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Abstract

Object Detection and Tracking computer vision algorithms have remarkably progressed in the past
few years, owing to the rapid progress in the field of deep learning. These algorithms find numerous
applications in surveillance, robotics, autonomous driving, sports analytics, and human-computer inter-
action. They achieve near-perfect performance on the benchmark datasets they have been evaluated on.
However, deploying such algorithms in real-world poses a large number of challenges, and they do not
work as well as we expect them to work by looking at their performance on benchmark datasets.

In this thesis, we present details of deploying one such Multi Camera Multi-Object Detection and
Tracking system to track players in the bird’s eye (top) view in a sports event, specifically in the game
of cricket. Our system is able to generate the top-view map of the fielders from cameras placed on
crowd stands of a stadium, making it extremely cost-effective compared to using spider cameras. We
present details on the challenges and hurdles we faced while deploying our systems and the solutions we
designed to overcome these challenges. Ultimately, we tailored a neatly engineered end-to-end system
that went live in the Asia Cup of 2022.

Deploying such a multi-camera detection and tracking system poses many challenges. The first of
them is related to camera placement. We had to devise strategies to place cameras optimally so that all
the objects of interest could be captured by one or more of the cameras placed, at the same time ensuring
that they do not appear so small that it becomes difficult for a detector to localize them. Constructing
the bird’s eye view of the detected players required camera calibration. In the real world, we may not
find reliable point correspondences to calibrate a camera. Even if we might find point correspondences,
sometimes they may be really hard to see to accurately calibrate a camera. Detecting players in a setup
like this proved to be really challenging because the objects of interest appeared very small in the camera
views. Moreover, since the detections were coming from multiple cameras, algorithms had to be devised
to associate them correctly across camera views. Tracking in a setting like this was even harder because
we had to rely only on motion cues to track the objects of interest. Appearance features did not add
any value because of the fact all the players being tracked wore jerseys of the same color. Each of these
challenges became even more, harder to solve because of the real-time requirements of our use case.

Finally, setting up the hardware architecture to receive the real-time live feeds from each camera in
a synchronized manner and implementing a fast communication protocol for transmitting data between
the various system components required careful design choices to be made, all of which have been
presented in detail in this thesis.
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Chapter 1

Introduction

In this chapter, we explain the problem statement in detail and why solving the problem is very
interesting to the sports community. We discuss the challenges involved in solving the problem in
the given setup. We present discussions on object detectors, multi-object multi-camera tracking, camera
calibration, Hungarian Matching, Kalman Filters, and linear programming optimization methods. These
concepts form the crux on which the work is built.

1.1 Problem Statement

People in India are so enthusiastic about cricket that it is often said they “eat”, “drink”, “talk”,
“worship” and “live” cricket. It is a sport that brings everyone together irrespective of their age, religion,
culture, etc. The amount of enthusiasm generated when matches are played is truly remarkable. This
excitement has led to many people playing the sport resulting in the development of world-famous
cricketers. Not only the people playing the sport but also people watching it are so enthusiastic about
the game that they try to understand the game, the strategies, etc. Broadcasting companies like Star
Sports have been putting a lot of resources into improving the understanding of the game by presenting
interesting data visualizations and graphics so that the audience watching the game is more engaged.
These graphic presentations not only help the players and the coaches in analyzing the performance
but also young kids who want to be players someday. Commentators can further use these graphic
presentations to explain the non-trivial strategies of teams.

One such graphic is the bird’s eye view map of the field, showing the location of fielders as dots.
This graphic is demonstrated in Figure 1.1. Such a visualization conveys precise information regarding
the field placement a particular bowler is using. We know this information is of great interest to teams
as batters can gauge what type of ball to expect depending on the field placement. It would also help
batters in picking the right gaps so that they can score boundaries and minimize the chances of getting
out. Bowlers can use this type of data to understand what type of field a particular batter is weak playing
at. So, a lot of useful analysis can be done if this data is recorded for every ball in the match.

1



Figure 1.1: An example of the bird’s eye view graphic showing the position of fielders on the field as
white dots. The generation of such a graphic from cameras placed on stands is one of the focuses of the
thesis.

Currently, broadcasting companies like Star Sports use systems that consist of drone cameras. Not
only are the current systems costly, but they also require manual intervention. Hence, an automatic
cost-effective solution can benefit many broadcasters.

Once the bird’s eye view map is generated, we can do a lot of useful things, like tracking players
in the top view. The top view tracking data can further be used to show the identity of players in any
calibrated camera view (as shown in Figure 1.2). We can also find out statistics like how much distance
a particular fielder has run in a match, the speed with which a player is running, etc., using this top-view
map.

1.2 Trivial Solution

We know that a cricket pitch contains crease markings. A typical pitch would have crease lines
as shown in Figure 1.3. One could take a top-view map like this and compute the homography to
project ground plane points from the image view to the top-view map. We can easily find 8-point
correspondences. For example, Figure 1.4 shows the point correspondences in the top-view map and
the image view, which can be used to compute the homography from the camera view ground plane to
bird’s eye view. Once the homography is computed, all we need to do is to run a pedestrian detector
in the camera view, take the bottom center point of detected bounding boxes and project them to the
top view. The bottom center point of a bounding box is precisely a pixel in the camera view, which
corresponds to a point on the ground plane (Z = 0) in the world coordinate system. This transformation

2



Figure 1.2: The top-view tracking information can be projected onto any other broadcast camera views,
and players can be highlighted as shown. This is one of the many visualizations which can be shown.

can be achieved as follows:

P = s

XY
1

 = H

xy
1

 (1.1)

where s is the scaling factor, H is the 3x3 homography projection matrix projecting points from the
camera view to the top view, (x, y)T is the pixel coordinates in the camera view, and (X,Y )T is the
corresponding pixel coordinates in the top-view.

This would give a decent-looking top-view map showing the locations of fielders. However, in prac-
tical scenarios, we find that there are multiple challenges, and such a simple, straightforward solution
does not work.

1.3 Challenges

• Camera Placement: The moment we place cameras on the stadium stands, it is impossible to see
the crease markings. Hence, calibration cannot be done so easily. Zooming the camera to see the
crease markings would decrease the coverage drastically, and we won’t be able to see most of the
players from the zoomed-in field of view.

• Multiple Cameras: The coverage of typical cameras is not enough to get all the players on the
field, even from the topmost vantage point on the stands. This makes it a compulsion for us to

3



Figure 1.3: The crease lines (along with the dimensions) on a typical cricket pitch

Figure 1.4: Point correspondences in the camera view (a) and top view (b) which can be used to compute
the homography projection matrix projecting points from the camera view to the top-view.

4



use a multi-camera setup. For our purpose, we observe that three cameras placed at an angle of
approximately 120 degrees from each other are an optimal cost-effective setup.

• Camera Synchronization: The moment we move to a multi-camera setup, synchronization of
the feeds becomes very important. Since cameras will be located at different distances from the
server, there may be slight delays between cameras. We have to account for such delays so that
the algorithm does not give incorrect results.

• Data association between cameras: In a multi-camera setup associating players across cameras
become a challenge, especially with weak calibration. We have to come up with algorithms that
are robust to the calibration errors as well as associate players across cameras correctly.

• Player detection: Most pedestrian detectors are trained on a very different distribution of data
in the sense that they cannot detect players from such a far distance. We had to fine-tune these
detectors so that they could detect players in this setup. Especially, the bright lighting conditions
make it very hard to detect players along with the white jersey color (in Test matches).

• Real-time Operations: One of the requirements of the project is to operate in real time. This
makes things even more difficult. Even if 4K cameras could have been used in order to improve
crease marking visibility and player detection, this becomes a problem now as none of the current
pedestrian detectors can process 4K images even at 5 FPS. Our requirement was to get at least
20-25 FPS.

• GPU Heating: Detecting players using deep learning models at real-time speeds would require
high-end GPUs. Running such a system for the entire duration of even a T20 match would heat
up the GPUs considerably. Hence, placing the server in a cool room is of utmost importance.
Bringing back the feeds to the broadcaster office and placing the server in the office seem to be
the ideal thing to do. However, bringing back 4K feeds over long distances is extremely expensive.
The bandwidth required would be extremely high, and it would cost nearly 4-5 Lakhs every match.
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Chapter 2

Camera Calibration and Homography

The link between the real physical world and the image world is established through camera calibra-
tion. Each 3D point in the real world would be imaged onto a certain 2D point on the image plane. This
mapping is determined by many internal parameters of the camera being used, for example, the focal
length of the camera (intrinsic parameters). It is also dependent on where the camera is placed in the
3D world (extrinsic parameters). Once we know the intrinsic and extrinsic parameters, we will know
exactly where any 3D world point would form its image in the image plane. Camera calibration is the
process of finding out these intrinsic and extrinsic camera parameters. Moreover, it turns out that these
parameters can be represented compactly using a 3x4 matrix, commonly referred to as the P matrix.

2.1 Camera Models and Image Formation

In this section, we briefly take a look at the mathematics behind image formation. Let us assume
that a camera C is placed at (0, 0, 0) in the world coordinate system, and the coordinate system of the
camera perfectly aligns with the world coordinate system, i.e., the camera is not rotated along any axis.
The focal length of the camera, i.e., the distance between the camera center and the image plane, is f .
Figure 2.1 shows this setup. Note that although in the real world, the image plane or the CCD array is
located behind the camera center, the math works out in an exactly similar fashion when we mirror it
and bring it in front of the camera center. Bringing the image plane in front of the camera center has a
few advantages, one of the notable being we get an erect image.

Suppose we have a 3D point, χ, in the world whose coordinates are (X,Y, Z). We are interested in
finding the image of this 3D point on the image plane. Precisely, we want to know the 2D point, x, on
the image plane where the 3D point forms its image. Using the concepts of similarity of triangles, we
can work out that the x-coordinate of the imaged 2D point(x) is given by the expression f XZ . Similarly,
the y-coordinate of the imaged 2D point(x) is given by the expression f YZ .
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Figure 2.1: (a) Shows the setup in which the mathematics behind image formation is derived. (b)
Derived expression for the y-coordinate of the image of a 3D point, χ located at (X,Y, Z) in the real
world. The derivation comes from the fact that triangles ∆xCP and ∆χCZ are similar, and hence the
length of their corresponding sides are in the same ratio.

In matrix form using homogenous coordinates, the expression for the image of the 3D point, (X,Y, Z),
is as follows:

x̃ =

uv
w

 = Pχ =

f 0 0 0

0 f 0 0

0 0 1 0



X

Y

Z

1

 (2.1)

where the tilde over the x indicates homogenous coordinates and the bar over the χ indicates an aug-
mented vector. In order to get x which is the 2D point on the image plane, we divide by the scale factor
as follows:

x =

(
u
w
v
w

)
(2.2)

We could re-write 2.9 as follows:

x̃ =

uv
w

 =

f 0 0

0 f 0

0 0 1


1 0 0 0

0 1 0 0

0 0 1 0



X

Y

Z

1

 = K
[
I | 0

]
χ (2.3)

where K is the internal camera matrix, also known as camera intrinsics.

Usually, the camera origin and the image origin are not the same and do not coincide. When referring
to the coordinates of image points, we would want them to be in the image coordinate frame. In order
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Figure 2.2: The camera coordinate system and the world coordinate system may not always be aligned.
In order to align the world coordinate system with the camera coordinate system, points in the world
coordinate system have to undergo a translation followed by a rotation.

to move the camera origin to the image origin, equation 2.3 can be re-written as below:

x̃ =

uv
w

 =

f 0 px

0 f py

0 0 1


1 0 0 0

0 1 0 0

0 0 1 0



X

Y

Z

1

 = K
[
I | 0

]
χ (2.4)

where px and py are the offsets to be added to make the camera and image origin coincide.
We assumed that the camera coordinate system perfectly aligns with the world coordinate system and

that the camera is placed at (0, 0, 0) in the world. However, in real life, this may not be the case always.
The camera may be located at some coordinate (XC , YC , ZC) in the world, and it may be rotated along
the X, Y, and Z axes of the world coordinate system. In such cases, it is necessary for us to align the
world coordinate system and the camera coordinate system so that the math works out as derived above.

In general, we always refer to points, vectors, and everything in the world coordinate system. Let us
assume a 3D pointX in an inhomogeneous representation (referenced from the world coordinate frame).
That same point would have different x, y, and z coordinate values when referenced from the camera
coordinate frame (when the camera and world coordinate systems are not aligned). Let Xcam be the
same 3D point (in an inhomogeneous representation, again) but referenced from the camera coordinate
system. Let us assume that the camera is placed at C in the world coordinate system. The camera
coordinates are (XC , YC , ZC).

Let us take a concrete example where X is (XC , YC , ZC). Now, we want to transform this point
in such a way that its coordinates read (0, 0, 0) instead of (XC , YC , ZC). In other words, we want
to reference the point in the camera coordinate system (instead of in the world coordinate system)
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because that’s what the camera needs for the math to work out. Hence, a translation of −C is required
to transform points from the world coordinate system to the camera coordinate system. When points
undergo this translation, the world coordinates frame, and the camera coordinate have the same origin.

However, another transformation is required to align the coordinate axes of both the coordinate
frames. Precisely, we want the vector (1, 0, 0) to align with the X-axis of the camera coordinate sys-
tem. Similarly, we want the vectors (0, 1, 0) and (0, 0, 1) to align with the Y-axis and Z-axis of the
camera coordinate frame, respectively. A 3x3 rotation matrix whose columns are vectors representing
the camera coordinate axes will orient the world coordinate system with the camera coordinate system.
Points undergoing these two sequences of transformations will rightly be transformed from the world
coordinate frame to the camera coordinate frame, which is what we require for the math to work out as
derived above. The following relation holds:

Xcam = R(X − C) (2.5)

This sequence of transformations is shown visually in Figure 2.2.
We can write the same equation 2.5 using homogenous coordinates and in vectorized form as below:

X̃cam =

[
R −RC
0 1

]
X (2.6)

Hence, when the camera is not placed at the world origin and is rotated by a certain orientation,
we have to transform the world points to a camera coordinate system, following which we can use the
camera matrix P to get the image coordinates of any 3D point in the world.

Putting everything together, we get the following equation:

x̃ =

uv
w

 =

f 0 px

0 f py

0 0 1


1 0 0 0

0 1 0 0

0 0 1 0

[R −RC
0 1

]
X

Y

Z

1

 = K
[
R | −RC

]
χ (2.7)

where χ is the 3D world point in homogeneous coordinates, K is the 3x3 camera intrinsic matrix, R is
3x3 3D rotation matrix, −RC is the 3x1 translation vector.

[
R | −RC

]
is the 3x4 camera extrinsic

matrix.

