
Towards Machine-understanding of
Document Images

Thesis submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science and Engineering

by

Minesh Mathew
201307668

minesh.mathew@research.iiit.ac.in

International Institute of Information Technology
(Deemed to be University)

Hyderabad - 500 032, INDIA
January, 2024

Copyright © Minesh Mathew, 2024

All Rights Reserved

International Institute of Information Technology

Hyderabad, India

CERTIFICATE

It is certified that the work contained in this thesis, titled “Towards Machine-understanding
of Document Images” by Minesh Mathew, has been carried out under my supervision and is
not submitted elsewhere for a degree.

Date Adviser: Prof. C V Jawahar

To,

My parents, Martil and Mathew

Acknowledgments

I am grateful to my guide, lab mates, and friends for their support throughout my PhD
journey.

v

Abstract

Imparting machines the capability to understand documents like humans do is an AI-complete
problem since it involves multiple sub-tasks such as reading unstructured and structured text,
understanding graphics and natural images, interpreting visual elements such as tables and
plots, and parsing the layout and logical structure of the whole document. Except for a small
percentage of documents in structured electronic formats, a majority of the documents used
today, such as documents in physical mediums, born-digital documents in image formats, and
electronic documents like PDFs, are not readily machine readable. A paper-based document
can easily be converted into a bitmap image using a flatbed scanner or a digital camera. Conse-
quently, machine understanding of documents in practice requires algorithms and systems that
can process document images—a digital image of a document.

Successful application of deep learning-based methods and use of large-scale datasets sig-
nificantly improved the performance of various sub-tasks that constitute the larger problem of
machine understanding of document images. Deep-learning based techniques have success-
fully been applied to the detection, and recognition of text and detection and recognition of
various document sub-structures such as forms and tables. However, owing to the diversity
of documents in terms of language, modality of text present (typewritten, printed, handwritten
or born-digital), images and graphics (photographs, computer graphics, tables, visualizations,
and pictograms), layout and other visual cues, building generic-solutions to the problem of
machine understanding of document images is a challenging task. In this thesis, we address
some of the challenges in this space, such as text recognition in low-resource languages, infor-
mation extraction from historic/handwritten collections and multimodal modeling of complex
document images. Additionally, we introduce new tasks that call for a top-down perspective—
to understand a document image as a whole, not in parts—of document image understanding,
different from the mainstream trend where the focus has been on solving various bottom-up
tasks. Most of the existing tasks in Document Image Analysis (DIA) deal with independent
bottom-up tasks that aim to get a machine-readable description of certain, pre-defined docu-
ment elements at various abstractions such as text tokens or tables. This thesis motivates a

vi

vii

purpose-driven DIA wherein a document image is analyzed dynamically, subject to a specific
requirement set by a human user or an intelligent agent.

We first consider the problem of making document images printed in low-resource lan-
guages machine-readable using an OCR and thereby making these documents AI-ready. To
this end, we propose to use an end-to-end neural network model that can directly transcribe
a word or line image from a document to corresponding Unicode transcription. We analyze
how the proposed setup overcomes many challenges to text recognition of Indic languages.
Results of our synthetic to real transfer learning experiments for text recognition demonstrate
that models pre-trained on synthetic data and further fine-tuned on a portion of the real data
perform as well as models trained purely on real data. For 10+ languages for which there
have not been public datasets for printed text recognition, we introduce a new dataset that has
more than one million word images in total. We further conduct an empirical study to compare
different end-to-end neural network architectures for word and line recognition of printed text.

Another significant contribution of this thesis is the introduction of new tasks that require a
holistic understanding of document images. Different from existing tasks in Document Image
Analysis (DIA) that attempt to solve independent bottom-up tasks, we motivate a top-down
perspective of DIA that requires a holistic understanding of the image and purpose-driven
information extraction. To this end, we propose two tasks—DocVQA and InfographicVQA—
fashioned along Visual Question Answering (VQA) in computer vision. For DocVQA, we
show results using multiple strong baselines that are adapted from existing models for existing
VQA and QA problems. For InfographicVQA, we propose a transformer-based, BERT-like
model that jointly models multimodal—vision, language, and layout—input. We conduct open
challenges for both tasks, attracting hundreds of submissions so far.

Next, we work on the problem of information extraction from a document image collec-
tion. Recognizing text from historical and/or handwritten manuscripts is a major challenge to
information extraction from such collections. Similar to open-domain QA in NLP, we pro-
pose a new task in the context of document images that seek to get answers for natural lan-
guage questions asked on collections of manuscripts. We propose a two-stage retrieval-based
approach for the problem that uses deep features of word images and textual words. Our ap-
proach is recognition-free and returns image snippets as answers to the questions. Although
our approach is recognition-free and consequently oblivious to the semantics of the text in the
documents, it can look for documents or document snippets that are lexically similar to the
question. We show that our approach is a reasonable alternative when using text-based QA
models is infeasible due to the difficulty in recognizing text in the document images.

Contents

Chapter Page

1 Introduction . 1
1.1 Scope . 2
1.2 Applications . 4
1.3 Machine understanding of images and text: existing tasks and perspectives . . . 4
1.4 Motivation . 8
1.5 Challenges . 13
1.6 Problem space . 14
1.7 Our major contributions . 15
1.8 Re-evaluating thesis locus and contributions at the dawn of an LLM era. 18
1.9 Thesis outline . 21
1.10 Publications . 22

2 Background . 25
2.1 Text recognition in the deep learning era . 25

2.1.1 Feature learning using CNNs. 25
2.1.2 Text recognition as a structured prediction using RNNs 27

2.1.2.1 CTC-based text recognition 28
2.1.2.2 Encoder-Decoder Networks for text recognition 29
2.1.2.3 Multidimensional RNN . 31

2.2 Question Answering for electronic text . 31
2.2.1 Machine Reading Comprehension (MRC) 31

2.2.1.1 BERT for QA/MRC . 32
2.2.2 Open domain QA . 35

2.3 Layout-aware BERT-like models for DIA tasks 36
2.3.1 LayoutLM . 37

2.4 Visual Question Answering (VQA) . 38
2.4.1 Grid-based and region-based features for VQA 38
2.4.2 VQA on natural images using VisualBERT 40

2.5 VQA tasks that require reading text on images 41
2.5.1 Scene text VQA . 42

2.5.1.1 LoRRA: Look, Read, Reason and Answer 43
2.5.1.2 Multimodal Multi-Copy Mesh (M4C) 43

viii

CONTENTS ix

2.5.2 Specialized VQA datasets where reading text on images is necessary. . 44
2.5.2.1 VQA on images of book covers 44
2.5.2.2 VQA on charts . 46

2.6 Multimodal QA tasks . 46

3 CTC-based Seq2seq OCR for low resource languages 47
3.1 Introduction . 47
3.2 Related works . 51

3.2.1 First-generation OCRs [1970 - 2000] 51
3.2.2 Second-generation OCRs [2000 - 2012] 52
3.2.3 Third-generation OCRs [2012 - 2022] 53

3.3 Datasets . 54
3.3.1 Internal dataset . 54
3.3.2 Mozhi dataset . 55
3.3.3 Synthetic dataset . 57

3.4 Text recognition using CTC transcription . 58
3.4.1 Extracting feature sequence . 58
3.4.2 Encoder . 60
3.4.3 Feature and encoder configurations 60
3.4.4 Decoder . 62
3.4.5 Transcription using CTC . 63
3.4.6 Training . 63
3.4.7 Inference . 64

3.5 Experimental setup . 64
3.5.1 Implementation details . 65
3.5.2 Evaluation . 66

3.6 Experiments and results . 67
3.6.1 Comparing different feature + encoder configurations 67
3.6.2 Page OCR evaluation on the internal dataset 69
3.6.3 Transfer learning from synthetic to real 71
3.6.4 Evaluating CRNN on Mozhi dataset 73

3.7 Summary . 74

4 DocVQA: VQA on business documents . 75
4.1 Introduction . 75
4.2 DocVQA dataset . 77

4.2.1 Data collection . 80
4.2.1.1 Document images . 80
4.2.1.2 Selection of workers . 82
4.2.1.3 Questions and answers . 83

4.2.2 Statistics and analysis . 86
4.3 Baselines . 89

4.3.1 Heuristics and upper bounds . 90

x CONTENTS

4.3.2 VQA models . 90
4.3.3 Reading comprehension models . 90

4.4 Experiments . 91
4.4.1 Evaluation metrics . 91
4.4.2 Experimental setup . 91
4.4.3 Results . 93

4.5 Summary . 96

5 InfographicVQA: VQA on infographics . 97
5.1 Introduction . 97
5.2 Related works . 99

5.2.1 Question answering in a multimodal context. 99
5.2.2 Multimodal pretraining for vision and language tasks 100
5.2.3 Infographics understanding. 100

5.3 InfographicVQA . 101
5.3.1 Collecting infographics . 101
5.3.2 Collecting questions and answers . 101
5.3.3 Question-answer types: answer-source, evidence and operation 103
5.3.4 Statistics and analysis of the dataset 104

5.4 VLL-BERT . 108
5.4.1 Model architecture . 109
5.4.2 Input representation . 109
5.4.3 Pretraining . 111
5.4.4 Finetuning . 112

5.5 Experimental setup . 113
5.5.1 Experimental setup for VLL-BERT 113

5.5.1.1 Extracting visual features 113
5.5.2 Experimental setup for heuristics, upper bounds, and human perfor-

mance. 116
5.5.3 Experimental setup for M4C. 116
5.5.4 Evaluation metrics . 116

5.6 Results . 116
5.7 Summary . 120

6 Recognition-free QA on handwritten document collection 122
6.1 Introduction . 123
6.2 Related works . 125
6.3 Recognition-free QA . 125

6.3.1 Joint embedding of textual words and word images 127
6.3.2 Aggregating word embeddings . 127

6.3.2.1 Aggregate by summing (SUM) 127
6.3.2.2 Aggregate using Fisher Vector (FV) framework 128

6.3.3 Document retriever . 128

CONTENTS xi

6.3.4 Answer snippet extraction . 129
6.4 HW-SQuAD and BenthamQA datasets . 129

6.4.1 HW-SQuAD . 130
6.4.1.1 Data preprocessing . 130
6.4.1.2 Synthetic rendering of SQuAD1.0 passages as handwritten

document images . 131
6.4.2 BenthamQA . 132
6.4.3 Performance evaluation . 133

6.5 Experiments and results . 135
6.5.1 Implementation details . 135
6.5.2 Performance of document retriever . 136
6.5.3 Evaluating end-to-end answer snippet extraction 139
6.5.4 Evaluating a recognition-based QA approach on HW-SQuAD and Ben-

thamQA . 141
6.5.4.1 Transcribing handwritten images using a CRNN OCR 143
6.5.4.2 Evaluating TF–IDF-based document retriever 144
6.5.4.3 Evaluating TF–IDF + BERT full pipeline QA framework . . 144

6.6 Summary . 145

7 Conclusion and future work . 147
7.1 Conclusions . 147
7.2 Future directions . 148

Appendix A: Appendix to chapter 3 . 150
A.1 Examples of pages in the internal page OCR dataset 150
A.2 Examples of line images in the Mozhi dataset 150
A.3 Distribution of lengths of words in the Mozhi dataset 150

Appendix B: Appendix to chapter 4 . 163

Appendix C: Appendix to chapter 5 . 169

Bibliography . 177

List of Figures

Figure Page

1.1 Different types of document images . 3
1.2 Challenges to DIA. 12
1.3 DocVQA vs. existing tasks in DIA. 16

2.1 Character and word classification using CNN. 26
2.2 CTC for Image to text OCR transcription. 29
2.3 Encoder-decoder style models proposed for unconstrained scene text recognition. 30
2.4 Extractive MRC task in SQuAD1.1. 32
2.5 Embeddings used in BERT. 33
2.6 Pretraining and finetuning stages of BERT. 34
2.7 Two-stage pipeline for open domain QA . 35
2.8 VQA on natural images. 36
2.9 LayoutLM architecture. 38
2.10 Grid-based features and region-based features for VQA 39
2.11 VisualBERT for Visio-linguistic pretraining. 40
2.12 LoRRA for scene text VQA. 42
2.13 M4C for scene text VQA . 44
2.14 VQA on book covers and charts. 45

