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Abstract

Biometric authentication plays an increasingly prominent role in today’s products and services for
verifying an individual’s identity. It is not only efficient but also practical, as it establishes a unique link to
an individual through their physical and behavioral characteristics [43]. Unlike conventional authentication
mechanisms like passwords or documents, biometric traits are inherent to each individual, eliminating the
need to memorize additional information [64]. However, the security and privacy of biometric templates used
in authentication remain primary concerns, as biometric data is strongly and irrevocably tied to an individual,
as emphasized in the article [42]. In the context of remote authentication, Secure Multiparty Computation
(SMC) offers a powerful solution. SMC enables two parties to interactively compute a function using their
private inputs without disclosing any information except for the output itself [19]. This approach ensures that
biometric template comparison is carried out in a privacy-preserving manner, enhancing both security and
privacy in authentication services.

In this thesis, we introduce a unique approach to iris, fingerprint, and face verification by incorporating
”noise” into the authentication process. In our work,“noise” refers to signals obtained from non-discriminatory
or unreliable regions of biometric characteristics. Our extensive empirical evaluation reveals a correlation
among noise features, and we leverage this correlation in a novel Secure Two-Party Computation (STPC)
design. This STPC design operates on quantified uncertainty between noise features, providing information-
theoretic security. Our approach has low accuracy degradations, practical computational complexity, wide
applicability making it suitable for practical real-time applications.
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Chapter 1

Introduction

1.1 Biometrics

The term ”biometrics” is derived from two Greek words: ”bio,” which means ”life,” and ”metrics,” which
means ”measurement” or ”to measure.” When combined, ”biometrics” essentially means ”the measurement
and analysis of biological data.” In the context of technology and security, biometrics refers to the measure-
ment and analysis of unique physical or behavioral characteristics, such as fingerprints, facial features, or
voice patterns, for the purpose of identity management.

One of the earliest known official uses of biometrics can be traced back to Babylonian clay tablets
dating as far back as 500 BC [77]. These ancient records documented fingerprints for the purpose of
conducting business transactions, representing an early instance of biometric data being employed for
official and practical purposes. Across the course of human history, individuals have consistently turned
to biometric characteristics such as faces or fingerprints as reliable means to identify both familiar and
unfamiliar individuals. This seemingly straightforward task, although fundamental, grew in complexity as
populations expanded and increased travel introduced new individuals into communities that were once small
and tightly-knit. Consequently, the demand for accurate and dependable methods of identification has become
increasingly crucial, reflecting the ongoing evolution of biometric recognition throughout civilization.

Not all biological measurements qualify to be a biometric, they must satisfy [46]:

• Universality: This principle asserts that every individual should possess the biometric characteristic
under consideration. In other words, the trait should be present in all individuals, making it applicable
for widespread use in identification.

• Distinctiveness: The biometric characteristic should exhibit the quality of distinctiveness, ensuring that
any two individuals are significantly different from each other concerning this trait. This distinctiveness
is essential to avoid confusion and ensure accurate identification.

• Permanence: Permanence implies that the biometric characteristic remains sufficiently consistent and
invariant over time with respect to the chosen matching criteria. It should not change significantly over
the course of time, allowing for reliable long-term identification.

1



Face

Signature

Iris Fingerprint

Speaker Voice

Palmprint

Gait

Figure 1.1: Body traits that can be used for biometric recognition. Anatomical traits include face, fingerprint

and Iris, palmprint while gait, signature and voice form behavioral traits [2, 58, 63, 73])

• Collectability: Collectability relates to the ease with which the biometric characteristic can be
quantitatively measured or collected. The characteristic should be readily measurable in a practical and
feasible manner for effective use in identification processes.

Along with these principles, a practical biometric system should be accurate and must maintain standards
of user acceptability and privacy. Commonly used biometric traits is shown in Figure 1.1. A biometric system
is essentially a pattern recognition system designed to authenticate users based on their unique biological or
behavioral characteristics.

1.2 Authentication

Biometric authentication which is a primary application of biometrics, has gained widespread adoption in
various sensitive digital applications, including payment systems, access control systems, and crime/fraud
detection systems, among others [78]. These authentication systems rely on biometric signals, which are
unique and highly distinctive, providing a secure link to an individual’s identity [68]. Unlike traditional secu-
rity methods that involve memorizing passwords [80], biometrics offer the advantage of not requiring users
to remember complex passwords, enhancing convenience. However, once biometric data is compromised, it

2



Figure 1.2: A schematic representation of a Biometric Authentication System, with user enrollment and

authentication stages [47])

cannot be replaced or reset, and this poses a significant security risk not only for the individual but also for
other systems that rely on the same biometric data.

Biometric authentication systems can operate in either verification mode or identification mode, depending
on the specific application context [46]:

• Verification Mode: In verification mode, the biometric system authenticates an individual’s identity
by comparing their biometric data to their own stored biometric templates in the system’s database. To
initiate recognition in this mode, individuals typically provide a some form of personal identification
like password. The system then conducts a one-to-one comparison to determine whether the claimed
identity is valid. For instance, it checks if the provided biometric data matches the individual associated
with it. Verification mode is commonly used for positive recognition, preventing multiple individuals
from using the same identity.

• Identification Mode: In contrast, identification mode involves the system recognizing an individual
by searching the biometric templates of all users in its database for a match. This mode employs a
one-to-many comparison, attempting to establish an individual’s identity without requiring explicit
identity claims. Instead of asking, ”Does this biometric data belong to X?” it poses the question,
”Whose biometric data is this?” Identification mode is particularly valuable in negative recognition
applications, where the system determines whether a person is who they implicitly or explicitly deny
being.

3



In an authentication system, the typical process involves a user enrolling their biometric template, denoted
as XT , by storing it in a database referred to as D. Subsequently, during the online authentication phase, a
new template XQ is extracted, and this template is compared with the stored templates within the database
D using a matching module denoted as M . The decision to grant or deny user access is made based on
a threshold applied to the comparison function executed by the matching module M(D or XQ, Xt). This
thresholding process in the decision module based on score S determines whether the user’s biometric
template sufficiently matches those in the database, thus authorizing or denying access accordingly. The
illustration for the same, adopted from [47] is shown in Figure 1.2.

1.3 Security Threats

Security threats in biometric recognition systems are multifaceted and can be categorized into three main
areas [42]. First, at the sensor level, there are concerns related to presentation attacks. Second, in the feature
extraction module, adversarial attacks can pose risks. Finally, at the database and matching modules, issues
such as template theft and subsequent template reconstruction attacks are of concern. These security
challenges have been the focus of extensive research in the biometrics community. However, certain aspects
of these challenges remain unresolved, particularly regarding their applicability in detecting new types of
attacks and adapting to new sensors that were not part of their original training. We summarize the three
types of threats below:

• Presentation Attacks (PAs): Presentation attacks can take on two primary forms. Firstly, they can be
used as obfuscation attacks, where the attacker aims to conceal their own identity. Secondly, they can
be utilized as impersonation attacks, where the attacker seeks to imitate someone else’s identity. This
requires active participation of the attacker. Presentation attack detection (PAD) system, which are
either hardware or software based are developed for mitigation.

• Adverserial Attacks : Adversarial attacks pose a significant challenge to the security and robustness
of machine learning models, including those used in biometric recognition systems. These attacks
involve making small, carefully crafted modifications to input data, such as images or sensor readings,
with the goal of causing the model to make incorrect predictions or classifications. One of the key
characteristics of adversarial attacks is their imperceptibility to the human eye, as the changes are often
subtle and designed to evade human detection. Adversarial attacks can be categorized into white-box
attacks, where the attacker has full knowledge of the model, and black-box attacks, where the attacker
has limited information about the model’s inner workings. In contrast to PAD’s these attacks dom’t
require online participation of the attacker. Adverserial training strategies are employed for mitigation.

• Template Attacks : Numerous studies have raised concerns about the security of biometric recognition
systems, demonstrating that templates extracted from these systems, including deep face representations,
minutiae-based fingerprint representations, and iriscode features, can be inverted back into the image
space with remarkable fidelity, as illustrated in Figure 1.3. Furthermore, research has revealed that
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Figure 1.3: Template attacks in cases where reconstruction could successfully match the input probe, shown

for iris, fingerprint and face modalities respectively [42])

certain ”soft” demographic attributes, such as age and gender, are inadvertently encoded into these
biometric templates.

This poses a serious security risk, particularly in light of reported breaches of databases containing
biometric templates. It’s important to note that a biometric template can be compromised at various
points in the system, either immediately after feature extraction when it resides in the enrollment
database or even during the matching routine if the template must be decrypted for comparison.
Therefore, it is imperative that biometric recognition systems employ robust encryption and security
measures to safeguard templates from potential hackers throughout the entire authentication process.

In this thesis, we present a novel solution to counter template attacks by introducing a privacy-preserving
approach. Within this approach, we perform the computations of the matching module within an encrypted do-
main, thereby effectively thwarting reconstruction attacks. Our approach is built upon provable cryptographic
foundations, ensuring robust protection against potential security threats from template attacks.
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1.4 Privacy Preservation in Biometrics

The statement made in [27], ”The problems of privacy and authentication are closely related, and
techniques for solving one can frequently be applied to the other,” underscores the interconnected nature
of privacy and authentication issues. Solutions developed for addressing one of these challenges often find
applicability in tackling the other.

Cryptography, involves the application of data transformations with the primary objectives of rendering
the data indecipherable to adversaries. These transformations serve as effective solutions to two fundamental
challenges in data security: the privacy problem, which aims to thwart adversaries from extracting information
from a communication channel, and the authentication problem, which seeks to prevent adversaries from
introducing counterfeit data into the channel or modifying messages to alter their intended meaning.

In Chapter 2, we extensively explore different techniques for template protection, categorizing them into
cancellable templates, cryptosystems, and computation in the encrypted domain. The research presented in
this thesis primarily falls into the latter category. We introduce a novel privacy-preserving secure two-party
computation protocol [32] designed for performing verification between two parties using Noise.

1.5 Noise is useful

Noise, in a broad sense, refers to undesired signals or inputs that are irrelevant or unwanted for a specific
task. In the context of our work on biometric recognition, we specifically refer to noise signals as any
signals that are considered unnecessary or uninformative. These signals may arise from regions that are
non-discriminative or unrelated to the trait being verified. We refer to the binarized representations from
noise signals as “noise codes”.

In our approach, we don’t entirely discard noise signals from regions of a trait as completely useless.
Instead, we recognize that there may still be a weak correlation or connection between the noise codes
originating from these regions. We take advantage of this weak correlation by quantifying the uncertainty
in bit mismatches and incorporating it into the design of the secure protocol’s AND gate (we support with
empirical findings in chapters 4 3). This approach allows us to achieve the AND operation with only one
round of communication during the online phase of the protocol, enhancing its efficiency and security.

We provide a visual representation of this concept’s implementation using noise in Figure 1.4. Within
this illustration, HD denotes the Hamming distance, serving as a measure of the mismatch level by utilizing
sampled 1-out-of-4 mismatch 4-bit pairs (np,mp) from corresponding positions of the noise codes of each
participating party (P1, P2). Furthermore, we introduce sub-protocols and utilities specifically designed to
generate these pairs from noise, ensuring their compliance with the specified assumption. This framework
serves as the core of our approach, enabling the secure computation of complex functions while upholding
privacy and security through the integration of Noise.
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Figure 1.4: Using noise-code mismatch uncertainty for Secure AND

1.6 Privacy Preservation using Noise

With the expectation of the 1-out-of-4 mismatch property in the 4-bit pairs obtained from the noise
codes, as discussed in the previous section, we establish a security definition. This definition is rooted in
the concept that we perform binary hashing of binary sensitive inputs using random relations derived from
noise codes, effectively serving as one-time pads for each AND gate computation. This approach ensures
information-theoretic security of sensitive inputs.

Considering distributed shares with Party P1 having x1 and y1, and Party P2 having x2 and y2, along with
random 4-bit pairs represented as octets m = ⟨m1,m2,m3,m4⟩ and n = ⟨n1, n2, n3, n4⟩, we perform the
following value interchange for the final computation of z1 at Party P1:

• e1 = x1 ⊕m2 ⊕m4

• e2 = y1 ⊕m3 ⊕m4

We can note that e1, e2 does not reveal any sensitive information about x1 or y1 which are protected
through noise at P2. Similar encrypted values are received at P1. We provide a formal proof alluding to the
complete view of the protocol in the appendix.

1.6.1 Security Assumptions

Privacy is guaranteed in this protocol under the assumption of a semi-honest, passive adversary. A passive
adversary adheres to the protocol and observes the information exchanged during the protocol execution.
We also assume security against adversaries with unbounded computational power, which distinguishes
this protocol from other methods that rely on computational security and key size constraints. In our work,
we do not rely on any public-private key cryptography assumptions concerning the parties involved before
executing the protocol. Furthermore, the construction of octets in our approach is not limited by encryption
assumptions, as is the case with Oblivious Transfers (OTs). We, however assume each octet and key in our
work is used only once, since they rely on OTP’s security.
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1.6.2 Security Compliance

ISO/IEC 24745:2022, as detailed in the IEEE standard [1], sets forth specific principles for crafting
template protection schemes. It emphasizes the importance of safeguarding biometric references to meet
diverse requirements for secrecy, irreversibility, and renewability during both the storage and transfer phases.
The methods proposed in our work align with these principles, as they ensure secrecy, irreversibility, and
renewability in both the storage and transfer of templates. This is achieved by storing encrypted templates
and conducting operations on them while preserving privacy.

1.7 Motivation

Our motivation stems from the novel approach we introduce for verification, offers a unique approach
without traditional cryptographic assumptions between involved parties. Instead, we harness seemingly
unreliable regions and leverage inherent randomness to establish security. This unconventional strategy
enables the design of a protocol that achieves both robust security and practical utility. Through theoretical
analysis and performance verification on publicly available datasets, we demonstrate the potential feasibility of
our approach for remote verification solutions across various biometric modalities, including Iris, Fingerprint,
and Face verification.

1.8 Decoding the Thesis’s Title

The inclusion of the term ”uncertainty” in the title underscores our emphasis on leveraging the inherent
randomness within noise regions, which is quantified probabilistically through the 1-out-of-4 mismatch
assumption. We substantiate these findings empirically in chapters 3 and 4 through an examination of noise
distributions. This element of uncertainty is pivotal in our novel privacy-preserving solution, ensuring both
privacy and verification.

1.9 Contributions

In this section, we summarize the key contributions of this thesis:

• Novel Secure Multi-Party Solution for Verification using Noise: We have introduced a novel secure
multi-party computation protocol for verification that leverages the concept of noise. This protocol
ensures both privacy and security in the verification process.

• Application of Noise-Based Verification to Iris, Face, and Fingerprint Modalities: Our approach
is versatile and can be applied to various biometric modalities, including Iris, Face, and Fingerprint
recognition, making it applicable to a wide range of authentication scenarios.
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• Design of Noise Feature Extraction: We have designed noise-based feature extraction methods that
adapt to different conditions, enhancing the robustness and effectiveness of the base protocol introduced
in Chapter 3.