2.2 Planar Homography

Planar homography, also known as projective transformation, is a class of transformation relating
two planes (these planes need not only be image planes, homography can relate a plane in the real world
with the image plane as well as shown in Figure 2.3).

Homography is a 3x3 matrix with 8 degrees of freedom. In other words, homography is defined only
up to scale. h33 is usually fixed to one, and the entries of the homography matrix are normalized, i.e.,
h211 + h212 + h213 + h221 + h222 + h223 + h231 + h232 + h233 = 1.
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Figure 2.3: Homography matrix H relating the transformation of a plane in the world with the image
plane

Suppose we are interested in establishing a transformation between the ground plane (i.e., 3D world
points whose Z-coordinates are zero) and the image plane. In other words, we are interested in finding
where all the 3D world points on the ground plane will form their image in the image plane. If we know
the camera calibration matrix, we can easily do this:

x̃ =

uv
w

 = Pχ =

p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34



X

Y

0

1

 (2.8)

where χ is the 3D world point on the ground plane in inhomogeneous coordinates, P is the camera
calibration matrix and x̃ is the image coordinates in homogeneous system. Note that the Z-coordinate of
χ is set to 0 because the 3D world points we are interested in are situated on the ground plane. We can
see that the third column of the camera matrix does not contribute to the value of u, v, and w because
Z = 0. Removing the third column from the camera matrix, we get the homography matrix H which
transforms the 3D world points on the ground plane to the image plane:

x̃ =

uv
w

 = Hλ =

p11 p12 p14

p21 p22 p24

p31 p32 p34


XY

1

 (2.9)

where λ is the vector (X,Y ).
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Camera calibration is a hard process, especially in a multi-camera setup where all cameras must be
calibrated with a common frame of reference. Using a checkerboard, as suggested by [5], is practically
impossible because the cameras are placed very far apart, and it will be impossible for multiple cameras
to see the common checkerboard from such a great distance. Similarly, on the cricket ground, we
do not have enough points whose exact 3D coordinates we can infer; hence we cannot use the 3D
reference object-based calibration method (3D world point and 2D image point correspondences are
used to calibrate the camera).

It turns out that we can compute the homography matrix H using point correspondences on the two
planes. In other words, if we give the coordinates of points on the ground plane (in the world coordinate
system) and their corresponding image points, then we can compute H as discussed in the next section.

2.3 Computing Homography using Direct Linear Transform Method

We create a set of point correspondences pi, p′i from the two planes. Let us assume that pi is the
source point, and p′i is the destination point. In the example mentioned in the previous section, pi is the
ground plane point coordinates, and p′i is the image of pi on the image plane. We want to find the best
estimate of H such that:

p′i = H.pi (2.10)

where for all the correspondences i. Since the homography matrix has 8 degrees of freedom, we would
need at least 4 point correspondences to establish H (each point correspondence gives two equations,
one for x coordinate and one for y coordinate). Writing the linear equations for each correspondence:x

′

y′

1

 = α

h1 h2 h3

h4 h5 h6

h7 h8 h9


xy

1

 (2.11)

Expanding the matrix multiplication above:

x′ = α(h1x+ h2y + h3) (2.12)

y′ = α(h4x+ h5y + h6) (2.13)

1 = α(h7x+ h8y + h9) (2.14)

Substituting α = 1
(h7x+h8y+h9)

from Equation 2.14 into Equations 2.12 and 2.13, we get:

x′(h7x+ h8y + h9) = (h1x+ h2y + h3) (2.15)

y′(h7x+ h8y + h9) = (h4x+ h5y + h6) (2.16)

Expanding and rearranging the terms in Equations 2.15 and 2.16, we get:

−h1x− h2y − h3 + h7xx
′ + h8x

′y + h9x
′ = 0 (2.17)

−h4x− h5y − h6 + h7xy
′ − h8yy′ + h9y

′ = 0 (2.18)

11



Rewriting Equations 2.17 and 2.18 in matrix form:

Aih = 0 (2.19)

Ai =

[
−x −y −1 0 0 0 xx′ yx′ x′

0 0 0 −x −y −1 xy′ yy′ y′

]
(2.20)

h =
[
h1 h2 h3 h4 h5 h6 h7 h8 h9

]T
(2.21)

We stack all the Ais for all the point correspondences into a large matrix A and solve for h in Ah = 0.
This is the classic homogeneous linear least squares problem which can be solved using Singular Value
Decomposition.

2.4 Singular Value Decomposition for Total Least Squares

Writing the Linear Least Squares problem as an optimization problem:

minimize ||Ah||2

subject to ||h||2 = 1
(2.22)

The ’subject to’ constraint is important to prevent the solution from collapsing to the trivial solution
of all 0s.

Using singular value decomposition, we can write

A = UΣV T (2.23)

Assuming n point correspondences are stacked up to form A, the dimensions of matrix A is nx9. The
dimensions of matrices U , Σ and V T are nxn, nx9 and 9x9 respectively. Σ is a diagonal matrix of
singular values. U and V T are orthonormal matrices, i.e., their rows/columns have a magnitude of 1,
and the inner product between their rows/columns is 0.

Substituting Equation 2.23 into the formulation in 2.22,

minimize ||UΣV Th||2

subject to ||h||2 = 1
(2.24)

Due to orthonormality of U , we can write:

minimize ||ΣV Th||2

subject to ||h||2 = 1
(2.25)

This is due to the property that ||Ux||22 = (Ux)TUx = xTUTUx = xTx = ||x||22 when U is
orthonormal. Geometrically, multiplying a vector by an orthonormal matrix just rotates the vector and
has no impact on its norm.
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Substituting y = V Th into Equation 2.25:

minimize ||Σy||2

subject to ||h||2 = 1
(2.26)

Again, due to the orthonormality of V T , we can write ||y||22 = ||V Th||22 = ||h||22. Updating the
constraints in Equation 2.26 in terms of y:

minimize ||Σy||2

subject to ||y||2 = 1
(2.27)

Since the diagonals in Σ are sorted in decreasing order, the solution to the optimization problem in
Equation 2.27 is y = [0, 0, ..., 1]T . Since, y = V Th and V T = V −1 for orthonormal matrices, hence
h = (V T )−1y = V y. Therefore, h is the last column of V , which by definition is the eigenvector of
ATA with the smallest eigenvalue.

2.5 Creating the top-view map of players from the camera view images

using Homography

A cricket field is a plane in the real world. Players standing on the field have their feet grounded on
the field plane. Points on this field plane form their images on the image planes of each of the 3 cameras
capturing the scene as shown in Figure 2.4. We assume that the location of a player on the cricket field
plane is given by the midpoint of the line joining both the footpoints of that player.

Given the images captured by the cameras, creating the bird’s eye view is simply a planar trans-
formation of the camera image plane to the cricket ground plane as shown in Figure 2.4. This can be
achieved by computing the homography matrix, as discussed in the previous sections.

We can create the top-view map indicating player positions by applying a homography transforma-
tion to the bottom center point of the detected bounding boxes of players in the camera view. Taking the

Figure 2.4: Creating the top view map of players is simply a planar transformation of the camera image
plane (containing player foot points) to the actual cricket field plane as shown in the diagram.
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bottom center point of a detected bounding box is a fairly good estimate of the image of the midpoint of
the line joining both the footpoints of a player.

In order to compute the homography matrix H , we need to find at least 4 point correspondences in
the camera image and the cricket ground. It turns out that finding such correspondences is extremely
difficult in our setting. Although there are crease markings on the cricket pitch, we cannot use them
as they are not visible on the camera images due to the large distance the cameras are placed from the
pitch.

Figure 2.5: The template top-view map used as the cricket ground plane in all our experiments. Camera
image planes are transformed to this cricket ground plane.

Figure 2.6: Camera view image showing that parts of crease lines are somewhat visible, which can be
used for camera calibration.
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We present qualitative results of calibrating cameras using four methods we engineered. The cricket
ground plane to which the camera images are transformed is shown in Figure 2.5. This top-view template
is used in all the results we present.

2.6 Method 1: Computing Homography Transformations using crease

points

The most basic approach to finding correspondences that we tried was by using the crease points
shown in Figure 1.4. Although these points are very clearly visible on the cricket ground plane, finding
correspondences of these 8 points in the camera images are extremely hard. In most situations, they
are not at all visible. We do our best and approximately mark them to calibrate the cameras using this
method. The results of calibrating the three cameras using this method on a Ranji Trophy match are
shown in Figures (x, y, z).

2.7 Method 2: Computing Homography Transformations using intersec-

tion points of crease lines

We observed that often the crease points are very hard to see in the camera images, but parts of
the crease lines whose intersection points are the 4 crease points are somewhat visible(shown in Figure
2.6). Hence, we mark as many points as visible on each of these partly visible crease lines, estimate the
equation of these crease lines in the camera images and then find the intersection points of these lines to
get the 8 crease points in the camera views.

However, in some cases, we find that even these crease lines, are very difficult to see.

2.8 Method 3: Computing Homography Transformations using crease

lines and middle stump points

In the previous method, we saw that although all four crease lines may not be visible, but two of
them are indeed visible. Similarly, although all crease points shown in method 1 may not be visible,
but there are definitely a couple of point correspondences we could use, for example, the bottom of the
middle stumps on both ends.

Now, we extend the DLT Method for computing homography to using point as well as line corre-
spondences as shown in [6].

15



2.8.1 Extending the Direct Linear Transform Method to compute Homography using

points as well lines

Let the equation of a line(l) on a plane P be given by ax + by + c = 0. We can represent this line
as a vector, (a, b, c). A 2-dimensional point X with coordinates (u, v) lies on the line l. Hence, we can
write:

au+ bv + c = 0 (2.28)

Writing Equation 2.28 in vectorised form:ab
c


T uv

1

 = lTX = 0 (2.29)

Let the correspondence of point X be X ′ on some other plane P ′. Similarly, let the correspondence
of the line l be l′ in plane P ′. Let homography matrix H transform the points on a plane P to plane P ′.
From the previous discussion, the following relation holds:

X ′ = HX (2.30)

Since the correspondence of X is X ′, and that of l is l′, the fact that X lies on l would imply X ′ lies on
l′. Assuming the coordinates of X ′ is (u′, v′) and the line l′ is represented by the vector (a′, b′, c′), we
can write: a

′

b′

c′


T u

′

v′

1

 = l′TX ′ = 0 (2.31)

Substituting the value of X ′ from Equation 2.30 into Equation 2.31, we get:

l′TX ′ = l′THX = (HT l′)TX = 0 (2.32)

From equation 2.29, we know that lTX = 0. Comparing this result with the result derived in Equation
2.32, we can conclude:

(HT l′)TX = lTX = 0 (2.33)

l = HT l′ (2.34)

Let H =

h1 h2 h3

h4 h5 h6

h7 h8 h9

. We normalize the equations of lines l and l′ so that the constant term

becomes 1. We then write Equation 2.34 as:pq
1

 = α

h1 h4 h7

h2 h5 h8

h3 h6 h9


p
′

q′

1

 (2.35)
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where p′ = a′

c′ , q′ = b′

c′ , p = a
c and q = b

c .
Expanding the matrix multiplication above:

p = α(h1p
′ + h4q

′ + h7) (2.36)

q = α(h2p
′ + h5q

′ + h8) (2.37)

1 = α(h3p
′ + h6q

′ + h9) (2.38)

Substituting α = 1
(h3p′+h6q′+h9)

from Equation 2.38 into Equations 2.36 and 2.37, we get:

p(h3p
′ + h6q

′ + h9) = (h1p
′ + h4q

′ + h7) (2.39)

q(h3p
′ + h6q

′ + h9) = (h2p
′ + h5q

′ + h8) (2.40)

Expanding and rearranging the terms in Equations 2.39 and 2.40, we get:

−h1p′ − h4q′ − h7 + h3p
′p+ h6pq

′ + h9p = 0 (2.41)

−h2p′ − h5q′ − h8 + h3p
′q − h6q′q + h9q = 0 (2.42)

Rewriting Equations 2.41 and 2.42 in matrix form:

Aih = 0 (2.43)

Ai =

[
−p′ 0 p′p −q′ 0 pq′ −1 0 p

0 −p′ p′q 0 −q′ q′q 0 −1 q

]
(2.44)

h =
[
h1 h2 h3 h4 h5 h6 h7 h8 h9

]T
(2.45)

2.9 Method 4: Computing Homography Transformations by calibrating

one camera using crease points in a zoomed-in view and calibrating

the other cameras with respect to the first view using player foot-

points

2.9.1 Introduction

Getting the 4-point correspondences from a plane for computing the homography may be really dif-
ficult in certain cases. Our problem of interest here is computing the homography to generate the top
view map from the broadcast (side) view. To find point correspondences on the cricket field plane, one
needs to be able to see the crease markings on the pitch, as there are no other reliable point correspon-
dences that can be used on the field. Moreover, cameras are set up without zooming in too much, as this
would decrease the field of view drastically, thereby missing capturing many players. In such a setting,
it is very difficult to see the crease markings, especially from side views. Here, we propose an idea so
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that one can compute the homography from the camera view to the top view by zooming in, capturing
a frame, and then zooming out back to desired broadcast view (so that the majority of players can be
captured). Note, while zooming in and zooming out, the camera position and orientation should strictly
be left untouched.

2.9.2 Algorithm

1. Let us call the frame captured in Zoomed in view as zoom img and the frame captured in the
desired broadcast view as original img.

2. Compute the Affine transform from original img to zoom img. Let us represent this transfor-
mation by T . To compute the affine transform, one needs three-point correspondences in both the
views. However, the constraint of finding points on the plane is relaxed. This is a very useful
relaxation as we can use holes in letters visible on stands to get accurate point correspondences.
We may also use other point clues like flags at the boundaries, or we may ask someone to hold
some large pattern for calibration on the opposite stand.

3. Compute homography using points in zoom img. Let us denote the computed homography ma-
trix as H ′.

4. Compute homography(H) for original img using the formula H = H ′.T where . represents
matrix multiplication.

Source code is available here on request, as this is a private repository currently.

2.9.3 Proof

Let us denote the required homography matrix in original img asH . Let us denote the homography
matrix in zoom img as H ′. Let us denote a point x in original img, which maps to the point y in the
top view of the map. The point corresponding to x in zoom img is denoted by x′. Let us denote the
affine transformation from original img to zoom img as T .

Since, original img and zoom img are related by the Affine Transform, T ; therefore,

x′ = T.x (2.46)

Now, we know that point x′ maps to point y in top view by the Homography H ′. Mathematically,

y = H ′x′ (2.47)

Also, we know that point x will map to point y by the Homography matrix H .

y = Hx (2.48)
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Substituting 2.46 in 2.47, we get:
y = H ′T.x (2.49)

Comparing 2.48 and 2.49, we get:
H = H ′T (2.50)

This proves why the idea works.