3.1 Indic languages diversity. 49
3.2 Samples of synthetic word images created for Hindi, Malayalam, and Telugu. . 57
3.3 Different CTC-based transcription network configurations. 59
3.4 Architecture of the CNN used in CNN only and CRNN configurations. 61
3.5 Transfer learning from real to synth by finetuning the synth-only model. 72

4.1 Examples of question-answer pairs in DocVQA. 76
4.2 Distribution of documents by industry, document creation date and document

type. 78
4.3 Screenshot of annotation stage 1 - question-answer collection. 80
4.4 Screenshot of annotation stage 2 - data verification. 80
4.5 Screenshot of annotation stage 3 - Reviewing answer mismatch cases. 81
4.6 Top 15 most frequent questions in DocVQA. 82

xii

LIST OF FIGURES xiii

4.7 Top 15 most frequent answers in DocVQA. 83
4.8 Top 15 non numeric answers in DocVQA. 84
4.9 The 9 question types in DocVQA dataset and share of questions in each type. . 84
4.10 Question, answer and OCR tokens statistics in DocVQA 85
4.11 Word clouds of answers and OCR tokens in DocVQA dataset 88
4.12 Distribution of questions by their starting 4-grams. 89
4.13 Qualitative results of baselines on DocVQA. 95
4.14 Performance of baseline models for different question types. 96

5.1 Examples of question-answer pairs in InfographicVQA. 98
5.2 Distribution of questions in validation set of InfographicVQA by QA types. . . 102
5.3 Word cloud of answers and OCR tokens in InfographicVQA. 105
5.4 Visualization of the top 20 topics in the InfographicVQA dataset. 107
5.5 Staring 4-grams of common questions in InfographicVQA. 108
5.6 Input representation for the VLL-BERT. 109
5.7 Pretraining LayoutLM-based model using MVLM 112
5.8 Finetuning LayoutLM-based model for extractive VQA. 113
5.9 Qualitative results of VQA on InfographicVQA. 120
5.10 Performance of VLL-BERT and other baselines for different question-answer

types. 121

6.1 Recognition-free QA on document images collection. 123
6.2 The proposed recognition-free approach to QA on document collection. 126
6.3 Sample documents in the newly introduced HW-SQuAD and BenthamQA datasets.129
6.4 A question–answer pair and the associated document from the test set of HW-

SQuAD dataset. 134
6.5 Number of document proposals(N) vs top-N accuracy 138
6.6 Top-5 accuracy for document retriever for different sizes of FV 139
6.7 Qualitative results of end-to-end answer snippet extraction. 141
6.8 Snippet accuracy vs. number of document proposals. 142
6.9 Snippet accuracy vs. question length. 142

A.1 Assamese, Bangla, Gujarati and Hindi samples from our internal OCR dataset. 151
A.2 Kannada, Malayalam, Manipuri and Marathi samples from our internal OCR

dataset. 152
A.3 Odia, Punabi, Tamil and Telugu samples from our internal OCR dataset. 153
A.4 A sample page image of Urdu from our internal OCR dataset. 154
A.5 Samples of Assamese, Bangla, Gujarati and Hindi text-line images in the newly

introduced Mozhi dataset for text recognition. 155
A.6 Samples of Kannada, Malayalam, Manipuri and Marathi text-line images in

the newly introduced Mozhi dataset for text recognition. 156
A.7 Samples of Odia, Punjabi, Tamil, Telugu and Urdu text-line images in the

newly introduced Mozhi dataset for text recognition. 157

xiv LIST OF FIGURES

A.8 Distribution of word lengths of Assamese, Bangla and Gujarati samples in the
new Mozhi OCR dataset. 158

A.9 Distribution of word lengths of Hindi, Kannada and Malayalam samples in the
new Mozhi OCR dataset. 159

A.10 Distribution of word lengths of Manipuri, Marathi and Odia samples in the new
Mozhi OCR dataset. 160

A.11 Distribution of word lengths of Punjabi, Tamil and Telugu samples in the new
Mozhi OCR dataset. 161

A.12 Distribution of word lengths of Urdu samples in the new Mozhi OCR dataset. . 162

B.1 DocVQA: Examples where BERT QA model answers questions other than
‘running text’ type. 164

B.2 DocVQA: M4C’s performance on questions based on pictures or photographs. . 165
B.3 DocVQA: Contrasting results for similar questions. 166
B.4 DocVQA: Questions based on figures and diagrams. 167
B.5 DocVQA: Impact of OCR errors. 168

C.1 InfographicVQA: A question where color codes and information on a Map are
required to arrive at the answer. 170

C.2 InfographicVQA : An example where answer is Question-span 171
C.3 InfographicVQA: An example for multi-Span answer. 172
C.4 InfographicVQA : Example where symbols/markers need to be counted to find

an answer. 173
C.5 InfographicVQA : An example where values shown in a bar chart need to be

sorted to find the answer. 174
C.6 InfographicVQA: Question requiring arithmetic operation. 175
C.7 InfographicVQA: Performing multiple discrete operations to find the answer. . 176

List of Tables

Table Page

1.1 Existing tasks that concern with understanding of text, natural images and doc-
ument images. 6

1.2 Where do our works fit in the existing tasks hierarchy in DIA ? 19

3.1 Statistics of the 1000 pages internal dataset. 55
3.2 Statistics of the new Mozhi dataset . 56
3.3 Recognition-only results on the validation splits of the internal dataset. 67
3.4 Recognition-only performance using CRNN on the test splits of the internal

dataset. 68
3.5 Performance of our page OCR pipelines compared to other public OCR tools . 70
3.6 Synthetic to real transfer learning results. 71
3.7 CRNN evaluation on Mozhi dataset. 73

4.1 DocVQA annotation instructions. 79
4.2 Results of different upper bounds and heuristic baselines 92
4.3 Results of Scene text VQA models on DocVQA dataset 93
4.4 Performance of BERT QA model on DocVQA. 94

5.1 Summary of VQA and Multimodal QA datasets where text on the images needs
to be read to answer questions. 99

5.2 Top 20 topics in InfographicVQA found using LDA. 106
5.3 Statistics of questions, answers, and OCR tokens in InfographicVQA and other

similar VQA datasets. 107
5.4 Results of heuristics, upper bounds and human performance evaluation on In-

fographicVQA. 117
5.5 Performance of different variants of the M4C on InfographicVQA 118
5.6 Performance of VLL-BERT on InfographicVQA. 119
5.7 Statistics of object detections on InfographicVQA. 121

6.1 HW-SQuAD and BenthamQA dataset statistics. 131
6.2 Top-5 accuracy for the document retriever when the aggregation scheme used

is SUM. 136

xv

LIST OF TABLES 1

6.3 Top-5 accuracy (%) for the document retriever when FV aggregation is used. . 137
6.4 Performance evaluation of end-to-end answer snippet extraction. 140
6.5 Performance of CRNN-based OCR on HW-SQuAD and BenthamQA. 143
6.6 Results of a TF–IDF-based document retriever on transcriptions of the docu-

ments in HW-SQuAD and BenthamQA. 144
6.7 Results of text-based full pipeline QA model. 145

Chapter 1

Introduction

What came first, documents or writing? Suzanne Briet, who is called ‘Madame Documen-
tation’ defines a document as ‘any concrete or symbolic indexical sign[indice], preserved or
recorded, towards the ends of representing, of reconstituting, or of proving a physical or intel-
lectual phenomenon.’ [1]. If we go by Briet’s definition, documents existed long before writing
systems were invented. According to recent studies, our species, and possibly Neanderthals,
started making non-figurative drawings in caves 64,000 years ago [2]. The next major develop-
ment in the history of documents is clay tablets engraved with pictograms and ideograms. The
Proto-Cunieform system that was used by the Mesopotamian civilization in around 3200 BCE
is a good example of this style of proto-writing. The symbols in proto-writing that represented
objects and abstract concepts were gradually replaced by symbols that correspond to sounds in
spoken language [3]. While the earliest documents were on rocks and clay or wooden tablets,
by the beginning of the Common Era(CE), documents in the form of parchments, papyrus, and
strolls were common. By 1500 CE, printing presses were a common sight in cities in western
Europe. The invention and quick spread of printing technology in Europe led to a printing
revolution [4]. This resulted in faster and broader knowledge sharing and played a crucial role
in the Renaissance and the scientific revolution.

Half a millennium since the printing revolution, documents continue to act as the primary
medium of knowledge dissemination. While we continue to create documents in digital and
physical forms, they are primarily made for human consumption. The documents in the physi-
cal medium can easily be made digitally accessible by converting them to digital images using
a scanner or other imaging devices. But neither these images of physical documents nor the
born-digital document images are machine readable—i.e., in a structured format that a com-
puter can readily process. Research on making images of documents machine readable has
come a long way, thanks to recent developments in supervised machine learning algorithms.
While there has been significant progress in independent information extraction tasks such as

1

recognizing printed text from document images and extracting regions of interest, research on
Artificial Intelligence (AI) that can facilitate a holistic, human-like understanding of document
images is in a nascent stage.

1.1 Scope

A document image can either be a digital image of a physical document or a born-digital
document in image format. Different from scene text images that are natural images—or im-
ages in the wild—that contain text, a document image predominantly contains a document.
The text on these images can either be unstructured text arranged in sentences and paragraphs
or structured text that is part of forms, tables, figures, or other visual elements that constitute
a document image. For example, in Figure 1.1a, there are i) text that makes up titles, and
headers, ii) a table where text is structured in rows and columns, ii) text appearing as sentences
or paragraphs, and iv) text used for labelling and annotating a figure.

Most document images created and shared today can be categorized into 4 types. The first
type is scanned images of paper documents used in offices. An example of this type is shown
in Figure 1.1a. Although the use of paper documents has been declining since the beginning of
this century 12, paper documents are still widely used in businesses. In 2020, nearly 100 million
metric tons of graphic papers were produced despite the slowdown caused by the COVID-19
pandemic [10]. The second category is document images created as a result of digitization
efforts aimed at preserving cultural heritage. Archival and historical documents are being
digitized in large amounts around the globe [11, 12, 13, 14, 15, 16]. An image of a manuscript
written by Jeremy Bentham that was digitized as part of the Transcribe Bentham [17] project
is shown in Figure 1.1d. Digitization options offered by smartphones are immense, and we
take photos of paper documents such as handwritten notes and receipts on a daily basis. These
images constitute the third category. An example of this type—a photograph of a printed
advertisement put up on a wall—is shown in Figure 1.1e. The fourth category is born-digital
document images such as visualisations, infographics, digital posters, and screenshots that
contain text and/or graphics. One such image is shown in Figure 1.1f. Every time we take a
screenshot of a tweet or a web page snippet, we create a document image. Although all social
media platforms offer options to share links, we find it often convenient to take screenshots for
quick sharing in our chats, social media stories, and statuses.

