can aid
statistical learning approaches which associate sketch-based representations with corresponding target
words [42]. In next chapter, we will describe CANVASNET, a novel deep neural network for detecting
such atypical whiteboard sketch content.

13



Sketch Content Type Number of Number of Number of
class occurrences sessions target phrases

containing containing
Text 2419 478 180

Individual letter 2244 460 178
Running hand 175 103 81

Numbers 331 73 28
Circles 110 90 67
Iconic 750 377 147

Arrow 497 292 129
Question mark 158 116 78
Miscellaneous 95 54 37

Table 3.1: Statistics of atypical sketch content categories in game sessions.
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Chapter 4

CANVASNET: A Deep Neural Network for Atypical Activity Detection

4.1 Introduction

Accurately localizing atypical activities can aid statistical learning approaches which associate sketch-
based representations with corresponding target words [42]. Considering both malicious and benign
scenarios in Pictionary, the broad requirement is for a framework which can detect and flag a variety
of atypical whiteboard sketch content in a reliable, comprehensive and timely manner. Flagging is pos-
sible by physically monitoring game sessions. However, such manual intervention is impractical and
not scalable to an online setting involving a large number of multiple concurrent game sessions. Pro-
viding user interface options for player-triggered flagging of rule violation is another possibility. But
such mechanisms are not completely reliable since the Guesser benefits from the content written on the
canvas and does not have real incentive to use the flagging mechanism.

Some approaches employ a diverse mix of techniques for detecting cheating in online games [19, 48].
Dinh et al. [10] use hand-crafted game features and unsupervised machine learning approaches for of-
fline detection of anomalous behavior. In our work, we introduce automatic deep learning based de-
tection and flagging of anomalous gameplay in Pictionary. However, our system is also designed to
detect secondary non-anomalous canvas entities which can potentially aid statistical understanding of
canvas contents. Detecting those canvas entities can be thought of as a stroke segmentation problem
wherein each sketch stroke is labelled as either belonging to an atypical class or the default class (draw-
ing). Stroke segmentation has been employed for labelling parts in object sketches either from stroke
sequence information [56, 53, 23, 35] or within an image canvas [54, 26].

Recognizing atypical sketch content can also be posed as an object detection problem. In this case,
the objective is to obtain 2-D spatial bounding boxes enclosing sketch strokes corresponding to the
atypical content. We adopt this approach because it is faster and more amenable to near real-time
operation compared to segmentation. Handwritten text is the most common atypical sketch content
class in Pictionary. Hence, it is reasonable to consider approaches solely designed for text detection in
domains such as outdoor scenes and documents [18, 9, 31, 30, 27, 60, 3]. Similarly, detection-based

15



Figure 4.1: Some examples of atypical sketch content in Pictionary game sessions are shown as canvas
screenshots. The content instances span text highlighted in red, numbers (cyan), question marks (green),
arrows (blue), circles (Maroon) and other icons (e.g. tick marks, addition symbol) highlighted in orange.

approaches have been proposed for mixed graphic structures [22, 43, 12]. However, graphic elements
in these scenarios are more structured compared to our Pictionary setting.

It is important to remember that we consider only Text writing as a rule violation in Pictionary. Other
categories mentioned above are atypical but their presence is not considered a violation of game rules.
Next, we will discuss our approach for detecting such atypical sketch content.

4.2 CanvasNet

An effective object detection approach for detecting atypical sketch instances needs to tackle the
diversity in scale and appearance of various categories - a glance at Fig. 4.1 makes this amply clear. In
addition, the approach needs to utilize spatial context and be robust to the presence of similar looking
yet semantically distinct regular (sketch) canvas content. In our case, the drawing canvas containing ac-
cumulated sketch strokes is the image. Any atypical content instances (e.g. Text) present are considered
spatially localized 2-D objects to be detected. For the object detection, we design a novel deep neural
network which we dub CANVASNET. Before delving into details of CANVASNET, we first describe the
data setup employed for its training and evaluation.

4.2.1 Data Preparation

As mentioned previously, the canvas elements for a given game session are represented as times-
tamped SVG curve elements. Each SVG element is either a drawing stroke or an erasure stroke. We
group drawing strokes into subsequences which are separated by erase strokes. The curves are con-
verted to a 2-D point sequence representation and adaptively downsampled into line-based strokes using
Ramer–Douglas–Peucker [36] algorithm (ε = 2). The strokes are rendered on a 512 × 512 2-D canvas
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Figure 4.2: Examples of augmentation of atypical data. In each example, the image at bottom is the
source image from which an instance of atypical activity is extracted and the left image is the one which
is being augmented with that instance.

with a stroke thickness of 4 for the purpose of data annotation and representation. Note that a drawing
stroke either belongs to one of the atypical classes (Sec. 3.1) or is a normal sketch stroke. The spatial
extents of labelled stroke subsequences are used to automatically generate ground-truth data for training
and evaluation. In our representation of each ground truth t, Gt = (xt, yt, wt, ht) is the representation
of the axis-aligned rectangle enclosing t, where (xt, yt) is the x, y coordinates of the center of the rect-
angle and wt, ht are the width and height of the rectangle.