2.9.4 Calibrating the other cameras with respect to the calibrated camera

Once we calibrate any one of the cameras by zooming in as mentioned above, we can calibrate
the other cameras with respect to this camera by using the bottom center points of player detections
as correspondences. First, we draw bounding boxes around 4 players in the already-calibrated camera
view and then project the bottom center points of the drawn bounding boxes to the top view using the
computed homography matrix. These 4 points in the top view serve as a reference to calibrate the other
cameras. All we need to do is find correspondences of these 4 reference top-view points in the camera
view we want to calibrate. To do so, bounding boxes are drawn around the same 4 players in the to-
be-calibrated camera view, whose bottom center points have correspondences in the top view. These 4

point correspondences are used to calibrate another camera with respect to the already calibrated camera.
Calibrating this way means we are assuming that the bottom center point of bounding box detections
coincides with the same 3D world point. It turns out that this is a perfectly valid assumption to make in
our setting because the players are detected from a far distance and appear very small.

Figure 2.7: Zoomed-in image: This is the zoomed-in image of the original image. We can compute
homography from this view to the top view map easily as the crease lines are clearly visible.
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Figure 2.8: Original image: This is the image from which we want to compute homography to the top
view map, but we cannot see any point correspondences that can be used to do so.

Figure 2.9: Top view map of the original image showing the umpire and fielder positions as red dots.
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Chapter 3

Multi View Multi Object Detection

3.1 Introduction

Object Detection is one of the fundamental tasks in Computer Vision wherein rectangular bounding
boxes are drawn around objects to indicate their presence and location in an image. The challenge in
object detection comes because of occlusion, i.e. when something else blocks the visibility of an object.
To improve the accuracy of object detectors, often multiple cameras/views are deployed. This would
help in solving the problem arising due to occlusion. Even if an object is occluded in one view, it can be
visible in some other camera view leading to successful detection of the object in the scene. This domain
where multiple cameras are deployed to solve the detection problem is called Multi-View Detection, and
when more than one object is being detected in the scene, it is called Multi-View Multi-Object Detection.

In Multi-View Detection, the most challenging problem we face is establishing the correspondence
of detections across different views. In other words, a detection in one view corresponds to which
detection in another view (if at all there is a correspondence). The most popular way of doing this is
by using a Probabilistic Occupancy Map, but with this comes an additional challenge of calibrating the
cameras (almost) perfectly.

In our use case, deploying a Multi-View detection setup has both advantages and disadvantages. The
advantage is being able to tackle occlusions. Additionally, since our cameras are placed in the stands,
we have to detect players who appear extremely small. Players standing diametrically opposite to a
camera appear even smaller making them extremely hard to detect. Placing multiple cameras would
help us solve such problems as the hope is there will be at least another camera that is nearer to the
diametrically opposite player, and even if one camera misses it, that other camera (nearer to the player)
will detect it.

Deploying a Multi-View detection setup poses certain challenges. Firstly, it increases the cost of
the technical infrastructure a lot. Secondly, in our setup, camera calibration is very hard due to the
placement of cameras, as discussed in Chapter 2. Poor calibration makes the establishment of detection
correspondences across camera views even harder. Although we propose a robust algorithm to correctly
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establish correspondences of detections across multiple camera views in Chapter 4, we find it difficult
to run it at real-time speeds.

We proposed solutions for both single-view as well as multi-view use cases. This chapter focuses
on the engineering we applied to existing state-of-the-art detectors to make them work well for our use
case.

3.2 Current State of the Art Single View Object Detectors

3.2.1 Two stage object detectors

Two-stage object detectors are object detectors which consist of two main stages in their object
detection pipeline:

1. Region Proposal: In this stage, a number of region proposals are generated which can potentially
contain objects. Region proposals are typically in the form of bounding boxes. One of the most
common region proposal algorithms is Selective Search. Selective Search is a bottom-up algo-
rithm that starts with an initial segmentation of the image. Using an algorithm like what is men-
tioned in [7] works quite well to get the initial segmentation. It then iteratively combines/merges
similar regions into larger regions based on a similarity score threshold. The similarity score takes
into account various factors like size, texture, color, and shape of the merging regions so that mul-
tiple grouping criteria are taken into consideration in deciding what separates an object. Finally,
the segmented patches are used to come up with bounding box proposals.

2. Object Classification: In this stage, each of the proposed regions from the Region Proposal stage
is classified as whether they contain an object or not. If at all a region proposal contains an
object, this stage classifies the type of object (it contains) and also refines the bounding box of the
proposed region to better fit the object contained in it.

We present a brief review of some of the very popular two-stage object detectors below:

1. Region-based Convolutional Neural Networks (R-CNN)[8]: R-CNN is a two-stage object detector
introduced by Girshik et al. in 2014. This method generates a large number of region propos-
als (approximately 2000) using a region proposal generation algorithm like Selective Search[9].
Each of the generated region proposals is passed through a CNN like ResNet[10], AlexNet[11],
or VGG[12] to extract features. These extracted features of region proposals are then classified
whether it contains a particular class of object or not. This is achieved by training multiple lin-
ear Support Vector Machine[13] classifiers, one for each class (popularly known as One vs All
Classification in Literature). The class with the highest confidence of classification is said to be
contained in the corresponding region proposal. A bounding box regressor is trained along with
the classification head to predict a bounding box that better fits the object contained.
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2. Fast R-CNN[14]: Fast RCNN improves on R-CNN by making the feature extraction process more
efficient. In this method, instead of passing each region proposal through a CNN separately, the
entire image is passed through the CNN. This leads to a massive reduction in the amount of com-
putation because, typically, region proposals have large overlaps, and computation for overlapping
regions can be shared. A unique idea that this algorithm proposes is the concept of Region of In-
terest (RoI) pooling. Region proposals can be of different dimensions, but the extracted feature
of each region should be of the same dimensions. Each proposal has a corresponding mapping
on the shared convolutional features map, which can be different. In order to transform them
into embeddings of fixed dimensions, RoI pooling is used. No matter what the dimensions of the
region proposal are, RoI pooling will always give an embedding of fixed dimensions.

3. Faster R-CNN[15]: Faster R-CNN further advances the Fast R-CNN algorithm by introducing a
region proposal network (RPN). Instead of using the Selective Search algorithm to generate region
proposals, which is quite slow, Faster R-CNN makes use of a region proposal network to come
up with the proposals. This algorithm makes the object detection pipeline end-to-end learnable.
Designing end-to-end learning pipelines is a key step toward improving the overall accuracy of
a system. The RPN includes a Convolutional Neural Network, which extracts features from the
input image. The outputted feature map is then passed through a 3 × 3 convolutional layer with
a padding of 1. This converts each pixel in the outputted feature map to a vector of dimension c,
which is then simultaneously passed through a classification layer and a bounding box regression
layer (these are 1× 1 convolutional layers) outputting 2k and 4k entries respectively (where k is
the number of anchor boxes). The classification layer outputs two entries for each anchor box,
indicating the score of the presence or absence of an object in that anchor box. Similarly, the
regression layer takes as input k anchor boxes and transforms each of the anchor boxes to better
fit the object contained, thereby outputting 4 values (denoting the coordinates and dimensions of
a bounding box) for each of the k anchor boxes. The region proposals are determined by taking a
Non-maximal suppression of the anchor boxes, which were classified to contain an object. These
region proposals are then passed through the RoI pooling layer to make them of fixed dimensions,
after which they are fed through a classification and regression layer simultaneously (exactly like
Fast R-CNN).

3.2.2 One stage object detectors

Single-stage object detectors do not rely on region proposals to perform object detection. This class
of detectors can predict the bounding boxes and their class probabilities in a single forward pass, making
them much faster compared to two-stage object detectors.

We present a brief overview of two of the most popular single-stage object detectors:

1. You Only Look Once (Yolo) [21]: This single-stage object detector proposed by Redmon et al.
in the year 2016 can detect objects at real-time speeds. Yolo divides the input image into a grid
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Detector Inference time (in FPS) Mean Average Precision (mAP-0.5)
Fast R-CNN [14] 0.5 39.9

Faster R-CNN VGG-16 [15][12] 7 42.7
Faster R-CNN ResNet [15][10] 5 45.3

SSD300 [16] 46 41.2
SSD500 [16] 19 46.5
Yolo v2 [17] 40 44.0
Yolo v3 [18] 35 55.3
Yolo v4 [19] 38 62.8
Yolo v7 [20] 75 69.7

Table 3.1: Table showing the performance of various detectors on the MS COCO dataset[3]

of S × S cells. Each cell outputs B ∗ 5 + C values where B is the number of predefined anchor
boxes, and C is the number of classes. The 5 predicted values for a bounding box in a cell consist
of x, y, w, h and the confidence denoting the presence of an object. Note that the x, y coordinates
are relative to the grid cell. The C predicted values for a grid cell represent the scores of the
C classes (contained in it). The grid cell, which contains the center of an object, is responsible
for detecting that object. The input image is passed through a series of convolutional and max
pool layers to extract a feature map of dimensions S × S × (B ∗ 5 + C). Finally, the predicted
bounding boxes (which have confidence greater than some set threshold) are passed through a
Non-Maximal Suppression algorithm to remove duplicates/overlapping bounding boxes.

Figure 3.1: The Yolo and the SSD architectures illustrated.
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2. Single Shot Multibox Detector (SSD) [16]: SSD is another very popular one-stage object detector
that can detect objects of different scales and aspect ratios. The pipeline is very similar to Yolo,
except the fact that SSD uses anchors on multiple feature maps at different resolutions to come up
with the predicted bounding boxes. The width and height of the anchor boxes employed are rel-
ative to the resolution of their corresponding feature map. The SSD architecture (compared with
Yolo architecture) is shown in Figure 3.1. As we can see, from each feature map, a classification
head (comprising of 3 × 3 Convolutional filters) comes out (denoted by the long arrows). This
head is responsible for turning each pixel in the feature map into a fixed-size vector of dimensions
x ∗ (classes + 4), where x is the number of predefined anchor boxes corresponding to that layer.
The additional 4 elements outputted denote the x, y, w, h offsets of the corresponding anchor to
better fit the object contained. The remaining classes values denote the scores for each class.
Just like Yolo, the final step is passing the predicted bounding boxes through a Non-Maximal
Suppression algorithm to rule out duplicates/overlapping bounding boxes of lower confidence.

3.3 Detection Metrics

1. Intersection Over Union (IoU): It is a commonly used metric in object detection and tracking
tasks to measure the accuracy of object localization. It computes the amount of overlap between
the predicted bounding box and the ground truth bounding box. Mathematically,

IoU =
area of overlap
area of union

(3.1)

2. False Positives (FP): This metric computes the number of erroneous predicted bounding boxes,
i.e., it gives the number of detections predicted by the algorithm but, in reality, does not exist.

3. True Positives (TP): This metric gives the number of predicted detections which has a corre-
sponding ground truth detection. We say that the predicted detection is successfully matched with
a ground truth detection. We must note that a match is successful only if the predicted detection
and the ground truth detection have a certain amount of overlap measured by the IoU metric.

4. False Negatives (FN): This metric computes the number of misses by an algorithm. In other
words, it gives the number of detections present in the ground truth but missed by the algorithm.

5. Precision: Precision measures how precise the predicted detections are. In other words, it tells us,
out of all the detections predicted by the detector, how many are actually true positive detections.
Mathematically,

Precision =
TP

TP + FP
=

TP
Positive detections predicted by the detector

(3.2)
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6. Recall: Recall measures how good the detector was in capturing the positive detections in the
ground truth. Mathematically,

Recall =
TP

TP + FN
=

TP
Positive detections in the ground truth

(3.3)

7. Average Precision: It is the average of the precision values calculated at various recall values and
is computed by taking the area under the Precision-Recall curve.

8. Mean Average Precision (mAP): Typically, Average Precision is computed for every object class
separately. Mean Average Precision is computed by taking the mean of Average Precision val-
ues across the different object categories. mAP-0.5 (in table 3.1) represents the Mean Average
Precision computed using an IoU threshold of 0.5.

9. Multi-Object Detection Accuracy (MODA): It measures the accuracy of the detection system by
taking into consideration missed detections (FNs) and hallucinated detections (FPs). Mathemati-
cally,

MODA = 1−
∑
t

False Positives + False Negatives
Number of GT detections

(3.4)

10. Multi-Object Detection Precision (MODP): It measures the localization error of the detection
system by taking into consideration how much overlap the predicted detections have with their
corresponding (actual) ground truth detections. Mathematically,

MODP =

∑
t

∑
i IoUt

i

Total number of frames
(3.5)

where IoUt
i is the Intersection Over Union score of the ith predicted detection with its matched

ground truth detection in the tth frame.

3.4 Issues with current off-the-shelf state of the art detectors

State-of-the-art (SOTA) in Object Detection has advanced quite a bit in the past few years. However,
we still could not use any of them off-the-shelf (OTS) because of their limited generalization capabilities
to unseen or uncommon types of objects or environments. Moreover, OTS object detectors are not robust
and are very sensitive to changes in scale, lighting conditions, background clutter, and image quality.
Ours was a use case where we had to detect extremely small persons on a green field. Also, we were
not really interested in the detection of any other objects apart from the 15 players on the field.

Additionally, these state-of-the-art detectors are not trained on 4K images, but we were dealing with
4K feed. This caused the detectors to run at a much slower speed than what was reported. Usually,
high-performing object detectors are computationally expensive, whereas lightweight fast detectors are
not very accurate. We had to strike the right balance between performance and speed.

26



The above reasons clearly demanded a customized approach, the details of which we present in the
subsequent sections of this chapter. We will first look at how we optimized the inference time of the
detector using the TensorRT framework. Next, we will take a look at how we built a customized detector
only to detect players using data that we captured and manually annotated from live matches. Finally,
we throw some light on using synthetic data for building this customized detector, as the process of data
collection and annotation is extremely expensive.