1https://www.statista.com/statistics/270317/production-volume-of-paper-by-type/
?_ga=2.204976272.1018593204.1622837058-191240632.1618425162

2https://www.statista.com/statistics/1241313/graphics-paper-production-worldwide/

2

https://www.statista.com/statistics/270317/production-volume-of-paper-by-type/?_ga=2.204976272.1018593204.1622837058-191240632.1618425162
https://www.statista.com/statistics/270317/production-volume-of-paper-by-type/?_ga=2.204976272.1018593204.1622837058-191240632.1618425162
https://www.statista.com/statistics/1241313/graphics-paper-production-worldwide/

(a) (b) (c)

(d) (e) (f)

Figure 1.1: Different types of document images. Images (a) and (b) are pages of a financial report

and a magazine, respectively. Image (c) shows a page from a Hindi book scanned using a flatbed

scanner. In (d) is a scanned manuscript from Bentham manuscripts collection. Shown in (e) is a photo

of an advertisement in Malayalam captured using a mobile phone camera and (f) shows a born-digital

infographic. All these images are taken from datasets created as part of our works. Images (a) and

(b) are a part of the DocVQA dataset [5]. Images (c), (d), (e) and (f) are part of IIIT Hindi 100 [6],

BenthamQA [7], IIIT-ILST [8] and InfographicVQA [9], respectively.

On the other hand, electronic documents, unlike the name suggests, are not readily machine-
readable. A majority of the electronic documents are in PDF format. Although PDF is the most
widely used format to create documents, the format does not preserve the logical structure
of the documents. Finding the reading order of a PDF document itself is non-trivial. Con-

3

sequently, analysis of a born-digital PDF (also called ‘native’ PDF) is nearly as difficult as
analysis of scanned PDF [18, 19].

1.2 Applications

With the explosive growth in the creation and dissemination of document images, and non-
machine readable electronic documents, the need for algorithms and systems that can read,
understand and analyze these documents is ever more imperative. Such solutions have many
applications, including some major ones we list below.

1. Searching and indexing. Reading—i.e., recognizing text tokens— on document images
would allow indexing, searching and retrieving of document images [20, 21]. For exam-
ple, such an application would allow a user easily find a particular invoice the user is
looking for from hundreds of photos of invoices stored in the user’s phone.

2. Automated data entry. Transforming data in document images to structured digital
formats can facilitate automatic data entry [22, 23, 24, 25]. For example, the manual
effort in entering details filled in a paper-based form into a database can be avoided if
there are robust text recognition and form understanding solutions.

3. Assistive systems. Recognizing text and converting data in document images into struc-
tured representations has applications in building assistive systems for visually impaired
people. OCR is essential for making non-native/scanned PDFs work with screen read-
ers [26, 27]. Similarly, many books, including textbooks and most of the historical mate-
rial being digitized are not accessible to the visually impaired since Braille or audiobooks
are not available for these books. With the help of reading systems developed for doc-
ument images and text-to-speech technology, it is possible to generate audiobooks for
these books with little or minimum human effort [28, 29, 30].

1.3 Machine understanding of images and text: existing tasks

and perspectives

Document Image Analysis (DIA) is a field of study that seeks to build algorithms and sys-
tems that can process and analyse document images. At the heart of DIA is developing AI

4

that can ‘understand’ document images as humans do. Since understanding a document im-
age involves reading and analysing text and interpreting the visual elements, the field of DIA
is closely related to Computer Vision (CV) and Natural Language Processing (NLP). In Ta-
ble 1.1, we list various tasks in NLP, CV, and DIA that are critical to ‘understanding’ of natural
language, natural images, and document images, respectively. We arrange the tasks in a 4-level
hierarchy reflective of the level of understanding involved in solving a task.

Level 1 tasks, in general, deal with assigning semantic labels or attributes to parts or whole
of the given data. In the case of the text (i.e., machine readable natural language text), these
tasks deal with assigning semantic labels to words, phrases, or sentences. Tasks such as Named
entity recognition [31], Part of speech tagging [32, 33], intent detection [34] and sentiment
analysis [35, 36] fall in this category. In the case of natural images and document images,
classification and localization tasks fall in this category. For example, image classification [37,
38, 39] and the task of locating and identifying visual objects [40, 41, 42] in natural images are
examples of level 1 tasks. Similar tasks in DIA deal with word or line detection [43, 44], text
recognition of cropped characters, words or lines [45, 46] and document layout analysis—the
problem of localizing and labelling different document sub-structures such as paragraph, title,
table and figure [47, 48].

Level 2 tasks model relationships between the atomic entities, and work at the level of
groups of these entities. In the case of text, level 2 tasks deal with inferring how two entities
in a piece of text are related. Examples include Relation prediction [71] and Coreference res-
olution [72, 73]. In the case of natural images, visual relationship detection [74] and action
recognition in still images [80, 81] are two tasks that involve modelling relationships between
objects and other semantic entities in natural images. In the case of document images, tasks
of this type include emotion recognition in comics using multimodal context [75], associating
related graphics and text elements in charts [77] and associating speech balloons with corre-
sponding speakers in comics [76].

Level 3 tasks across the three fields aim to i) generate a description/summary of the given
text/image in natural language or ii) convert the given image or text into a structured machine
readable form. In the case of natural language understanding, the most popular task that falls
under level 3 is text summarization [61]. Similarly, image captioning [66] and scene graph
generation [65] are examples of level 3 tasks for natural images. Tasks in DIA that aim to con-
vert various document substructures to machine readable form, such as Table to HTML [23],
Chart to raw table [70], and Form understanding [22, 69], are examples of level 3 tasks for
document images. Note that the text summarization task is nothing but asking an AI model
to write a summary of one or more documents. This task is inspired by the summary writing

5

Text Natural images Document images

Level 4

• purpose driven interpre-

tation of the data

• often require reason-

ing skills and external

knowledge

QA [49, 50, 51] , Dialogue systems [52, 53, 54] VQA [55, 56], Visual Dialogue [57] Chart VQA [58, 59], OCR-VQA [60]

Level 3

• model high-level seman-

tics

• generate a summary or

a structured representa-

tion for the whole

Summarization [61, 62, 63] Scene graph generation [64, 65],Image

captioning [66, 67]

Table recognition [68, 23], Form understand-

ing [22, 69] Chart to raw table [70]

Level 2

• model relations between

atomic entities

• identify groups, struc-

tures and relations

Relation prediction [71],Coreference resolution [72, 73] Visual relationship detection [74] Emotion recognition in comics [75], Text and

graphics association [76, 77]

Level 1

• Assign labels and at-

tributes

• Segment and recognize

NER [31], POS tagging [32, 33],Intent detection [34],

Sentiment analysis [35, 36]

Object detection & semantic segmenta-

tion [40, 42]

Layout analysis [47, 48], Text recognition [78,

46, 79]

Table 1.1: Existing tasks that concern with understanding of text, natural images and document
images.

6

exercises for school children. On the other hand, the image captioning task for natural images
is similar to the ‘show and tell‘ exercise commonly used in elementary schools.

The most distinguishing characteristic of level 4 tasks is the dynamic interpretation of given
data, conditioned on a requirement or a query set by a human user. A natural language question
or a dynamic requirement raised during a conversation between a human user and an intelligent
system dictates how the image or text needs to be analysed and what response needs to be re-
turned. Question Answering (QA) [49, 50] and Machine Reading Comprehension (MRC) [51]
for text and VQA on natural images [55, 56] are examples of level 4 tasks. Chart VQA [58, 59]
and VQA on book covers [60] are prior works that deal with VQA on document images. The
former is a VQA task for a limited number of standard charts such as bar charts, line plots, and
pie charts, and the latter deals exclusively with book covers. From a machine understanding
perspective, level 4 tasks that are most challenging are QA/VQA tasks that require reasoning
abilities [82, 83].

The advancement made in AI in recent years has primarily been driven by ‘deep learning’
that strives for better performance by employing bigger neural networks and large-scale data.
Two fields where AI using deep learning techniques have been utilized effectively are CV and
NLP. Following the success of AlexNet [84] for image classification, Convolutional Neural
Networks (CNN) was quickly adopted for almost every task that involves images. Similarly,
Recurrent Neural Networks (RNN)—particularly the Long Short Term Memory (LSTM) and
Gated Recurrent Unit (GRU) variants—emerged as the de facto choice for many sequence
learning problems such as speech recognition [85], handwriting recognition [86] and machine
translation [87, 88].

Deep learning-based approaches significantly improved performance for almost all tasks for
text and natural images that we list under level 1 and level 2 of the tasks hierarchy we discussed
above(see section 1.3). These results inspired researchers to attempt newer tasks—that fall
in level 3 and level 4 in the hierarchy—that aim for a high-level, human-like understanding
of text and images. Such tasks were largely unexplored or lacked large-scale datasets until
this period. Popular datasets for tasks such as Question Answering (QA), image captioning
and Visual Question Answering (VQA) were introduced around this time. The most widely
used dataset for image captioning—MS-COCO captions [89, 90], VQA V1 dataset [55] for
VQA, SQuAD [91] for Machine Reading Comprehension (MRC) and WikiQA dataset [92]
for open domain QA were all introduced during the 2015-16 period. Robust performance for
constituent lower-level tasks is indispensable for most of these higher-level tasks. For example,
almost every VQA [93, 94, 56] or captioning model [93, 66] makes use of a CNN pretrained
for image classification [95] or object detection model [96] in order to extract features from the
images.

7

Graves et al. [86] were the first to use an end-to-end neural network for unconstrained hand-
writing recognition. Their approach learns to map directly from handwritten text lines to a
sequence of characters without the need for explicit alignment between the characters in the im-
age and characters in the ground truth label sequence. This approach has then been adopted for
printed text recognition [97, 98, 99] and scene text recognition [100, 46] in multiple languages.
The success of CNN for CV tasks inspired the use of CNN-based methods for many similar
tasks in DIA, such as word image representation learning [101, 102], document image classifi-
cation [103, 104, 105], text detection [106] and layout analysis [47, 48]. Improved performance
for text recognition and detection, motivated researchers to study higher-level DIA problems
that deal with the machine readable representation of forms, tables and charts [70, 23, 22] (level
3 tasks as per the hierarchy we discuss in section 1.3). These tasks are aimed at extraction of
a machine readable representation and/or high-level understanding of only a certain document
sub-structure (a table, a form, or a chart) that the task is designed for. Similarly, in the case
of level 4 tasks concerning document images, both the tasks expect certain types of document
images—charts for chart VQA [58, 59] and book covers for OCR VQA [60]—as input and
the datasets contain template questions with limited diversity. In the case of OCR-VQA, the
questions are generated using metadata associated with the books, such as book title, author,
and book genre. Consequently, the questions do not demand reasoning over the visual, layout,
and graphical information on the images.

Document images like the ones shown in Figure 1.1a, Figure 1.1b, and Figure 1.1f are
complex multimodal manifestations of data and information. Human-like understanding of
these images is an AI-complete problem that goes beyond bottom-up tasks that deal with the
detection and recognition of text or visual elements in them. However, we believe that progress
made in solving the bottom-up tasks now permits us to explore problems that require a holis-
tic machine understanding of document images. On the other hand, even today, text recog-
nition from documents—the necessary first step to machine understanding—in low-resource
languages (e.g., Figure 1.1c and Figure 1.1e) and historical and/or handwritten documents
(e.g., Figure 1.1d) remains an open problem.

1.4 Motivation

In this section, the motivation behind the work done as part of this thesis is presented through
a conversation between the fictional detective character Sherlock Holmes and his associate Dr.
Watson.

8

221B Baker Street hardly had any visitors since the COVID lockdown. Except for delivery
riders of Deliveroo, Mrs. Hudson has not seen anyone going upstairs since the lockdown.
Homes found refuge in his Kindle and occasional violin serenade as the regular investigative
avenues are temporarily closed.

Holmes has been quite restless since last week. Mrs. Hudson noticed that cigar deliveries
are quite frequent. It all began with an email from Holmes’s friend, Byomkesh Bakshi. Mr.
Bakshi sent him details of a case he is after. The email included a link to a cloud drive full of
photographs and documents relevant to the case. A theatre artist and socialite named Maya
has gone missing in Kolkata. Mr. Baskshi believes her disappearance has something to do
with her grandmother’s writings. Her grandmother was a well-known folklore researcher. And
Ms. Maya had lately been reading her grandmother’s writing and had plans to make some of
the folklore stories into plays. Her friends, whom Mr. Bakshi talked to, felt that she was so
immersed in those stories that she started hallucinating that some of those folklore characters,
particularly ”yakshis” and djinns,” visited her at night. Holmes instantly developed an interest
in Maya’s case and started browsing through the documents Mr. Bakshi sent. However, they
were not in any particular order. Mr. Bakshi sent him a folder containing hundreds of PDFs,
scanned images, and photographs. Holmes suddenly remembered that Dr. Watson has been
doing online courses on computing and machine learning. He decided to seek his help and sent
the link to Dr. Watson.