• Framework Extension: We have extended the base protocol introduced in Chapter 3 into a compre-
hensive framework that can accommodate various use cases and scenarios.

• Complexity, Security, and Verification Performance Analysis: Through rigorous analysis, we have
evaluated the complexity, security, and verification performance of our proposed method, demonstrating
its effectiveness and efficiency.

• Verification of Noise Properties: We have conducted empirical studies on noise distributions to verify
the properties of noise, providing empirical evidence to support our approach.

• Comparison and Implementation Details: We have compared our approach with existing methods
and provided implementation insights, including time-cost analysis, to showcase the practicality of our
method.

1.10 Thesis Organisation

The thesis is organized as follows :

• Chapter 2 Summarizes the literature and referred works related to the proposed methods.

• Chapter 3 Introduces Secure verification scheme for Iris.

• Chapter 4 Extends the Chapter 3 to other modalities with additional utilities.

• Chapter 5 Thesis is summarized here.

• Appendix A Includes formal security and correctness proofs.
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Chapter 2

Literature Review

2.1 Introduction

In this chapter, we offer an overview of prior research relevant to our proposed methods in the upcoming
chapters. Our work primarily relies on biometric feature extraction techniques and Secure Multiparty
Computation (SMC) foundations. We briefly touch on methods and techniques in these areas. Additionally,
as our proposed methods pertain to biometric template protection and privacy preservation, we provide a
brief overview of existing approaches in this domain.

2.2 Feature Extraction in Biometrics

In a biometric system, the feature extraction module plays a crucial role in capturing a representation of
the discriminatory information, often referred to as ”features / descriptors”, acquired by the biometric sensor
module [43]. This representation is typically structured as a high-dimensional vector with values that can be
continuous, discrete, or binary, and it serves as input to an authentication module.

Given the extensive literature on recognition and biometric representational learning, our review in this
work focuses on methods directly employed, encompassing both traditional and deep learning approaches.

2.2.1 Tradtional Approaches

In this section, we outline non-deep learning approaches that are commonly employed in authentication
schemes for feature extraction within the iris, face, and fingerprint modalities.

• Iris Codes using Phase based Method [24]: Each individual iris pattern is isolated using integro-
differential operator identifying the iris regions, the next step involves demodulation to extract its
phase information. This demodulation process is carried out using quadrature 2-D Gabor wavelets.
Essentially, it entails quantizing the phase of the iris pattern on a patch-by-patch basis. This quantization
is achieved by determining the quadrant in the complex plane where each resulting phasor lies when a
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specific region of the iris is projected onto complex-valued 2-D Gabor wavelets:

hre,im = sgnRe,Im

∫
ρ

∫
ϕ
I(ρ, ϕ)e−iω(θ0−ϕ).e−(r0−ρ)2/α2

.e−(θ0−ϕ)2/β2
.ρdρdϕ (2.1)

where I(ρ, ϕ) is the iris image I transformed to polor coordinate system, α, β are multiscale 2-D
wavelet size parameters, spanning an eight-fold range, ω is the wavelet frequency inversely proportional
to β. (r0, θ0) are the polar coordinates of iris for which phase coordinates are computes as hre,im either
0 or 1 based on the sgn. A total of 2048 such phase bits are computed. Hamming distance is used for
comparison.

• Fingerprint Minutiae & Filterbank descriptors [56] [39]: Fingerprint minutiae points play a
critical role in recognition as they are highly discriminative and pivotal. In the recognition process,
a ridge or bifurcation pattern is localized and extracted, and then transformed into polar coordinates
after aligning the fingerprint. In a straightforward matching approach, the system computes pairwise
distances between each pair of polar minutiae coordinates. The number of matching minutiae is then
subjected to a threshold for verification. A higher number of minutiae matches indicates a higher
degree of similarity in the biometric data, contributing to a more confident verification process.

To expedite the authentication process, many schemes opt for FingerCode, a binary representation
of fingerprint data that facilitates matching using euclidean distance. The fingerprint images are
divided into sectors starting from a reference point. Each sector undergoes a series of processing
steps, including normalization and filtering with a bank of Gabor filters. The resulting representations
are then compared using the Euclidean distance, streamlining the matching process and reducing the
computational load associated with minutiae extraction and matching.

• Eigenfaces for face recognition [74]: Eigenfaces is a facial recognition technique using Principal
Component Analysis (PCA). It represents faces as linear combinations of eigenfaces, which capture
primary image variations. The process involves finding a mean face, centering images, computing a
covariance matrix, and performing eigenvalue decomposition to represent a face image as a combination
of eigenfaces. This reduced-dimensional representation facilitates efficient facial recognition. A
normalized face is projected using eigenfaces, with a subset of eigenvectors and euclidean distance is
employed in finding the closest match.

2.2.2 Deep Learning Based Methods

In recent years, deep learning methods have witnessed widespread adoption due to improved hardware
availability and their superior accuracy in various recognition tasks [61]. Typically, these methods involve
extracting deep representations from each image, followed by comparisons using cosine distance. In the
following section, we will review the methods employed for fingerprint and face feature extraction in our
work.

• Deep Fingerprint Representation [30]: DeepPrint is a deep neural network designed to learn and
extract fixed-length fingerprint representations of only 200 bytes. DeepPrint is notable for its integration
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of domain knowledge specific to fingerprints, including alignment and minutiae detection, directly
into the deep network architecture. This incorporation enhances the discriminative power of the
representation it generates.

The compact DeepPrint representation offers several advantages over prevalent variable-length minu-
tiae representations. First, it eliminates the need for computationally expensive graph matching
techniques. Second, it is more amenable to robust security measures, such as homomorphic encryption.
Third, DeepPrint excels in cases involving poor-quality fingerprints where minutiae extraction can be
unreliable.

• Deep Face Representation [70]: FaceNet is a deep learning model designed to efficiently tackle
large-scale face verification and recognition tasks. It learns to map face images directly into a compact
Euclidean space, where the distances between points in this space directly represent measures of face
similarity. This allows for straightforward implementation of tasks like face recognition, verification,
and clustering using FaceNet embeddings as feature vectors.

Unlike previous deep learning approaches that rely on intermediate bottleneck layers, FaceNet utilizes
a deep convolutional network that directly optimizes these embeddings. Training is conducted using
triplets of matching and non-matching face patches generated through an online triplet mining method.
The key advantage of this approach is significant representational efficiency.

While other efficient methods are available in the literature, we note that the results achieved with
this method are comparable on small verification datasets. Moreover, this particular method has wide
adoption in practical applications. Therefore, for the purpose of demonstrating the efficiency of the
security protocols, we adhere to this method.

2.3 Biometric Template Protection

2.4 Taxonomy

In Figure 2.1, you can see the taxonomy of existing schemes in the Biometric Template Protection
(BTP) domain. Traditionally, biometric template protection schemes [75], [15] have been classified into two
categories: cancellables and cryptosystems. However, in recent years, a new category has emerged with
comparisons conducted in encrypted domains. In this taxonomy, we’ve combined Homomorphic Encryption
(H.E) and H.E + GC (a hybrid approach with garbled circuits) and introduced Secure Multiparty Computation
(SMC), which is the category that the current work belongs to. Below, we provide an brief overview of these
methods.

• Cancellable Biometrics : Cancelable Biometrics (CB) involve the deliberate and reproducible alter-
ation of biometric signals using specific transforms. These transformations enable the comparison
of biometric templates within the modified domain [59]. The Figure 2.2 provides an overview of
the same. The cancelable biometric recognition process consists of two phases: Enrollment and
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Figure 2.1: Biometric Template Protection Taxonomy (Adapted from [35])

Figure 2.2: Cancellable Biometric System [66])

Authentication (Figure 2.2). During Enrollment, the user’s biometric data is collected and features are
extracted. A cancelable biometric template is then generated using techniques like Hashing, Filtering,
or Cryptography, and stored securely. In the Authentication phase, a similar cancelable biometric
template is generated. The probe data is matched against stored templates in the database, enabling
user verification or identification. This approach ensures secure biometric recognition and data privacy.

• Biometric Cryptosystems [49] : A Biometric Cryptosystem (BCS) is formally defined as a framework
supporting techniques for securing biometric data using a key to create a biometric template. This
key can be either bound to or generated from the biometric data. The BCS comprises three phases:
Enrollment, where data is captured, features are extracted, and a reference template is created; Au-
thentication, which matches biometric data with the reference; and Encryption/Decryption, utilizing
keys generated independently, monolithically bound, or derived from the biometric representation for
secure data access. BCS ensures privacy and security while using biometrics for authentication and
data protection. These phases enable secure processing and storage of biometric data, safeguarding
sensitive information throughout the authentication and encryption process. The key generation process
used in these methods is shown in Figure 2.3.
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Figure 2.3: Key construction mechanism in Biometric Cryptosystems [49])

Figure 2.4: A simple illustration of Homomorphic Encryption Schemes [3])

• Homomorphic Encryption : Homomorphic Encryption (HE) is an encryption scheme that enables a
third party, such as a cloud service provider, to perform specific computational functions on encrypted
data while maintaining the properties of the function and the format of the encrypted data. Essentially,
HE corresponds to a mathematical mapping within abstract algebra. For instance, in an additively
homomorphic encryption scheme, one can obtain E(m1 + m2) from E(m1) and E(m2) for sample
messages m1 and m2, without needing to know the explicit values of m1 and m2. Here, E represents
the encryption function. H.E is further classified as fully, partially and somewhat homomorphic based
on the extent to which homomorphic properties are supported.

A basic example of Homomorphic Encryption (HE) [3] in a cloud application is depicted in Figure
2.4. In this scenario, the client (C) starts by encrypting their private data (Step 1) and then transmits
this encrypted data to the cloud servers (S) (Step 2). When the client needs to perform a specific
function (e.g., query), denoted as f(), on their data, they send this function to the server (Step 3). The
server executes a homomorphic operation over the encrypted data using the Eval function, essentially
calculating f() while keeping the data encrypted (Step 4). Subsequently, the server sends the encrypted
result back to the client (Step 5). Finally, the client decrypts the data using their secret key and obtains
f(m) (Step 6). This simple example illustrates that the homomorphic operation, Eval(), conducted at
the server, doesn’t require the client’s private key and permits various operations, such as addition and
multiplication, on the encrypted client data.

• Secure Multiparty Computation (SMC): Secure Multi-Party Computation (SMC) is a fundamental
cryptographic technique that allows collaborative computation while preserving privacy. Within the
realm of cryptography, SMC is a crucial research area that addresses secure cooperative computation
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Figure 2.5: Schematic representation of SMC schemes [83])

among multiple participants, all of whom possess private data [83]. In simple terms, in an SMC
scenario, two or more parties with private inputs aim to jointly compute a specific function without
revealing their inputs to each other. Each participant in the computation receives their intended
output without disclosing additional information. This concept extends to various cryptographic tasks,
including encryption, authentication, zero-knowledge proofs, commitment schemes, oblivious transfer,
and more, within distributed computing environments.

For interactive protocols, SMC establishes a provable security facilitating development of many modern
security solutions. Schematically as shown in Figure [83]. Parties Pi, ...Pn compute f(xi, ...., xn) as
y1...yn in a distributed setting only knowing xi and yi at Pi and nothing more.

Traditional methods of template protection are known to significantly degrade performance compared to
approaches that involve computation over encrypted input. Moreover, these traditional methods primarily
focus on safeguarding data during storage and are shown to be vulnerable for various attacks. On the
other hand, Homomorphic Encryption (H.E) methods exhibit an asymmetric control mechanism, permitting
decryption on one side of the communication. In contrast, Secure Multi-Party Computation (SMC) approaches
function interactively and offer provable proofs for information-theoretic security. This makes them resilient
against both passive/malicious adversaries depending on the approach, enhancing security in various scenarios.

2.4.1 SMC based Iris Verification

Luo et al. [57] introduced an innovative privacy-preserving iris-code matching protocol leveraging garbled
circuits to evaluate Secure Function Encryption (SFE). This novel approach effectively implements the
iris code matching process, combining hamming distance with iris masks to eliminate erroneous code
segments. The garbled circuit operates on a shared mask, generated from pre-aligned masks in the CASIA iris
database [73], ensuring both parties are privy to only the final result. A hybrid method, as proposed by Blanton
et al. [10], combines homomorphic computation and garbled circuits for biometric identification, optimizing
the process by precomputing most operations. Further enhancements come from optimized multiplication
protocols and the use of the DGK scheme [20] for comparison computation. Droandi et al. [6] introduced
a multi-biometric authentication protocol based on the SPDZ tool [21], disclosing only the final binary
decision. Pia et al. [7] introduced post-quantum Secure Multiparty Computation (SMC) for verification and
identification, akin to the Secure XOR phase in this work. Bringer et al. [14] proposed a filtering technique
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based on Hamming distances and SMC for iriscode representations, improving performance with a slight
trade-off in False Non-Match Rate (FNMR).

This work, in contrast, utilizes the original mask vectors and is grounded in the noise ratio of random 4-bit
sequences selected by the parties from noise codes/vectors. This protocol securely eliminates mask regions
from templates without the need for key sharing. Operating within a semi-honest security model, our approach
omits multiplication or division circuits, significantly reducing complexity. The Offline/Preprocessing Phase
exchanges noise code positions without repetitions, safeguarding the protocol from adversaries attempting to
guess the vector. We demonstrate the protocol’s efficacy in achieving high biometric performance under the
assumption of a noise ratio. The protocol features a parallelizable counter, offering substantial performance
improvements through batching and combining smaller counters.

2.4.2 SMC based Fingerprint and Face Verification

Sadeghi et al. [69] introduced a pioneering hybrid protocol for privacy-preserving recognition, combining
Eigenfaces with garbled circuits for minimum finding and homomorphic encryption for other operations.
Building on this foundation, Huang et al. [31] enhanced communication cost efficiency by implementing
packing and vertical partitioning in the same hybrid protocol, applied to fingerprint filterbank representations
[45]. They employed Hamming distance for comparison in the SCiFI algorithm [65] to achieve privacy-
preserving face identification.

Blanton et al. [11] put forth protocols for fingerprint and iris authentication. Fingerprint verification
utilized garbled circuits for comparison and homomorphic encryption for Euclidean distance calculations on
FingerCodes [44]. Bringer et al. [13] introduced GSHADE, an extension of the SHADE protocol (citeshade),
enabling privacy-preserving computation of various metrics while operating on binary vectors.

In the realm of ”Verification using noise,” Chapter 3 presents SIAN, which leverages mismatches in
noise codes to securely compute AND gates for Hamming distance calculations between iris codes. This
concept has been adapted to two other biometric modalities, namely face and fingerprint recognition, within a
framework designed to compute scalar products. This approach is computationally lightweight, with octets
precomputed during the preprocessing phase, eliminating the need for oblivious transfer. During online
comparison, only 2 bits are exchanged per Secure AND gate by each party.
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Chapter 3

Secure Iris Verification using Noise

3.1 Introduction

This chapter introduces an novel technique that leverages biometric noise to enhance security in the
context of iris verification. The method is specifically applied to iris modality due to its binary feature
extraction and comparison using normalized Hamming distance, making it an ideal candidate for the proposed
privacy-preserving approach.