3.5 You Only Look Once (YOLO)

Since we required a detector with real-time inference speeds for our use case, it is clear from the
review in Section 3.2 that we had to use a One Stage Object Detector. Yolo and SSD were the two
options we had to choose from. We chose Yolo over SSD. SSD is very good at detecting objects of
various scales because it employs feature maps at multiple scales. This makes them slower to Yolo.
However, the multiscale feature maps are something we do not require in our use case because we are
interested in detecting objects of uniform scale. In other words, all the players appear at the same scale
in the camera view. Yolo, on the other hand, typically divides the image into a grid of 7 × 7 elements.
Hence, it is not very good at detecting very small-scale objects. In our case, the players in the camera
view appear pretty small. Hence, we had to customize Yolo to split the input image into a grid of
size 136 × 136 instead. This meant Yolo could not run as fast as reported. Hence, we had to make
the implementation more efficient, and this was done by implementing Yolo in C++ using Nvidia’s
TensorRT framework (covered in the next section 3.6). We further optimized Yolo by finetuning it to
detect objects of a single class instead of detecting objects of multiple classes(covered in section 3.8).
Both these optimizations allowed us to run the Yolo detector at around 30 frames per second.

3.6 Optimising inference time using TensorRT framework

Even after using the most efficient implementation of Yolo, we could achieve only 10 frames per
second on the 4K feeds. We had to search for better alternatives, and we found TensorRT, an SDK
developed by Nvidia for high-performance, low-latency deep learning inference on Nvidia GPUs. Ten-
sorRT is known to speed up the inference by almost 36 times. TensorRT takes as input a trained neural
network, optimizes it by applying a number of optimization techniques, and finally outputs the opti-
mized inference engine (as shown in Fig. 3.2). The subsequent subsections present details on each of
the optimizations applied by the TensorRT inference optimizer.

3.6.1 Layer and Tensor Fusion

The TensorRT compiler analyzes the computational graph of the neural network and looks for ways
to optimize the structure of it without changing the functional behavior of the network. One of the
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Figure 3.2: Diagram showing the various optimizations done by the TensorRT framework.

Network Original number of Layers Number of Layers after fusion
VGG19 43 27

Inception V3 309 113
ResNet-152 670 159

Table 3.2: Table showing the number of layers before and after layer fusion and elimination of unused
layers in some popular Deep Neural Network Architectures.

optimization techniques is called layer fusion, where the compiler fuses multiple consecutive layers into
a single layer. This transformation reduces the size of the neural network and improves its inference
time. During the execution of a computational graph, a layer typically involves multiple function calls.
Since the computation of the layer happens in the GPU, this means launching additional CUDA kernels.
Launching a CUDA kernel is a much bigger overhead compared to the computation done by the kernel.
Also, having multiple layers leads to increased GPU memory transfer, which is much slower compared
to the fast on-chip memory access. Fusing layers mean the intermediate results from one layer remain
in the cache and can be reused in the computation of the next layer without the need for data transfer
to and from the GPU memory. This also leads to a reduction in the GPU memory footprint because a
lesser number of layers need to be stored in the GPU memory.

Layer fusion is illustrated in Figure 3.3. For example, the Convolutional, bias, and ReLU layers in
the un-optimized network are fused together into a single kernel called the CBR layer. This type of
fusion is called vertical fusion. TensorRT also fuses layers horizontally that share the same input data
and have the same filter size but different weights. This is depicted by the large horizontal 1x1 CBR
block. TensorRT could have got rid of the ”Concat” layer by preallocating output buffers and writing
into them in a strided fashion.

28



Figure 3.3: An illustration of layer fusion optimization done by the TensorRT inference engine. We can
see that the conv, bias, and Relu layers are fused into a single layer called CBR (also shared horizontally).

In order to understand layer fusion intuitively, consider the analogy where we want to buy three items
from the supermarket. We have the option of making multiple trips to the supermarket and buying the
three items. A more optimized option is to purchase all three items in a single trip. Now instead of
purchasing three items, if we had to purchase 100 items, we would have been forced to make multiple
trips because it is not possible to carry that many items back home in a single trip. This explains
intuitively why we cannot fuse the entire network into a single layer.

3.6.2 Precision Calibration

Deep Neural Networks are typically trained using 32-bit floating point numbers (FP32). However,
during inference (in many cases), there is a possibility of using FP16 or INT8 precision (because no
backpropagation is involved). Precision calibration is an optimization technique that can be enabled in
the TensorRT compiler on Deep Neural Networks to quantize floating point numbers to a lower precision
without compromising on the accuracy of the model. This optimization leads to not only a reduction in
memory footprint but also low latency and higher throughput during inference. Moreover, there might
be hardware accelerators that can perform operations on half (or mixed) precision matrices very quickly.
For example, Tensor cores innovated by Nvidia are specialized to perform the operation A ∗ B + C,
where A, B are 4x4 matrices containing FP16 (or INT8) elements and C is a 4x4 matrix with FP32 (or
INT32) elements.

Reducing the precision is possible because, typically, the weights and activations in a neural network
are usually concentrated in a small range. For example, as shown in figure 3.4, although the range of
FP32 is from −3.4e + 38 to 3.4e + 38, we observe that the activations and weights lie in the range
of −6 to +6. And if the number of unique entries in this range is less than 255, we can indeed map
it to INT8 (which has a range of −127 to +127) without loss in any information. This is exactly
what is demonstrated in figure 3.4. Intuitively, we can think of this quantization as encoding the same
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information using a different set of symbols. For example, 2.76 will be mapped to 58 in the new
(quantized) encoding scheme.

Figure 3.4: An illustration of how the TensorRT inference engine performs Quantisation optimization
to reduce the precision of the weights and activations in a trained model without compromising on the
performance.

In order to come up with this new quantized encoding scheme, TensorRT must get an idea of the
values of weights and activations (produced by the network) so that it can accurately represent them
with the precious 8 bits in INT8. This is achieved by feeding TensorRT with a mini dataset, often called
the calibration dataset. This calibration dataset can be an extremely small subset of the original data,
but it should be from the same distribution as the network would actually see. TensorRT would forward
pass the images from the calibration dataset through the trained neural network and plot the activation
values and the weights from the neural network on a graph as shown in Figure 3.4. It then decides the
scaling factor (s) and the clip value r. The clipping value (r) is the threshold value above which values
are clipped to r, resulting in saturation. Once the new encoding scheme is decided, the activation and
weights can be plotted again using the new representation (encoding). TensorRT can now compute the
information lost when it is trying to approximate the original distribution using the reference distribution
with the help of the famous Kullback-Leibler (KL) Divergence[22] formula:

DKL(Q,P ) =
∑
i

Q[i] log

(
Q[i]

P [i]

)
where Q is the probability distribution of the original encoding, i.e., FP32 in this case; P is the
probability distribution of the new encoding scheme, i.e., INT8 in our case. If both the probabil-
ity distributions are exactly the same, the information lost is 0 (this is because if Q[i] = P [i] then
log
(
Q[i]
P [i]

)
= log(1) = 0). TensorRT decides the new encoding in such a way that the information loss

between the two probability distributions is minimized. If DKL(Q,P ) = 0, it means that quantization
has no impact on the accuracy (which is the most desirable outcome).
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In our use case, precision calibration was really easy as it was completely unsupervised. We just
had to capture a few frames from the already placed cameras at the start of the game and feed them to
TensorRT, and TensorRT would generate a highly optimized model within a few minutes, which was
used for the entire match. This worked really well in our use case, and we observed zero drop in the
accuracy of the quantized model because of the fact that we were interested in detecting very specific
objects.

3.6.3 Kernel Autotuning

Kernel Autotuning is an optimization technique done by the TensorRT framework where the Ten-
sorRT compiler chooses the most efficient implementation of a kernel (from hundreds of kernel im-
plementations) depending on which Nvidia GPU is being used. For example, convolutions can be
implemented in a variety of ways, but TensorRT chooses the best algorithm for computing convolutions
depending on the hardware. Similarly, for matrix multiplication, TensorRT may try various loop un-
rolling factors and tiling sizes and choose the parameters such that the computation is most efficient on
the specific GPU architecture.

The very first step of Kernel Autotuning is to generate the various types of kernels with different con-
figurations and optimizations. As mentioned earlier, for matrix multiplication, various loop unrolling
factors and tiling sizes would be generated. The next step, called profiling, executes the different gener-
ated kernels on the available GPU architecture and collects various metrics measuring the performance
of each kernel (for example, the execution time, the memory footprint, etc.). The TensorRT compiler
then analyzes the profile for each kernel and selects the most optimal one to be used in the model. It
uses a variety of techniques like random search, Genetic algorithms, and Machine Learning techniques
to perform autotuning.

3.7 Custom Data Collection and Annotation

As mentioned earlier, we are dealing with a very different type of data distribution compared to what
is used to train state-of-the-art detectors. Hence, we had to finetune existing detectors using training
images from our dataset. We recorded multiple video sequences from Ranji Trophy and Tamil Nadu
Premier League matches and curated a set of 400 training images which we used to finetune Yolov5.

The training images were chosen at random from video sequences of approximately an hour. The
frame rate of the videos was around 30 FPS. We developed our own tool, which randomly chose a frame
from these videos, ran the finetuned Yolov5 model on it, and showed the detections that this model
detected. The annotator then had the option of removing any detection or adding any other detection
that the (finetuned) model missed. These new annotations were further used to finetune the model,
after which the newly tuned model was used to generate the detections for the next to-be-annotated
frames. This helped speed up the process of annotation as the newly-tuned model performed better in
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matching the ground truth detections compared to the old one. In other words, every time the model was
finetuned, it gave better and better detections to the annotator making the job of the annotator easier with
time. After finetuning a couple of times, we observed that the finetuned model was fairly accurate, and
the annotator had to remove/add only a couple of hard detections. We found that it was most optimal to
re-finetune the model after every ten frame annotations. This sped up things a lot, and a single annotator
could annotate close to 300 frames in a couple of hours.

We have released the code for the tool we built here.

3.8 Improving accuracy: Finetuning the existing model

We customized and finetuned the standard Yolo model. The train and test splits were specified in the
appropriate YAML file. We initialized our model with the weights of the yolov5l model. For training, we
used 3 GTX 1080Ti Nvidia GPUs. The final layer of the Yolo model had to be modified since we were
changing the number of classes from 80 to 1. We also removed anchors with a horizontally elongated
orientation because we were not interested in detecting objects with that kind of orientation. Further,
all Yolo v5 models employ multi-scale support at strides of 8, 16, and 32. We disabled this multiscale
support and used only the feature map corresponding to stride 8. We used a batch size of 15 images
and trained the detector for 10 epochs. The images were resized to 1088 × 1088 before passing them
through the model. This meant the image was split into 136× 136 grid (since we were using the feature
map, which downsamples the input image by a factor of 8). The default optimizer, Stochastic Gradient
Descent, was used with an initial learning rate of 0.01. During the training process, the loss, precision,
recall, and mAP metrics were monitored on the validation set, and the checkpoint which gave the best
Mean Average Precision (mAP) score on the validation set was used for deployment. The commands to
annotate and finetune the Yolov5 model are detailed in the README of the repository.

3.9 Training on synthetic data and testing on real data

Collecting the training data was extremely challenging. It was really difficult to get permission
from the authorities to access the stadium during domestic matches, and it was even harder to get their
permission to set up cameras to record. COVID made things even more difficult. We were lucky to
get a few sequences from a Ranji Trophy match and a TNPL match which was used for training the
detector (as mentioned earlier). Moreover, even after collecting the data, annotation was a costly and
time-consuming process. To overcome these challenges, we tried creating synthetic data to train our
detector and deploy it on real images. We used the Unity 3d game engine to spawn PersonX [23] models
(representing synthetic players) at random locations in this 3d model of a cricket stadium. We fined-
tuned the Yolo detector with this synthetically generated data. When we evaluated the performance
of this detector on real data, we found a substantial drop in the performance of the model. This was
because the 3d models of the players and the stadium used were not realistic enough. Also, the lighting
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conditions and the camera parameters were not realistic enough to get a photo-realistic rendering of the
camera view, which could simulate real-world data distribution.

Figure 3.5: A sample synthetic camera view image we created using the Unity 3D game engine to
train our detector model. We generated multiple sequences with different configurations by varying the
number and position of cameras placed, the number and the 3D model of players spawned on the cricket
ground. Each sequence typically contained around 200 frames.

3.10 End to End Deep Multi-view Detection Models

End-to-end deep learning methods have been shown to be immensely effective. MVDet [24] was
the first method to propose a novel end-to-end learnable anchor-free architecture for multi-view multi-
object detection. SHOT [25] and MVDeTr [26] are architectures that extended the MVDet idea. These
anchor-free methods pushed the State of the Art by a huge margin by taking the Multi-Object Detection
Accuracy from 74.1% to 90.2% on the Wildtrack dataset [4]. In fact, the MVDet paper proposed a
synthetic dataset that it used to train the detector and then test on the real Wildtrack dataset. One issue
with all these methods is that they do not generalize well. When we say generalize, we are saying
generalization in three ways:

1. Varying number of cameras: MvDet, MVDetr, and SHOT; all three of these methods do not
generalize well when the number of cameras is changed. In other words, they overfit to a certain
number of cameras. These architectures do not support training on some number of cameras
and testing on different numbers of cameras. Generalization across a number of cameras is an
important requirement when we want to deploy Multi-View Multi-Object detection models in
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Figure 3.6: End-to-End Deep Multi-view detection: The proposed GMVD architecture takes in any
number of camera view images and directly predicts the bird’s eye view occupancy map. The Perspec-
tive Transformation stage requires well-calibrated camera matrices to project the camera view feature
maps to the top view.

the real world. It might so happen that one of the cameras stops working. In such cases, these
methods would completely stop working as well, even though the feed is coming from the other
cameras.

2. Varying camera configuration: All three of these anchor-free Multi-View Multi-Object detection
methods do not generalize well to changing camera configurations. Even if the number of cameras
remains constant between the train and test set, we find that these methods perform extremely
poorly if either of the camera positions is slightly changed. In fact, just changing the order of
cameras in the train set and test set makes these models fail.

3. Varying scenes: These models perform very poorly when trained on a certain scene and deployed
on a different scene. In fact, they do not generalize even to changing weather conditions or slight
deviations in the lighting of the scene on which it was trained.

Due to these limitations, although the state of the art in object detection was pushed by a huge margin, it
was not usable in the real world. We propose a barebone architecture called GMVD [27] (short for Gen-
eralised Multi-View Detection), along with a feature-rich synthetically generated dataset to overcome
these limitations. Our dataset can be used to benchmark the generalization performance of Multi-view
detectors. We perform multiple experiments to demonstrate the invariant nature of our proposed model
(trained on the proposed GMVD dataset) to changing number of cameras, changing scenes, and chang-
ing camera configurations.

The GMVD model architecture is shown in Figure 3.6. We pass each of the camera view images
through a backbone network, typically ResNet-18 [10]. This extracts the features from each of the cam-
era views. The extracted feature maps for each camera are then projected to the top view (also known as
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the bird’s eye view) using the homography matrix for that camera. The perspective-transformed feature
maps from multiple camera views are then aggregated together using a simple average pooling opera-
tion. This way of aggregating the feature maps is what makes it highly generalizable compared to the
prior methods. Finally, the aggregated top-view feature maps are passed through a series of convolution
layers to predict the occupancy map in the top-view.