It has almost been a week since the details were sent to Watson. Holmes could not make
any progress skimming through those documents. Impatient, at 3 in the morning, he lit another
cigar and pinged Watson on Discord.

HOLMES: Watson, any updates?

WATSON: I have already sent you a link to a web-based tool where you can search within
the documents and even ask questions about the content of the documents.

HOLMES: It is definitely helpful. However, it works only for a small percentage of the
documents that Mr. Bakshi sent me.

WATSON: Yes. Those are Ms. Maya’s notes she used to make online and some of her
blog posts. I have even run an OCR to convert some of the scanned PDFs to
electronic text. The results were pretty good. You can query them as well.

HOLMES: Alright! What about her journal? The drive includes photographs of pages
from her journal.

WATSON: I am working on those. Those are handwritten. The typical English OCRs
won’t work well. I am using a handwriting recognition model for it. The results
are ok. There are some errors, but you must be able to search for keywords.

9

HOLMES: If there is an OCR and handwriting recognition system, why are you not
OCRing other documents like those old family records and her grandmother’s di-
ary?

WATSON: Those family records are at least a hundred years old. They are in English,
but the documents are in a pretty bad state. The handwriting recognition systems
perform poorly on those.

HOLMES: You’ve got to do something, Watson. After all, you have been spending so
much money on ML courses. I consider you an ML wizard. It will be great if I
can query those family records. It is tedious to manually go through thousands of
those pages. What about the Question Answering model you were talking about?
Forget it! Can you at least help me find a tool that can locate the pages that might
be relevant to my queries.?

WATSON: I need to get those documents in an electronic (machine-readable) format us-
ing an OCR before you can query them. Let me see if I can build some sort of
retrieval system for those old documents.

HOLMES: But how is retrieval different from a QA system?. Both sound the same to me.

WATSON: Retrieval won’t get you an exact answer, like in the case of QA. It would
instead return a small set of documents that match your query.

HOLMES: Something is better than nothing.

The image of Holmes working on his laptop is created using an AI text-to-image tool hosted by hotpot.ai

10

HOLMES: The QA model would be of great help in going through those travel bills and
receipts. And the medical and labe reports as well. If I am not mistaken, an OCR
would yield near perfect results on those receipts and reports. I tested one of those
blood reports in an online demo of an OCR, and the result was perfect.

WATSON: I am using the BERT QA model. The reports and receipts have a lot of content
in the form of tables, diagrams, and forms. The QA system is made to handle only
text in the form of sentences. It cannot handle text in structured form in tables.

HOLMES: Ah, I did not know there was software by the name of a muppet. So this
muppet cannot do QA over the receipts and reports? I thought structured content
is easier for machines!There is something called VQA that enables you to ask
questions about images.

WATSON: Yes. In fact, one of my course assignments was to train a VQA model.

HOLMES: And it never occurred to you to train a VQA model for the reports and re-
ceipts? After all, they are images.

WATSON: There are no datasets that I can use to train a VQA model for images of doc-
uments. Additionally, I don’t think the VQA models would work out of the box
here. These are documents. VQA models typically work by identifying what
things and objects they see on the images and how they are related. They are
great for QA on photographs of things we see around us. The documents are quite
different. The documents carry tables, diagrams, photographs, and what not!

HOLMES: But you will never know. Why don’t you try to find a dataset and train on it?

WATSON: Yeah! That is the plan. I wish there was a dataset to train a VQA model on
images of documents.

HOLMES: By the way, I need help with those documents in Indian languages. There are
many newspapers, magazines, and books that are in Bengali, Urdu, and Malay-
alam. I was thinking of translating those to English so that I could go through
them.

WATSON: But they are scanned images! We need to first run an OCR and then translate.
But the free OCRs I tried for Malayalam and Urdu were not good. I thought of
training my own OCR models. But there is no data. Unlike English, these scripts
are complex. I need to do a bit of research for training OCRs for these languages.
Language technologies for non-Latin languages are yet to catch up with what we
have for English.

11

(a)

(b)

(c)

Figure 1.2: Challenges to DIA. On one hand, even machine-reading (detection and recognition of

text) can be challenging for i) handwritten or historical documents and documents that are degraded as

shown in (a), and ii) text in low-resource languages (we show some examples of printed documents in

low-resource languages in (b)). On the other hand, multimodal document images like the ones shown

in (c) remind us that machine-understanding of document images is a complex cognitive task that goes

far beyond machine-reading. All the image snippets shown in (a), (b) and (c) are from multiple datasets

that are used in works done as part of this thesis.

12

1.5 Challenges

In the below, we list challenges to DIA that are particularly critical to the works done as part
of this thesis.

1. Degradation and imaging artifacts. Document images are either images of physical
documents, and born-digital documents. Aging and degradation of physical documents
and artefacts induced during imaging pose challenges to DIA [107, 108]. The former is
common in historical documents, and the latter is prevalent in the case of images captured
using hand-held cameras and smartphones.

2. Handwriting recognition. The text on document images can be handwritten, typewrit-
ten, printed, or born-digital text. Text recognition of Latin-based languages is largely
solved except for handwriting recognition. Owing to large variations in handwriting,
offline handwriting recognition systems that are as good as printed OCRs are yet to be
developed. We show examples of historical and degraded documents and handwritten
text that are difficult to recognize in Figure 1.2a.

3. Multimodal understanding. In addition to text, document images contain tables, vi-
sualizations, natural images, graphical elements, and other visual cues. Understanding
document images is an AI-complete problem that goes beyond extracting machine read-
able representation of text and visual elements in the documents. In Figure 1.2b, we
show examples of complex multimodal document images such as pages of magazines
and infographics.

4. Skewed OCR development Since most of the documents are rich in text, recognizing
the text—extract text in machine readable form—is a critical requirement for making
these documents machine readable. Language technologies, including OCR for complex
scripts and text in low-resource languages, have traditionally been lagging behind [109].
In Figure 1.2c, we show snippets of documents in multiple Indian languages that fall
under more than 2 language families. Scripts of these languages vary widely, and many
inherent complexities of the script and language [110] make OCR of these languages dif-
ficult compared to English OCR. We believe the skewed development of text recognition
models is a significant challenge to universal access to DIA solutions.

13

1.6 Problem space

This thesis addresses problems in the space of machine understanding of document im-
ages. Note that we use the term machine understanding, not machine readable, as typically
used in literature. Gorman and Kasturi, in their 2002 book titled ‘Document Image Analy-
sis a Primer’ state that Document Image Analysis (DIA) refers to ‘algorithms and techniques
that are applied to images of documents to obtain a computer-readable descriptions from pixel
data’ [111]. This observation is in line with the conclusion we draw in section 1.3 that the
present-day DIA largely comprises bottom-up tasks designed to extract machine readable de-
scription of text and visual elements in document images.

What is the computer-readable or machine readable description for document images like
the ones shown in Figure 1.1a, Figure 1.1b or Figure 1.1f? Would recognizing the text in the
right reading order and extracting structured raw data presented in tables, tables, and plots yield
a computer-readable description of a document image? For example, in the case of Figure 1.1b,
we do not know how to convert the photographs and pictures in the image into a computer-
readable description. Similarly, we do not know how to preserve the layout of a document
image along with data, visual cues, and layout information so that the document in entirety
is machine readable. However, the primary objective of making a document image machine
readable is to make the machines read, see, and ultimately understand the images like humans
do. This is the reason why we consciously use the term ‘machine understanding’ in contrast to
‘machine reading’ as one of the stated objectives of the works reported in this thesis

machine understanding of document images is a vast problem space and our specific areas
of interest are listed below.

1. Making documents in low resource language machine-readable. One of the problems
we are interested in is development of OCRs to make printed documents in low resource
languages machine-readable. We want to investigate if data-driven, deep learning tech-
niques can be adopted for OCR of multiple low-resource languages without the need for
any script or language-specific modules.

2. Extracting intended information from document images. Earlier, we quoted Gor-
man and Kasturi, who define DIA as a field of study that builds algorithms for obtain-
ing computer-readable description from document images [111]. In the same book, the
authors state that ‘The objective of document image analysis is to recognize the text and
graphics components in images, and to extract the intended information as a human would.’.
Are the advancements made in solving various bottom-up DIA tasks equipping us to re-

14

alise the above-stated objective of DIA? This is one of the research questions we pursue
in this thesis.

3. Multimodal learning for document image understanding. A complex document im-
age can contain text—both unstructured and structured—, natural images, tables, visual-
izations, color schemes, and other visual cues organized in a particular layout. Therefore
machine understanding of document images is essentially a multimodal problem. In this
thesis, we would like to explore multimodal learning involving vision and language for
machine understanding of complex document images.

4. Information extraction from large document collections. Electronic libraries and
digitization projects have been digitizing large volumes of historical documents. Al-
though document retrieval and searching for keywords—both text-based search and key-
word spotting—on such collections are well-studied problems, obtaining specific infor-
mation from a large document collection is mostly unexplored. We study this problem,
particularly in the context of document collections where robust text recognition is diffi-
cult.

1.7 Our major contributions

Major contributions of this thesis are,

1. CTC-based transcription OCR for multiple low-resource languages. Inspired by the
success of CTC-based transcription for unconstrained text recognition, we use CTC-
based models for OCR of multiple Indian languages. We study the challenges to the
recognition of Indic scripts and investigate how segmentation-free recognition using
CTC helps to overcome many of these challenges. We empirically compare the per-
formance of four types of CTC-based text recognition models that differ in terms of fea-
ture extraction and sequence encoding. The results of this empirical study establish the
importance of using learnt features (as opposed to hand-crafted features) and language
modelling for text recognition. We also compare word-level and line-level recognition
models. We show that our text recognition models perform better than commercial OCR
solutions on our internal dataset for 8 out of the 13 languages when used for end-to-end
(i.e., document level) text recognition. This study is presented in chapter 3.

2. New public datasets for printed text recognition in Indian languages For the problem
of printed text recognition of the Indic languages, we introduce a new dataset called

15

OCR

Document layout analysis

Table understanding

“What is the centered heading on top?”
“CURRENCY USES”

“According to the pie chart what is the share of
economic development grants?”
 “$ 55”

DocVQA

Chart to raw table

 “How much is the sum of all the segments?”
 “1223”

“What is the share of economic development
grants?”
 “$ 55”

Chart VQA

Figure 1.3: DocVQA vs existing tasks in DIA. Existing tasks that work at the level of documents

detect and label text tokens, semantically meaningful groups of text and graphics, and visual elements

like tables and charts. These tasks do not require a holistic understanding of a document image in all

its details. Although there are high-level DIA tasks like Chart VQA and Table understanding that deal

with high-level human-like understanding of an image of a chart or a table, most document images like

the one shown here contain many document objects such as tables, plots and paragraphs within a single

image. One of the major contributions of this thesis is our work called DocVQA which introduces a

new task and dataset for VQA on generic document images like the one shown here.

‘Mozhi’ that has cropped word and line annotations for 13 Indian languages. The dataset
has more than 1.2 million annotated word images in total, making it the largest-ever
dataset for printed text recognition in Indian languages. Details of the dataset is presented
in chapter 3

3. Motivating purpose-driven DIA using Document Visual Question Answering. In sec-
tion 1.4, we note that existing tasks in DIA largely focus on solving various bottom-up
tasks like detection and recognition. Contrary to this mainstream paradigm, we motivate

16

a top-down approach to DIA by introducing new tasks that use question answering as a
proxy task to assess how well machines understand document images. Unlike chart VQA
or VQA for book covers (see subsection 2.5.2), the newly introduced tasks deal with QA
over generic document images, and the questions require reasoning over text, graphics,
layout, and other visual aspects of the document images. Under the umbrella theme of
‘Document Visual Question Answering (DocVQA), we introduce multiple VQA tasks
and datasets for document images and document image collections and organize a se-
ries of challenges and workshops in top computer vision and document analysis confer-
ences 3.