Data Augmentation: The number of game sessions containing atypical instances are considerably
smaller compared to the total number of game sessions. To increase the amount of data available for
deep network training in a realistic manner, we first isolate atypical instance stroke subsequences. We
sample from this set and add the resulting subsequences to other sessions which share the same target
phrase, but do not contain any atypical content. The atypical content subsequences are also randomly
rotated and localized carefully. This ensures they are spatially disjoint from strokes of the reference
game sessions (which originally lack such atypical entities). Fig 4.2 shows examples of augmentation
of atypical data.

17



Stem Block Dense
Block-1Pool1

SC 
Transition
Layer-1

Dense
Block-2

Dense
Block-3Pool2

SC
Transition
Layer-2

Pool3
SC

Transition
Layer-3

Input
Canvas

Feature Extractor
(Stage 1)

Detections

Pred
Block

Non-
Maximum

Suppression

C
o

n
ca

te
n

at
e

Pred
Block

Pred
Block

Pred
Block

Pred
Block

Pred
Block

Down
sampling 
Block-1

Down
sampling 
Block-2

Down
sampling 
Block-3

Down
sampling 
Block-4

Down
sampling 
Block-5

Multi-scale Predictor
(Stage 2)

Figure 4.3: Architecture of CANVASNET deep neural network. Refer to Sec. 4.2.2 for details.

4.2.2 CANVASNET Deep Network

Inspired by the success of deep networks which attempt to detect text in photos [29, 44, 27], we
adopt a similar efficient approach for our CANVASNET deep network to detect atypical sketch instances
on a drawing canvas. CANVASNET consists of two stages.

Feature Extractor: The first stage consists of a stem block containing three 3 × 3 unit separable
convolution layers [6]. Our choice of seperable convolution layers is motivated by the reduction in num-
ber of parameters and operations involved. The first layer in stem block uses a stride of 2 to downsample
the input features. The stem block is then followed by a repeating three segment structure consisting
of (i) a 2 × 2 max pooling layer (ii) a 6 layered dense block [17] with a growth rate of 48. Each of
the 6 layers consists of a 1 × 1 separable convolution followed by a 3 × 3 separable convolution (iii) a
1 × 1 separable convolution layer denoted as SC Transition layer. This three segment structure is then
repeated three times with similar parameters - see project page for additional details.

Multi-scale Predictor: Atypical content (e.g. handwritten text, arrows) can occupy varying amounts
of drawing canvas area, to detect them we use multi-scale predictor for prediction on multiple scales of
feature maps [27, 44]. For our setting, we use a customized multi-scale predictor for both handwritten
text and non-text classes. The second stage sub-network is responsible for generating multi-scale feature
maps and generating predictions over each of the feature maps. The output of third segment structure of
the Feature Extractor is considered the first scale of the multi-scale feature map. The other feature map
scales are obtained as outputs of successive downsampling blocks applied to the Feature Extractor’s
output (Fig. 4.3). The feature maps are passed individually through a prediction block. The multi-
scale prediction features are concatenated and non-maximal suppression is applied to generate the final
bounding box predictions.
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Table 4.1: Detailed CANVASNET Architecture. Each dense block has growth rate k = 48 and width =
4. dep-conv and sep-conv denotes depthwise convolution and separable convolution.

Layers Description

Stem
Separable convolution 3× 3 sep-conv, stride 2, 96 filters
Separable convolution 3× 3 sep-conv, stride 1, 96 filters
Separable convolution 3× 3 sep-conv, stride 1, 96 filters