Iris templates serve as a permanent and stable identifier for individuals, as the human iris rarely under-
goes significant alterations over time. This permanence underscores the importance of privacy-preserving
approaches when storing or transmitting biometric data for use in biometric services. The protocol proposed
in this system addresses these concerns by providing information-theoretic security, particularly under the
assumption of a passive adversary. Further details on the security analysis will be explored in the subsequent
sections.

To achieve privacy preservation, the method leverages Secure Multiparty Computation (SMC). SMC deals
with the computation of a function on inputs in a distributed setting where each party holds an input. SMC
ensures several key properties, including the independence of inputs, computational correctness, and the
guarantee that no more information is revealed to any party beyond what can be inferred from their inputs
and the outputs of the computation [28]. This approach forms the foundation for the privacy-preserving
protocol employed in the system, ensuring that sensitive biometric data remains confidential and secure
during processing and computation.

Building upon the discussions presented in the preceding chapters, our approach adopts the Secure AND
design under multi-party orderless channel asynchrony and adapts it for biometric applications. We recognize
the inherent uncertainty associated with the biometric regions that are useful for verification. This recognition
underscores the suitability of applying the Secure AND gate, which necessitates minimal communication, to
address this uncertainty effectively.

To harness the power of Secure AND, we have designed preprocessing and distillation phases within
the protocol. These phases are responsible for generating security octets, which play a crucial role in
safeguarding the distributed inputs of Secure Multi-Party Computation (SMC) while performing the secure
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Figure 3.1: Noisy regions extracted from an Iris image

mated non-mated

0.2144 0.3003

Table 3.1: Average Hamming distance for noise across datasets

AND computation. This approach allows us to achieve the desired privacy and security goals in the context of
biometric data processing, ensuring that sensitive information remains protected throughout the computation.

3.1.1 Core Observation

In the process of biometric registration, the signals extracted may contain noise introduced due to imperfect
imaging conditions, ambient factors, and the user’s interaction with the sensor [40]. This noise typically
originates from the areas surrounding the biometric trait, such as the pupils and eyelashes. A binary mask
vector is used to encode these noisy or uncertain regions in the image. This mask vector is employed
in removing noise during post-processing, which occurs after feature extraction. Figure 3.1 provides a
visualization of a mask vector obtained for an iris image, highlighting regions like the pupil and eyelashes.

However, it’s important to note that these masks can also encode certain soft biometric traits of an
individual, especially when noise is captured from the regions surrounding the biometric trait [41]. While
these traits are not distinctive or permanent, they do provide some evidence about the user’s identity [12].
This means that signals encoded in the mask regions (the noise code) from the same individual can be more
similar to each other than to those from different individuals [53].

From Table 3.1, we can observe that the average Hamming distance between the noise codes (representing
noise ratios) across three datasets used in experimentation is lower for mated pairs (less than 25%) than for
non-mated pairs. This observation suggests that the noise ratio from the same individual (mated pairs) will be
lower than that from different individuals (non-mated pairs). Specifically, any random 4-bit subset from the
noise codes of non-mated pairs has an average noise ratio of 50% (corresponding to a 2-bit mismatch), as
there is an equal probability of the noise ratio falling anywhere from 0% to 100%. In contrast, the average
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Figure 3.2: High level overview into octet creation and working of secure AND using Noise

noise ratio for mated pairs ranges from 0% to 25% (corresponding to 0-1 bit mismatch), as their noise codes
are more similar than those of non-mated pairs.

These empirical observations are demonstrated on three well-known iris datasets, and they are incorporated
into the design of the protocol. The protocol is designed to expect a certain degree of noise and assumes that
two templates cannot register the same noise. Additionally, noise is utilized as an ancillary feature, with
templates being rejected when their noise ratios fall outside the range of (0%, 50%), with a higher probability
for higher noise ratios. Thus, the binary mask vectors, which are typically discarded, play an integral role in
the proposed method.

Figure 3.2 provides an illustration of the key concept underlying the proposed method, which involves the
use of noise (Note: HD is the Hamming distance, indicating mismatch in n,m). Formally, if Nmask,Mmask

are mask vectors Nf = Yf [Mmask],Mf = Xf [Nmask] form the noise-codes which are the unreliable values
within the iris-codes. The security octets are extracted from these regions as np1,p2,p3,p4 ,mp1,p2,p3,p4 , as
illustrated in the figure.

Noise codes are grouped as octets, forming four pairs of distributed bits at corresponding noise positions.
The central idea here is that if an entire noise code is similar to another one, then a random four-bit selection
is likely to have only a 0-1-bit mismatch, as elaborated upon in the preceding paragraphs. This observation
serves as the foundation for designing a distillation mechanism that selectively elects octets with a 1-bit
mismatch, which would comprise the majority of 3-bit mismatch octets. The Secure AND gate within the
protocol only functions if this condition of a 1-bit difference in the octet is met. Further details regarding
this mechanism will be explored in subsequent sections, providing a comprehensive understanding of its
operation.

3.1.2 Vulnerabilities of Iris Templates

Iris templates, especially when stored in plain text, can be vulnerable to reconstruction attacks, where
an attacker could potentially reconstruct the original iris images from the binary templates. Given that iris
recognition is considered a stable biometric, the security risks associated with such reconstructions can be
significant. Therefore, safeguarding the binary codes commonly used to represent iris features is of paramount
importance for biometric applications to function securely.
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The proposed system addresses this challenge by providing protection for the templates, both during
storage and during data transfer. Importantly, this protection is achieved using information-theoretic security
measures. The system operates within a two-party framework, ensuring that neither the server nor the client
possesses knowledge of each other’s templates during the comparison process. This approach guarantees a
high level of security and privacy for the iris biometric data, making it suitable for applications that require
robust protection of sensitive biometric information.

3.1.3 Injecting Security using Noise

The octets that are extracted from noise, which are the corresponding values in noise positions, a
combination of itself in each party through positional XORs, are employed using binary hash on sensitive
inputs and in the relations used in computing secure AND, thereby proving using in providing security,
through inherent useful randomness in noise.

Each octet is used only once on plain-text sensitive information; hence, more noise that generates more
octets proves more beneficial in the proposed method.

3.1.4 Motivation

Our motivation is rooted in the fact that the method we propose for verification doesn’t necessitate
traditional cryptographic assumptions between the parties involved. Instead, it capitalizes on what may
appear to be unreliable regions in the iris feature extraction process to enhance security. This unconventional
approach allows us to design a protocol that offers both robust security and practical utility.

Theoretical analysis, combined with verification performance on public datasets, demonstrates the potential
practicality of our approach for remote iris verification solutions. By challenging the need for traditional
cryptographic assumptions and leveraging the security-enhancing aspects of iris feature extraction, we aim to
provide a secure and effective method for iris biometric verification in remote scenarios.

3.2 Proposed Scheme

In this chapter, we introduce SIAN (Secure Iris Authentication using Noise), which is a secure authentica-
tion protocol. SIAN leverages secure multi-party computation, utilizes biometric noise for enhanced security,
and operates on fixed-size templates between two parties. The overall scheme used in this work is depicted in
Figure 3.3. Here is an overview of the key steps in the protocol:

• Feature Extraction: The feature extractor module generates iris codes from images. These iris codes
are used for subsequent authentication.

• Privacy-Preserving Hamming Distance: The Hamming distance between iris codes is computed
in a privacy-preserving manner using the protocol. This ensures that sensitive biometric information
remains secure during the comparison process.
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• User Enrollment: The user enrolls the extracted iris code and mask as (Yf , Ymask) on the server.
These templates are represented as (Y,N), where Y = Yf ⊕R and N = Nf ⊕R. Here, Nf is a noise
vector containing values from uncertain regions marked by Ymask, and R is a random bit vector of the
same size as Yf , generated by the client. This additional step enhances the security of data storage on
the server side.

• Protocol Execution: The proposed protocol operates using these encrypted feature inputs (X,M) and
(Y,N), ensuring secure and privacy-preserving authentication.

Figure 3.3: Proposed Scheme that extracts iris codes and matches them using a secure two-party computation

Overall, SIAN provides a secure and privacy-preserving method for iris authentication, safeguarding
biometric data during both storage and computation phases.

3.2.1 Fixed Length Iris Vector Generation

The proposed protocol, SIAN, is designed to operate effectively with biometric templates using the
Hamming distance as the distance measure. In the context of this study, SIAN is evaluated using templates
derived from iris datasets. The methodology for generating binary feature vectors is based on the approach
outlined in [24]. Here is a breakdown of the specific steps involved:

• Extraction of Pupil and Iris Regions: The initial step involves the extraction of both the pupil and iris
regions from the iris image. This is accomplished using the integro-differential Daugman operator [23]
and the circular Hough transform [38]. Additionally, regions corresponding to the upper and lower
eyelids, as well as eyelashes, are introduced as noise components through a thresholding process.

• Normalization of Extracted Regions: Following the region extraction step, the obtained regions
undergo normalization using the Wildes method [79]. Normalization ensures that the extracted regions
are brought to a consistent and standardized format for further analysis.

• Feature and Mask Generation: Post-normalization, the feature and mask (which encodes noise)
vectors are generated by applying Log-Gabor filters [22]. To configure the filters, angular and radial
resolution parameters are initialized as (64, 16). The resulting feature and mask vectors have a size of
2048, with noise regions in the mask designated by a value of 1.
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By following this process, binary feature vectors are generated from iris images. These binary feature
vectors are then utilized as input for the SIAN protocol.

3.2.2 Authentication Protocol

The proposed authentication scheme is designed to facilitate secure communication between two parties
denoted as P1 and P2, each possessing vector pairs (X , M ) and (Y , N ), along with their respective masks.
The ultimate goal of the scheme is to compute the Hamming distance (h) between X and Y using the
following formula:

h =
||(X ⊕ Y ) ∩X ′mask ∩ Y ′mask||

||X ′mask ∩ Y ′mask||
(3.1)

This computation is performed independently on both sides of the communication. The server, represented
as Party P2, rejects the communication if the computed h exceeds a predefined threshold value denoted as τ .
It’s important to note that the party initiating the communication is designated as the client, with Party P1

serving as the client and Party P2 as the server in the current implementation.

The distribution of vectors is executed as follows: Party P1 distributes X as X1 to itself and X2 to Party
P2, ensuring that X = X1 ⊕X2. Similarly, Party P2 distributes Y as Y1 and Y2.

The secure computation of the Hamming distance relies on several fundamental operations performed
on distributed vectors (X1, Y1,M ) and (X2, Y2, N ). These operations include Secure XOR, Secure AND,
and Secure Matching, with preprocessing and distillation phases aimed at selecting sequences / octets from
noise vectors that exhibit a 25% mismatch. These phases are integral to the overall functionality of the
authentication scheme.

3.2.3 Secure XOR

Computing XOR between 2 bits is a local operation and does not require any communication. To compute
XOR between Xi and Yi, both the parties P1 and P2 compute : Z1i = X1i ⊕ Y1i and Z2i = X2i ⊕ Y2i Since
Xi = X1i ⊕X2i and Yi = Y1i ⊕ Y2i, Z1i ⊕ Z2i = Xi ⊕ Yi.

3.2.4 Preprocessing Phase

The preprocessing phase involves the creation of m octets, with each octet consisting of 4 bits selected
from each party’s noise vector. Specifically, let’s denote Party P1’s noise vector as ⟨s0, s1, s2, s3⟩, and Party
P2’s noise vector as ⟨r0, r1, r2, r3⟩. The selection process ensures that:

s0⊕ s1⊕ s2⊕ s3 ̸= r0⊕ r1⊕ r2⊕ r3

This condition guarantees either a 1-bit or a 3-bit mismatch in the resulting octet, effectively filtering out
the possibilities of 0% and 50% mismatch. It’s important to note that this preprocessing phase is a one-time
occurrence in the authentication scheme and is not repeated.
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Figure 3.4: Secure Matching Scheme with Party P1 and P2 holding (X,M) and (Y,N) binary vectors

The critical aspect of this preprocessing phase is that the positions revealed while comparing the XORs
between the parties are not repeated, thus safeguarding the vector from being leaked. The steps involved in
this preprocessing phase can be found in Algorithm 1.

Algorithm 1 Preprocessing

1: Let ⟨r0, r1, r2, r3⟩ be 4 randomly selected bits from M . P1 Sends XOR value and bit positions to P2

2: Let ⟨s0, s1, s2, s3⟩ be 4 corresponding bits from N

3: If the XOR values of parties P1 and P2 match or more than 1 out of 4-bit positions are repeated, repeat

the process from step 1

4: The above process is repeated until m different octets ⟨r0, r1, r2, r3, s0, s1, s2, s3⟩ are obtained.

3.2.5 Secure AND

The computation of a distributed AND between two bits, denoted as x and y, involves two steps: selecting
a random octet from the octets generated in the Preprocessing phase and performing the Computation phase.
This process is outlined in Algorithm 7.

In the Computation phase, partial sums are computed at each party (z1 and z2) using the biometric noise
from the octet (⟨r0, r1, r2, r3, s0, s1, s2, s3⟩). These partial sums are then combined as z1⊕ z2 to obtain
the result of the logical AND operation, represented as x ∧ y.

The AND gate is applied to the octet at each party to obtain the following sums: a1 = r2 ⊕ r3,
b1 = r1⊕ r3, c1 = r3, a2 = s2⊕ s3, b2 = s1⊕ s3 and c2 = s3.

The operation a1⊕ a2 yields 1 when either r2⊕ s2 = 1 or r3⊕ s3 = 1, indicating a 1-bit mismatch at
position 3 or 4. A similar observation holds for b1⊕ b2, which yields 1 when there is a 1-bit mismatch at
position 2 or 4. Finally, c1⊕ c2 yields 1 when there is a mismatch at position 4.

The final expression evaluates the distributed Secure AND operation between x and y in the following
cases:

• When only a1⊕ a2 = 1 (indicating a 1-bit mismatch at the 3rd position).
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• When only b1⊕ b2 = 1 (indicating a 1-bit mismatch at the 2nd position or 4th position).

• When both a1⊕ a2 and b1⊕ b2 are 1 (indicating a 1-bit mismatch at the 4th position).

• When all combined sums of the AND gate yield 0 (indicating a 1-bit mismatch at the 1st position).

This process works reliably at a 1-bit mismatch or 25% noise ratio. The overall steps for the Secure AND
operation are described in Algorithm 3.