4. VQA on industry documents. We introduce DocVQA, a large scale dataset of 12,767
document images of varied types and content, over which we have defined 50,000 ques-
tions and answers. The questions defined are categorised based on their reasoning re-
quirements, allowing us to analyze how DocVQA methods fare for different question
types. We evaluate two strong baselines based on state-of-the-art MRC and VQA models
on the newly introduced dataset. Our baselines and initial results motivate the simulta-
neous use of visual and textual cues to answer questions on document images. DocVQA
dataset and experimental results are presented in chapter 4.

5. VQA on complex multimodal images. In order to motivate the research in machine
understanding of complex multimodal images, we propose a VQA task specifically for
infographics that are rich in the interplay of textual and visual information. We introduce
a new dataset for VQA on infographics, InfographicVQA, comprising 30,035 questions
over 5,485 images. Questions in the dataset include questions grounded on tables, fig-
ures, and visualizations and questions that require combining multiple cues. Since most
infographics contain numerical data, we collect questions that require elementary rea-
soning skills such as counting, sorting, and arithmetic operations. We believe our dataset
is ideal for benchmarking progress of algorithms at the meeting point of vision, lan-
guage, and document understanding. We propose a multimodal—vision, language, and
layout—BERT-like model, called VLL-BERT, for InfographicVQA. Although the pro-
posed approach performs better than strong baselines that were originally developed for
MRC or VQA on natural images, there exists a huge gap in performance compared to
the human performance on the dataset. InfographicVQA dataset and VLL-BERT are
presented in chapter 5.

3https://www.docvqa.org/

17

https://www.docvqa.org/

6. QA over document images collection. Similar to open domain QA in NLP/IR, we
motivate QA on a collection of document images. We particularly focus our interest on
collections of historical documents or manuscripts whose OCR transcription is difficult.
Since text-based QA models are not a viable option when OCR transcriptions are absent
or noisy, we propose a new QA scheme that returns image snippets as responses to the
questions/queries. We introduce new datasets for the task and put forward an evaluation
scheme for evaluating answers returned in the form of image snippets. We present a
retrieval-based solution for the new task by looking for snippets in the document col-
lection that contain words similar to the words in the question. The new task for QA
over document collection, the datasets, and the proposed recognition-free approach are
presented in chapter 6.

1.8 Re-evaluating thesis locus and contributions at the dawn

of an LLM era.

Recent years have witnessed the application of Transformer-based architectures to a wide
variety of tasks in NLP and CV. Large Language Models (LLMs) such as BERT [113] and
GPT [114] emerged as foundation models in NLP. Similarly, LayoutLM [115] is a foundation
model for document image analysis. LayoutLM extends BERT to document images by in-
corporating layout information in addition to textual information. LayoutLM is pretrained on
millions of document images without any extra annotations but only the OCR transcriptions
of the documents. These are called foundation models since such models pretrained in a self
supervised manner on a large scale, unlabelled data can be finetuned to perform multiple tasks.
For example, a pretrained BERT can be finetuned to perform sentiment analysis and extractive
QA. GPT-3 [116] is finetuned for tasks such as translation and abstractive QA. Similarly, the
pretrained LayoutLM is finetuned to perform multiple downstream tasks in DIA, such as doc-
ument image classification and invoice parsing. We used BERT as a text-only baseline for the
DocVQA dataset we propose (see subsection 4.3.3). The VLL-BERT model we propose for
VQA on infographics (see section 5.4) is inspired by LayoutLM architecture.

Different from foundation models like BERT and LayoutLM which are transformer encoder-
only models, models like GPT-3 and PALM [117] are capable of generating text in an auto-
regressive manner. What made LLM a buzzword is the recent popularity of their chatbot spin-
offs ChatGPT 4 and Bard 5, respectively. For example, ChatGPT is a GPT-3 that is trained

4https://openai.com/blog/chatgpt
5https://bard.google.com/

18

https://openai.com/blog/chatgpt
https://bard.google.com/

Existing DIA tasks Our works

Level 4

• purpose driven interpre-

tation of the data

• often require reason-

ing skills and external

knowledge

Chart VQA [58, 59], OCR-VQA [60] DocVQA [5], InfographicVQA [9], Hanwdwritten document collec-

tion QA [7]

Level 1

• Assign labels and at-

tributes

• Segment and recognize

वापस हमारे

Layout analysis [47, 48], Text recog-

nition [78, 46, 79]

Printed text recognition of Indic languages [112]

Table 1.2: Where do our works fit in the existing tasks hierarchy in DIA ? Our works on OCR of

Indic languages fall in level 1 of the hierarchy we discuss in Table 1.1. Lack of resources and challenges

in the input and labels space make OCR for Indic languages challenging and we address these challenges

in our work [6, 112]. Existing QA/VQA tasks (level 4) in DIA focus on specific document entities such

as charts [58, 59] or focus on textual content, as in the case of book cover VQA [60]. In contrast, our

single document VQA tasks [5, 9] require multimodal reasoning and holistic document understanding.

Our work on handwritten document collection QA [7] studies information retrieval from document

collections where text recognition and text-based information retrieval are not an option.

further using Reinforcement Learning from Human Feedback (RLHF). Unlike the application
specific chatbots that existed before, ChatGPT can be used in a variety of contexts and can be
used as a plug-and-play module for a variety of applications. For example chatPDF 6 is an ap-
plication built using chatGPT API that allows users to ask questions based on PDFs. Similarly,
there are ChatGPT-based tools for creating PPTs 7 and code review 8. Although the works done
as part of this thesis were carried out before the introduction of these groundbreaking chatbots,

6https://www.chatpdf.com/
7https://slidesgpt.com/
8https://github.com/anc95/ChatGPT-CodeReview

19

https://www.chatpdf.com/
https://slidesgpt.com/
https://github.com/anc95/ChatGPT-CodeReview

we believe it is important to re-evaluate the positioning and contributions of this thesis in light
of these new developments.

In the below, we note down how the thesis contributions align with a new AI paradigm that
LLMs open up.

1. Contributing to data-readiness for LLMs. ChatGPT like agents allow us to mine
information from the electronic documents, ask questions based on the data available
and engage with the information in a multitude of ways. However, the engagement is
possible only if the data is machine-readable. For example, the ChatPDF application
we mentioned above can only converse with native PDFs. In the LLM era, we believe
AI-readiness is an important aspect and building OCRs for low resource languages is a
critical component of it. Developing OCRs for documents printed in low resource lan-
guages make it possible to leverage capabilities of ChatGPT like chatbots for information
extraction from scanned document images in these languages.

2. New benchmarks for the LLM era. ChatGPT like chatbots are pushing the limits of
AI. As we discussed in section 1.3, at the core of this pursuit is to make AI understand
text and images as humans do. Benchmarks that help us to evaluate how well the AI
systems understand multimodal content is thus necessary. Since document images are
inherently multimodal, benchmarks that evaluate machine-understanding of document
images serve as an excellent test bed for large multimodal foundation models. We be-
lieve the two multimodal document image VQA datasets that we introduce—DocVQA
and InfographicVQA—suit the requirement. The two datasets have emerged as popular
benchmark datasets for evaluating machine understanding of visually rich documents.
For example, Multimodal LLM (MLLM), GPT-4 9, benchmarks the model’s multimodal
capabilities on both DocVQA and InfographicVQA datasets. Similarly, another MLLM
called ChatSpot [118] makes use of DocVQA dataset for instruction tuning the model.

3. Leveraging chain-of-thought prompting for complex multimodal reasoning. Ex-
tracting information from infographics often requires combining multiple modalities and
multiple parts of images and performing discrete arithmetic or logical operations on in-
termediate results. We believe the questions in InfographicVQA are suitable to hone
chain of thought prompting [119] for training large multimodal models.

9https://openai.com/research/gpt-4

20

https://openai.com/research/gpt-4

1.9 Thesis outline

The thesis is divided into 7 chapters, as given below

• In chapter 1 we discuss the motivation and scope of the thesis and briefly outline our
problem space and our areas of interest.

• In chapter 2, we present a summary of the related works from DIA, CV and NLP space.

• In chapter 3, we present our work dealing with printed text recognition of Indic lan-
guages. We present an empirical study of various end-to-end deep learning networks
for segmentation-free text recognition in 13 Indic languages and introduce new public
datasets for the languages that are part of the study.

• In chapter 4, we present our work that proposes a new purpose-driven DIA task called
DocVQA that involves VQA on document images. We introduce a new dataset for the
task, and report results using multiple strong baselines.

• In chapter 5, we present our work that proposes a VQA task, called InfographicVQA,
aimed at machine understanding of infographics that are rich in multimodal content. We
propose a transformer-based extractive VQA model that jointly reasons over multimodal
input—visual features, text and layout—for the newly introduced task.

• In chapter 6, we present our work on question answering on document collections. We
introduce a new QA task that returns image snippets as answers and proposes a retrieval-
based, recognition-free approach for the newly introduced task. We demonstrate that the
proposed approach can be an effective alternative to recognition-based QA models when
robust text recognition from document images is difficult.

• In chapter 7, we present our conclusions and future directions.

21

1.10 Publications

Works discussed in this thesis have previously been presented as part of the following pub-
lications.

Journal publications:

• Minesh Mathew, Lluis Gomez, Dimosthenis Karatzas, Ernest Valveny and CV Jawa-
har - Asking Questions on Handwritten Document Collections, International Journal of
Document Analysis and Recognition (IJDAR) , ICDAR-IJDAR special issue, 2021

Conference publications:

• Minesh Mathew, Dimosthenis Karatzas and CV Jawahar - DOCVQA: A dataset for
VQA on document images, IEEE/CVF Winter Conference on Applications of Computer
Vision (WACV) 2021

• Minesh Mathew, Viraj Bagal, Ruben Tito, Dimosthenis Karatzas, Ernest Valveny and
CV Jawahar - InfographicVQA, IEEE/CVF Winter Conference on Applications of Com-
puter Vision (WACV) 2022

arXiv technical reports

• Minesh Mathew, and CV Jawahar - An empirical study of CTC based models for OCR
of Indian languages - arXiv:2205.06740 - 2022

Other publications that are not part of this thesis

Conference publications:

• Minesh Mathew, Ajeet Kumar Singh and CV Jawahar - Multilingual OCR for Indic
scripts , IAPR International Workshop on Document Analysis Systems (DAS) 2016

• Mohit Jain, Minesh Mathew and CV Jawahar - Unconstrained OCR for Urdu using deep
CNN-RNN hybrid networks, Asian Conference on Pattern Recognition (ACPR) 2017

• Kartik Dutta, Praveen Krishnan, Minesh Mathew and CV Jawahar - Towards accurate
handwritten word recognition for Hindi and Bangla, National Conference on Computer
Vision, Pattern Recognition, Image Processing, and Graphics (NCVPRIPG) 2017

22

• Kartik Dutta, Praveen Krishnan, Minesh Mathew and CV Jawahar - Offline handwriting
recognition on Devanagari using a new benchmark dataset, IAPR International Work-
shop on Document Analysis Systems (DAS) 2018

• Kartik Dutta, Praveen Krishnan, Minesh Mathew and CV Jawahar - Improving CNN-
RNN hybrid networks for handwriting recognition, International Conference on Fron-
tiers in Handwriting Recognition (ICFHR) 2018