Dense Segment (1)
Pooling 2× 2 max pool, stride 2

Dense Block-1
[

1× 1 sep-conv
3× 3 sep-conv

]
× 6, stride 1, k = 48, width = 4

SC Transition Layer-1 1× 1 sep-conv, stride 1, 224 filters

Dense Segment (2)
Pooling 2× 2 max pool, stride 2

Dense Block-2
[

1× 1 sep-conv
3× 3 sep-conv

]
× 6, stride 1, k = 48, width = 4

SC Transition Layer-2 1× 1 sep-conv, stride 1, 224 filters

Dense Segment (3)
Pooling 2× 2 max pool, stride 2

Dense Block-2
[

1× 1 sep-conv
3× 3 sep-conv

]
× 6, stride 1, k = 48, width = 4

SC Transition Layer-2 1× 1 sep-conv, stride 1, 224 filters

Downsampling Block (1)
Pooling 2× 2 max pool, stride 2

Depthwise Convolution 3× 3 dep-conv, stride 2
Separable Convolution 1× 1 sep-conv, stride 1, 192 filters

Downsampling Block (2)
Pooling 2× 2 max pool, stride 2

Depthwise Convolution 3× 3 dep-conv, stride 2
Separable Convolution 1× 1 sep-conv, stride 1, 160 filters

Downsampling Block (3)
Pooling 2× 2 max pool, stride 2

Depthwise Convolution 3× 3 dep-conv, stride 2
Separable Convolution 1× 1 sep-conv, stride 1, 128 filters

Downsampling Block (4)
Pooling 2× 2 max pool, stride 2

Depthwise Convolution 3× 3 dep-conv, stride 2
Separable Convolution 1× 1 sep-conv, stride 1, 96 filters

Downsampling Block (5)
Pooling 2× 2 max pool, stride 2

Depthwise Convolution 3× 3 dep-conv, stride 2
Separable Convolution 1× 1 sep-conv, stride 1, 64 filters

Prediction block: This consists of a 3× 5 separable convolution layer, followed by a fully connected
layer comprising the prediction. The rectangular filter dimensions (3× 5) used in the block ensure that
elongated objects can be detected reliably.

Anchor boxes with vertical offsets: Among the atypical object categories, words have larger aspect
ratios and range of box orientation. Therefore, we set anchor aspect ratios to 1, 2, 3, 4, 5, 1/2, 1/3, 1/5

with ±0.25 as the vertical offset.

Table-4.1 shows detailed CANVASNET Architecture.

Optimization: We formulate the loss function for CANVASNET as a combination of a classification
loss Lcls and a bounding-box localization loss Lloc:

19



L = α

(
1

N

N∑
i=1

Lcls(Pi, Gi)

)
+

 1

M

N∑
i=1

c∑
j=1

Gij ∗ Lloc(Bi, B
gt
i )

 (4.1)

where G is the ground truth label matrix (Gij = 1 if i-th anchor box belongs to atypical category j,
else Gij = 0), P is the predicted confidence score matrix (Pij indicates the confidence score that i-th
anchor box belongs to category j), this means Pi is a row of confidence scores for i-th box to belong to
various atypical categories, similarly Gi is a row where values for all atypical category is 0 except for
one(to which i-th box belongs). In the above loss function formulation, Bgt

i and Bi denotes the ground
truth and predicted offsets for the i-th anchor box. N is the total number of anchor boxes, M is the
total number of ground truth anchor boxes not belonging to background class, c represents the number
of atypical categories. We use focal loss[28] for Lcls which prioritizes a sparse set of hard examples
and prevents large number of negatives from overwhelming the detector. For localisation task, we adopt
Distance-IoU Loss [58]:

LDIoU = 1− IoU +
ρ2
(
b,bgt

)
c2

where b and bgt denote the central points of predicted and ground truth bounding box, ρ2
(
b,bgt

)
gives the square of the Euclidean distance between them, and c is the length of the diagonal of the
smallest enclosing box covering the two bounding boxes. In object detection tasks, [58] shows the
significant performance gains with their proposed CIoU and DIoU loss over other regression losses. We
adopted DIoU loss over CIoU as the texts in our detection task can be very small and DIoU performs
much better for small objects as shown in [58].

4.3 Baselines

All along, our approach for detecting atypical activities treats the canvas as a 2-D image. In effect, the
game session is considered to be a video-like frame sequence of 2-D canvas images. We also consider
alternate approaches wherein the game session is processed as a sequence of curves. Each curve is
labelled either as a regular sketch stroke or one associated with an atypical content category.

To our best knowledge, there are no existing model to detect and localize atypical events in a canvas.
Hence we compare the performance of our data using models designed for tasks like text detection, ob-
ject detection and sketch segmentation which are similar to our problem. Table 4.4 shows the detection
time for each baseline models in milliseconds.