Algorithm 2 Computation Phase
1: Let x and y be the input bits with parties P1 and P2 respectively for which AND gate needs to be

computed. Party P1 has x1, y1 and P2 has x2, y2

2: Both the parties generate a logical truth table of AND gate with 2 inputs, denoted as M . Matrix M is as

follows:

M =


0 0 0

0 1 0

1 0 0

1 1 1


4×3

(3.2)

3: Parties P1 and P2 compute :

⟨a1, b1, c1⟩ = ⟨r0, r1, r2, r3⟩1×4.M4×3 (3.3)

⟨a2, b2, c2⟩ = ⟨s0, s1, s2, s3⟩1×4.M4×3 (3.4)

4: Both parties share following values over noiseless channel using error-correcting codes:

• P1 sends x1 ⊕ a1 and y1 ⊕ b1 to P2

• P2 sends x2 ⊕ a2 and y2 ⊕ b2 to P1

5: Both parties will generate shared values XA and YB where XA = x1 ⊕ a1 ⊕ x2 ⊕ a2 and YB =

y1 ⊕ b1 ⊕ y2 ⊕ b2

6: x ∧ y = z1 ⊕ z2 where z1, z2 are computed by parties P1, P2 and shared with each other respectively.

z1 = (XA ∧ YB)⊕ (x1 ∧ YB)⊕ (y1 ∧XA)⊕ c1 (3.5)

z2 = (x2 ∧ YB)⊕ (y2 ∧XA)⊕ c2 (3.6)
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Algorithm 3 Secure AND
1: Let x and y be the input bits with parties P1 and P2 respectively for which AND gate needs to be

computed. Both parties create shares of their input as x1, x2, y1, y2. Party P1 has x1, y1 and P2 has x2,

y2

2: P1 and P2 select a random octet ⟨r0, r1, r2, r3, s0, s1, s2, s3⟩ and perform Computation Phase (7).

3.2.6 Distillation Phase

In the Preprocessing Phase, only the octets with a 25% or 75% mismatch were retained. However, Secure
AND expects only a 25% mismatch; hence, other noise ratios must be filtered out. The Distillation Phase aims
to remove octets with a 75% mismatch with a high probability. In this phase, the results of the Computation
phase for a pair of random octets are compared. If the distributed AND result is unequal (on a random bit
pair), both octets are eliminated. If the result is equal, one of the octets is retained randomly. This process is
repeated iteratively for a specified number of times, denoted as n (where n ≤ m). The resultant octet set will
consist of elements that agree on the results of the distributed AND operation.

For an initial octet set with a majority of 25% noise ratio, octets with a 75% noise ratio are removed
because their results don’t match with many other octets. The steps for this phase are shown in Algorithm 4.

Algorithm 4 Distillation

1: Let S be the set which has a collection of m octets ⟨r0, r1, r2, r3, s0, s1, s2, s3⟩

2: Two random octets a and b are picked and Computation Phase (7) is performed on random bits of M and

N .

3: P1 computes z1 = z11 ⊕ z12 and P2 computes z2 = z21 ⊕ z22 where zi1 and zi2 are the results of

Computation Phase for a and b respectively for both parties.

4: Both parties share the XOR values with each other. If the XOR value matches, then one of the octet is

retained in the set or else both are discarded

5: We repeat step 2 to step 4 n times.

3.2.7 Secure Comparison

The utilities introduced in the previous sections, including Secure AND, Secure XOR, Preprocessing, and
the Distillation Phase, are combined in the Secure Matching phase. Figure 3.4 illustrates the overall scheme.
Initially, octets are created from the masks of the parties during the Preprocessing Phase and refined in the
Distillation Phase. The masks are securely removed from the feature vectors using Secure AND. Then, on
the unmasked vectors, the Hamming distance (Eqn. 4.1) is computed by summing bits from the distributed
XOR (Algorithm 9), resembling the logic of a full adder. The steps involved in Secure Matching are detailed
in Algorithm 5.
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Algorithm 5 Secure Matching

1: Let Party P1 and P2 hold (X,M) and (Y,N) respectively

2: P1 and P2 perform Preprocessing creating m octets (set S)

3: P1 and P2 perform Distillation on S and retain valid octets with a high probability

4: P1 and P2 perform Secure AND between X ′
mask and Y ′

mask respectively and compute X ′
mask ∩ Y ′

mask

5: P1 and P2 compute X ∩ (X ′
mask ∩ Y ′

mask) and Y ∩ (X ′
mask ∩ Y ′

mask) removing noisy regions

6: P1 and P2 distribute vectors and hold (X1, Y1,M) and (X2, Y2, N) respectively

7: P1 and P2 compute Secure XOR : Z1 = X1 ⊕ Y1 and Z2 = X1 ⊕ Y2 where Z1 ⊕ Z2 = X ⊕ Y

8: P1 and P2 compute W1 and W2 using Distributed Sum (9) and share with each other where ||W1 ⊕W2||

is the number of bits that differ between X and Y

9: P2 accepts if ||W1⊕W2||
||X′

mask∩Y
′
mask||

< τ

Algorithm 6 Distributed Sum
1: Let Zx be the Distributed XOR computed by Party Px

2: Wx ← [Zx0]

3: i← 1

4: while i ≤ d do

5: v ← Zxi

6: i← i+ 1

7: j ← len(Wx)− 1

8: while j ≥ 0 do

9: w ←Wxj

10: f ← w ⊕ v

11: g ← Secure AND between w and v

12: Wxj , v ← f, g

13: j ← j − 1

14: v is inserted at position 0 of Wx

15: end while

16: end while
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3.3 Security

The protocol’s security relies on what each party can observe during execution. We adopt a semi-honest
security model, often called the honest-but-curious model. Under this model, both parties follow the protocol
without deviation but may try to gather information about the other party’s input during their interactions.
This choice of security model is practical, as each party can detect any deviations in behavior. We also assume
security against an adversary with unlimited computational power, ensuring strong security.

In simple terms, a protocol is considered secure in this semi-honest model if a party’s view can be
replicated using only its input and output [32]. This means there’s a simulator in an ideal world that can
reproduce a party’s view based solely on its input. Mathematically, given the input, the probability distribution
across all possible transcripts is indistinguishable from the probability distribution resulting from a single
party’s view. Consequently, the protocol offers security under a semi-honest security model, protecting each
party from misconduct by the other party. A formal proof of this security can be found in the appendix.

3.4 Complexity

The total number of communication bits over the entire protocol execution can be calculated as follows:

• During the input distribution phase, each party communicates n bits to each other, resulting in a total
communication of 2n bits.

• For secure XOR operations, there is no additional communication cost involved as these operations are
performed locally by each party on their respective inputs

• The Secure AND operation has a variable communication cost, which depends on the number of times
the preprocessing phase has to be repeated. Let’s assume that the preprocessing phase is repeated K

times. In each preprocessing phase, for m octets, there is a communication of m·K ·8·(log n)+2·K ·m
bits.The total number of bits for all AND gate operations is m ·K · 8 · (log n) + 2 ·K ·m+ 4n bits.

The total communication cost for the entire protocol execution is the sum of these costs.

3.4.1 Datasets & Empirical Observations in Noise Distributions

We conducted an extensive evaluation of our protocol using three widely recognized public iris datasets:
the IIT Delhi Iris Database version 1.0 [51, 52], the MMU Iris Dataset v1 [76], and UBIRIS v1 [67]. These
datasets were chosen because our adopted iris feature extraction method consistently produced reliable
features on them.

The IIT Delhi Iris Database v1.0 consists of 1,120 Near-Infrared (NIR) images captured in a controlled
environment, comprising 448 distinct classes (with 224 classes each for the left and right eye). In contrast, the
MMU Iris Dataset v1 contains 450 images collected from 45 individuals (90 unique classes). These images
were captured using a dedicated iris scanning sensor, which introduced challenges such as eye rotation and
eyelash obstruction.
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Figure 3.5: Distribution of the Hamming distance between noise codes for each dataset

The UBIRIS v1 dataset contains noisy images captured in a less constrained environment. For our
experimentation, we focused on session 1 of the monochromatic subset, which is less noisy and comprises
1,205 images distributed across 241 classes.

In Figure 3.5, we present the distribution of Hamming distances between noise vectors for both mated and
non-mated pairs. Notably, we observe that the distribution of non-mated scores consistently falls to the right
of the mated scores across all datasets. This characteristic indicates that the average noise ratio for mated
pairs remains below 25%, while it exceeds 25% for non-mated pairs (as detailed in Table 3.2).

We find that our protocol demonstrates superior performance when the noise ratio remains at or below
25%. These real-world dataset observations align with the underlying assumptions of our protocol and are
further corroborated by its strong verification performance.

3.5 Parameters of the Protocol

The parameter m within the Preprocessing Phase plays a crucial role in determining the number of octets
available for Secure AND operations. Specifically, it governs the size of the octet set used in the protocol. As

28



Dataset mated non-mated

MMU.v1 0.2255 0.2983

IITD.v1 0.2217 0.3498

Ubiris.v1 0.1959 0.2528

Table 3.2: Average noise code Hamming distance for mated vs non-mated comparisons

Figure 3.6: Percentage of valid octets at different noise ratio levels with the increase in parameter ratio n/m

after Distillation

m increases, and as the ratio n/m becomes larger, the probability of selecting valid octets (those with a 1-bit
difference) after the Distillation Phase also increases. This is primarily because a larger m leads to a wider
set of available octets to choose from, enhancing the likelihood of finding valid octets.

However, it’s important to note that there are trade-offs associated with choosing larger values of m. For
instance, as m becomes larger, finding octets with one or three-bit differences becomes more challenging,
especially when dealing with noise ratios other than the standard 25% and 75%. This increased difficulty in
finding these specific octet differences can slow down the protocol because it requires more attempts in the
Preprocessing Phase.

To strike a balance between protocol speed and the ability to select valid octets, the value of m is typically
set to be the minimum of 100 and one-fourth of the feature size in bits (N ).

Additionally, the value of n used in the Distillation Phase is set to be 90% of m (0.90×m). This choice
is based on observations, as shown in Figure 3.6, where it was found that the percentage of valid octets
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(repeated for ten iterations) reaches 100% when n is set to 0.90×m, particularly for noise ratios at or below
25%.

3.6 SIAN Accuracy comparsion over Noise Ratios

The accuracy mentioned here pertains to the Hamming distance, specifically the agreement between
Hamming distances computed with and without the protocol. In the case of Secure AND (SIAN), this accuracy
reaches 100% when the noise ratio is at or below 25% due to the Distillation Phase, which effectively retains
only octets with a 1-bit difference. This is empirically demonstrated through the calculation of averaged
accuracy values across different noise levels after 100 iterations, where uniform random noise is applied (see
Table 3.3).

Figure 3.7 provides a graphical representation of this phenomenon. It shows that accuracy decreases
gradually until it reaches 75% at the 50% noise ratio mark. This decrease can be explained by the gradual
increase in the selection of octets with 3-bit differences after the Distillation Phase.

However, accuracy drops to 0 for a uniform random noise ratio of 75% and above. This drop occurs
because the probability of selecting octets with a 25% noise ratio (1-bit difference) after the Distillation Phase
becomes zero when the noise ratio exceeds 75%.

In summary, the accuracy of the protocol is closely tied to the noise ratio, with optimal performance
observed at low noise levels, while it degrades as the noise ratio increases and more 3-bit difference octets
are selected after Distillation.

These illustrations effectively showcase the expected behavior of the protocol within its designed assump-
tions. However, it’s important to acknowledge that real-world datasets may not always strictly adhere to the
assumed noise ratios, despite being concentrated around these values, particularly for mated and non-mated
pairs. This variability in noise levels highlights the necessity of developing mechanisms to address and
mitigate the inaccuracies that may arise in practice.

Real-world datasets often exhibit a degree of noise and variability that can challenge the robustness of
any protocol or algorithm. Therefore, the development of techniques or strategies to handle and adapt to
such real-world variations is essential for ensuring the protocol’s effectiveness and reliability in practical
applications. These mechanisms may include noise modeling, adaptive parameter tuning, or advanced error
correction techniques to enhance the protocol’s performance in less ideal conditions.

3.7 Correction Mechanism

The protocol encounters difficulties when noise ratio constraints exceed 25%. This issue is evident in
Figure 3.7, especially when the noise ratio goes beyond 50%. Our observations show that the Hamming
distance errors (h) in these scenarios fall outside the expected range of values between 0 and 1, rendering
them invalid. To address this problem, we have developed a scheme, as depicted in Figure 3.8, aimed at
mitigating these errors.
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Figure 3.7: Accuracy drop for noise ratio ≥ 0.5

Figure 3.8: Correction Mechanism
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Table 3.3: Average time and accuracy for uniform random noise

Noise Ratio % Time Cost (s) Accuracy %

10 0.460 100

15 0.457 100

25 0.432 100

50 0.445 47.5

75 0.438 0

In cases where the initial Hamming distance is deemed invalid, we make an assumption that places it
within the 50% noise ratio domain. To rectify this, we engage in a repeated secure computation process,
iterating it a total of k times until a valid distance is successfully derived. If, by any chance, the obtained
distance remains invalid even after these iterations, we introduce a modified version of the protocol.

In this modified version, we employ a transformation matrix M represented as:

M =


0 0 1

0 1 1

1 0 1

1 1 0


4×3

(3.7)

Notably, this version incorporates a truth table for NAND operations instead of AND. This adaptation is
designed to accommodate scenarios with a presumed noise ratio greater than or equal to 75%. The result
of employing this modification can yield an accuracy rate of up to 100%, but it comes at a computational
cost. To strike a balance between accuracy and efficiency, we set the value of k to 5, a choice that effectively
resolves all error cases, except when the noise ratio results in an average accuracy of less than 20% (for noise
ratios greater than or equal to 65%, as illustrated in Figure 3.7). In such instances, the value of the remaining
invalid distances is then set to 1.

3.8 Verification Performance

To assess the performance of SIAN (Secure Iris Authentication Network), we utilize two key evaluation
metrics: FNMR (False Non-Match Rate) at FMR0 (False Match Rate) and EER (Equal Error Rate) across all
three datasets. To ensure a reliable evaluation, we focus on a subset of images where the feature generation
algorithm effectively isolates the iris region.

In our analysis, we conduct mated comparisons of iris images within the same class and comparisons
of non-mated pairs. For the latter, we select one sample from each class and compare it to a sample from
each of the other classes. These comparisons are performed after applying eight shifts in both left and right
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directions. Subsequently, we record the minimum Hamming Distance for both scenarios: with and without
the protocol computations.

Upon examining the results presented in Table 3.4, it becomes evident that the IITD v1 dataset [51, 52]
exhibits the lowest FNMR, while the Ubiris v1 dataset [67] displays the highest FNMR. This discrepancy can
be attributed to the presence of more noisy images in the Ubiris v1 dataset, which challenges the accuracy of
the iris matching process.