• Kartik Dutta, Praveen Krishnan, Minesh Mathew and CV Jawahar - Towards spotting
and recognition of handwritten words in indic scripts, International Conference on Fron-
tiers in Handwriting Recognition (ICFHR) 2018

• Kartik Dutta, Minesh Mathew, Praveen Krishnan and CV Jawahar - Localizing and
recognizing text in lecture videos, International Conference on Frontiers in Handwriting
Recognition (ICFHR) 2018

• Deepayan Das, Jerin Philip, Minesh Mathew and CV Jawahar - A cost efficient ap-
proach to correct OCR errors in large document collections, International Conference
on Document Analysis and Recognition (ICDAR) 2019

• Sangeeth Reddy, Minesh Mathew, Lluis Gomez, Marcal Rusinol, Dimosthenis Karatzas
and CV Jawahar - Roadtext-1k: Text detection & recognition dataset for driving videos,
International Conference on Robotics and Automation (ICRA) 2020

• Yash Khare , Viraj Bagal, Minesh Mathew, Adithi Devi, U Deva Priyakumar and CV
Jawahar - MMBERT: multimodal BERT pretraining for improved medical VQA, Inter-
national Symposium Biomedical Imaging (ISBI) 2021

• Sergi Garcia Bordils, George Tom, Sangeeth Reddy, Minesh Mathew, Marçal Rusiñol,
CV Jawahar and Dimosthenis Karatzas - Read While You Drive-Multilingual Text Track-
ing on the Road, IAPR International Workshop on Document Analysis Systems (DAS)
2022

• Soumya Jahagirdar, Minesh Mathew, Dimosthenis Karatzas and CV Jawahar - Watching
the News: Towards VideoQA Models that can Read, IEEE/CVF Winter Conference on
Applications of Computer Vision (WACV) 2023

• George Tom, Minesh Mathew, Sergi Garcia Bordils, Dimosthenis Karatzas and CV
Jawahar - Reading Between the Lanes: Text VideoQA on the Road, International Con-
ference on Document Analysis and Recognition (ICDAR) 2023

23

Workshop publications

• Minesh Mathew, Mohit Jain and CV Jawahar - Benchmarking scene text recognition in
Devanagari, Telugu and Malayalam, Multilingual OCR (MOCR) Workshop, Interna-
tional Conference on Document Analysis and Recognition (ICDAR) 2017

• Vinitha VS, Minesh Mathew and CV Jawahar - An Empirical Study of Effectiveness of
Post-processing in Indic Scripts, Multilingual OCR (MOCR) Workshop, International
Conference on Document Analysis and Recognition (ICDAR) 2017

• Mohit Jain, Minesh Mathew and CV Jawahar - Unconstrained scene text and video text
recognition for arabic script, International Workshop on Arabic Script Analysis and
Recognition (ASAR) 2017

Challenge reports:

• Ali Furkan Biten, Ruben Tito, Andres Mafla, Lluis Gomez, Marçal Rusinol, Minesh
Mathew, CV Jawahar, Ernest Valveny, Dimosthenis Karatzas - ICDAR 2019 Competi-
tion on Scene Text Visual Question Answering, International Conference on Document
Analysis and Recognition (ICDAR) 2019

• Minesh Mathew, Ruben Tito, Dimosthenis Karatzas, R Manmatha and CV Jawahar -
Document visual question answering challenge 2020, IAPR International Workshop on
Document Analysis Systems (DAS) short paper 2020

• Ruben Tito*, Minesh Mathew*, Dimosthenis Karatzas, R Manmatha and CV Jawahar
- ICDAR 2021 competition on Document Visual Question Answering, International Con-
ference on Document Analysis and Recognition (ICDAR) 2021; [* - equal contribution]

• George Tom, Minesh Mathew, Dimosthenis Karatzas and CV Jawahar - ICDAR 2023
Competition on RoadText Video Text Detection, Tracking and Recognition, International
Conference on Document Analysis and Recognition (ICDAR) 2023

24

Chapter 2

Background

In this section, we briefly summarize literature from DIA, CV and NLP that are related to
the works done as part of the thesis.

2.1 Text recognition in the deep learning era

Text recognition is the problem of recognizing text—extracting machine-readable text—
from a word or line image. Traditional text recognition approaches typically involved segmen-
tation of word or line images into patches of symbols, extracting hand-crafted features from
the patches and symbol-level classifiers. Feature engineering for such models usually depends
on the script in which the text is written and text-modality—printed, handwritten, or scene
text. Such modular approaches resulted in the compounding of errors. Additionally, the use
of language or text-modality-specific feature engineering prevented the development of robust
models for different types of text modalities and languages.

The key characteristics of text recognition methods developed during the deep learning era
are i) the use of CNNs for feature learning and ii) the use of RNNs for modelling intra-word
or intra-line relationships. The former avoided the need for feature engineering, and the latter
enabled us to do unconstrained text recognition—i.e, the set of possible words that need to be
recognized are not limited by a fixed vocabulary—without the need for sub-word or sub-line
segmentation. Below, we discuss notable developments during this period.

2.1.1 Feature learning using CNNs.

Feature learning using CNNs is part of almost all of the text recognition approaches pro-
posed since the onset of deep learning. Early text recognition works using CNN used it to

25

CNN CNN

0 00 vis
ion

zyu
gan

ov
zzz

CNN CNN

0 1 s y z
∅

a i is ion

NGRAM
CNN

CHAR-SEQ
CNN

 CRF

(a) (b) (c) (d) (e)

36 labels 90K words

vis

10K n-grams

v

n

i

0

37
lab

els

23 character positions

Figure 2.1: Character and word classification using CNN. A CNN-based character or symbol classi-

fier, as used in many of the early text recognition works that use a CNN [121], is shown in (a). Others

are different models proposed by Jaderberg et al. [124, 125] for whole word recognition. (b) is a

multi-class classification model for words. (c) shows a network that has different classification heads

corresponding to different character positions within the image. (d) shows a CNN that is used in a

multi-label classification setting. It is trained to detect whether the text in the given word image has any

of the predefined n-grams. Once the presence of certain n-grams is detected using the model, the word

with the nearest—in terms of Euclidean distance—n-gram encoding is picked from a lexicon. In (e),

models shown in (c) and (d) are combined using a CRF.

learn features of individual characters or digits. One of the earliest CNN that was proposed
in the literature, called LeNet-5 [120], is a network that was made for recognizing digits. By
2010, many works were introduced that use a CNN for the classification of isolated charac-
ters or digits [121, 122, 123]. A schematic of CNN-based classifier used for character image
classification is shown in Figure 2.1(a).

In contrast to the early works that use a bottom-up approach to word recognition (i.e., pre-
dictions are made at the character level, and these predictions are further used to derive a word
level transcription), later works follow a top-down approach. In the top-down approach, char-
acter patches are not separated out to recognize text in a given word image. Instead, input to
the CNN-based classifier is an image of a word. Jaderberg et al. [124] proposed three different
encoding schemes to model the output space when the input to the CNN is a word image. In
the first encoding scheme, text recognition is modelled as a multi-class classification problem
(see Figure 2.1(b)). The classes are 90K words drawn from a fixed vocabulary. In the second
approach, the last fully-connected layer of a CNN is connected to 23 separate classification
heads, each having 36 output units corresponding to 26 English characters, 10 digits, and a
‘null’ (∅) class. The null class corresponds to the case where no character needs to be emit-
ted. The 23 classification heads independently predict the probability of a label at a particular
position in the word. Authors call this approach ‘CHAR CNN’. In the third scheme called,
‘NGRAM CNN’, units in the final classification layer correspond to a fixed set of n-grams.

26

Activations at the classification layer are thresholded to binary activations indicating the pres-
ence or absence of any of the n-grams in the word image. Two types of decoding shall be
used to arrive at the target word from the final binary activation vector. In the naive decoding,
the word in fixed size lexicon with the nearest n-gram encoding is found. An alternative, that
yielded comparable results to the naive decoding, was a linear Support Vector Machine (SVM)
that was trained to map from the n-gram encoding to the lexicon. In a later work, authors pro-
posed a new model that combines a CHAR CNN and an NGRAM CNN using a Conditional
Random Field (CRF) [125]. The unary potentials of the CRF are provided by the CHAR-
CNN, and the NGRAM CNN provides the higher order terms. The character predictions are
position-dependent, while the n-gram predictions are not. The objective here is to maximize
the CRF score, preserving the consistency of the positional order of the character predictions.
Network parameters of both the CHAR CNN and the NGRAM CNN are jointly optimized by
minimizing a structured output loss modelled by the CRF.

The above approaches that use a CNN for whole word recognition report results on stan-
dard scene text benchmarks without using any dataset-specific lexicon. This marked a shift
from most of the earlier approaches that relied on dataset-specific lexicons to make the final
prediction. The multi-class classification model that uses a large (90K words) lexicon yields
the best results among the 4 different schemes. However, this method cannot recognize a word
that is not in the 90K lexicon. The same is the case with the NGRAM CNN since it needs
a lexicon (the same 90K lexicon is used) to derive a target word from the n-grams that the
network predicted as being present in the given word image. The CHAR CNN and the joint
model are capable of unconstrained recognition, since they are not bound by a lexicon. These
models can recognize words of length up to a max length of 23 characters.

2.1.2 Text recognition as a structured prediction using RNNs

Structured output problems are a class of problems where the output is not a class label
or a number but an object, like a sequence, that possesses an inherent structure [126]. In
most cases, both the input and output possess a structure, and these structures are somehow
related. Typically, the objective in such problems is to model the structures in both the input
and output domain and to find a mapping from the input to the output. For example, many
popular problems in NLP, such as Machine Translation (MT), Automatic Speech Recognition
(ASR) and Text to Speech (TTS) are structured prediction problems. The input and output in
all these problems have a sequential structure.

Recognizing text on a word or a line image is a sequence-to-sequence (seq2seq) structured
prediction problem. A sequence of image features from the word or line image needs to be

27

mapped to a sequence of character labels or Unicode points. The sequential nature of the text
recognition motivated researchers to make use of RNNs for modelling the features extracted
from the word or line image. RNN-based text recognition models in the literature generally fall
into two categories: models that use Connectionist Temporal Classification (CTC) and those
that follow an encoder-decoder architecture.

2.1.2.1 CTC-based text recognition

Standard loss functions used with neural networks require a target label for each input in-
stance to compute the loss. Such loss functions are not suitable for seq2seq problems where
input and output sequences are not aligned. Graves et al. proposed the CTC algorithm [85] that
allows learning a mapping from an input sequence of features to an output sequence of class
labels without explicit alignment between the two sequences. Seq2seq models using CTC
typically comprise three modules: i) a feature extraction block, ii) a neural network—most of-
ten an RNN is used—that outputs a probability distribution over output classes for each input
instance—and iii) CTC transcription.

Graves et al. [86] were the first to use CTC for the problem of text recognition. They
showed that a bi-directional LSTM (BLSTM) network could be trained end-to-end to map
from a sequence of features to a sequence of English characters using CTC. A schematic of
this approach is shown in Figure 2.2a. This approach improves word accuracy for offline
handwriting recognition on the IAM dataset from 64.5% to 74.1%, over a Hidden Markov
Model(HMM)-based model.

The CTC-based transcription approach was then adapted for printed text recognition in mul-
tiple languages, such as Indic languages [97, 99, 110, 127] and Fraktur [98]. The fact that the
CTC-based approach does not require sub-line segmentation has been hugely beneficial for
scripts like Indic scripts and Arabic, where segmenting word or line images to isolated sym-
bols is a challenging task [110]. In [100], authors employed a similar approach for scene text
recognition, using gradient-based features extracted from scene text word images in a sliding
window manner.

A novel approach combining a CNN for feature learning and an RNN for sequence mod-
elling was introduced in [46]. This hybrid network called CRNN, is end-to-end trainable using
CTC. This approach is shown in Figure 2.2b. Since the RNN expects a sequence of fixed-size
vectors, the 3D feature maps from the CNN need to be mapped to a sequence of features. In
CRNN, this is achieved by adjusting pooling window sizes so that the height of the feature map
eventually becomes 1.