We did not use this architecture for our use case because it was slow due to the usage of deep neural
networks. The GMVD model, after a number of optimizations using the TensorRT framework, could
achieve an inference speed of 14.2 frames per second on Full-HD images. Hence, this did not meet our
real-time requirements of achieving inference speeds of 30+ FPS.
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Chapter 4

Merging Three Top-View Maps into the Final Top-View Map

Once we have calibrated a camera, we can create the bird’s eye view of the players visible in that
camera. However, in our setup, we have three cameras, and an algorithm needs to be designed to
combine the information from the three individual cameras’ top-view maps and merge them into a final
top-view map. Merging multiple top-view maps is a very challenging problem, primarily due to the
fact that the same player in multiple top-views may not occupy the exact same pixel location. This is
primarily due to inaccurate calibrations and, more importantly, due to the fact that we are projecting the
bottom center point of detections. The bottom center point of detections of a player from different views
does not necessarily indicate the same 3D point in the world.

Hence, our algorithm needs to identify the detections which belong to the same player from more
than one top-view map and handle them accordingly while generating the output so that the final output
produced does not contain duplicate identities. Similarly, there may be players who are visible only
in one top view, and we should be able to identify them correctly so that we don’t miss them while
generating the final output. A good merging algorithm should be able to reason out whether a player
detection is unique to a view or is present in one or more other views and associate accordingly.

The merging algorithm we present in this chapter is extremely robust to inaccurate calibrations and
is able to associate detections across the three top-view maps with near-perfect accuracy when provided
with the exact number of unique identities in the final output map. For example, in cricket, if all the
players are detected at least in one view, then there are 15 unique identities in the final top-view output
map.

4.1 Modelling as a Graph Optimisation Problem

We model this data association problem across three top views as a graph. Detections in each bird’s
eye view are represented as nodes of the graph. If the number of nodes (detections) present in a top-view
map is less than the given unique number of identities present in the combined final output(N ), then we
add ’hidden’ nodes to that view. As a result, each view has exactly N nodes.
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Figure 4.1: The above is a sample graph constructed where the number of unique objects when all
three views are merged is 3. The three distinct colors represent nodes in the three different views. The
diamonds represent hidden nodes, and the circles are the normal nodes corresponding to detections in a
top view. The lines represent edges that connect every pair of nodes except pairs where both the nodes
belong to the same view.

There exists undirected edges connecting every pair of nodes except pairs where both the nodes of
the pair belong to the same top-view map. Each edge has a cost associated with it. This cost is simply
the Euclidean distance separating the 2D detection points corresponding to the nodes being connected
by this edge. If an edge connects a pair of nodes where at least one node is a hidden node, then the cost
of that edge is 0.

The cost of an edge connecting a pair of nodes determines the penalty that would incur on associating
both nodes in this pair. Higher cost means a greater penalty will be incurred in linking the two nodes.
Lower cost means a lesser penalty will be incurred in linking the two nodes. Our goal is to minimize
the overall cost of linking these nodes subject to certain constraints, and this optimization problem is
the subject of the next section. A sample graph construction is shown in Figure 4.1.
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Note: If two nodes are linked in the final solution, then it implies that the detections corre-
sponding to the linked nodes refer to the same player identity. If two nodes are not linked in the
final solution, then it implies that the detections corresponding to the unlinked nodes do not refer
to the same player identity.

4.2 Solving the problem as a Linear Programming Optimisation

We formulate the above Optimization problem as an Integer Programming problem. Let us denote
the set of edges connecting nodes of view 1 and view 2 with E1. Similarly, let us denote the set of edges
connecting nodes of view 2 and view 3 with E2 and the set of edges connecting nodes of view 1 and
view 3 with E3. Let C1(e1) denote the cost of edge e1 in E1. Let C2(e2) denote the cost of edge e2 in
E2. Let C3(e3) denote the cost of edge e3 in E3.

The following is the objective of the optimization problem:

min
∑
e1∈E1

C1(e1).xe1 +
∑
e2∈E2

C2(e2).ye2 +
∑
e3∈E3

C3(e3).ze3 (4.1)

where xe1 , ye2 , ze3 ∈ {0, 1}, ∀e1 ∈ E1, ∀e2 ∈ E2 and ∀e3 ∈ E3.
xe1 is 1 if the pair of nodes connected by e1 in E1 is linked and 0 otherwise. ye2 is 1 if the pair of

nodes connected by e2 in E2 is linked and 0 otherwise. ze3 is 1 if the pair of nodes connected by e3 in
E3 is linked and 0 otherwise.

The structure of the problem demands certain constraints to be enforced while solving the optimiza-
tion problem. Each node in a view has to link to exactly one other node in the other two views. Even
though a detection may be unique to the view, note we added hidden nodes to take care of this situation.
No node can be linked to two or more nodes in another view.

Additionally, to ensure consistency, we introduce a constraint that says that if node i in view 1 is
linked with node j in view 2 and node j in view 2 is linked with node k in view 3, then node i in view
1 has to link with node k in view 3. The accuracy of association improved drastically upon adding this
constraint.

Hence, the optimization problem needs to be solved subject to the following constraints:∑
e1∈E1;v∈e1

xe1 = 1 (4.2)

for all nodes(v) that belong to view 1. Similarly,∑
e2∈E2;v∈e2

ye2 = 1 (4.3)

for all nodes(v) that belong to view 2. And, ∑
e3∈E3;v∈e3

ze3 = 1 (4.4)
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for all nodes(v) that belong to view 3.
Finally, to enforce the consistency as described above; for every edge e3 connecting node i in view

1 with node k in view 3, the following constraint is added:

xe1 + ye2 ≥ 2 ∗ ze3 −mj ∗B (4.5)
l=N∑
l=1

ml ≤ (N − 1) (4.6)

∀e3, j|e3 ∈ E3, 1 ≤ j ≤ N, j ∈ e1, j ∈ e2. mi can only take the values 0 or 1.
Note: B is a large number(say 1000)
The interpretation of the above constraint is as follows: For every edge e3 connecting node i in view

1 with node k in view 3, we want at least one node j in view 2 such that the edge connecting node i to
node j is selected and the edge connecting node j to node k is also selected.

Let us try to understand the constraints in 4.5 and 4.6 better. When an edge e3 is selected, connecting
node i in view 1 to node k in view 3, the variable ze3 takes the value 1 in 4.5. Now, when mj takes
the value 1, the constraint in 4.5 is trivially satisfied and does not depend on values of xe1 and ye2 . The
optimization problem would have set all the mjs to 1 had the constraint in 4.6 not been present. The
constraint in 4.6 ensures that at least one node j is present where mj is set to 0, and the constraint in 4.5
is not trivially satisfied. Hence, when mj is 0 (and ze3 is 1), the constraint in 4.5 reads as xe1 + ye2 ≥ 2.
This can only be satisfied when both xe1 and ye2 are set. And, since i, j ∈ e1 and j, k ∈ e2, we have a
node j (in view 2), such that when node i in view 1 is linked with node k in view 3, then, node i in view
1 is linked with node j in view 2 and node j in view 2 is linked with node k in view 3, thereby enforcing
consistency.

The above problem is a Mixed Integer Programming problem and hence NP-Hard. In order to solve
the problem efficiently, we used the Gurobi[28] solver. This solver could find exact solutions within a
second or two on a standard CPU.
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Chapter 5

Tracking

5.1 Introduction

Object Tracking is a fundamental problem in the field of Computer Vision wherein the system not
only localizes one or more objects in the scene by drawing bounding boxes around them but also assigns
an identity to them. In other words, tracking helps us identify where a particular object at time instant t
goes in the scene at time instant t+ α. This is a very challenging problem because we need to establish
correspondence between objects in subsequent frames. It becomes even more challenging when an
object visible in the current frame becomes occluded in the subsequent frames. In such situations, we
have to guess its location based on past trajectory. Some object trackers use the appearance information
of detected objects (Re-Identification Networks[29][30][31]) to establish this correspondence. However,
ReId networks are computationally expensive and extremely slow to run. Also, they are unable to
distinguish objects which are similar looking. For example, in our use case, the players on the field
wearing the same jersey color appear really small for ReId networks to identify which player is which
in subsequent frames. Some object trackers rely heavily on the past trajectory motion of a tracked object.
Using the past motion, these trackers try to predict where a particular object goes in the next frame, and
when new detections come for the next frame, they try to associate one of the detections, which is very
close to the predicted location. Some object trackers combine both motion and appearance cues to track
objects. Tracking has numerous applications, some of them being surveillance, robotics, autonomous
driving, and Human-Computer Interaction. In Cricket, tracking finds numerous applications because
once we track a player or the ball, we can compute a lot of useful information like how much distance a
player ran throughout the match, how many runs did he give away, how many runs did he score, where
did he field, what was the fastest speed he ran at and many more. In this chapter, we look at how
the problem of tracking was solved in our use case. Ours was a use-case where we could not rely on
appearance features for tracking because all players wore the same color jersey. Moreover, we required
a tracker which could do inference at realtime speeds. We present details of how we tailored a custom
tracker for our use case, which ran at realtime speeds as well as tracked players with a high accuracy.
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5.2 Why is Tracking necessary?

Since we are creating a top-view map, it seems like only detections are enough to construct it, and
there is no need for tracking. However, tracking is necessary in our use case because of a couple of
reasons. Our system is realtime, and hence the map should update instantaneously as players in the field
move. Therefore, when a bowler is taking a run-up, we should be able to see this on the top view clearly.
It turns out that simply projecting the detections to the top-view results in a non-smooth trajectory. A
moving average filter is necessary to smoothen the trajectory. In order to apply this moving average filter,
we need to know where a particular player was located at previous time instants. This requires tracking
because we are essentially trying to retrieve where a particular player was located across various time
instants. Once we have this info, we can simply take an average of all these values and get the current
location. Plotting the location at the current time instant in this way for every player would result in a
smooth trajectory, and there wouldn’t be any jumps in trajectory between successive timestamps.

The other and more important reason why we require the identity information is that we need to
eliminate the umpires and the batters from the top view map. In other words, we would only want to
show the location of players from the fielding team on the top-view map. Doing this would require us
to know in each frame which detections are of batters and umpires and which detections are for the
remaining fielders. We thought of using the average color information from detections; however, in
Cricket matches, there is no guarantee that both the teams and the umpires would all wear jerseys of
contrasting colors. This is an even bigger problem during test matches when everyone is wearing white.

Using positional cues does not help much either because a fielder may be standing very close to the
leg-side umpire. Similarly, the umpire standing near the stumps can be confused at times with the bowler
because, during the run-up, the bowler comes very close to this umpire. Moreover, the positions of the
umpires and batters are constantly changing. Hence, only position cues are not sufficient to identify the
umpires/batters.

The only feasible way to figure out who are the umpires and the batters is by marking them at a
particular time instant and then relying on the tracking algorithm to hold onto the assigned identity.
The better the tracking algorithm the longer would be the duration we will be holding onto the correct
identity. As long as the correct identity is held onto, for each frame, we would know correctly which
detections are those of the umpires and which are those of the batters. If there is an identity swap in
one of the frames, then a wrong identity would be assigned to the detection(s), and we might start to
wrongly identify the batters/umpires. Especially when an umpire/batter is swapped identity with one
of the fielders, it is extremely expensive because it would result in an undesirable outcome wherein the
umpire/batter would be started to be shown on the generated top-view map. We should try to avoid
these swaps as much as possible, if not completely. In case such swaps occur, we need to reinitialize the
tracking system and mark the umpires and batters again.
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5.3 Different Tracking Metrics

Figure 5.1: Figure illustrating true positive, false positive, and false negative detections during the
course of object tracking. The large circles represent the ground truth object detections, while the small
circles denote the predicted object detections. The same color shapes denote that the detections belong
to the same identity. The arrows indicate the correspondences between the observed and the predicted
detections.[1]

Some of the detection metrics like the Intersection Over Union (IoU), False Positives (FP), True
Positives (TP), and False Negatives (FN) defined in 3.3 are relevant for tracking as well.

1. Identity Switches (IDSw): This metric quantifies the number of times the identity of an object
changes/switches during the course of tracking. In other words, during the tracking process, if a
ground truth track gets assigned n different identities assigned by the tracking algorithm, then the
number of identity switches for that track is n− 1.

2. Multi-Object Tracking Precision (MOTP): This metric measures how precisely the tracking algo-
rithm tracks objects. It measures how well a tracked object aligns with respect to its corresponding
ground truth or reference data. It is equal to the average IoU score over the set of True Positives
(TPs). Mathematically, MOTP = 1

|TP|
∑

TP IoU.

3. Multi-Object Tracking Accuracy (MOTA): Multi-Object Tracking Accuracy tries to measure the
overall accuracy of the detector by taking into account the number of mistakes, i.e., number of
False Positives, Number of False Negatives and Number of Identity Switches in the predictions.
Mathematically,

MOTA = 1− |FP|+ |FN|+ |IDSw|
Number of Ground Truth Detections

(5.1)

4. Identification F1 (IDF1) score[32]: IDF1 calculates a one-to-one mapping from the set of pre-
dicted trajectories to the set of ground truth trajectories. Identity True Positives (IDTPs) are
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Figure 5.2: Figure demonstrating identity switches during the course of object tracking. Identity
switches are marked with blue ellipses with the label ’Mismatch’ above them. The large shapes repre-
sent the ground truth object detections, while the small circles denote the predicted object detections.
Object detections that belong to the same identity are denoted with the same color of the shapes.[1]

matched detections from the overlapping regions of the predicted and the ground truth trajecto-
ries. IDFPs (Identity False Positives) are detections that remain in the predicted trajectories from
the non-overlapping regions of the matched trajectories. IDFNs (Identity False Negatives) are
detections which are remaining in the ground truth trajectories from the non-overlapping regions
of the matched trajectories. We must note that detections from unmatched predicted and ground
truth trajectories also contribute to IDFPs and IDFNs, respectively. Mathematically:

IDF1 =
|IDTP|

|IDTP|+ 0.5 ∗ |IDFP|+ 0.5 ∗ |IDFN|
(5.2)

The one-to-one mapping between the predicted and ground truth trajectories is computed using
the Hungarian Algorithm[33] so that the IDF1 score is maximized.

5. Mostly Tracked (MT): An object is said to be Mostly Tracked in a video sequence if it has been
correctly identified and localized for at least 80% of the time of its presence in the video.