Dataset FNMR / FMR0% EER% EER% (local) Difference in (%)

MMU.v1 5.92 4.14 4.07 0.07

IITD.v1 2.643 1.86 1.856 0.04

Ubiris.v1 8.36 5.44 5.39 0.05

Table 3.4: Verification Performance on Datasets

Figure 3.9: DET plot for each dataset

In Table 3.4, the term EER (local) pertains to computations conducted locally, excluding the protocol.
Interestingly, the protocol’s EER closely aligns with the local computation, indicating a minimal discrepancy
between them. Specifically, the average difference in the protocol’s EER compared to the local EER across
the datasets can be calculated as follows:
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d = (0.07 + 0.04 + 0.05)/3 = 0.056% (3.8)

The choice of the correction mechanism parameter, denoted as k and set to 5, takes into account this small
error, and higher values of k could potentially reduce the average error even further.

The DET plots in Figure 3.9 illustrate a slight deviation of SIAN from the path of local computations.
This deviation diminishes as one moves from right to left on the FMR scale, approaching near equality at
FNMR0. The introduction of this deviation primarily stems from the protocol’s treatment of invalid Hamming
Distances, where they are set to 1. This practice results in an increase in FNMR and a decrease in FMR
values for the protocol. Consequently, it causes lower FNMR values to be observed at larger FMR values,
acting as an ancillary factor in the evaluation.

3.9 Time Cost Analysis

The protocol’s implementation was carried out in Python 3 and assessed on a machine powered by the
Apple M1 CPU with 16 GB of RAM. To optimize the computation of the Distributed Sum in Secure Matching,
we applied batch processing by dividing the vector into sizes of 128 and then consolidating the sums. This
approach was employed to enhance computational efficiency.

Notably, SIAN exhibits favorable computational characteristics, rendering it suitable for testing on less
resource-intensive machines. To gauge its time efficiency under various uniform noise conditions, we
conducted evaluations across 100 iterations and calculated the average results, as outlined in Table 3.3.

It’s worth highlighting that SIAN demonstrates its highest time performance at a 25% noise ratio, as
illustrated in Table 3.3. However, it’s important to note that in real-time scenarios, SIAN may encounter
timeouts during both the no-noise and 100% noise scenarios at the Preprocessing Phase, we ignore them
since they rarely occur.

Table 3.5: Comparing the time and memory performance of the protocol for larger binary feature vectors (N )

N (bits) Average time cost (s) After offline

preprocessing (s)

Bandwidth (KB)

2408 0.432 0.214 148.98

9600 1.897 1.571 468.75

19200 3.862 3.108 1293.67

28800 5.652 5.130 1383.92

38400 7.727 7.067 1842.46

Enhancing the protocol’s efficiency is achieved through an innovative caching mechanism, wherein octets
are stored after the initial user authentication by the device. This caching procedure results in a notable
reduction in processing time, specifically by a significant margin of 200-800 milliseconds. This optimization
is categorized as offline preprocessing.
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Table 3.5 provides insights into the relationship between the time cost and the size of the feature vector
(N ). It reveals that the time cost increases linearly as the feature vector size grows larger. However, it is
reassuring to note that the protocol’s bandwidth usage remains below 2 megabytes, ensuring that it remains
lightweight and memory-efficient.

Importantly, the increase in feature vector size does not lead to a decline in accuracy. The protocol
maintains its accuracy across various feature vector sizes, indicating its robustness and scalability in handling
larger datasets.

N(Bits)
Time

Cost(s)

Proposed Method

online

& offline
online

online without

mask removal

Luo et al. [57]

(mask)
2408 0.56 0.432 0.214 0.118

Luo et al. [57]

(mask)
9600 2.5 1.897 1.571 1.184

Bringer et al.

(1:1) [14]
2048 16.8 0.432 0.214 0.118

Droandi et al.

(online) [6]
6400 0.120 1.330 0.928 0.788

Pia et al. [7] 5120 0.503 0.897 0.626 0.408

Table 3.6: Comparison of latency with other methods

Efficiency is a key aspect when evaluating the performance of SIAN in comparison to other methods, and
Table 3.6 presents a comprehensive comparison across three different modes: including the Preprocessing
phase (offline + online), caching octets (offline), and excluding the mask removal process (online without
mask removal) during the Secure Matching Phase, recognizing that some methods do not employ mask
removal.

The overall latency of SIAN proves to be superior when compared to the considered variants of methods
presented in [57] and [14]’s verification techniques. It’s important to note that while the approach outlined
in [6] exhibits better performance in the online phase, when evaluating the total cost, which encompasses both
offline and online phases (where the offline phase can be costly for SPDZ [4]), SIAN maintains a competitive
advantage.

Furthermore, SIAN’s time cost is assessed in comparison to [7], a post-quantum security approach. In this
evaluation, it is observed that the online phase without mask removal in SIAN demonstrates lower latency
compared to the alternative approach, reaffirming its efficiency in the context of post-quantum security
considerations.
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Chapter 4

Secure Face & Fingerprint Verification using Noise

4.1 Introduction

This chapter delves into the enhancement of noise-based verification techniques applied to fingerprint and
facial recognition modalities, which stand out as the most popular choices in the realm of biometrics. Their
widespread adoption underscores the significance of the topics we delve into in this chapter.

Many conventional approaches rely on the Euclidean distance metric to compare templates, often em-
ploying classical methods like eigenface and minutia-based feature extraction. In contrast, we leverage
cutting-edge deep learning methods to extract features, thereby enhancing versatility. These deep learning
techniques not only yield more precise verification results but also expedite feature extraction, especially
when harnessed with modern GPUs and TPUs, thereby enabling the creation of scalable solutions.

Furthermore, in addition to harnessing deep learning for feature and noise extraction, we introduce
supplementary phases aimed at augmenting the octet count, building upon the preprocessing stages outlined
in Chapter 2. Given that many deep learning models employ the dot product in template comparison, we’ve
devised a robust verification protocol to ensure secure dot product operations. Additionally, we’ve developed
a correction mechanism to complement this proposed verification protocol. These utilities are integrated into
a comprehensive framework where we explore various methods of noise extraction tailored to each modality
while performing the verification process.

Our methods undergo rigorous testing on a total of seven publicly available datasets, yielding promising
results that highlight their applicability in real-world scenarios. To ensure a thorough assessment, we under-
take a multifaceted evaluation that includes security analysis, complexity analysis, verification performance
analysis, and time-cost performance analysis. We also conduct comparative assessments, comparing our
proposed approach with alternative methods, thus offering a holistic view of its strengths and advantages. We
also dedicate attention to investigating its limitations and areas for future research and development.

In the interest of transparency and reproducibility, we provide pseudocode for all the algorithms employed
throughout the chapter. Additionally, we delve into the implementation aspects, focusing on efficiency
measures, experimental settings that we have incorporated for the same purpose. This documentation and
analysis aim to provide a comprehensive and actionable understanding of the methods, their potential, and
their practical implications in biometrics and related fields.
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Figure 4.1: Noise extraction mechanisms for face (left) and fingerprint (right) modalities
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Figure 4.2: Constructing an octet set with elements mp1,p2,p3,p4 and np1,p2,p3,p4 from Nf and Mf obtained

from noise / non-essential regions for verification

Figure 4.1 offers a concise overview of the diverse noise extraction strategies employed in this study.
These strategies are instrumental in enabling the verification protocol to effectively utilize the uncertainty
stemming from the noise features. To provide a high-level summary, we present noise extraction under four
distinct strategies:

• Noise-from-Same-Source-Same-Modality : This strategy involves extracting a noise vector from the
surrounding regions of the face biometric.

• Noise-from-Different-Source-Same-Modality : Here, a noise vector is extracted from a small surface
area of the fingerprint (specifically, the little finger), while verification is conducted using an index
finger.

• Noise-from-Different-Source-Different-Modality : In this approach, a noise vector is extracted from
a different modality, namely noisy speaker utterances, while fingerprint verification is the primary
focus.

• Noise Vector Generator : We introduce a self-supervised training mechanism designed to generate a
weak noise vector from a face biometric that is uncorrelated with its identity vector. The saliency map
illustrating this process is presented in Figure 4.1.

4.1.1 Core Observation

The central observation remains consistent with what was previously discussed in the preceding chapter.
Our underlying hypothesis revolves around the notion that features extracted from non-essential regions of a
biometric sample, which are not directly relevant to the current authentication application, can still play a
role in enhancing security, especially when their mismatch rate is in the vicinity of approximately 25%.
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We make use of the security octets, which are obtained from the binarized noise features processed from
the non-essential regions for verification. They are expected to satisfy the mismatch rate noise ratio of 25%
In the upcoming sections, we delve into a detailed exploration of the binarization process for these noise
features. We aim to establish the desired relationship between the noise templates, further solidifying the
foundation of our security-enhancing approach.

In a formal context as shown in the Figure 4.2, we define the binarization process for two noise features,
denoted as Nf and Mf , as follows: we obtain binarized representations, Nb = B(Nf ) and Mb = B(Mf ),
which we shall refer to as ”noise codes,” as introduced in the preceding chapter. Here, B represents a
binarization function that ensures the preservation of the same correlation in the Hamming space as in the
cosine space, expressed as HD(Mb, Nb) ∼ Nf ·Mf , where HD is the normalized Hamming Distance.

We observe that when HD(Mb, Nb) ∼ 0.25, empirically selecting random 4-bit subsets, denoted as
mp1,p2,p3,p4 and np1,p2,p3,p4 and expressed as mp and np, respectively, most of these constructed subsets
exhibit a Hamming distance, denoted as HD(mp, np), that is less than or equal to 0.25. This behavior arises
because, for a long-bit vector with an HD of 0.25, there must be a substantial degree of similarity between
the elements at corresponding positions.

To harness this observation, we leverage the mechanisms of preprocessing, distillation introduced in the
previous chapter to prevail the elements within the set that possess the majority’s property.

4.1.2 Vulnerabilities of Deep Biometric templates

Deep templates have gained widespread acceptance in modern biometric applications, surpassing classical
approaches in face and fingerprint recognition. However, the adoption of deep templates also brings about
significant security concerns. When a deep template is compromised in plaintext, it opens the door to identity
theft, allowing attackers to exploit the associated services for which the template is utilized. Additionally,
deep templates are susceptible to black-box attacks if the feature extraction model is known; adversaries can
reconstruct the biometric using an alternative adversarial model.

Given these vulnerabilities, it is paramount to reiterate the primary goal of the methods proposed in this
chapter. Our focus is on achieving privacy-preserving verification for these extensively employed modalities
within a two-party system situated remotely. The approach we present ensures that no information leaks
between the two parties during the verification process. Both parties operate within the Secure Multi-Party
Computation (SMC) paradigm, wherein ”two parties interactively compute a function using their private
inputs without revealing any information other than the output itself.” This framework guarantees the higher
levels of privacy and security in the verification of these critical biometric modalities.

4.1.3 Usefulness of Noise for Security

In our approach, we employ the octet set constructed from noise features to perform Secure AND gate
operations, as detailed in the previous chapter. Within the Secure Multi-Party Computation (SMC) framework,
XOR and NOT gates are considered local operations, which means their complexity is relatively low. However,
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Figure 4.3: S-BAN Approach, with its application to face modality

the complexity significantly increases when computing a distributed AND gate. Subsequently, we combine
these gates to compute various functions, ensuring the security of the computation.

The security assurances are primarily facilitated by the presence of random noise octets, which function as
security keys and are used for hashing binary private distributed inputs in the derived relation for distributed
AND. Hence, noise plays an important role in securing private inputs during transfer.

4.1.4 Motivation

The central motivation behind this chapter centers on the application of a novel design that enables secure
remote verification using features extracted from seemingly unimportant regions. Furthermore, we aim to
expand this approach to encompass various modalities within a framework that operates on deep templates—a
prevalent choice in modern applications—instead of relying on classical comparison functions. What sets our
method apart is its independence from cryptographic assumptions between the parties, relying instead on the
inherent properties of noise to deliver its functionalities.
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4.2 Methodology

In this chapter, we introduce a robust verification protocol that leverages secure two-party computation
while utilizing biometric noise for enhanced security. The primary objective of this protocol is to compute the
dot product between two fixed-sized templates securely. Furthermore, we establish mechanisms for extracting
the necessary noise codes crucial for the verification of both face and fingerprint modalities. Together, these
two integral components comprise the proposed S-BAN (Secure Biometric Authentication using Noise)
framework, as illustrated in Figure 4.3. To provide a brief overview of the process, we start by obtaining
noise embeddings Nf and Mf from either the same or different modalities, which are subsequently converted
into binary codes or noise codes denoted as Nb and Mb. Simultaneously, the feature embeddings Xf and Yf

are transformed into a fixed floating-point binary representation, denoted as Xfb and Yfb.

The protocol operates on the distributed shares of feature templates Xfb and Yfb and utilizes a selected
set of random 4-bit pairs/octets for security, which are derived from Nb and Mb. Additionally, we enroll Xfb

and Yfb as X = Xfb ⊕ R and Y = Yfb ⊕ R, where R represents a random bit-vector. This arrangement
ensures the secure storage of the templates Xfb and Yfb.

In the S-BAN framework, we compute a secure dot product using the distributed shares of encrypted
inputs X , Y , assisted by a share of R, and the octets obtained from N and M . This approach guarantees the
privacy and integrity of biometric verification.

4.2.1 Verification Protocol

In the design of this protocol, we utilize the underlying utilities introduced in the SIAN scheme [60],
which not only offers information-theoretic security but also enables the composition of complex binary
functions through its secure AND gate utilizing noise. Below, we provide an overview of the SIAN method
and describe the utilities proposed within our protocol.

SIAN involves preprocessing and distillation phases to construct a set of octets, with each element
represented as o = ⟨r, s⟩. These octets are distributed across two parties, P1 and P2, where r = ⟨r0, r1, r2, r3⟩
and s = ⟨s0, s1, s2, s3⟩. Notably, r and s are independently obtained from noise codes M and N at parties
P1 and P2, respectively. Each oi constructed during the offline phase adheres to a 1-out-of-4 mismatch or a
25

The Secure AND gate, defined in the computation phase of SIAN, adapts Beaver’s triplets [8], employing
r and s and leveraging the identities established after applying a logical AND gate Ma to r and s, respectively.
This enables the computation of a distributed AND as: p = x ∧ y = z1⊕ z2.

In addition to the utilities offered by SIAN, we also observe the following properties to be useful in the
design of our protocol:

• Secure XOR between two distributed shares of x = x1 ⊕ x2 and y = y1 ⊕ y2 can be performed as
z1 = x1 ⊕ y1 and z2 = x2 ⊕ y2 at each party, where x⊕ y = z1 ⊕ z2.

• Secure NOT can be computed on x = x1 ⊕ x2 as ¬x = ¬x1 ⊕ x2, effectively flipping one of the
party’s share.

41



• Secure AND between distributed shares and constant values, such as 0⊕ 0 or 1⊕ 0, can be computed
locally, yielding p = x ∧ 0 = 0 and p = x ∧ 1 = x = x1 ⊕ x2.