28

(a)

...

Convolutional
Layers

...

Recurrent
Layers

- s - t - a a t t e

"state"
Transcription

Layer

Input image

Convolutional
feature maps

Convolutional
feature maps

Feature
sequence

Deep
bidirectional
LSTM

Per-frame
predictions
(disbritutions)

Predicted
sequence

......

......

...

...

(b)

Figure 2.2: CTC for Image to text OCR transcription. On the left is A BLSTM + CTC network that

Graves et al. [86] proposed for offline handwriting recognition. This approach uses handcrafted features

extracted from the handwritten line image in a sliding window manner. Shown on the right is a hybrid

CNN-RNN network proposed by Shi et al. [46] which is trained end-to-end using CTC to generate text

transcription directly from the given input image. The figure on the left is from [86] and the figure on

the right is from [46]

2.1.2.2 Encoder-Decoder Networks for text recognition

Encoder-decoder neural networks became popular with the success of using them for ma-
chine translation [87, 88]. In the case of a naive encoder-decoder network that uses an RNN
at both the encoder and decoder, the encoder compresses the entire input sequence into a fixed
dimensional context vector. When used for machine translation, it compresses the source sen-
tence into a fixed-size vector, irrespective of the length of the sentence or the amount of infor-
mation present in it. In addition to this, in the case of structured input, the structure is lost once
the input is encoded. These two drawbacks of naive encoder-decoder networks are addressed
by introducing an attention mechanism between the encoder and decoder. Here a single context
vector is replaced by a set of context vectors. Each vector corresponds to a particular spatial,
temporal, or spatio-temporal location of the input. During training, the attention model learns

29

R

R

A

y1

<sow>

R

R

A

R

R

A

R

R

A

<eow>

Recursive conv1

Recursive conv2

Recursive conv3

Recursive conv4

Attention
modeling

Fully connected5
Fully connected6

Im
ag

e
Fe

at
ur

e
Ex

tra
ct

io
n

C
ha

ra
ct

er
-le

ve
l L

an
gu

ag
e

M
od

el
in

g
y2 y3

y1 y2 yN-1

(a)

GRU

Map-to-sequence

Decoder

Encoder

BLSTM

ConvNet

Input image

GRU GRU GRU GRU

<EOS>'N''O''O''M'

Attend

(b)

Figure 2.3: Encoder-decoder style models proposed for unconstrained scene text recognition. (a)

is an image captioning style network named R2AM proposed in [129] where the encoder is a recursive

CNN and the decoder is a bi-directional LSTM . Another model called RARE proposed in [130] is

shown in (b). It uses a CNN and bidirectional-LSTM as the encoder and a GRU at the decoder. The

figures (a) and (b) are from [129] and [130], respectively.

how relevant each ‘part’ of the input is for each output. This is achieved by learning a set of
attention weights [128].

For scene text recognition, Lee et al. [129] proposed an encoder-decoder network that uses
a CNN encoder and an RNN decoder. This approach can be interpreted as a conditional RNN
language model (RNN-LM). Character level RNN-LM models the conditional probability of
the next character, provided the previous characters. Such a model shall also be used to gener-
ate text. Lee et al. use an RNN-LM where the text generation is conditioned on image features
extracted from a scene text word image. They use a CNN to learn the image features. The
authors demonstrate multiple ways in which the image features shall be fed to the RNN. The
best-performing model, called R2AM, feeds the image features through an attention mecha-
nism to the second layer of a two-layer RNN-LM at all time-steps. We show this architecture

30

in Figure 2.3a. In RARE [130], the encoder-decoder framework for scene text recognition uses
a CNN and a bi-directional RNN at the encoder side. The decoder is a single layer RNN-LM
that generates a sequence of characters conditioned on the output from the encoder, aided by
an attention mechanism. A schematic of this model is shown figure Figure 2.3b.

2.1.2.3 Multidimensional RNN

Graves et al. [131] proposed the multi-dimensional RNN (MDRNN) [131] that can model
dependencies in more than one spatio-temporal dimension. Although MDRNN has been proven
successful for text recognition tasks [132], a later study by Puigcerver argued that computa-
tionally expensive MDRNNs are not essential for obtaining similar performances [133]. He
showed that the features extracted by MDRNN layers are visually similar to those extracted by
a CNN. He further argues that two-dimensional long-term dependencies that are modelled by
MDRNN layers may not be essential for the problem of text recognition.

2.2 Question Answering for electronic text

Our works that deal with question answering on document images are related to tasks that
deal with question answering for unstructured electronic text. In this section, we discuss major
tasks, datasets, and methods used for QA for electronic text. Depending on whether the ques-
tions are asked given a specific context of one or a few passages or not, there are two types of
QA tasks: Machine Reading Comprehension and Open-domain QA.

2.2.1 Machine Reading Comprehension (MRC)

In MRC, the task is to answer a natural language question given a passage as the context.
Although early works in MRC go back to the late 1970s, MRC tasks gained momentum in
the latter half of the last decade. The success of deep learning for a wide variety of NLP
tasks and the introduction of multiple large-scale datasets such as SQuAD 1.1 [91] and MS-
MARCO [134] gave a fillip to research in MRC. Liu et al. [51], who review the early develop-
ments in the MRC space, observe that there is a 10-fold increase in the number of publications
related to MRC in top conferences and journals during the 2015-18 period. MRC in SQuAD is
formulated as an extractive task—i.e., the answer is extracted as a span from the given passage.
In Figure 2.4, we show example QA pairs in SQuAD 1.1 dataset. On the other hand, in datasets

31

like MS-MARCO [134], MRC is an abstractive task where the answer needs to be generated,
not extracted.

Transformer [135]-based architectures like BERT [113] and XLNet [136] that capitalize on
large-scale pretraining report performance surpassing human performance on extractive MRC
benchmarks like SQuAD 1.1 [91]. Below, we discuss the BERT architecture and how it is
pretrained and finetuned for MRC.

2.2.1.1 BERT for QA/MRC

Bidirectional Encoder Representations from Transformer (BERT) is a method of pretraining
language representations from unlabelled text using transformers. These pretrained models can
then be used for downstream tasks by using an output head suitable for the task at hand. In

Figure 2.4: Extractive MRC task in SQuAD1.1. An example passage in the SQuAD 1.1 dataset and

QA pairs annotated on the passage. The task is an extractive QA task since the answer to any question

in the dataset is a span—a sequence of continuous text tokens–from the respective passage. The figure

is from [91]

32

the case of extractive QA, this is an output layer that predicts the start and end indices of the
answer.

BERT’s model architecture is essentially a bidirectional transformer encoder. In the origi-
nal work, they work with two configurations of the architecture: BERTBASE and BERTLARGE.
BERTBASE has 12 transformer blocks in the encoder and the hidden size is 768. The total num-
ber of parameters in it is 110M. BERTLARGE has 24 Transformer blocks and a hidden size of
1024. This variant has 340M parameters.

Input to BERT is a sequence of text tokens. A tokenizer based on the word piece model [137]
is used. Every input sequence starts with a special [CLS] token. In the case of tasks where there
is more than one type of sequence, a special [SEP] token is used to separate the two sequences.
For example, in the case of MRC, the sequence of tokens from the question is separated from
the sequence of tokens from the passage using the [SEP] token. The two sequences are also
differentiated by adding a learnt segment embedding. For example, in the case of MRC, all
the question tokens will have a segment embedding different from the segment embedding for
tokens in the passage. The information about the position of a token in the sequence is fed to
the model using a learnt position embedding. Thus, each token in the input sequence is the
sum of the token embedding, segment embedding, and position embedding.

BERT has two training stages. In the pretraining stage, the model is trained on large amounts
of language data that do not have any extra annotations. Two pretraining tasks are used in
BERT. The first pretraining task is called ‘Masked LM’. In this task, some of the tokens in the
input sequence are masked and the model is made to predict the masked tokens. In the second
pretraining task, input has a pair of sequences, each separated by a [SEP] token. The task is
to predict if the second sequence is a continuation of the first in the pretraining corpus. For

[CLS] he likes play ##ing [SEP]my dog is cute [SEP]Input

E[CLS] Ehe Elikes Eplay E##ing E[SEP]Emy Edog Eis Ecute E[SEP]
Token
Embeddings

EA EB EB EB EB EBEA EA EA EA EA
Segment
Embeddings

E0 E6 E7 E8 E9 E10E1 E2 E3 E4 E5
Position
Embeddings

Figure 2.5: Embeddings used in BERT. The input sequence is tokenized using Word piece [137]

tokenizer. Each input token is represented by the sum of its token embedding, segment embedding, and

position embedding. The figure is from [113]

33

BERT BERT

E[CLS] E1 E[SEP]... EN E1’ ... EM’

C T1 T[SEP]... TN T1’ ... TM’

[CLS] Tok 1 [SEP]... Tok N Tok 1 ... TokM

Question Paragraph

Start/End Span

BERT

E[CLS] E1 E[SEP]... EN E1’ ... EM’

C T1 T[SEP]... TN T1’ ... TM’

[CLS] Tok 1 [SEP]... Tok N Tok 1 ... TokM

Masked Sentence A Masked Sentence B

Pre-training Fine-Tuning

NSP Mask LM Mask LM

Unlabeled Sentence A and B Pair

SQuAD

Question Answer Pair

NERMNLI

Figure 2.6: Pretraining and finetuning stages of BERT. During pretraining, the Transformer encoder

block is trained on tasks such as Masked Language Modelling (MLM) and Next Sentence Prediction

(NSP). The pretrained model is then finetuned separately for each of the downstream tasks. Shown here

is the finetuning for the MRC on SQuAD1.1, where the output layer is modified to predict the start and

end tokens of the answer span. The figure is from [113]

example, if you think in terms of linguistic sentences, this task makes the model predict if the
second sentence follows the first in the training corpus or not. Therefore this task is called
‘Next Sentence Prediction’ (NSP) in the original work.

The second stage of the BERT training is the finetuning stage. In this stage, the pretrained
BERT is trained in a supervised manner for the downstream task at hand. For MRC, input
comprises two sequences—question tokens and tokens from the passage—separated by a [SEP]
token. The output head for MRC acts as a span classifier. This head has two learnable weight
vectors, S and E, for start and end tokens of the span, respectively. Both vectors have the same
size as the hidden size of the model.

At the time of finetuning for the MRC, dot product Ti ·S is computed for each of the tokens,
where Ti is the final hidden vector for the token at position i. Softmax normalization is applied
to the dot product values for all the Tis yielding a probability vector where the value at position
i in the vector is the probability of token at position i being the start token of the answer span.
Using the ground truth information, cross entropy between the probability vector and a one-hot
vector— indicating which token is the actual start token—is calculated. Cross-entropy for the
end token is also computed similarly. The training objective is to minimize the sum of the two
cross-entropies.

At the time of inference, we pick tokens at positions i and j that maximize Ti · S + Tj ·
E for j > i, as the start and end tokens of the answer span, respectively.

34

Q: How many of Warsaw's inhabitants  
spoke Polish in 1933?

Document
Reader

833,500
Document
Retriever

Wikipedia

Open-domain QA  
SQuAD, TREC, WebQuestions, WikiMovies

Figure 2.7: Two-stage pipeline for open domain QA Chen et al. [138] proposed a two-stage pipeline

for open-domain QA. In the first stage, a TF-IDF-based ranked retrieval is used to retrieve a few docu-

ments (usually 5 or 10) that are most relevant to the question being asked. In the second stage, authors

employ an extractive MRC model that uses an LSTM-based network as proposed in [139]. The figure

is from [138]

2.2.2 Open domain QA

We have seen that MRC is a QA task where the questions are based on a specific context,
usually one or a few passages. On the other hand, open domain QA, as the name suggests,
involves QA where no specific context is given. In most cases, open domain QA is modelled
as a task wherein the question’s answer needs to be found from a large electronic document
collection, say the entire Wikipedia.