4.3.1 BiLSTM+CRF

We first try the most straight forward model, Fig 4.4 which is inspired by [7]. We first extract a
set of unary and pairwise features (refer Table 4.2) for each stroke similar to [50]. The features are
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Table 4.2: Features extracted from strokes

Category Feature

Unary features
Length of stroke
Height of stoke
Width of stroke
Length of minor axis
Length of major axis
Eccentricity
Rectangularity
Area of convex hull
Density
Curvature
Closure
Time duration of stroke

Pairwise features
Ratio of length
Ratio of width
Ratio of height
Ratio of area
Intersection over union of area
Distance between centroid
Distance between endpoints
Time Lapse between stroke
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Figure 4.4: BiLSTM+CRF architecture

selected considering the characteristics of the atypical event in our dataset. The unary features are
extracted from a single stroke while the pairwise features are calculated for the current and the previous
strokes. Since our data is sequential we use a BiLSTM (BiDirectional Long Short Term Memory) layer
to further encode the features. The output sequences of the BiLSTM are given to a Conditional Random
Field (CRF) layer which is an undirected graphical model that predicts the conditional probability of the
output classes. Finally the output classes are decoded using Viterbi algorithm.

4.3.2 SketchsegNet+

SketchsegNet+ [35] is a RNN based model for multi-class sketch semantic segmentation where each
stroke is classified as one of the segmentation classes. Each point in the stroke are represented as a
five dimensional vector S = [∆x,∆y, p1, p2, p3] where [∆x,∆y] is the differential offset of a point
coordinates from the previous points and [p1, p2, p3] are binary flags to mark an ongoing stroke, last
point of stroke and end of the drawing respectively. A sequence to sequence Variational Auto Encoder
(VAE) based model as shown in Fig 4.5 is used to generate an one-hot encoding of the output class
for each point in the input. The input is first given to a BiLSTM encoder which predicts the mean and
variance of a Gaussian latent vector variable. The sampled latent vector z is then given to a LSTM
network along with the input S. Finally a set of fully connected layers followed by a softmax layer is
used to decode the output labels from the LSTM output sequence. The model is trained to optimize the
mean square loss between the predicted labels and the groundtruth. We calculate the evaluation metrics
for each sequence of predicted class labels.
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Figure 4.5: Sketchsegnet+ architecture

4.3.3 CRAFT

CRAFT [3] is a scene text detection method which produces region and affinity heatmaps for the
input text, making them a perfect fit to detect text of arbitrary shape and orientation. Unlike text in
natural settings, the text in sketch images are subjected to much more intrinsic variation and using
CRAFT directly will not be a viable choice. So, the following architectural changes were made for
effective learning.

The model adapts U-net [39] based architecture in the decoding block, similar to CRAFT. The ground
truth labels are generated using Gaussian heatmaps at the center of every character in the input image.

1. The input images with respect to the game are relatively sparser than the generic scene text images.
So the VGG-16 backbone of CRAFT is replaced with a simpler Sketch-a-Net [57] backbone.
Additionally we made changes to the Sketch-a-Net backbone as well
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Figure 4.6: Architecture of modified CRAFT based on [3]

(a) Replaced 15x15 convolutions of the first layer of Sketch-a-Net [57] with 5x5 convolutions.

(b) Increased the stride of convolutions and removed max-pooling blocks of the backbone.

2. The regressor block of CRAFT is removed and the output of the last upconv block is encoded as
the regional score.

The above model was trained with MSE loss and we obtain axis aligned bounding boxes with using a
modified watershed algorithm

Further for image based models, we also train appropriately two state-of-the-art generic object de-
tectors – DSOD [44] and Tiny-YOLOv4 [52]. We also train modified versions of popular scene text
detection models – TextBoxes++ [27].

4.4 Experiments and Results

We first describe the experiments and results for atypical content detection. Following standard
machine learning protocols, we divide data into training, validation and test splits. For each target
phrase, the sessions containing atypical content are randomly split in the ratio 70 (train) : 15 (validation)
: 15 (test). Since we perform data augmentation on atypical content-free sessions, we divide such
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sessions in the aforementioned ratio as well. The respective data splits are combined to obtain the final
groups.

4.4.1 Atypical content detection

Evaluation Protocol: We conduct evaluation using two protocols. In the first protocol, we consider
models trained to detect all atypical content classes. To score performance, we use the standard ob-
ject detection measures – mean-average-precision (mAP) and mean-average-recall (mAR) [59]. These
measures are typically reported on a [0, 1] scale – larger the better. mAP and mAR are reported at an
Intersection-over-Union (IoU) threshold of 0.5. In other words, an overlap of 50% or greater between
predicted bounding box and ground-truth bounding box is deemed correct (assuming predicted category
label also matches).