In the protocol, it is essential for the feature vectors Xf and Yf to undergo l2 normalization before they
are converted into X and Y . We perform the conversion of (X,M) from (Xf , Yf ) using the Q [5] format,
with a size of Q1.8 (m-bits for sign and integral part, n-bits for the fractional component) for each value
within an n-dimensional feature vector. After multiplication, the size of the data increases to Q2.16. However,
this increase in size is not a significant concern, given that the range and domain are known to be within
(−1, 1) after normalization.

With the transformed values of (X,Y,M,N) at hand, we securely compute the following function
between two parties, P1 and P2.

c =
∑
i

XfiYfi (4.1)

The value c is compared with threshold t by P2 acting as the server in our implementation for 1:1 comparison.
P1 and P2 hold the shares ⟨X1, Y1⟩ and ⟨X2, Y2⟩ satisfying X = X1⊕ Y1 , Y = Y1⊕ Y2 and R = R1⊕R2,
where R2 is shared to P2 by P1.

4.2.1.1 Secure AND on Encrypted Storage

Let R = [r0, r1, . . . , ri, . . . , rn], where x and y are located at some position within Xb and Yb, respectively.
In this specific context, Secure AND needs to compute:

(x⊕ ri) ∧ (y ⊕ rj) = (x ∧ y)⊕ (y ∧ ri)⊕ (ri ∧ rj)⊕ (rj ∧ x).

To isolate and obtain the result for x ∧ y, both P1 and P2 must perform additional computations. They
need to calculate (y ∧ ri), (ri ∧ rj), (rj ∧ x), and also (x⊕ ri) ∧ (y ⊕ rj) using the Secure AND operation.
After these computations, the resulting shares are combined using Secure XOR, which is a local operation, to
obtain the distributed results z1 and z2 at each party.

4.2.1.2 Secure Comparison

The Secure Comparison process involves a series of steps, as detailed in Algorithm 7. This procedure
utilizes Distributed Multiplication, as outlined in Algorithm 10, incorporating Secure AND operations on
encrypted storage. Furthermore, Addition, described in Algorithm 9, is applied to the distributed input pairs
⟨X1, Y1⟩ and ⟨X2, Y2⟩ to yield the output variable c (referenced as Eq. 4.1).

The Secure Comparison protocol leverages noise codes with dimensions (N,M) to ensure security. To
enhance the protocol’s performance during Distributed Multiplication, we adopt a strategy that involves
batching independent communications and parallelizing the computation of product shares. This approach
significantly reduces the time required for the computation.

A comprehensive overview of the entire scheme, including the preprocessing steps involved in Secure
AND with Independent Addition Noise (SIAN), is provided in Figure 4.4.
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Figure 4.4: Secure Comparison with Party P1 and P2 holding (X,M,R) and (Y,N) binary vectors

Algorithm 7 Secure Comparison
1: Let X,Y and M,N be the input feature and noise codes at each party P1, P2

2: P1, P2 distributes shares of ⟨X,Y ⟩, R as X1, Y1 and ⟨X2, Y2, R2⟩

3: P1, P2 perform Preprocessing and Distillation as detailed in SIAN [60], retaining octets with noise ratio

of 25% with a high probability to obtain octet set Of

4: P1, P2 perform Post-Distillation 8 on Of to obtain O

5: P1, P2 perform Distributed Multiplication (supplementary)

6: P1, P2 perform Distributed Addition (supplementary) of all the products to compute the final result

c = c1 ⊕ c2 =
∑

iXfiYfi, P2 compares it with a threshold t for Authentication
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Algorithm 8 Post-Distillation
1: Let O be an m element filtered octet set after distillation and S, the original octet set

2: i← len(O)

3: while i < k do

4: P1, P2 select an octet e1 from S, not part of O

5: P1, P2 select an octet e2 from O

6: P1, P2 compute Secure AND using e2 and e1

7: With distributed results at P1, P2 for e1, e2

8: b1 = z11 ⊕ z21 and b2 = z12 ⊕ z22

9: is computed at each party Px and shared

10: if b1 = b2 then

11: add e2 to O

12: i← i+ 1

13: end if

14: end while

Moreover, we introduce a post-distillation phase (outlined in Algorithm 8). This phase serves to augment
the number of generated octets, which is a desirable feature for enhancing security. Each Secure AND
operation involves the random selection of an octet. In cases where noise codes exhibit a noise ratio/mismatch
averaging at approximately 25%, the post-distillation phase is generally unnecessary, as it can efficiently
generate a substantial number of octets with only 1-bit mismatches. However, in noise ratio regions
approaching 50%, the majority of octets are nullified during distillation. Here, the post-distillation phase
becomes invaluable.

Additionally, by utilizing random four-bits, we conserve the usage of noise codes, as each octet can only
be employed once. Through post-distillation, it is possible to create an octet set with a noise ratio equivalent
to that of the distilled set, preserving the overall security of the system.

4.3 Feature Vector Generation

The proposed verification protocol is designed to be compatible with fixed-length biometric templates and
employs cosine distance as the distance measure. In this study, we have applied this protocol to two distinct
biometric modalities: face and fingerprint recognition.

For face recognition, we have utilized the pretrained Facenet model [70], which is based on the Inception-
ResNet-v1 architecture. This model provides 512-dimensional embeddings for face templates. These
embeddings are further processed by normalizing them and converting each value to a Q1.8 binary represen-
tation, as outlined in Section 4.2.1.
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Algorithm 9 Distributed Addition
1: Let Ax and Bx be the vetcor shares at party Px

2: ∧s denotes Secure AND, ¬s denotes Secure NOT

3: Initial carry cx is Adx ∧s Bdx

4: Sx ← [Adx ⊕Bdx]

5: i← d− 1

6: while i ≥ 1 do

7: s← Aix ⊕Bix ⊕ cx

8: o← Aix ∧s Bix, p← Bix ∧s cx , q ← cx ∧s Aix

9: cx ← ¬s(¬s(o) ∧s ¬s(p⊕ q))

10: Sx ← [s] + Sx

11: i← i− 1

12: end while

Algorithm 10 Distributed Multiplication
1: Let Ax and Bx be the vector shares at party Px

2: ∧e denotes Secure AND on encrypted inputs

3: Px compute partial products by performing ∧e at each Axi against Bxi positions, from right to left

4: Px for each partial product Oxi pads i zeros to the right

5: Px performs sign extension by repeatedly adding MSB of Oxi to its left for 2 ∗ d− len(Oxi) times

6: Px performs 2’s complement on the last partial product Oxd using Secure NOT and Distributed Addition

9 of 1

7: Px performs Distributed Addition 9 of all partial products Oxi
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In the case of fingerprint recognition, we have employed Deeprint [30], which provides fused represen-
tations for fingerprints. These fused representations are 192-dimensional. Similar to the face modality, we
normalize these embeddings and then convert each value to a Q1.8 binary representation using the procedure
detailed in Section 4.2.1.

This approach allows us to effectively compare biometric templates from both face and fingerprint
modalities using the cosine distance measure within the proposed verification protocol. By converting the
embeddings to a common binary representation, we facilitate the comparison process, ensuring compatibility
and accuracy across different biometric modalities. The use of pretrained models and normalization techniques
ensures that the biometric data is appropriately processed for reliable verification.

4.4 Noise Code Generation

In our research, we introduce the concept of noise codes, which are binarized representations deliberately
engineered to be unreliable for conventional biometric recognition. However, these noise codes still retain
some correlations that are strategically harnessed by our proposed verification protocol. The primary purpose
of these codes is to enable the construction of an octet set with an anticipated mismatch rate of approximately
25%.

We design noise codes to capture one or both of the following properties for different types of biometric
signals:

• Unused Feature Regions: Noise codes can be derived from regions of the biometric data that are
typically left out by the feature extraction modules. These regions may not contain highly discriminative
information, but they still exhibit some correlation with the original data.

• Weak Feature Extraction: Alternatively, noise codes can be generated by employing a feature
extractor that is intentionally designed to be weak. Such feature extractors may produce representations
that are uncorrelated with the identity vector, yet they retain some degree of correlation within the
same region.

Once these noise representations or vectors are obtained, we normalize them using the l2 norm and
subsequently map them to binary values while preserving the cosine distance in the Hamming hypercube.
This preservation of cosine distance ensures that the correlations within the noise codes are retained, even in
their binarized form.

It’s worth noting that noise codes often contain signals that are considered unimportant for recognition.
However, in scenarios where weak feature extraction is applied to the same biometric image, there may be a
risk of data inference attacks. To mitigate this risk, we introduce a protective measure. We obfuscate the
representation with a differentially private output obfuscation technique while still preserving most of the
correlational utility. This ensures that even though noise codes are used, the privacy and security of the
biometric data are maintained, preventing potential data leakage or inference attacks.
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4.4.1 Noise-from-Same-Source-Same-Modality

In this section, we discuss the generation of noise specifically from the same source and modality, focusing
on the face. This noise is intended to be used for noise code construction and subsequently incorporated into
the verification protocol. The rationale behind this process is to utilize regions of the face that are typically
left unused by feature extractors due to their high intra-class variability.

The following points below summarize this approach to obtain the noise representation, illustrated in
Figure 4.3:

• Selection of Unused Regions: Regions surrounding the face, such as the hair and ears, are often
disregarded by feature extractors since these areas exhibit significant variability even within the same
identity class. These regions are chosen for noise extraction.

• Higher-Resolution Eye Features: To generate noise codes, higher-resolution features from the eye
region are extracted directly from the original image. This differs from the feature extractor, which
typically uses lower-resolution values after resizing the image.

• Hair Region Extraction: For noise representation, features are also extracted from the hair region.
Semantic segmentation, implemented using DeepV3Lab+ [17]’s architecture, is employed to identify
the hair region. Subsequently, the segmented hair overlay is smoothened with a face mesh obtained
from the media-pipe library [55].

• Concatenation of Features: The final noise representation is constructed by concatenating the features
extracted from both the hair and independent eye regions. We use pretrained imagenet-features from
the ResNet-50 [36] model for extracting features.

4.4.2 Noise-from-Different-Source-Same-Modality

In Fingerprint Verification systems, the choice of which fingers to use for analysis is crucial, and typically,
fingers with larger surface areas like the index and middle fingers are preferred. This preference stems from
the fact that larger fingers offer the potential to capture a greater number of minutiae points, as illustrated
in Figure 4.1. Minutiae points serve as key markers for fingerprint analysis, and the quality of a fingerprint
image is directly related to the quantity of minutiae points it contains. A higher count of minutiae points
increases the likelihood of accurately identifying individuals based on their fingerprints.

However, it’s important to note that features extracted from fingerprints of smaller-surface-area fingers
can still provide valuable information. These smaller fingers may exhibit correlational properties that satisfy
the protocol’s constraints effectively. To harness this information, we employ a pretrained DeepPrint model,
as detailed in [30], to extract features from the little fingers. These extracted features are then transformed
into noise codes, which can be utilized to enhance the robustness of the fingerprint verification process.
Meanwhile, the index fingers continue to serve as a source for feature vectors, contributing to the overall
accuracy of the system.

47



4.4.3 Noise-from-Different-Source-Different-Modality

Noise codes can also be extracted from various modalities, and voiceprints, particularly for speaker or
person identification, offer another promising avenue. In real-world scenarios, voice recordings often include
background disturbances and environmental noise, as illustrated in the spectrogram shown in Figure 4.1.
This inherent variability in audio data, especially in unconstrained-length utterances, can pose challenges in
extracting discriminative voiceprints. However, these voiceprints can still fulfill the correlational properties
required by the protocol.

To address this, we take a two-pronged approach. First, we extract noise codes from the voiceprints
obtained in such challenging environments. These noise codes capture the background disturbances and other
contextual information, which can be valuable in enhancing the robustness of the identification process.

Secondly, we use fingerprints as the primary feature vectors during the verification process. This approach
leverages the well-established uniqueness of fingerprint patterns for identity verification.

To extract speaker representations from utterances, we employ a pretrained ECAPA-TDNN model [26].
This model is well-suited for capturing the distinctive characteristics of speakers, even in the presence of
background noise and unconstrained-length utterances.

In summary, while voiceprints can be challenging to extract from in-the-wild audio data, we focus on
utilizing noise codes from voiceprints in challenging acoustic environments and rely on fingerprint data
as feature vectors for identity verification. This multi-modal approach capitalizes on the strengths of both
modalities to achieve robust and accurate speaker/person identification.

4.4.4 Noise Vector Generator

In the previous sections, we discussed various methods for extracting noise codes from both face and
fingerprint modalities. However, for improved efficiency during inference and enhanced usability, we employ
a dual-headed network that outputs both an embedding/identity vector and a noise vector. Figure 4.5 provides
a visual representation of this network architecture designed for the face modality. The Noise vector Generator
(NgNet) network is specifically trained to minimize its correlation with the identity vector while maximizing
its correlation with augmentations of that identity vector. This unique training approach allows the NgNet
head to acquire the capacity to generate a weak feature vector as required by the protocol. To achieve this, we
utilize the SimClr [18] framework, leveraging the NT-Xent loss, and additionally minimize the log-cosh loss
pertaining to the cosine distance between the identity and noise vectors. The loss function for a given sample
xi is defined as:

Li = −λlog
exp(sim(zi, zj)/τ)∑k=2N

k=1 1[k ̸=j] exp(sim(zi, zk)/τ

+log(cosh(sim(ei, hi) + ϵ))

(4.2)

In this equation, 1[k ̸=j] is an indicator function that equals 1 if k ̸= j, τ represents the temperature
parameter, and λ is a hyperparameter used to scale the losses accordingly.
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During training, each sample undergoes two data augmentations, incorporating color jitter, horizontal
flipping, and Gaussian blur image transformations. We adopt the Inception-ResNet-v1 backbone from Facenet
and fine-tune only the last block and a fully-connected layer while freezing the rest of the network. This is
done because the majority of task-specific features are generalized within these layers. Both the identity
Facenet and NgNet share all layers except the last block and a Linear layer. Additionally, NgNet includes
a non-linear projection layer on top of the embedding layer, facilitating its operation within the SimClr
framework.

The network is trained on the FFHQ dataset [48] with a larger batch size of 128, which is beneficial in
a self-supervised setting. The dimension of the projection is set to 128. Training occurs over 60 epochs
with a learning rate of 0.15, a weight decay rate of 0.0001, and a temperature of 0.07, utilizing the Adam
optimizer [50].