6. Mostly Lost (ML): An object is said to be Mostly Lost in a video sequence if it has been correctly
identified and localized for less than 20% of the time of its presence in the video.

7. True Positive Association (TPA)[2]: True Positive Association set for a given True Positive c is
the set of True Positives which have the same ground truth ID and the predicted ID as TP c.
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Figure 5.3: Figure illustrating the False Positive Associations (FPAs), False Negative Associations
(FNAs), and True Positive Associations (TPAs) for a true positive (TP) of interest[2].

8. False Negative Association (FNA)[2]: False Negative Association set for a given True Positive c
is the set of ground truth detections which have the same ground truth ID as TP c, but were either
assigned a different predicted ID or were not assigned any predicted ID at all.

9. False Positive Association (FPA)[2]: False Positive Association set for a given True Positive c is
the set of predicted detections that have the same predicted ID as TP c but were either assigned a
different ground truth ID or does not correspond to any ground truth object.

10. Higher Order Tracking Accuracy (HOTA)[2]: HOTA provides a unified metric to measure both
the detection and the association accuracy together. While the Detection Accuracy (DetA) score
measures how accurately an object was localized, Association Accuracy (AssA) score measures
how well the detected objects were associated with the same identity over time. Mathematically
Detection Accuracy is defined as follows,

DetAα =
|TP |

|TP |+ |FP |+ |FN |
(5.3)

Mathematically, Association Accuracy is defined as follows,

AssAα(c) =
1

|TP |
∑

c∈{TP}

A(c)

A(c) =
|TPA(c)|

|TPA(c)|+ |FPA(c)|+ |FNA(c)|
Higher Order Tracking Accuracy can be mathematically written as below,

HOTAα =
√

DetAα ∗ AssAα =

√ ∑
c∈{TP}A(c)

|TP |+ |FP |+ |FN |
(5.4)
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5.4 State of the Art Trackers: A Review

1. Simple Online and Realtime Tracking (SORT)[34]: SORT is a very simple and bare-bone tracker
implementation that can run at realtime speeds of 250 frames per second. It uses the tracking-
by-detection paradigm to track objects in an online fashion, i.e., it uses only the current and the
previous frame to track objects. The tracker has the following major components in its pipeline:

(a) An object detector like Faster RCNN [15] which detects the objects in the frames and
passes on these detections to the main tracker. We must note that the performance of SORT
is largely based on the performance of the detector used. Hence, this component is a crucial
component in determining the performance of the SORT tracker in real-world scenarios.

(b) A state estimation algorithm like Kalman Filters[35] which estimates the current loca-
tion of each object from the previous frame. Kalman Filters is extremely robust to noisy
measurements, and it optimally predicts the true state of an object by combining the noisy
measurements and motion model.

(c) An association algorithm like the Hungarian Algorithm [33] (described in section 5.5.4.3)
which associates the existing tracks (having the predicted detections from the previous
frame) with the detections in the current frame. This step assigns identities to the current
detections. A good association step is critical to a tracker maintaining correct identities and
minimizing swaps throughout the tracking process. In SORT, the assignment cost matrix is
simply the Intersection over Union value of the corresponding bounding boxes.

(d) A track management algorithm, which updates the existing tracks with the newly as-
sociated detections. The track management algorithm is also responsible for heuristically
determining the creation and deletion of tracks (when detections go unmatched).

2. Deep SORT[36]: The Deep SORT tracker extends SORT by integrating the appearance features
of an object into the tracking pipeline. As a result, Deep SORT is able to better track objects
which occlude for a long period of time and then reappear. All the steps in Deep Sort are exactly
the same as SORT presented above, except for the additional computation of the appearance
vector for each object detection and the assignment cost matrix computation in the association
step. In Deep SORT, the assignment cost matrix is computed by taking the weighted sum of
the appearance distance[37] and the Mahalanobis distance (of the Kalman states) between the
predicted detections of the existing tracks and the new (to-be-associated) detections.

3. ByteTrack[38]: Most of the tracking algorithms consider only the high confidence (above a cer-
tain threshold) object detections as plausible candidates for the association step. This, however,
may not be true say for an object which is partially occluded. Partially occluded objects may
have significantly low confidence, and throwing away such detections leads to track fragmenta-
tions. ByteTrack extends SORT and Deep SORT trackers by keeping all the detections, including
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Detections used MODA IDF1 MOTA MT ML FP FN IDSw
Ground Truth Detections 100% 94.4% 99.1% 41 0 0 0 9

GMVD Model[27] 80.1% 81.3% 72.4% 29 2 124 116 23
MVDet Model[24] 88.2% 85.4% 86.2% 34 2 62 48 21

MVDeTr Model[26] 91.5% 90.3% 91.0% 36 2 33 43 10

Table 5.1: Table showing the tracking performance of SORT on the Wildtrack dataset [4] using detec-
tions from various models. These results show how heavily the detection metric, MODA influences the
tracking metrics, IDF1 and MOTA. Improving the MODA score directly improves the tracking perfor-
mance by a similar margin.

the low-confidence ones, for the association step. To this end, it classifies detections as low-
confidence and high-confidence ones. The high-confidence detections are first associated with
the predicted detections of the existing tracks exactly like it is done in SORT/Deep-SORT. It
then matches the low-confidence detections with the predicted detections of the remaining exist-
ing tracks, which were not matched with the high-confidence detections (in the first association
step). Using these low-confidence detections, often, true objects are retrieved while filtering out
background objects.

4. Observation-Centric SORT[39]: Kalman filters assume that the object being tracked has linear
motion. Although this assumption is fine for tracking objects which become occluded for small
instants of time, it breaks if objects are occluded for a slightly longer duration of time. Since
Kalman filters use the priori state estimate to come up with the posteriori state, errors can keep on
accumulating during the period of occlusion. This leads to divergence of the predicted and actual
trajectory of an object. OC-SORT shows how SORT can achieve state-of-the-art performance
if the accumulated errors arising from the occlusion period are corrected in the corresponding
Kalman Filter state by interpolating a virtual trajectory from the time of last seen to the time of
re-association of the object.

5.5 Our Proposed Algorithm: MergeAndTrack

Table 5.1 shows how heavily the quality of tracking by SORT is influenced by the quality of detec-
tions. Our detection merging algorithm in the top-view (presented in Chapter 4), when combined with
Simple Online Realtime Tracking, gives nearly perfect tracking results even when the calibrations are
extremely noisy. However, such a method is extremely slow. The rate-limiting step in the pipeline is the
merging step. Although the tracker runs at 250 frames per second(FPS), the merging step runs at barely
0.5 − 1 FPS. In this chapter, we modify the entire pipeline so that we not only achieve (nearly) perfect
tracking results but are also able to run the entire end-to-end pipeline at approximately 24 FPS.

The main motivation behind the idea of the algorithm we propose is doing the expensive merging
step as rarely as possible, only once in a while when things can go wrong. At other times, associate the
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current detections from each individual camera to the detections in the already existing merged top-view
map. Once the associations are done, we update the existing merged top-view map with the values of
the newly associated detections.

All the tracking happens only on the top view using the projected 2D points. Hence, this tracking
method is purely based on motion and does not use the appearance features of players at all. The
deployment of our system in test cricket matches was another reason why we were motivated not to use
appearance cues at all in the tracking algorithm. The following are the main components of our tracking
algorithm:

• Detection of players and projection of players to the top view.

• Merging the three top views into a single combined view (done only once at the start and from
then onwards as rarely as possible).

• Estimating the future (next frame) location of existing players in the top-view using Kalman
Filters.

• Associating the new detections from each individual camera’s top-view with the existing top-view
tracks.

• Creation and deletion of tracks

The details of each of the mentioned components are presented in the subsequent sub-sections.

5.5.1 Detection of Players and Projection of Detected Players to Top-View

Our tracking algorithm follows the tracking-by-detection paradigm, where tracking follows after
the detection step. In order to detect players from each individual camera, we run the Yolo algorithm
optimized using the TensorRT framework in C++ (details of which were covered in Chapter 3). We get
realtime speeds of 25 FPS while running the detector on 4K images with this optimization. Since each
camera feed is processed on a separate GPU, we do not suffer a drop in speed with multiple cameras.

Once the players are detected in a camera view, we take the bottom center point of each of the
detected player’s bounding boxes and project them to the top view using the computed homography
matrix for that camera view (details of which were covered in Chapter 2). Then, we get 3 top-view
maps, one for each camera, indicating the player locations as 2D points.

5.5.2 Merging the three top-views into a single combined top-view

This is the slowest step in the pipeline running at around 0.5 − 1 FPS. As a result, we would want
to do this step as rarely as possible. Possibly, we would want to do this step once at the very beginning
when we are starting to track. The other times we may want to do this step is possibly after an over
change or after a wicket has fallen when there is sufficient clutter for our proposed algorithm to fail.
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Also, during those times, additional players can come into the field bringing drinks. It is always safe to
have a new merged map after such events to be sure that the tracking follows perfectly. The details of
this step were covered in Chapter 4.

5.5.3 Estimating the future (next frame) location of existing players in the top-view us-

ing Kalman Filters

Once we have the single merged top view, we can proceed with the tracking from the subsequent
frames. At each time instant, detections from the bird’s eye view of each camera (which are 2D points)
need to be associated with the already existing tracks in the existing (merged) top-view map (from the
previous time instant). In order to improve the quality of the associations, the tracks from the previous
time instant must be extrapolated to the current time instant using motion models. If the propagation
of an existing target’s track is not done to the next (current) frame, then the association of the new
detections with the old tracks does not work out well. We use a simple linear motion model known as
the Kalman Filter to predict the new location of existing tracks. Kalman Filters takes into account the
velocity of a player while predicting the new location. This greatly helps in the data association step.

Figure 5.4: An illustration showing a motion model predicting the locations of players A and B at time
instant t+ 1 by taking into consideration the velocities and positions of A and B at time instant t.

In order to intuitively understand the role a motion model plays in the data association step, let us
imagine two players whose identities are A and B (represented as 2D points) crossing each other. A is
running in the direction indicated by the blue arrow, and B is running in the direction indicated by the
red arrow, as shown in Figure 5.4. At time instant t, A is located at 1 and B is located at 2. At time
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instant t+ 1, A is located at 3 and B is located at 4. This is a classic example of a crossover. Now, if we
were to associate the tracks at time instant t with the new detections at time instant t+ 1 without using
a motion model, clearly A would have been associated with the detection at 4 and B would have been
associated with the detection at 3. This is an incorrect association and indicates an identity switch in the
tracking.

However, when a motion model that takes the velocity of tracks into account is used to extrapolate
the tracks to time instant t+ 1, we get the following results:

1. A’s track is extrapolated to a location somewhere very close to 3

2. B’s track is extrapolated to a location somewhere very close to 4

When these propagated tracks are used in the association step, the association takes place correctly,
i.e., A’s track will be associated with the detection at 3, and B’s track will be associated with the
detection at 4.

In the Kalman Filter algorithm, we keep a record of the following states for an object’s track, which
helps us do the extrapolation of tracks to future time instants:

• x indicating the horizontal pixel location of the object.

• y indicating the vertical pixel location of the object.

• u̇ indicating the velocity of the object along the X-axis.

• v̇ indicating the velocity of the object along the Y-axis.

5.5.4 Associating top-view detections from each camera with the existing top-view tracks

Once we predict the location of each fielder at time instant t (using the merged top-view map at time
instant t − 1), we have to associate (match) the points in this predicted top-view map with the original
top-view map (of each camera) at time instant t. This association step allows us to assign identities to
the detections at time instant t, and it is a critical step in the tracking pipeline. Incorrect associations
would lead to undesirable identity swaps. Figure 5.5 shows this process graphically for a single camera.
The exact process is repeated for multiple cameras in our pipeline. Once the identities are transferred to
the top-view map of each camera (at time instant t), we can update the merged top-view map by taking
the average value of coordinates for each identity across all the cameras.

In the remainder of this subsection, we will present more details on how the associations were done
using the Hungarian algorithm.

5.5.4.1 Modelling the association problem as a Graph Optimisation Problem

We model the above problem as a Graph optimization problem. The graph consists of two sets of
nodes/vertices, where each node represents a top-view detection (2D point). One set contains points
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Figure 5.5: Graphical illustration of the data association step in the top-view assigning identities to
incoming detections (from a particular camera) at time instant t using the consolidated information of
top-view tracks at time instant t− 1.

from the predicted top-view map, and the other set contains points from the original top-view map of a
particular camera. Note that we model and solve the optimization problem for each camera individually
and then combine the results to update the merged top-view map (as mentioned earlier).

An edge connects every vertex in set 1 to every other vertex in set 2. There exists no edge between
vertices of the same set. Such an undirected graph can be formally identified as a complete bipartite
graph in Graph Theory Literature. Formally,

Definition 1. An undirected graph G = (V,E) is bipartite if the vertices in set V can be partitioned

into two disjoint sets V1 and V2 such that for every edge (u, v) ∈ E, u ∈ V1 and v ∈ V2.

Definition 2. A complete bipartite graph G = (V1, V2, E) is a bipartite graph where every vertex in V1

is connected to every other vertex in V2 i.e ∀v1 ∈ V1 and ∀v2 ∈ V2,∃(u, v) ∈ E.

We can assume that the number of vertices in V1 is equal to the number of vertices in V2. If not, we
can add dummy nodes in the set with the lesser number of nodes.

There is a cost associated with each edge in the bipartite graph. In our use case, this cost is equal to
the Euclidean distance between the two points connected. If a node is connected to a dummy node, the
cost associated with that edge is 0. The problem we are trying to solve is to match/associate every vertex
in V1 with a vertex in V2 by selecting edges such that every vertex is incident on exactly one edge and
the total cost incurred on selecting the edges is as small as possible. This can be identified as finding a
perfect matching with minimal cost. Formally,

Definition 3. A matching in a graph G = (V,E) is a subset M ⊆ E such that ∀v ∈ V , there is at most

one edge in M which is incident on v.

Definition 4. A matching M in a graph G = (V,E) is said to be a perfect matching if ∀v ∈ V ; there

is exactly one edge in M which is incident on v.
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We transform the problem of finding a perfect matching with minimum cost to a problem of finding
a perfect matching with maximum cost by setting the edge weights as follows: w(u, v) = M −w(u, v),
where M = max

(u,v)∈E
w(u, v).

5.5.4.2 Integer Programming Formulation

Let us introduce a variable xij ∈ [0, 1] such that (i, j) ∈ E, i ∈ V1 and j ∈ V2. It denotes whether
the edge connecting vertex i to vertex j has been selected in the matching M or not. xij = 0 denotes
that the edge has not been included in the matching, whereas xij = 1 denotes that the edge has been
selected in the matching.