Training: For training CANVASNET, we employ Adam optimizer [25] with a mini-batch size of 8,
the exponential decay rate for 1st and 2nd moment estimates set to 0.9 and 0.999 respectively. We
stop training after 50 epochs. Classification loss weight (α) is set to 1000 for quick convergence. The
training takes approximately 4.5 hours on two GTX 1080Ti 11GB GPUs. We use mish[33] activation
function for both text-only and multiclass models. As per our experiments, mish activation leads to fast
convergence, as well as slight improvement is observed in mAP , mAR as compared to training using
relu activation. Detecting smaller objects is a harder task than detecting object instances with larger
sizes. As per[46], smaller objects are considered harder to learn than larger objects. Hence, we adopt a
curriculum learning[4] strategy to gradually train the network from easy samples (large objects) to hard
samples (small objects). We divide the training dataset into three sets: Seasy, Smedium, and Shard, based
on the bounding box area. For an individual task Ti, i ∈ 1, 2, 3, we train the detection model in three
steps that can be formulated as:

Ti =


Seasy I1; if Arbbox < Areasy

Seasy + Smedium I2; if Arbbox < Armedium

Seasy + Smedium + Shard I3

(4.2)

I1, I2, and I3 are the number of iterations each group of the sets are trained. Areasy and Armedium

are the area thresholds for selecting large and medium bounding boxes. Further, for training text-only
model, we also used Hard mining training regime for each Seasy, Smedium, and Shard sets which in-
volves mining true-positive samples having overlap threshold value with ground truth lies in window
of length 0.1 around 0.5 i.e it lies in [0.45, 0.55]. We observed significant increase in mAP , mAR
as compared to standard CANVASNET with regular training regime. For training multiclass model, we
used mini-batch re-sampling to ascertain each class has equal probability of appearing in any training
batch.
We observed that for some of our training examples, prediction boxes representing same atypical in-
stance were overlapping to the extent of one lying completely inside other, and hence while evaluation
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Table 4.3: CANVASNET performance for atypical content classes. IoU=0.5 refers to detection threshold.
Refer to Sec. 4.4.1 for details.

Atypical Content Category
IoU=0.5

mAP mAR
Text 0.58 0.80

Number 0.44 0.61
Icon 0.55 0.68

Circle 0.72 0.85

Table 4.4: Performance comparison with baselines. mAP = mean Average Precision, mAR = mean
Average Recall, #Parameters = the number of trainable weights in the corresponding deep network in
millions, ADT = average detection time per image in milliseconds.

Method
Text only Multiclass # Parameters ADT

mAP mAR mAP mAR M=million (m.sec)
CANVASNET 0.78 0.90 0.41 0.53 1.90 M 35
BiLSTM+CRF [7] 0.06 0.04 0.02 0.03 0.01 M 85
SketchsegNet+[35] 0.56 0.32 0.04 0.11 3.90 M 21
Tiny-YOLOv4[52] 0.26 0.65 0.31 0.51 5.88 M 40
TextBoxes++[27] 0.41 0.65 0.25 0.39 29.31 M 51
DSOD[44] 0.43 0.66 0.25 0.40 17.49 M 52
CRAFT [3] 0.47 0.69 0.17 0.30 1.18 M 34

of CANVASNET, we merged such overlapping prediction boxes which improved our predictions quali-
tatively as well as increased mAP by a slight margin.

Detection Results: CANVASNET’s performance for all the atypical categories can be viewed in Ta-
ble 4.3. Fig. 4.7 depicts examples of CANVASNET detections, including some failure cases. We con-
ducted ablation experiments to determine the relative importance of our architectural and optimization
choices. Details of the ablation configurations and results can be viewed in the project page. The com-
parative evaluation of CANVASNET with baseline approaches is summarized in Table 4.4. Note that the
comparison also includes compute-related aspects (number of trainable parameters in the approaches
and average detection time).

Table 4.3 shows CANVASNET’s performance for various atypical content categories. The consistent
depictions of Circle enables good performance for the category. Detecting isolated numbers is slightly
more challenging. Empirically, we observed that sketched content resembling letters (e.g. a moun-
tain sketch) or numerals (e.g. vertical bar groups) accounted for most of the false positive detections.
Text spanning a significantly large extent of the canvas and unusually oriented numbers accounted for
majority of the missed detections (false negatives). Fig 4.8, Fig 4.9, Fig 4.10 and Fig 4.11 show qual-
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Table 4.5: Performance scores for CANVASNET ablative variants (Text).