4.5 Perturbation & Binarization

During octet set creation in the preprocessing phase of the protocol, the correlation between 4-bit pairs is
exchanged securely. Although the exact mismatch in the octet is not revealed, it is known from the result to
be either (0 or 4-bit mismatch) or (1 or 3-bit mismatch) in the corresponding noise code positions. We adopt
one-parameter-defense [81], which perturbs the noise vector y to y′, guaranteeing a (k.ϵ) differential privacy
of y using an exponential mechanism [29], where k is the length of the vector and ϵ is the privacy cost. The
relative ordering of the elements in y and y′ remain the same, thereby preserving most of the correlation.
We normalize y′ (preserved under post-processing [29]) to a unit vector and ϵ is set to 0. The vectors are
binarized using CBE-rand (Randomized Circulant Binary Embedding) [82]. The binary embeddings can be
obtained by applying a circulant convolution on data point x with r, a random vector independently sampled
from the standard normal distribution N(0, 1):

b(x) = sign(r ⊛ x) = sign(F−1(F (r) o F (x))) (4.3)

where F−1 is Inverse Discrete Fourier Transform (IDFT) and F is the Discrete Fourier Transform (DFT).
The hamming distance HD(b (x1), b (x2)), between two binary codes preserves 1− cos(θ) [16] in the scale
of [0, 1]. The generated binary code is of the same dimension as the original vector.

The loss in correlation for the same vector after applying perturbations and CBE-rand is shown in figure 4.6.
Ideally, the Hamming distance has to be 0 (same codes); however, because of perturbation and binarization
(smaller loss), we observe a correlation loss of ∼ 0.10 on average and maximum of ∼ 0.25 in the Hamming
scale.

4.6 Security & Complexity Analysis

The security of the protocol during data transfer is in line with the security principles outlined in [60].
It operates within a semi-honest security model, which safeguards each party involved in the protocol
from an adversary attempting to deduce their input based on the exchanged transcript. Formally, it can
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Figure 4.6: Hamming distance distribution between the same output vector after perturbation & binarization

be demonstrated that, from the perspective of a single party, the transcript resulting from the protocol is
equally likely to have been generated by any other possible inputs. This property ensures the protocol’s
security against semi-honest adversaries, even under the assumption of unbounded computational power, thus
providing information-theoretic security. To bolster security, one-time padding is applied, and templates are
enrolled on the server, effectively extending the framework’s protection to both storage and transfer. A formal
proof of this security guarantee can be found in the appendix. Regarding the communication cost during the
preprocessing phase, it can be calculated as follows: for a noise vector of size n with k repetitions and each
element represented by m octets, the cost is m× k × 8× (log n) + 2× k ×m bits.

For Secure AND operations between two n bit codes, the total communication cost is given by m× k ×
8× (log n) + 2× k ×m+ 4× n bits. On the other hand, Secure XOR and Secure NOT operations incur no
additional communication costs beyond the data size. Lastly, the distribution step involves a cost of n bits.
These communication cost estimates provide valuable insights into the resource requirements of the protocol,
helping to assess its efficiency and scalability in practice.

4.7 Evaluation Datasets

In our comprehensive evaluation, we explore the performance of various face recognition models across
four distinct settings: Same-Source-Same-Modality (SSSM), Different-Source-Same-Modality (DSSM),
NgNet, and Different-Source-Different-Modality (DSDM). To conduct these evaluations, we leverage a
selection of publicly available datasets.

In the case of SSSM and NgNet, we utilize three prominent datasets: CelebA [54], CFP [71], and
LFW [37]. To construct our evaluation sets, we extract 10,000 face pairs from CelebA’s evaluation set
and CFP’s frontal faces (CFP-FP) for both mated and non-mated comparisons. For LFW, we adhere to the
specified verification protocol, which entails using 6,000 pairs for evaluation.

For the DSSM scenario, we employ the SOCOFing dataset [72], which comprises 600 subjects, each with
10 different fingers and 4 impressions, including altered images. To create our evaluation set, we generate
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Figure 4.7: Distributions of Hamming distance between noise codes for each dataset

10,000 pairs with the same finger for mated comparisons and different fingers for non-mated comparisons.
The index finger is selected for feature vector extraction, while the little finger is employed to introduce noise
into the comparisons.

In the context of DSDM, we rely on the FVC2004 DB1A, DB2A, and DB3A datasets [58] and establish
correspondence with identities from the Voxceleb1 dataset [62] for utterances, incorporating augmentations
of background noise. This allows us to create a comprehensive evaluation framework that spans different
sources and modalities for a thorough assessment of face recognition algorithms.

4.8 Empirical Observations on Noise Distributions

Dataset mated non-mated

CelebA 0.242 0.263

CFP 0.241 0.282

LFW 0.223 0.262

SOCOFing 0.097 0.139

Voxceleb 0.244 0.409

CelebA - N 0.257 0.413

CFP -N 0.245 0.425

LFW - N 0.194 0.397

Table 4.1: Average noise code Hamming distance for mated vs non-mated pairs, (- N) refers to the distances

obtained from NgNet

The noise codes employed in our evaluation serve a crucial purpose in modeling noise ratios and optimizing
preprocessing speed. Specifically, our noise codes are designed to achieve an average Hamming distance that
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approximates a noise ratio of around 25%. This level of noise ratio has been determined to provide optimal
preprocessing speed. However, it’s worth noting that noise ratios exceeding 40% may introduce challenges,
requiring error correction mechanisms.

In Figure 4.7, we illustrate the distribution of noise codes, showcasing how the noise is distributed across
our datasets. Additionally, we present the average Hamming distances between mated and non-mated pairs
in Table 4.1. Our findings indicate that, on average, the Hamming distance for mated pairs is below 25%,
while for non-mated pairs, it exceeds 25%. This discrepancy is intentional and aligns with our protocol
assumptions, as we aim for mated pairs to be around 25% different to facilitate optimal verification without
necessitating error corrections.

Here’s a summary of our observations in different dataset settings:

• SSSM (CelebA, CFP, and LFW): In these datasets, as well as their noise-augmented counterparts
(NgNet), and DSDM (Voxceleb), the mean mismatch for mated pairs closely approximates the desired
25% noise ratio.

• DSSM (SOCOFing): In the SOCOFing dataset, the mean noise ratio for both mated and non-mated
pairs is lower, at around 10% and 14%, respectively. This lower noise ratio can potentially slow down
the preprocessing phase. To address this, we apply augmentation techniques such as random Gaussian
blur and rotation, as detailed in the supplementary extension, which shifts the distribution to the right.

• NgNet and DSDM: In these datasets, the non-mated pairs have an average Hamming distance slightly
above 40%. This level of noise may lead to slower computation for non-mated pairs, necessitating
error correction mechanisms, which we discuss further in section [fill this].

n conclusion, our noise codes and their distribution play a pivotal role in our evaluation protocol, ensuring
that mated pairs have the desired 25% separation for optimal verification while accommodating variations in
noise levels across different dataset settings.

4.9 NgNet’s Correlational Distribution

In the context of NgNet, it’s crucial to ensure that the noise vectors exhibit a property of being uncorrelated
with the identity vectors, as described in section 4.4. This property is essential for the effectiveness of the
noise modeling.

Dataset coorelation

CFP -0.0087

LFW 0.0060

CelebA -0.0007

Table 4.2: Average correlation between identity and NgNet vectors for each dataset
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Figure 4.8: Distribution of cosine correlation between NgNet’s noise vector and Identity embeddings

From the analysis presented in Table 4.2 and Figure 4.8, it is evident that the correlation of the noise
vectors is distributed around 0, and even in the worst-case scenarios, the correlation is close to approximately
±0.15. This means that the noise vectors are indeed uncorrelated or minimally correlated with the identity
vectors, meeting the second property of ”noise from the same region.”

When we consider the mean correlation across the evaluated datasets (CelebA, CFP, and LFW), which
is calculated as d = (−0.0087 + 0.0060 + −0.0007)/3 = −0.001, we observe that it is very close to 0.
This result is highly acceptable as it indicates a lack of significant correlation between the noise vectors and
identity vectors. This lack of correlation ensures that the noise vectors effectively introduce noise into the
system without biasing the results based on identity-related information.

In summary, the analysis demonstrates that the noise vectors in NgNet satisfy the requirement of being
uncorrelated with identity vectors, supporting the robustness and fairness of the noise modeling process.
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Figure 4.9: Octet purity for parameter ratio n/m

4.10 Protocol’s Parameters

The verification protocol involves three key parameters: n, m, and k, which respectively control the
preprocessing, distillation, and postprocessing phases. Here’s a simplified explanation of their roles and
settings:

• n (Preprocessing Octets): This parameter determines the number of octets used after preprocessing.
We set n to the minimum of N/4 and 100, where N represents the size of the noise code.

• m (Distillation Steps): m controls the number of steps in the distillation phase. It’s set to 90% of the
value of n, following a balance between utility and efficiency as suggested in previous work (cite).

• k (Verification Octets): k specifies the number of octets needed for the final verification step, and its
value depends on the specific requirements of the verification task.

Figure 4.9 demonstrates that when m is set at or above 90% of n, octet purity reaches 100%, indicating
that all octets share the same level of mismatch. Deviating from this configuration leads to a gradual decrease
in octet purity.

This parameter setup aims to strike a balance between the number of octets used in the protocol and its
effectiveness, ensuring efficiency and reliable results.
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Figure 4.10: Correction Mechanism

4.11 Correction Mechanism

The protocol performs Secure AND computations under the assumption of an octet noise ratio of
approximately 25%, corresponding to a 1-bit mismatch. A 3-bit mismatch can cause computation errors by
flipping the result, introducing inaccuracies into the dot product computation. While it’s possible to construct
an octet set with a purity of 1 (no mismatches), it remains uncertain whether the noise ratio is 25% or 75%
during verification. To address this uncertainty, we’ve developed a mechanism to verify the correct Secure
AND computation by releasing two resultant shares as ⟨[W1, S1], [W2, S2]⟩. Here:

• W = W1 ⊕W2 represents the cosine distance.

• C1 = W1 ⊕ ra1 and C2 = W2 ⊕ ra2 represent intermediate values.

• We = C1 ⊕ C2 = S1 ⊕ S2 represents the Secure distributed sum of some random distributed vector at
each party, effectively protecting octets.

If We falls outside the valid range (We < 0 or int(We) > len(W )), the distance is marked as invalid.
This indicates that some Secure AND computation has flipped.

The size of We is set as 4 × log(len(W )) to reliably capture errors. Verification is then repeated with
a 75% noise assumption by replacing the AND gate with the NAND gate in the Secure AND scheme of
reference [60]. The process alternates between these two assumptions within S-BAN until a valid distance is
found, as illustrated in Figure 4.10.

Empirical observations indicate that, with a noise code mismatch of up to 40%, no error correction is
necessary after averaging the number of iterations over 100 trials at each noise ratio region, as shown in
Table 4.3. The average iterations increase to 2.15 and stabilize at 2 in regions above 60%. In the 50% noise
region, more than two iterations may be required, as the octet set mismatch changes at each iteration. As a
result, non-mated pairs may exhibit more iterations than mated pairs, especially in the 50% noise region, as
illustrated in the noise distributions for Voxceleb and NgNet in Section 4.8.

This mechanism ensures robust verification while adapting to varying noise ratios without the need for
excessive error correction.
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Noise Ratio Region Avg. Number of iterations

≤ 0.40 1

0.45 1.1

0.48 1.4

0.50 1.65

0.55 2.15

≥ 0.60 2

Table 4.3: Average Number of iterations in correction mechanism at different noise ratio regions

Figure 4.11: DET and ROC plots for each dataset, comparing the deviations after protocol’s usage

4.12 Verification Performance

We assess the verification performance of the protocol by comparing the degradation in various verification
metrics with and without the protocol’s local computation. Specifically, we use False Non-Match Rate
(FNMR) @ False Match Rate (FMR) = 0.1%, Equal Error Rate (EER), True Match Rate (TMR) @ False
Match Rate (FMR) = 0.1%, and Area Under the Curve (AUC) degradations as performance indicators across
different datasets.

In the context of the fingerprint modality, we evaluate the protocol’s performance on FVC DB1A, DB2A,
and DB3A datasets under the Different-Source-Different-Modality (DSDM) setting and on SOCOFing dataset
under the Different-Source-Same-Modality (DSSM) setting. Table 4.4 presents the results, demonstrating
low EER and FNMR degradations across the datasets. Specifically, the mean degradation is deer = 0.075%

and dfnmr = 0.067%.

Upon inspecting the Detection Error Trade-off (DET) curves in Figure 4.11 for each dataset, we observe
an almost complete overlap between the local and protocol values. This alignment underscores the effective-
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ness of the protocol in maintaining verification performance while preserving privacy and security during
computation.

Dataset FNMR/ FMR=0.1%

(local)

FNMR/ FMR=0.1%

(protocol)

EER% (local) EER% (protocol)

DB1A 3.88 4.03 0.30 0.30

DB2A 10.03 9.79 2.65 2.65

DB3A 7.37 7.56 1.19 1.49

SOCOFing 9.73 9.90 3.10 3.10

Table 4.4: Verification Performance on Fingerprint Datasets

Dataset AUC (local) AUC (protocol) TMR/ FMR=0.1%

(local)

TMR/ FMR=0.1%

(protocol)

CFP 0.999661 0.999653 98.78 98.78

CelebA 0.9660 0.9659 91.16 91.26

LFW 0.9873 0.9872 95.79 95.79

Table 4.5: Verification Performance on Face Datasets

In the context of the face modality, we conduct evaluations using the LFW, CFP, and CelebA datasets under
the Same-Source-Same-Modality (SSSM) and NgNet settings. Remarkably, we observe similar degradations
in both settings for each dataset.

From the results presented in Table 4.5, it becomes evident that the Area Under the Curve (AUC) and True
Match Rate (TMR) degradations are minimal across the datasets, with a mean degradation of dauc = 0.0051%

and dtmr = 0.05% respectively. The Receiver Operating Characteristic (ROC) curves in Figure 4.11 exhibit
a substantial overlap between the local and protocol values.

We attribute these small degradations to the floating-point precision set by the protocol at 8 bits. It’s
worth noting that higher precision could potentially result in even lower degradations, further underlining
the protocol’s capability to maintain verification performance while preserving privacy and security during
computation.

4.13 Time Cost Analysis

To assess the real-time performance of the protocol, we conducted tests to measure latency and bandwidth
during the verification process. The protocol was implemented in Python and run on an Intel Xeon CPU
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E5-2640-v4 @ 2.40GHz server with 32GB of RAM. We’ve provided a summary of the time-bandwidth cost
in Table 4.6.

Given that Secure Multi-Party Computation (MPC) protocols typically involve more data transfer, we
optimized the protocol by implementing data compression during data transfer and parallelizing secure
multiplications (up to 16) to expedite computation.

The results in Table 4.6 illustrate that the time cost exhibits a linear increase as vector sizes grow.
Importantly, the bandwidth usage remains below 7MB for practical vector sizes. These findings indicate that
the protocol offers real-time performance suitable for practical applications, especially when considering the
data compression and parallelization optimizations.

N (size) Online comparison (s) Bandwidth (MB)

128 0.771 1.88

192 0.873 2.126

256 0.987 2.395

512 1.455 3.378

1024 2.389 6.602

Table 4.6: Time and memory performance of the protocol with vector size (N )

In addition to the online comparison cost mentioned in Table 4.6, it’s important to consider the prepro-
cessing cost, which typically ranges from 200ms to 350ms, depending on the noise ratio regions. The
preprocessing includes both offline and online phases. The complete preprocessing (offline) + distillation
(D) + post-distillation (PD) cost is minimized at approximately 240ms for noise ratios of 25% and 75%,
considering a noise code size of 512. Therefore, these noise ratios are particularly desirable, as depicted in
Figure 4.12.