As discussed earlier, we want to select a perfect matching M such that the cost of the matching is
maximized. Hence, the objective of our optimization problem is as follows:

maximise
(i,j)∈E

xij ∗ wij (5.5)

The problem is solved under the following constraints:

xij ∈ [0, 1], ∀(i, j) ∈ E such that i ∈ V1 and j ∈ V2∑
j∈V2

xij = 1, ∀i ∈ V1∑
i∈V1

xij = 1, ∀j ∈ V2

We can use a solver like Gurobi[28] to solve the above Integer Programming problem. However, In-
teger Linear Programming being an NP-hard problem, is computationally expensive. Hence, we cannot
use this approach in our pipeline because association is something we would want to do as many as 60

times in one second to run our tracking pipeline at realtime speeds.

5.5.4.3 Hungarian Algorithm

The Hungarian Algorithm [33] can be used to find the maximum weighted matching in bipartite
graphs at very fast speeds. It has a runtime complexity of O(N3), where N is the number of vertices in
the graph. This algorithm is also known as the Kuhn-Munkres algorithm.

Before presenting the details of the Hungarian algorithm, we will define a few terms and prove some
lemmas that would be useful for understanding the algorithm.

Definition 5. A vertex in a graph G = (V,E) is said to be matched if it is incident on an edge e ∈M ,

where M ⊆ E. It is said to be unmatched or free if it is not incident on any edge in matching M .

Definition 6. An alternating path in a graphG = (V,E) is a path such that the edges alternate between

M and E −M .
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Definition 7. An augmenting path in a graph G = (V,E) is an alternating path starting and ending

with a free/unmatched vertex.

Definition 8. An alternating tree in a graph G = (V,E) is a tree rooted at some free vertex u ∈ V

such that all the paths starting at u are alternating.

Definition 9. A vertex labeling is a function l : V ↪→ R. It assigns a label to each vertex v ∈ V .

Definition 10. A feasible labeling is a vertex labeling satisfying the condition: l(x)+l(y) ≥ w(x, y),∀x ∈

V1, y ∈ V2.

Definition 11. An Equality Subgraph (with respect to a labelling l) is a subgraph Gl = (V,El) of a

graph G = (V,E), such that l(x)+ l(y) = w(x, y), ∀(x, y) ∈ El. In other words, an equality subgraph

Gl contains only the perfectly feasible edges within graph G.

Definition 12. A vertex neighborhood for a vertex v ∈ V in a graph G = (V,E) can be defined as a

set of vertices S(v) ⊆ V wherein S(v) = {u : (v, u) ∈ E}. In other words, it is the set of vertices in V

which share an edge with v.

Definition 13. A set neighborhood of a set of vertices X ⊆ V is S(X) =
⋃
x∈X

S(x).

Next, we prove a few theorems on which the Hungarian Algorithm is based.

Theorem 1. If a graph G = (V,E) with a feasible labeling l has a perfect matching M in its equality

subgraph Gl = (V,El), then M is also the maximum-weighted matching.

Proof. Let W (M ′) be the weight of any perfect matching M ′ in G (not necessarily in El, i.e., the

equality subgraph).

From definition 4 of perfect matching, we know every vertex v ∈ V is covered exactly once by an

edge in perfect matching M ′. Hence, we can write:∑
(x,y)∈M ′

l(x) + l(y) =
∑
v∈V

l(v) (5.6)

From definition 10 of feasible labelling, we can write:

W (M ′) =
∑

(x,y)∈M ′

w(x, y) ≤
∑

(x,y)∈M ′

l(x) + l(y) (5.7)

Substituting equation 5.6 in equation 5.7, we get:
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W (M ′) =
∑

(x,y)∈M ′

w(x, y) ≤
∑

(x,y)∈M ′

l(x) + l(y) =
∑
v∈V

l(v) (5.8)

W (M ′) ≤
∑
v∈V

l(v) (5.9)

Now, let W (M) be the weight of a perfect matching M in the Equality Subgraph El. Hence, we can

write the following from the definition 11

W (M) =
∑

(x,y)∈M

w(x, y) =
∑

(x,y)∈M

l(x) + l(y) =
∑
v∈V

l(v) (5.10)

W (M) =
∑
v∈V

l(v) (5.11)

Substituting equation 5.11 in equation 5.9, we get:

W (M ′) ≤W (M) (5.12)

Hence, proved that M is the maximum weighted matching.

Algorithm 1: Hungarian Algorithm
Data: bipartite graph G = (V,E), feasible labelling l, equality subgraph Gl = (V,El), some

matching M in El
Result: M : Maximum weighted matching in G
while M 6= perfect matching do

1. Try to find an augmenting path for M in El; this increases the size of M ;
2. If no augmenting path exists, improve the labeling l; this increases the size of El ;

5.5.4.4 Intuition of the Hungarian Algorithm

From the previous subsubsection 5.5.4.3, we noticed that the problem of finding the maximum
weighted matching in a graph G boiled down to finding any perfect matching in the Equality Subgraph
of G. Hence, we have turned an optimization problem into a combinatorial problem.

The Hungarian algorithm starts with a trivial equality subgraph of G where vertex labels on one side
of the bipartite graph have a value of 0 and vertex labels on the other side of the bipartite graph have a
value equal to the maximum weight value of edges incident on that vertex. The edge set of the Equality
graph El is constructed by including those maximum-weighted edges which contributed to vertex labels
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of the non-zero label side of the bipartite graph. Initially, we start with any matching M . In every
iteration, the Hungarian algorithm either tries to find an augmenting path for matching M in El, which
increases the size of the matching. Otherwise, it improves the labeling l by including at least one more
edge into El, which was not a part of El. The existing labeling is improved using the lemma presented
below.

Lemma 1. Let X and Y be the two disjoint vertex sets of the bipartite graph G in which we want to

find the maximum weighted matching. Let P ⊆ X and Q = S(P ) ⊂ Y , where S(P ) represents the

set neighborhood of vertex set P from definition 13. P and Q contain the vertices in the augmenting

alternating path. We set δl as follows

δl = min
x∈P,y/∈Q

{l(x) + l(y)− w(x, y)} (5.13)

where l(x), l(y) denote the labelling of vertices x and y respectively. We update the labeling of all

the vertices in the graph as follows:

l′(v) =


l(v)− δl, if v ∈ P

l(v) + δl, if v ∈ Q

l(v), otherwise

(5.14)

We can easily see that updating the labels this way preserves the labeling feasibility. Moreover, if

an edge (x, y) ∈ El, then the edge (x, y) ∈ El′ as well. Additionally, there will be one more edge

which will get added to El′ , i.e., the edge (x, y) such that x ∈ P, y /∈ Q whose weight is equal to

l(x) + l(y)− δl.

The algorithm is guaranteed to terminate because, in each step, we are increasing the size of the
matching or increasing the Equality Subgraph edge set size.

5.5.5 Creation and deletion of tracks

We implement a simple track management system where tracks are deleted if it has not been matched
with any detection for more than some empirically decided threshold number of frames. Similarly, if
a detection goes unmatched, we create and initialize a track that remains inactive for an empirically
decided threshold number of frames before starting to appear. During the inactive period of the track, if
it goes unmatched with a detection, the track is deleted.
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Chapter 6

Hardware Architecture

This chapter outlines the various pipelines we tried to read the live video stream from the cameras
and feed them into the server for further processing. We will look at the various hardware components
involved in each of the pipelines starting from the camera, the wires/cables doing the actual transfer,
and finally, the adapter, which takes these signals and feeds them into the computer doing the actual
processing. We will also talk briefly about how we transferred the processed data to the Graphics server,
which would actually show our output on the broadcast. This server was operated by AE Live, and it
was important for us to decide on a common set of protocols to do the data transfer so that the encoding
and decoding of the data could be performed consistently. At a very high level, we tried two pipelines:

1. BlackMagic Decklink Cards

2. Network Device Interface (NDI) cameras and tools

We will present the details of each of the above-mentioned pipelines in the subsequent sections. Figuring
out these details we will be presenting was a major step towards deploying our work into production.

6.1 Using BlackMagic Decklink Cards

Decklink cards developed by Blackmagic are possibly the highest-performing cards to capture from
cameras and live streams and get the feed into a Mac, Windows, or Linux server. These cards are the
industry standard and are widely used in film productions, TV programs, music videos, Hollywood
feature films, and commercials. They can support capture of resolution as high as 8K with frame rates
up to 60 frames per second.

There is a wide variety of Decklink cards to choose from, depending on the use case. We chose
the highest-performing one, namely the Decklink 8K Pro card. Decklink 8K Pro is a Gen3 8-lane
PCI Express capture card designed for high-resolution 8K workflows. It features 4 12G Serial Digital
Interface (SDI) connections allowing up to 4 different video streams of any format to be connected and
captured on the server using the free Blackmagic SDK.
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Figure 6.1: BlackMagic architecture: Hardware architecture showing how cameras are connected to a
BlackMagic Decklink 8K Pro capture card in our processing server for delivering multiple 4K streams
at realtime speeds using the BlackMagic technology.

6.1.1 Architecture

The camera captures the feed and transmits the video and audio signals via the High Definition
Multimedia Interface (HDMI). This comes out as an HDMI cable, as shown by the yellow line in figure
6.1. Since we are transmitting 4K feed, we had to use HDMI cables labeled as ”high-speed”. Using any
other HDMI cable would not work. Also, these cables labeled as ”high-speed” must necessarily be less
than 5 meters in length; otherwise, it leads to a loss in signal quality.

Had our server been placed really close to the capturing cameras, HDMI cables could have been
an option for data transmission. However, this is not possible given the gigantic size of the cricket
ground and the fact that we have to place our cameras all around the ground to maximize the coverage.
Moreover, even if we were using a single camera, we could not have placed the server very close to the
camera because this would have meant setting it up outdoors on the stands, which can lead to overheating
of the Graphics Processing Unit (GPU) inside the server (used at full capacity in our pipeline).

Additionally, the BlackMagic Decklink card takes as input a Serial Digital Interface (SDI) cable.
There are multiple reasons for such a design choice by BlackMagic, the primary one being distance.
While HDMI cables can carry signals for short distances (5m or less), 12G SDI cables can transmit
signals for distances as long as 100m without degrading the quality of the signals. The other reason
for choosing SDI input over HDMI input is the risk of interruption of a stream associated with HDMI
cables. HDMI cables do not have a locking mechanism, and there is a danger of the stream getting
interrupted/disconnected by a slight pull or if someone’s footfalls on the cable. SDI cables, on the other
hand, lock tightly and remain fastened to the connector even if there is some tension pulling it.
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This setup clearly demands a conversion from HDMI to SDI which is done by the Teranex Mini
HDMI to SDI 12G converter. However, this is not enough! As mentioned earlier, SDI cables can carry
signals for distances up to 100 meters, but we require to carry it up to a few kilometers. Our server
is placed inside the broadcast room, which is usually located at some corner of the ground. In order
to transmit signals up to a few kilometers without any degradation in the quality, we have to use a
fiber cable. Fiber cables are much more expensive than SDI cables; however, they can transmit signals
over longer distances (around 100 kilometers) without any signal loss. Hence, a second conversion is
necessary from SDI to Fiber optic. Blackmagic provides the Mini Converter Optical Fiber 12G for this
purpose. One advantage of this converter is that the same converter can be used in both directions.
We place one such converter near the camera, which converts the 12G SDI to Fiber optic, and another
converter near the server which converts the fiber optic back to 12G SDI. Finally, the signal enters the
server through one of the 4 SDI ports in the BlackMagic Decklink 8K Pro Card and is made available
for further processing.

The exact similar setup can be replicated for other cameras.

6.1.2 BlackMagic Decklink SDK

BlackMagic provides a Software Development Kit called the DeckLink SDK1, which allows devel-
opers to integrate BlackMagic hardware into their software applications with ease. The SDK provides
high-level as well as low-level interfaces and libraries to perform common functionalities like capturing
a video stream entering any of the Decklink card ports, playing back a stream, performing realtime
video processing, and controlling BlackMagic hardware through software. The SDK is written in C++
and is supported on Mac, Linux, and Windows. The SDK provides a very efficient implementation to
read the frames from the incoming stream. Typically, a 4K stream is read at 25 frames per second using
the OpenCV imread() function in Python. However, using the Hardware acceleration techniques and
optimized SDK functionalities provided by Blackmagic, we can read 4K streams at speeds up to 60
FPS. There are multiple factors that make reading a 4K stream so efficient using the BlackMagic suite:

1. Direct Memory Access (DMA): This is a mechanism that allows the transfer of data from the
Decklink card memory to the compute server memory (RAM) without the involvement of the
Central Processing Unit (CPU). As a result of this, the CPU is free to do other useful tasks.
DMA bypasses the traditional CPU usage for data transfer by delegating the transfer process to
a dedicated controller called the DMA controller, which results in efficient and high-speed data
transfer.

2. Asynchronous processing: The BlackMagic SDK provides support for asynchronous process-
ing wherein developers can process frames and keep reading them in parallel. In other words,
when one frame is being read, the previous frames can be processed simultaneously. This feature

1The BlackMagic SDK along with it’s documentations can be found here.
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increases the throughput of object detection greatly. The BlackMagic SDK provides this func-
tionality by invoking a callback when a video frame arrives from the Decklink card. This callback
function is called ’DeckLinkCaptureDelegate::VideoInputFrameArrived()’, and the developer can
put in any code to perform custom processing on the arrived frame. In our case, we pass the ar-
rived frame through the Yolo object detector, and the output of this processing is bounding boxes
indicating the players in the frame. Each time the callback is invoked, a new thread is created,
and the main thread need not wait for the newly created thread to complete processing. It can
continue reading the next frames, making the implementation highly parallel.

3. Hardware Acceleration: It is the process wherein computationally expensive tasks are offloaded
to the hardware instead of burdening the CPU with them. This enhances performance greatly. For
example, BlackMagic has specialized hardware in their Decklink cards to handle complex video
encoding and decoding algorithms efficiently. Otherwise, the CPU had to be involved in doing
such processing. Some other examples of image processing tasks that are offloaded to specialized
hardware in order to reduce the burden of CPU are: a) Color space conversion, b) Scaling and
resizing, c) deinterlacing and interlacing of broadcast feeds

We cannot afford to store the frames anywhere on the disk nor pass them to some other process
using sockets, as this would increase the latency by many folds. Hence, we had to design our detection
pipeline in C++ so that the frame which is present in the RAM can be shared by the detection module
as well. Since both the reading of frames and computing the detections are part of the same process,
the pointer of the frame is passed to the detection module. This implementation does not make a copy
anywhere in the memory and hence, makes the implementation extremely efficient.