Ablation Type Pipeline Component Ablation Details mAP mAR

Architectural
Feature Extractor (Fig. 4.3)

Including output of SC Transition Layer-2 among prediction feature maps 0.64 0.78
Reduce number of dense segments (-1) 0.46 0.77
Increase number of dense segments (+1) 0.49 0.72

Multi-scale Predictor (Fig. 4.3) Reduce downsampling blocks (-1) 0.60 0.80
Entire Model Replace Separable convolution with regular convolution 0.42 0.66

Optimization N/A

Cross entropy loss for classification 0.45 0.86
L1 loss for regression 0.60 0.79
α = 10 0.25 0.57
α = 100 0.45 0.71

CANVASNET 0.78 0.90

itative detection results of the CANVASNET model for atypical content category text, number, symbol
and circle respectively. False negatives are shown as dashed rectangles and false positives as dotted
rectangles.

We also conducted ablation experiments for the setting with Text as the atypical category to deter-
mine the relative importance of our architectural and optimization choices. The results can be seen in
Table 4.5. In particular, our choice of using separable convolutions was a crucial decision, enabling a
significant performance boost overall. The crucial nature of relative tradeoff α between the two compo-
nents (classification, regression) in the loss function can also be seen in Table 4.5.

From Table 4.4, we see that CANVASNET clearly outperforms a variety of baseline approaches
(Sec. 4.4.1). This is predominantly due to the carefully considered architectural and optimization
choices in designing CANVASNET. The results also illustrate the superiority of image-based approaches
compared to the sketch stroke processing approaches (BiLSTM +CRF, SketchSegNet+). Keeping the
rule-violation detection scenario in mind, we also trained variants designed to detect the single class
Text. As the ‘Text only’ column in Table 4.4 shows, CANVASNET remains the best performer. From the
table (column named ‘Parameters’), we also note that CANVASNET achieves its superior performance
despite containing a smaller number of parameters relative to most of the baselines.

4.5 Summary

In this chapter, we described CANVASNET, a deep neural network to detect atypical sketch content
in drawing canvas and then we compared CANVASNET with various baselines and its ablative variants.
In the next chapter, we will discuss how we employ CANVASNET to design a distributed and scalable
system for close to real time sketch content-based alert generation.
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Figure 4.7: Examples of atypical content detection by CANVASNET. False negatives are shown as
dashed rectangles and false positives as dotted rectangles.
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Figure 4.8: CANVASNET detections for Text class
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Figure 4.9: CANVASNET detections for Number class
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Figure 4.10: CANVASNET detections for Icon class
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Figure 4.11: CANVASNET detections for Circle class
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Chapter 5

DRAWMON: A Distributed System for Sketch Content-based Alert

Generation

5.1 Introduction

Consider a scenario with multiple online Pictionary game sessions in progress. We require a frame-
work for automatic and concurrent monitoring of these game sessions for any atypical activities (e.g.
a rule violation such as writing text on canvas). Such a framework needs to be reliable, scalable and
time-efficient. To meet these requirements, we propose DRAWMON - a distributed alert generation sys-
tem (see Fig. 5.1). DRAWMON monitors multiple online Pictionary game sessions to detect atypical
activities and generates close to real time alerts for flagging anomalous activities. Each game session is
managed by a central Session Manager which assigns a unique session id (Fig. 5.2). For a given ses-
sion, whenever a sketch stroke is drawn, the accumulated canvas content (i.e. strokes rendered so far)
is tagged with session id and relayed to a shared Session Canvas Queue. For efficiency, the canvas con-
tent is represented as a lightweight Scalable Vector Graphic (SVG) object. The contents of the Session
Canvas Queue are dequeued and rendered into corresponding 512 × 512 binary images by Distributed
Rendering Module in a distributed and parallel fashion. The rendered binary images tagged with session
id are placed in the Rendered Image Queue. The contents of Rendered Image Queue are dequeued and
processed by Distributed Detection Module. Each Detection module consists of our custom-designed
deep neural network CANVASNET which processes the rendered image as input. CANVASNET outputs
a list of atypical activities (if any) along with associated meta-information (atypical content category,
2-D spatial location).

The outputs from multiple distributed CANVASNET instances within the Distributed Detection Mod-
ule are routed to the Alert Generator Module. An activity Record Table within this module records
information related to ongoing game sessions and atypical content instances. This table is analyzed
with respect to a Rule Base sub-module which generates appropriate alerts and relays them to the ap-
propriate game sessions. Since rule violations are of predominant interest, other atypical content alerts
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Figure 5.1: A pictorial overview of DRAWMON - our distributed atypical sketch content response sys-
tem. Also see Fig. 5.2 for additional architectural details.

can be filtered out. Incoming alerts are finally displayed on the game session user interface (UI) - see
Fig. 2.2.