The combined cost of D + PD is around 40ms, except in the 50% noise ratio region, where distillation
may need to be repeated multiple times (approximately 1-3 times). This repetition occurs due to octet set
cancellation and results in a higher cost in that specific region.

These insights help us understand the trade-offs in terms of processing time and noise ratios, allowing for
informed decisions when configuring the protocol for specific applications.

setup(s) online(s) overall(s)

GC [9] 0.423 0.112 0.535

GMW [33] 0.174 0.014 0.188

S-BAN 0.063 0.020 0.083

Table 4.7: Latency comparison with other methods for each MULT operation

The proposed method is exact, meaning that its accuracy is limited only by the precision level specified in
the protocol. To assess its efficiency, we conducted a time-cost comparison relative to other popular Secure
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Figure 4.12: Comparing octet processing speed at different noise ratio regions, P+D+PD refers to the time

taken for preprocessing + distillation + post-distillation phases

Multi-Party Computation (SMC) boolean circuit evaluators that share the same security assumptions. This
analysis was carried out on a single thread. We utilized the scores reported in [34] and leveraged ABY’s [25]
implementation for a 32-bit precision MULT operation, which is a fundamental component for the dot
product.

The results, as detailed in Table 4.7, indicate that our protocol exhibits lower setup and overall time when
compared to other SMC boolean circuit evaluators. Notably, the online phase of our protocol is comparable
to that of GMW [33], with a slight increase in computation time as additional AND gates are computed for
the encrypted inputs.

This comparison highlights the efficiency and effectiveness of our proposed method, positioning it
favorably among existing SMC boolean circuit evaluators while maintaining a high level of security and
precision.
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Chapter 5

Conclusions & Future Work

In this work, we introduced novel verification schemes that incorporate noise through secure two-party
computation. The time complexity across various modalities, even for practical vector sizes, remains below
2s, with a bandwidth requirement of approximately ∼ 3Mb, making it well-suited for practical applications.
Additionally, the degradation across modalities is less than ∼ 0.05% at higher thresholds. Furthermore, the
protocol’s provision of information-theoretic security ensures a high level of confidence in user authentication.
Looking forward to future research, the protocol could be extended by integrating zero-knowledge proofs to
enhance defense against malicious adversaries. Moreover, exploring the development of efficient computation
schemes that enable operations directly within a single circuit could be a promising avenue for further
improvement.
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Appendix A

Correctness & Security Proof

We provide the correctness and the security proof of the Secure AND for its Computation phase, algorithm
7, which is used in computing Secure AND, extend it to S-BAN and present its different aspects & results.

Theorem 1. The equality x ∧ y = z1 ⊕ z2 holds when the noise ratio (25%) given by :

||r0 ⊕ s0||+ ||r1 ⊕ s1||+ ||r2 ⊕ s2||+ ||r3 ⊕ s3|| = 1

Proof. By expanding the results after applying the AND gate (Eq. 4.2 and 4.3) on the octet we get :

a1 = r2 ⊕ r3, b1 = r1 ⊕ r3, c1 = r3, and a2 = s2 ⊕ s3, b2 = s1 ⊕ s3 and c2 = s3. The operation

a1 ⊕ a2 yields 1 for either r2 ⊕ s2 = 1 or r3 ⊕ s3 = 1, a 1-bit mismatch at position 3 or 4. Similar

observation for 1-bit mismatch at position 2 or 4 holds for b1⊕ b2. c1⊕ c2 yields 1 when the mismatch is

at position 4.

Let the intermediate variables A,B,C hold the results of the XORs :

A = a1⊕ a2, B = b1⊕ b2, C = c1⊕ c2 (A.1)

We intend to show that result of z1 ⊕ z2 at 25% noise is equal to the R.H.S of :

x ∧ y = (x1 ⊕ x2) ∧ (y1 ⊕ y2) = (x1 ∧ y1)⊕ (x2 ∧ y1)⊕ (x1 ∧ y2)⊕ (x2 ∧ y2) (A.2)

Let M1 = (x1 ∧ y1),M2 = (x2 ∧ y1),M3 = (x1 ∧ y2),M4 = (x2 ∧ y2)

Eq. A.2 can be reduced to :

x ∧ y = M1 ⊕M2 ⊕M3 ⊕M4 (A.3)
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After Substituting XA and XB in z1 and z2 we get :

z1 ⊕ z2 = ((x1 ⊕ x2 ⊕A) ∧ (y1 ⊕ y2 ⊕B))

⊕(x1 ∧ (y1 ⊕ y2 ⊕B))

⊕(y1 ∧ (x1 ⊕ x2 ⊕A))

⊕(x2 ∧ (y1 ⊕ y2 ⊕B))

⊕(y2 ∧ (x1 ⊕ x2 ⊕A))⊕ C

(A.4)

The simplified form of Eq. A.4 is :

z1 ⊕ z2 = M1 ⊕M2 ⊕M3 ⊕M4

⊕(A ∧B)⊕A ∧ (y1 ⊕ y2)

⊕B ∧ (x1 ⊕ x2)⊕M1 ⊕M3 ⊕B ∧ (x1 ⊕ x2)

⊕A ∧ (y1 ⊕ y2)⊕M1 ⊕M2 ⊕M2

⊕M4 ⊕M3 ⊕M4 ⊕ C

= M1 ⊕M2 ⊕M3 ⊕M4

⊕A ∧ (y1 ⊕ y2)⊕B ∧ (x1 ⊕ x2)

⊕B ∧ (x1 ⊕ x2)⊕A ∧ (y1 ⊕ y2)

⊕C ⊕ (A ∧B)

(A.5)

• First position mismatch : ||r0 ⊕ s0|| = 1 =⇒ A = 0, B = 0, C = 0

z1⊕ z2 = M1 ⊕M2 ⊕M3 ⊕M4 = x ∧ y (A.6)

• Second position mismatch : ||r1 ⊕ s1|| = 1 =⇒ A = 0, B = 1, C = 0

z1⊕ z2 = M1 ⊕M2 ⊕M3

⊕M4 ⊕ (x1 ⊕ x2)⊕ (x1 ⊕ x2)

= M1 ⊕M2 ⊕M3 ⊕M4 = x ∧ y

(A.7)

• Third position mismatch : ||r2 ⊕ s2|| = 1 =⇒ A = 1, B = 0, C = 0

z1⊕ z2 = M1 ⊕M2 ⊕M3

⊕M4 ⊕ (y1 ⊕ y2)⊕ (y1 ⊕ y2)

= M1 ⊕M2 ⊕M3 ⊕M4 = x ∧ y

(A.8)
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• Fourth position mismatch : ||r3 ⊕ s3|| = 1 =⇒ A = 1, B = 1, C = 1

z1⊕ z2 = M1 ⊕M2 ⊕M3 ⊕M4 ⊕ 1⊕ 1

= M1 ⊕M2 ⊕M3 ⊕M4 = x ∧ y
(A.9)

■

Theorem 2. Assuming that the noise ratio is 25%, the Algorithm 7 above is secure.

Proof. First, we argue that the assumption is valid in the scenario described in the paper [60]. Since the

average noise ratio for a mated pair ranges from 0-25%, we argue that adversary. The noise ratio is 25%

because we consider an octet. In an octet, there are 4 two bit pairs. This makes only 6 cases possible i.e.

no pairs are noisy, 1/2/3/4 pairs are noisy. Early XOR removes the 0, 2, 4 noisy pair cases. We are left with

only 1 out of 4 or 3 out of 4 noisy pairs. Since the average noise ratio is 0-25%, majority of the octets in

distillation process are correct. This makes the entire protocol to be run with 1 out of 4 noisy pair.

According to the algorithm above, each computation is described as F (x, y) = z. We denote the

corrupt party using set C. It is easy to see that if both parties are corrupt by same adversary, no protocol

can provide any privacy since there is no honest party to protect. Hence, it makes sense to only argue the

security in terms of privacy against one of the parties. Further, we consider the privacy against a corrupt

P1. Without the loss of generality, the following argument works equally for P2 as well. We follow the

simulation paradigm to argue the privacy of the computation phase in general. This involves input sharing

between two parties, XOR computation, AND computation and output reconstruction. The rest of the

phases such as preprocessing, distillation are tackled later in the section.

To argue the privacy of the computation phase, we want to show that the corrupt party P1 only learns

some limited information. We can show that by arguing everything that a corrupt party sees during

our protocol execution can be efficiently simulated given only the information available to this corrupt

party. Specifically, we will construct a view1 and view2 vectors as the values party P1 and P2 see during

the protocol execution respectively. Privacy against party P1 means that there exists a polynomial-time

probabilistic simulator S, with input of party P1 and the output of the protocol, which can output a view

that has same distribution as the view of corrupt P1.

S({x, z}P1∈C) ≡ {view1}P1∈C

Similarly privacy against corrupt P2 can be stated as

S({y, z}P2∈C) ≡ {view2}P2∈C
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Intuitively, the simulator runs the corrupt party P1 on it’s own input. It simulates the messages from

honest parties by uniformly sampling honest party P2 value which produces the right distribution and it

computes honest party P2’s share using z and z1 to be consistent with it. According to the simulation

paradigm, the corrupt party only learns its own input and output bit, using which it can efficiently simulate

everything it sees(view).

We define the view1 as a vector which includes values as follows: {x, x1, x2, a1, b1, c1, x2 ⊕ a2, y2 ⊕

b2, z1, z2}. We also define 2 functions strip and dress as follows:

• strip(view1) is a function which takes the view of P1 as input and removes z2 from it. Hence,

strip(view1) = {x, x1, x2, a1, b1, c1, x2 ⊕ a2, y2 ⊕ b2, z1}

• dress(view′
1) is a function which takes a stripped view of P1 which is of form {x, x1, x2, a1, b1, c1, x2⊕

a2, y2 ⊕ b2, z1} as input and outputs view′′
1 which is of form {x, x1, x2, a1, b1, c1, x2 ⊕ a2, y2 ⊕

b2, z1, z2}. In short, dress function tries to fill up the values which strip removed. It does so by

first assuming that the output is, say, z and computes what P2 holds using z and z1 by z2 = z ⊕ z1.

It adds this new z2 to the view′
1 to convert into view′′

1

Now, we define the simulator S as follows:

1. Consider the input to the simulator S as {x, z}

2. Define a input tuple as (x, y) where y = 0 i.e. (x, 0).

3. Run the Computation Phase as described in the general sense.(input sharing, XOR, AND, and output

reconstruction with (x, 0) as input bits. Produce view0
1 to be view of party P1 as defined.

4. Let z be the value received as input. Using z, Output dress({strip(view0
1)})

First, we show that {strip(view0
1} ≡ {strip(view1)}. In general, we want to show that {strip(view0

1} ≡

{strip(view1
1)}. This can be done using observation that P1 receives y1 in input sharing phase, nothing

in XOR computation and x2 ⊕ a2, y2 ⊕ b2 in AND computation. For both cases y = 0 and y = 1,

P1 distributes the same x and P2 distributes different y. However, P1 only sees y1 which is uniformly

distributed in both cases. In multiplication phase, P1 gets to know a2 since it already knows x2. However,

a2 is uniformly distributed based on the fact that a2 relies on s0, s1, s2, s3 which are independent of

each other. Hence, a2 is uniformly distributed in both cases. This can also be verified using truth table.

Same applies for b2. P1 also knows y2 ⊕ b2 which is also uniformly distributed since both y2 and b2 are

uniformly distributed. For output reconstruction, P1 only knows z1 since the view is stripped. This z1 was
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computed prior to output reconstruction phase, hence, can be considered identically distributed for both

cases y = 0, y = 1.

Now, using correctness of the protocol under the noise assumption in previous theorem, we know that

dress({strip(view1)}) ≡ {view1}, This is due to the fact that for a given input say x, y there exists only

one output z. Hence, the dress function will have identical distribution as the original view1. This shows

that S({x, z}) = dress({strip(view0
1)}) ≡ dress({strip(view1)}) ≡ {view1}

This security proof can be further extended to the entire protocol using hybrid argument. Intuitively, we

will construct N hybrids where N is the number of secure AND computations such that on jth hybrid, all

AND computations before the jth AND computations are replaced by the output of the above simulator

and all AND computations after the jth AND computations are same as Hybrid 1 i.e. the view of party P1.

The last hybrid will have all the secure AND computations replaced with their simulator outputs. This

proves the security of the entire protocol.
■

Corollary 1. Since, Algorithm 7 is secure, the verification protocol in S-BAN is also secure as it uses only
Secure AND , Secure XOR and Secure NOT operations.

We define differential privacy, sensitivity, exponential mechanism, and the algorithm used in perturbing
the output vector y before binarization.

Defination 1. A mechanism M provides ϵ-differential privacy for any pair of neighboring datasets D and
D′, and for every set of outcomes O, if M satisfies :

P (M(D ∈ O)) ≤ eϵP (M(D′ ∈ O)) (A.10)

Algorithm 11 Output Obfuscation

1: Let y = ⟨y1, y2....yk⟩ be the output vector

2: Sort y in increasing order : y1 ≤ y2 ≤ .....yk

3: Divide it into k subranges as follows:

4: R = (−1, (y1 + y2)/2), [(y1 + y2)/2, (y2 + y3)/2)....[(yk + yk−1)/2, 1)

5: Set a value by randomly selecting from each Ri and assign to yi position using an exponential mechanism.

In our implementation we use ϵ = 0 (equivalent to random sample), formally it is sampled from

probability proportional to e(ϵu
i
j(D,r)/2∆u), where ∆u = 2 for unit vectors and uij =

1
|yi−(i−1)/k+(j−1)p)|

[81].

6: return the obfuscated vector yo
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Defination 2. Sensitivity of a query is defined for a query f : D → R:

∆S = maxD,D′ ||f(D)− f(D′)|| (A.11)

Defination 3. The exponential mechanism selects and outputs a score r ∈ R with probability proportional
to e(ϵu(D,r)/2∆u), where ϵ is the privacy budget, u(D, r) is the utility of a dataset and output pair, and
∆u = maxD,D′,r|u(D, r)− u(D′, r)| is the sensitivity of the utility score.

Algorithm for modification of a vector y using the above definitions [81]:
It is easy to see that, the Algorithm 11 satisfies kϵ Differential privacy (we choose k samplings) i.e when

y′i + y′i+1 = yi + yi+1 and ||y − y′||2 ≤ 1 is interpreted as a neighboring dataset having the same range R :

P (rj |y)
P (rj |y′)

=
exp(ϵui,y,j/2∆u)/

∑
k exp(ϵui,y,k/2∆u)

exp(ϵui,y′,j/2∆u)/
∑

k exp(ϵui,y′,k/2∆u)
≤ exp(ϵ) (A.12)
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