6.2 Network Device Interface (NDI) cameras and tools

NDI, short for Network Device Interface, is a technology developed by NewTek that enables sharing
of video and audio content over the Ethernet using Internet Protocol. The main advantage of NDI is
the low setup cost. Since NDI operates over IP, there is no requirement for specialized video cables
and cards for video transmission. NewTek offers a wide variety of PTZ (Pan-Tilt-Zoom) cameras which
can capture high-quality content and transmit over Ethernet using NDI protocols. These cameras can be
easily integrated into the NDI workflow without the need for expensive capture cards and/or physical
connections.

6.2.1 Architecture using Single Network Interface Card

Each of the NDI cameras captures the feed and transmits the captured video signals in the form of
User Datagram Protocol (UDP) packets (datagrams) through Cat6 Ethernet Cables. UDP is a connec-
tionless, lightweight protocol sitting on top of Internet Protocol (IP) and is well-suited for realtime,
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Figure 6.2: Network Device Interface (NDI) architecture: Hardware architecture showing how NDI
cameras are connected to a Network Interface Card (NIC) in our processing server for delivering multi-
ple 4K streams using the NDI technology.

low-latency streaming applications. All the datagrams arrive at a network switch sitting in front of the
processing server. The network switch connects multiple networking devices together, and its responsi-
bility is to forward the packets to the right destination device. In this setup (shown in 6.2), all the packets
are forwarded to the Network Interface Card (NIC) of our processing server. The NIC decodes each of
the arriving packets and stitches the three incoming streams separately. It is possible to put together the
three streams separately even though the packets from all three streams are entering through a single
channel (leading to an intermingling of packets from the three streams). This is because datagrams con-
tain information about the source IP address, i.e., the IP address of the device generating the packet. All
we need to do is bucket the incoming packets based on the source IP address of the packet, and we will
be able to put together the stream captured by the individual cameras. This functionality is provided
by the NDI SDK2. We, as developers, just need to specify the IP address of the NDI source we are
interested in, and the NDI SDK has implemented functions with the help of which we would be able to
get the frames from the desired source. Once we receive the frames, we can do any form of processing
on them. In our case, it is sent to the detection module to get the bounding boxes of the players in that
frame.

This setup uses 10 GigaBit per second Cat-6 Ethernet cables. Cat6 Ethernet cables can transmit data
up to a distance of 100 meters without a loss in the quality of the transmitted signal. If we have to
transmit signals for distances more than the recommended 100 meters length, we have to use fiber cable
and deploy Media converters to convert Ethernet Connection to Fiber connection and vice versa. Fiber
cables can transmit signals up to a distance of 40 km without degradation in signal quality. This entire
setup is shown in figure 6.2.

Let us analyze the bandwidth required for this setup, and what is the maximum speed (in frames
per second) we can achieve if we were transmitting uncompressed raw feeds. 1 Gigabit is equal to 1e9

bits. A 4K frame has 3840 ∗ 2160 ∗ 3 = 24883200 pixels. One pixel occupies 8 bits of storage. Using
these back of the envelope calculations, a 4K frame occupies 24883200 ∗ 8 = 199065600 bits. This is

2The NDI SDK can be downloaded here: https://ndi.video/download-ndi-sdk/

59

https://ndi.video/download-ndi-sdk/


approximately 0.2 Gigabits. Since we are transmitting three streams through the same cable (from the
switch to the NIC), we require a total of 0.2 ∗ 3 = 0.6 Gigabits bandwidth for one frame. Our cable
has a bandwidth of 10 Gigabit; hence we can achieve a maximum of 10/0.6 = 16.7 frames per second.
This speed is clearly not enough for our use case, which demands realtime speeds.

Figure 6.3: Network Device Interface (NDI) architecture: Hardware architecture showing how NDI
cameras are connected to multiple Network Interface Cards (NICs) in our processing server to increase
the bandwidth for delivering multiple 4K streams at realtime speeds using the NDI technology. Note
that the media converters are not shown to improve clarity.

6.2.2 Architecture using Multiple Network Interface Cards

Careful analysis shows that the bandwidth of the network is throttled by the Ethernet cable from the
switch to the Network Interface Card. This motivated us to build a customized server with multiple
NICs. Specifically, if we had three NICs, then each camera could send its packets to exactly one NIC.
Each NIC has a unique IP address. The cameras can be configured so that the packets generated from
that camera use the destination IP address of the corresponding NIC. Figure 6.3 illustrates this setup.
(Note that the converters were removed for clarity). Packets from camera one will have the IP address of
NIC 1 as their destination IP. Similarly, packets coming out of cameras 2 and 3 will have the IP address
of NIC 2 and 3, respectively, as their destination IP. When the packets from all three streams arrive at
the switch, the switch will forward only the camera one packet to NIC 1, only the camera two packets
to NIC 2, and only the camera three packets to NIC 3. Instead of getting a bandwidth of 10 Gigabits
per second when we had a single NIC, we now have a bandwidth of 30 Gigabits per second, with each
ethernet cable carrying almost the same number of packets from the switch to each of the NICs. In
other words, this setup balances the load uniformly across the 3 NICs, and we can get speeds as high as
16.67 ∗ 3 = 50 Gigabits per second.
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Although this setup was more cost-effective, we leaned toward using the BlackMagic Decklink cards
because of multiple reasons:

1. The overall speed we achieved using the BlackMagic setup was much higher than the setup using
NDI tools. This was because BlackMagic uses specialized hardware in their capture cards to
offload common processing tasks like encoding and decoding of signals from the CPU. NDI
does not use any such specialized cards, and hence such hardware acceleration techniques can be
deployed on the NDI setup. As a result, the CPU is overburdened with common processing tasks
resulting in lower throughput.

2. Assembling a server with 3 Network Interface Cards is not very trivial. Moreover, maintaining
it, in the long run, would become increasingly difficult. NDI does not support such a multi-NIC
setup off the shelf (OTS), and we need to keep our code up to date to support it. In contrast, it
is much easier to use Off the shelf BlackMagic card with three input ports. BlackMagic is very
regular in rolling out updates for their software.

3. NDI primarily uses UDP, and we know that UDP is unreliable. It does not guarantee reliable
delivery of packets, and packets can be lost. This is not very favorable in our setup. If we want
to establish a reliable TCP connection, a separate network infrastructure needs to be established,
which has a much higher maintenance cost.

4. NDI is heavily dependent on the Network infrastructure. Streaming multiple 4K feeds can lead to
network congestion if not properly managed.

6.3 Communicating with Graphics Server

Our processing server had to communicate with the graphics server by sending the details of the
generated top-view map so that it could broadcast the graphics output on the screens of users. We
implemented this communication service using socket programming. A socket is the basic building
block of network communication. We created a socket object configured to use IPv4 addressing and the
User Datagram protocol to send data to the Graphics server, which was a part of the same local area
network (LAN) as our processing server. The data we wanted to send was encoded in binary using the
’ASCII’ encoding scheme. The data we send is a list of 2 ∗ n floating point numbers, which represents
the (x, y) coordinates of the n detected players on the top view. Every odd number in the transmitted
list contains the x coordinates of the detected players on the top view. Similarly, every even number
in that list contains the y coordinates of the detected players. The y coordinate of a detected player
immediately followed the x coordinate of that player in the list.
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Chapter 7

Software Architecture

In this chapter, we take a deeper look into the software architecture of the built system. We already
took a look at each of the individual components that constitute this system. This chapter will dive into
the low-level implementation details and design choices in bringing up the various components of this
real-time data processing streaming pipeline. These design choices make the system extremely efficient,
real-time, extensible, maintainable and easy to deploy in production settings.

Figure 7.1: Software Architecture: This figure illustrates our data-processing pipeline highlighting the
major system components and showing the data flow through the pipeline using arrows. The figure also
illustrates the transformation of the data through various stages of the pipeline. Note: Only one camera
is shown in this figure for clarity however in reality there are multiple video streams entering the server
from multiple cameras.
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7.1 A Streaming, Event-Driven Pipeline with a Modular Architecture

Our pipeline is a streaming pipeline since the source of input are video streams from multiple cam-
eras. It is also an event driven architecture since different modules in the pipeline are executed when
events trigger. For example, the arrival of a video frame into the processing server triggers the detec-
tion module which in turn triggers the Tracking Module and finally the output is communicated to the
Visualisation Module.

The architecture is highly modular with each key functionality like detection, tracking, visualisation
and calibration implemented as a separate modular component. This helped us implement different
modules in different programming languages. We were also able to deploy each component on it’s own.
This made the development easier and each of the modules could be managed much more effectively, in-
dependent of the other modules. Moreover, decoupling the implementation into modules ensured that if
some module was undergoing changes the other modules were unaffected as long as the communication
between modules were consistent.

The Detection module reads video frames from cameras using the BlackMagic SDK and is respon-
sible for predicting the bounding boxes around players for each frame. We implemented the Detection
Module in C++ and optimised it with the TensorRT framework as mentioned earlier. It was implemented
using C++ because of performance reasons. We bench-marked the inference speeds on 4K images and
found that the same TensorRT implementation in Python was 5 times slower than the C++ implementa-
tion.

The Camera Calibration Module helps in calibrating the cameras which is useful for projecting the
player positions from the camera view to the bird’s eye view. It was implemented in Python and the User
Interface to mark the point correspondences was implemented as an OpenCV Graphical User Interface.
The GUI shows the user the camera view image first where they mark atleast 4 points by double clicking
on the relevant pixels in the GUI. Next, the user is shown the top view map where they mark the same
corresponding points as marked in the camera view (in the same order).

The Tracking Module gets as input the detections from each frame and is responsible for merging
the detection results from all the cameras and tracking the players and projecting them to the top-view.
It was implemented in Python because we made use of some libraries which were available only in
Python, an example being filterpy, a library which helped us implement Kalman Filters.

The Visualisation Module responsible for broadcasting the output to millions of viewers is owned
and operated by the Graphics Partner.

7.2 Communication between the various Components

The communication protocol between the detection and the tracking modules and the tracking and the
visualisation modules is implemented using raw socket programming. Each camera has a corresponding
port associated to it through which it’s detection results are communicated to the tracking module by
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the detection module. The detection module just pushes a list of 5 value tuples for each camera frame -
4 values representing the bounding box and 1 value representing the confidence score of the detection.
The list data is encoded in binary using ASCII encoding.

The tracking module listens to the sockets to which the detection module is writing and consumes
the detection results immediately when available. It then uses this information to come up with the
trajectory for each player in the top-view. The trajectory information in the form of top view points is
written to another socket to which the Visualisation Module is listening to.

Implementing the communication protocol using sockets this way proved to be extremely efficient.
The data formats agreed between modules communicating was designed so optimally that there was
no loss of data during communication between modules. We ensured that we communicate as minimal
information as possible at the same time ensuring sufficient information is communicated to the next
module to perform it’s operation.

7.3 How is the Data stored?

The different modules persist different types of data to the disk. These stored data is used by some
other module in the pipeline. For example, the detection module consumes the detector model weights
which were written by the TensorRT optimiser into the File System. Similarly, the Camera Calibration
Module writes the camera calibration parameters to the disk which is consumed by the tracking module.
In this section, we take a look at the various data formats used to store the detection and calibration data
in the disk.

Each camera has a calibration matrix associated with it, which is a 3 × 3 matrix of floating point
numbers. This calibration matrix is used to do a transformation of points from that camera view to
the top view. These calibration matrices (one for each camera) is stored in the .npy (short for Numpy)
format. Any Numpy data structure can be stored in the disk in this format. Numpy provides functions
to write and read these formats in the Python code easily.

The Yolo detection model is stored in .wts format, which is a plain text file format. The first line
in the file is a number indicating how many lines the file has excluding itself. Next, each line contains
the layer name (a String), followed by an integer (x) denoting the number of weights in that layer. x
hexadecimal numbers follow in the same line which represent the layer weights.

The TensorRT optimiser converts the .wts file to a serialised .engine file by applying a series of
optimisation techniques. The .engine file contains the optimised deep learning model as a sequence of
bytes, ready for deployment. The Detection Module loads this .engine file into the main memory during
inference. The model weights when stored as .wts file or .engine file are versioned. The files are suffixed
with the date of creation. For example, detector-20231116.wts. Additionally the weights files contain
tags like ‘Golden‘, ‘Latest‘ etc.
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Chapter 8

Results and Conclusion

In spite of having a stable algorithm to do the tracking and generate the top-view map, we faced
certain challenges when we deployed our algorithm to production. The multi-camera setup required a
custom assembly of the server with three GPUs. It was difficult to find a vendor to assemble such a
server with three slots. Even though such a server could have been assembled, transporting it from one
place to another was becoming extremely difficult, and this was an absolute necessity as tournaments
were played across multiple venues. We were also affected by the pandemic, as there were massive cost
cutoffs and reductions in the workforce when our system was about to go live.

When we went to deploy our system, we faced multiple challenges. Detections were becoming very
hard because of spider cameras on the field. There were players standing exactly at the diametrically
opposite end of the placed camera. This made them appear even smaller and almost impossible to
detect. Then, we had to tackle occlusions. These reasons meant we had to handle missing detections in
our tracking pipeline, no matter how much we improved our detectors.

We know from the existing literature that poor detections drastically degrade the tracking results.
Hence, our tracking algorithm had to improve. At the same time, in order to meet the realtime require-
ments, we could not afford to implement some heavy tracker. Modifying SORT seemed to be the only
viable option under these constraints.

8.1 Future Work

The pipeline we built can be extended to other sports and this is something which we plan to explore
in future works. For example, in sports like Kabaddi the tracking is much more challenging because
there is a lot of clutter and occlusions. As a future work, we plan to explore some novel real-time
tracking ideas in sports like Kabaddi.

We plan to extend this pipeline to build other kinds of Graphical visualisations, which show players
being tracked in camera views. Figure 8.1 shows one such sample graphical visualisation we have
thought of.
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Figure 8.1: A Graphical Visualisation of certain players being tracked in the camera view is a simple
extension of our pipeline which is left as a work to be explored in the future.

Furthermore, we can use our existing pipeline to compute some statistical analytics like the distance
ran by a player, how fast a player is running, distance between two fielders etc.

Improving the detector performance so that it can generalise better to unseen stadiums and unseen
camera positions is another future work which we plan to do as currently we need to finetune the detector
on a few images (around 50) from the camera vantage point in the stadium where we are deploying.

8.2 Results from Asia Cup 2022

Our system was successfully deployed in production during the Asia Cup of 2022 in Dubai. We
present a few qualitative results of our system going live multiple times below. This folder contains a
few videos of our system going live on the screen of spectators.
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