Also note that two manually-controlled mechanisms related to alert generation exist within the game
UI. The Guesser player can press a button labelled ‘Drawer is violating rule!’. This simply generates
the alert (but does not highlight the canvas location where violation occurs). On the Drawer’s side, the
button ‘False Alarm’ can be used to dismiss false positive alerts (see Fig. 2.2). In the current deployment,
we utilize the Text detection variant of CANVASNET to detect text writing event on canvas.

5.2 DrawMon User Study Experiments

To quantify the efficacy of DRAWMON, we analyzed game session data with DRAWMON deployed
to detect text. The canvas contents are relayed to DRAWMON every 1 second. We deployed 4 CAN-
VASNET instances within the Distributed Detection Module on two 2080Ti GPUs alongside 16 worker
processes for svg to image conversion. The combined peak usage of GPU RAM was 20 GB while peak
CPU RAM usage was 15 GB. 23 participants (11 male, 12 female) in the age group 19−25 (mean=20.8,
std.=3.1), recruited using social media and from the institution’s student pool, participated in the study.
Each session had an average duration of 47.5 sec (std.= 37.4) with the maximum being 120 seconds.
Over the study period, the maximum number of concurrent game sessions managed by DRAWMON was
4. From the resulting set of 145 game sessions, 69 contained atypical text activities. During the ses-
sions, we recorded timestamped alerts from DRAWMON, false alarm notifications by the Drawer player
and rule violation notifications from the Guesser player. The results from the study are summarized in
Table 5.1. To determine DRAWMON’s throughput, we measured two quantities. The first, processing
time (p-time), is the average elapsed time between the canvas representation being sent to DRAW-
MON and receiving an alert. In case no alerts were generated, the timestamp corresponding to end of
CANVASNET processing was considered. From our data, p-time was 0.4s. The other measurement
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Figure 5.2: System architecture for Pictionary game setup and DRAWMON.

Table 5.1: User study statistics with DRAWMON deployed.

Game Event Type Count

(True Positive) DRAWMON generates ‘Rule Violation’ alert. Drawer doesn’t press ‘False Alarm’ button. 62
(False Positive) DRAWMON generates ‘Rule Violation’ alert. Drawer presses ‘False Alarm’ button. 32
(False Negative) No ‘Rule Violation’ alert. Guesser presses ‘Drawer is violating rule’ button. 6

was the maximum number of concurrently active sessions (n-sess) – this was 4. Defining the effective
throughput rate to be tpr = p-time/n-sess, we obtain an average processing rate of 10 items per
second.

Results and Analysis: The results from DRAWMON deployment user study are summarized in Ta-
ble 5.1. From the table, we see that a significant fraction of DRAWMON generated alerts are valid (see
‘True Positives’). From the results, DRAWMON’s precision is 0.66 while recall is 0.91. Post the user
study, we conducted a brief survey with Likert-type questions on a 1 to 5 scale with 5 being the best. ‘Q:
How responsive was DRAWMON to valid rule violations?’ : The average score was 3.63 (s.d.=0.74),
indicating reasonably high system throughput despite multiple concurrent sessions. This is also sup-
ported by the recorded throughput rate (tpr) mentioned previously in this section. ‘Q: How was the
overall game experience?’ : The score was 3.91 (s.d.=0.60), suggesting a positive session experience
and satisfaction with rule violation detection and response mechanisms.
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Table 5.2: DRAWMON throughput comparison while keeping system resources fixed and increasing the
number of concurrent virtual sessions.

Total Sessions Atypical Event Sessions Effective Throughput
145 69 40 fps
200 94 40 fps
300 128 40 fps
400 191 40 fps
500 263 40 fps
1000 509 40 fps

Table 5.3: DRAWMON throughput comparison on varying system resources for a fixed set of 1000 game
sessions.

CANVASNET Instances Worker Processes Effective Throughput
1 16 21 fps
1 12 26 fps
2 6 35 fps
2 12 40 fps

5.3 Scalability Studies and Results

We conducted a simulation study on scalability and performance of DRAWMON. In the DRAWMON

system (see Fig. 2.2), a recorded game session’s Drawer and Guesser events can be played back by
assigning virtual players and mimicking the actual game. Taking advantage of this capability, we created
virtual Drawer and Guesser players from ‘test set’ game sessions. Note that the ground-truth for atypical
activities is available for the test set.

In the first study, we examined the effect of increasing the number of concurrent virtual sessions on
DRAWMON throughput while keeping system resources fixed (i.e. 2 CANVASNET instances, 12 worker
processes). The game sessions were selected randomly with replacement.

Results shown in Table- 5.2 indicate DRAWMON’s ability to reasonably sustain the throughput rate
and its scalability in handling larger number of concurrent sessions containing atypical events.

In the second study, we examined the effect of increasing the system resources for a fixed set of
1000 game sessions. As before, the virtual game sessions were selected randomly with replacement.

Results shown in Table- 5.3 indicate DRAWMON’s ability to benefit from additional allocation of
system resources to meet demand.

5.4 Application Scenarios

Application Scenarios: Although we have used Pictionary as a use case scenario, we expect DrawMon
to be suitable for other shared and interactive whiteboard scenarios. For instance, in a writing related

36



setting, the notion of atypical categories can be the exact opposite of Pictionary scenario: text on canvas
would be routine while drawings might be considered abnormal. This can be tackled by appropriate data
labelling, for e.g. using our CANVASDASH annotation tool, and subsequently retraining CANVASNET

deep network. In another scenario, consider participants grouped into teams for a collaborative scene
drawing task [8, 55]. DRAWMON, using a CANVASNET configured for sketched scene recognition [61],
can alert the instructor on progress and task completion. For this task, a CANVASNET instance trained
to recognize individual objects and iconic components from our dataset (e.g. arrows, ‘addition mark’)
could also be included as additional detection component for expanding the detection capability.
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Chapter 6

Conclusions

In this thesis, we addressed the problem of detection of controversial content drawn by malicious
participants in increasingly popular shared digital whiteboards in both educational and workplace set-
tings for collaboration and communication. Such activities tend to impair the collective experience of
participants and hence the broad requirement is for a framework which can respond to a variety of atypi-
cal whiteboard content in a reliable, comprehensive and timely manner. Taking Pictionary – a wonderful
example of cooperative game play to achieve a shared goal in communication- restricted settings, as a
use case we first collected ATYPICT – the first ever dataset of atypical whiteboard content, using our
custom browser based 2 player Pictionary-like sketching game dubbed PICTGUESS. Borrowing termi-
nology from the seminal work of von Ahn and Dabbish [51], Pictionary can be considered an ‘inversion
game’ with full transparency. Riberio and Igarashi [37] employ a sketching-based interactive guessing
game to progressively learn visual models of objects. A review of Pictionary-like word guessing games
involving drawing can be found in the work by Sarvadevabhatla et al. [42]. In general, most of the
existing works are confined to idealized toy settings with a small number of visually simple categories.
Unlike what we proposed our work, they do not discuss the possibility of atypical activity.

We then finally introduced DRAWMON, a system for canvas activity-based alert generation. DRAW-
MON is a distributed framework for monitoring multiple shared interactive whiteboards for detecting
atypical content. DRAWMON is enabled by a number of equally important lateral contributions - (i)
CANVASDASH - an intuitive dashboard UI for annotation and visualization (ii) ATYPICT - a first of its
kind dataset for atypical sketch content (iii) CANVASNET - a deep neural network for atypical content
detection. Together, these reusable contributions create the possibility of developing similar frameworks
for other shared and interactive whiteboard scenarios. Apart from atypical content detection, we expect
our game session dataset to be a valuable resource in itself for analyzing player characteristics and
strategies in communication restricted non-adversarial games [15].

Our findings and other project related details can be explored at https://drawm0n.github.io. The
website includes links to code and pre-trained models for CANVASNET, DRAWMON, the new atypical
sketch-content dataset ATYPICT introduced by us and some example annotation session, gameplay
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session from our CANVASDASH - annotation tool and browser-based pictionary data collection tool for
additional exploration and benefit of the community.

6.1 Future Work

The development of AI agents which can generate game moves is an active research area [47, 45]. In
addition to training on human-vs-human game data, agents are also trained to play against themselves.
The ability to recognize sketches forms a crucial capability for AI agents participating in Pictionary. In
recent times, active research has been conducted on collecting sketches of objects [21] and scenes [61]
in order to build recognizer agents [41], especially in toy, Pictionary-like settings [42]. Pictionary is
complicated by additional factors such as multi-modal game play (guesser uses speech/lexical modal-
ity while drawer uses visual modality), asynchronous turn- taking and only high-level notions of what
constitutes a ‘win’ (e.g. target word is ‘airplane’, but guesser’s proposal of ‘warplane’ may be consid-
ered acceptable). With the sketch recognizer in place, we plan to develop practical AI agents which
can mimic human Pictionary players in a more interactive, realistic manner compared to existing non-
interactive works [5, 16].
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