Existing solutions to open domain QA typically follows a two-stage solution. In the first
stage, documents that are relevant to the question are retrieved from the document collection.
This stage is usually called ‘Document Retriever’. In the second stage, a ‘Document Reader’
returns a textual answer using the retrieved documents as context. IR-based document retrieval
techniques that do not involve any machine learning are typically used in the retriever stage.
For QA tasks where answers can be extracted, deep learning based MRC models are employed
for the second stage. In Figure 2.7, we show an example of the two-stage solution named
DrQA, proposed by Chen et al. [138].

35

Q: What is the mustache made of?

A: bananas

Q: Where will the driver go if turning right? a)

Onto 24 3/4 Rd. b) Onto 25 3/4 Rd. c) Onto

23 3/4 Rd. d)Onto Main Street.

A: a) Onto 24 3/4 Rd.

Figure 2.8: VQA on natural images. On the left is an example from the VQA v1 dataset [55]. Answers

in the dataset are free-form natural answers. More than 97% of the answers in the dataset have less than

three words in it, and the share of unique answers is quite less. For this reason, VQA on the VQA v1

dataset is often modelled as a classification problem. On the right is an example from the Visual7W

dataset [140] that features multiple-choice questions. In addition to the questions where answers are

textual, the dataset also includes what the authors call ‘pointing questions’, where answers are a cropped

region from the given image.

2.3 Layout-aware BERT-like models for DIA tasks

The success of transformer-based models for text understanding inspired the use of similar
models for DIA. LayoutLM [115] and LAMBERT [141] incorporate layout information INto
the BERT architecture by using embeddings of the 2D positions of the text tokens in the image.

Additionally, there have been many newer or concurrent works that deal with a joint under-
standing of the text, image, and layout in document images [142, 143, 144, 145]. These models
build on Transformer encoder layers and leverage large-scale pretraining on unlabelled data.

36

The LayoutLM serves as the basis for the VLL-BERT we propose for extractive VQA on our
InfographicVQA dataet presented in chapter 5. Below, we discuss the details of the LayoutLM
architecture and how it is trained.

2.3.1 LayoutLM

A schematic of the LayoutLM is shown in Figure 2.9. LayoutLM is a pretrained transformer-
based model for document image understanding. It is based on the BERT architecture and is
designed to leverage both textual and layout information for various DIA tasks.

As discussed in subsubsection 2.2.1.1, input to BERT is the sum of text, position, and seg-
ment embeddings for each token. Since the LayoutLM is trained on text tokens spotted on
document images, in addition to the aforementioned embeddings, a 2D position embedding is
also used. Similar to how position embedding captures the order of a token in a sequence, 2D
position embedding captures the spatial location of the token on the document image plane.
Corresponding to the 4 coordinates—x1, y1, x2, y2—of the bounding box of a token, 4 dif-
ferent embeddings are learnt but only two embedding tables are used one each for x and y

dimensions.

In addition to the 2D position embeddings, LayoutLM incorporates visual information at the
time of finetuning the model for various tasks. LayoutLM uses a late fusion of visual features
with other embeddings. That is, visual features (aka image embeddings) are not a part of the
input representation, but are added to the attention-enriched representations outputted by the
transformer stack. Image embeddings are not part of the self attention. Image embeddings
used by LayoutLM are region-based features (subsection 2.4.1) corresponding to each OCR
token. For the [CLS] token, region-based feature corresponding to the entire document image
is used. A Faster-RCNN [96] trained on Visual Genome dataset [146] for object detection is
used for extracting the region-based features.

The model is pretrained on IIT-CDIP Test Collection [147]. While pretraining, similar to
BERT, the model is trained in a self-supervised manner for Masked Visual Language Mod-
elling (MVLM). MVLM is similar to MLM in BERT. The only difference is that 2D position
embeddings are also a part of the input representation. The model is trained to predict the
masked text token, given its 2D and 1D position and the surrounding context. In addition to
the self-supervised MVLM task, LayoutLM is pretrained to perform Multi-label Document
Classification (MDC) task. Document tags in IIT-CDIP Test Collection are used for training
the model to perform MDC. The pretrained model is finetuned to perform multiple DIA tasks
such as document image classification, form understanding, and receipt understanding.

37

Text
Embeddings

Position
Embeddings (x0)

Position
Embeddings (y0)

Position
Embeddings (x1)

Position
Embeddings (y1)

E(86) E(117) E(227) E(281) E(303) E(415) E(468) E(556)

E(138) E(138) E(138) E(138) E(139) E(138) E(139) E(139)

E(112) E(162) E(277) E(293) E(331) E(464) E(487) E(583)

E(148) E(148) E(153) E(148) E(149) E(149) E(149) E(150)

+ + + + + + + +

+ + + + + + + +

+ + + + + + + +

+ + + + + + + +

E(Date) E(Routed:) E(January) E(11,) E(1994) E(Contract) E(No.) E(4011)

E(589)

E(139)

E(621)

E(150)

+

+

+

+

E(0000)

E(0)

E(0)

E(maxW)

E(maxH)

+

+

+

+

E([CLS])
Faster R-CNN

FC Layers

Pre-trained LayoutLM

Pre-built
OCR/
PDF

Parser

ROI

Image
Embeddings

Date Routed: January 11, 1994 Contract No. 4011 0000[CLS]
LayoutLM
Embeddings

+ + + + + + + + ++

Downstream Tasks

Figure 2.9: LayoutLM architecture. LayoutLM is essentially a BERT extended to incorporate layout

information. A 2D position embedding that represents the location of a text token in the image plane is

added in addition to the embeddings that are already included in the input representation of BERT. While

finetuning, image embeddings—region-based features for the corresponding text token—are added to

the embeddings obtained from the LayoutLM model. The figure is from [115]

2.4 Visual Question Answering (VQA)

Visual Question Answering (VQA) aims to answer a question asked on a given image.
Similar to QA in electronic text, research in VQA gained momentum in the second half of the
last decade owing to i) the success of deep learning techniques for various tasks in CV and
NLP and ii) the introduction of large-scale datasets for the problem such as VQA V1 [55],
Visual7W [140] and Visual Genome VQA [146]. Most of these early datasets contain natural
images. In Figure 2.8, we show an example each from VQA V1 and Visual7W datasets.

2.4.1 Grid-based and region-based features for VQA

The early methods for VQA typically employ a CNN to encode the image, an RNN to
encode the question, and eventually learn a joint embedding of the two. Many of these models
employ question-guided attention over the visual features from an image encoder [56]. The
image encoder used is a CNN that is pretrained to perform image classification. For the given
image, a feature map—usually the last feature map—from the CNN is used for extracting
visual features. If the feature map is of size w×h× c, each location in the spatial extent of the
feature corresponds to a patch of the input image. The patch that corresponds to a particular

38

Figure 2.10: Grid-based features and region-based features for VQA In the case of grid-based fea-

tures (left), the VQA models make use of features from a CNN feature map. Locations on the spatial

extent of this feature map correspond to a uniform grid on the input image. In the case of region-

based features (right) introduced by Anderson et al. [93], each visual feature extracted from the image

corresponds to the bounding box of an object detected on the image. Figure is from [93]

location in the feature map is the receptive field of the convolutional filters that computed that
features at that location. Therefore the feature map corresponds to a uniform grid of image
regions that are of same size. Consequently, these features are referred as gird-based features
in the literature. In other words, a feature map of size w × h × c can be thought of as w · h
feature vectors each of size c and each representing a patch of the input image.

Anderson et al. [93] observed the VQA models that attend over the grid-based features
ignore the semantics of the image. They proposed to use an object detection model to detect
objects in the given image and extract features corresponding to the detected objects. Typically,
ROI pooled features corresponding to the detected object instances are extracted from the last
or penultimate fully connected layer of the box head. These features are called region-based

39

features. Different from the top-down attention over the grid-based features, attention over the
region-based features is a bottom-up attention since the locations to attend to are semantically
meaningful regions within the image. The bottom-up attention has then been used for almost
all of the VQA and image captioning works that followed, such as Pythia [148], LoRRA [149],
M4C [94] and VisualBERT [150].

2.4.2 VQA on natural images using VisualBERT

Following the success of BERT [113]-like models for NLP tasks, multiple works were pro-
posed extending BERT to the Vision + Language space. Models like VL-BERT [151], Visu-
alBERT [150], and UNITER [152] show that pretraining of a BERT-like architecture jointly
on vision and language inputs achieve SoTA performances on various downstream tasks, in-
cluding VQA on natural images. In the following, we briefly discuss one of such architectures
called Visual BERT. We pick this model for discussion since the model design follows naturally
from the BERT.

Position
Segment
Token/Image

A person hits a ball with a tennis racket

Transformer

…

[CLS] a [MASK] [SEP]

Objective 2 Objective 1

e1

+
e2

+
eN-1

+
eN

+
…f1

+
f2

+
fK-1

+
fK

+

…f’1 f’2 f’K-1 f’K…e’1 e’2 e’N-1 e’N

Figure 2.11: VisualBERT for Visio-linguistic pretraining. Similar to BERT, VisualBERT [150] builds

an encoder architecture that jointly models vision and language using self attention mechanism in Trans-

formers. As shown in the figure, at the time of pretraining, the input to the model comprises embeddings

of the text tokens in the caption and visual embeddings (region-based features) of the visual tokens—

objects detected in the image using an object detection model like Faster-RCNN. During finetuning for

VQA, similar to BERT QA model, the tokens from the question are used in the input along with the

visual tokens. The output head used during finetuning for VQA is a classification layer that picks an

answer from a fixed vocabulary of answers. The figure is from [150]

40

VisualBERT, as the name suggests, is directly inspired by BERT. It is essentially a BERT
that incorporates changes to accommodate visual inputs. Similar to BERT, input to Visual-
BERT is a sequence of tokens. But the tokens include both textual and visual tokens. The
visual tokens are the visual objects detected on an image. Similar to bottom-up attention we
discuss in subsection 2.4.1, region-based features corresponding to objects detected on the im-
age are used as embeddings for the visual tokens. Each token is represented by he sum of
three embeddings: i) text token embedding for text tokens and visual feature embedding for
the visual tokens, ii) segment embedding and iii) position embedding as used in BERT.

The Visual BERT is pretrained on image + caption pairs from MS-COCO [89] using two
pretraining tasks: MLM and sentence-image prediction. Similar to BERT, for MLM, some text
tokens are masked, but no visual tokens are masked. For the sentence-image prediction task,
an image is coupled with two captions. Half of the time, both captions are for the same image,
and for the rest of the cases, one of the captions is not related to the image. The task is to
distinguish the two cases. A schematic of the model, showing the pretraining setup, is shown
in Figure 2.11

While finetuning for VQA on natural images, authors train the model on the VQA V2
dataset [153]. An answer classification head is used to predict the correct answer from 3000+
answers. Following the common practice, the most frequent answers in the train split are used
as the answer vocabulary.

Grid-based features from a Faster-RCNN trained on Visual Genome for object detection are
used for visual features of the visual tokens.

2.5 VQA tasks that require reading text on images

In the previous section, we talked about VQA in general and the early datasets that were
introduced for the problem. In this section, we discuss VQA tasks and datasets where answer-
ing the questions requires reading and comprehending textual content in the images. Gurari
et al. [154] show that in a goal-oriented VQA setting where visually impaired individuals ask
questions on images they take, answering a good number of questions require the ability to
read and interpret text on the images. In fact, the early VQA datasets such as, VQA v1 and
Visual7W, included questions that require recognizing and reading text on the images. For
example, in the case of the example from Visual7W shown in Figure 2.8, the answer is the
name of a road displayed on a traffic information board. However, a number of text-based
questions in these datasets is not many, and the models developed for VQA on these datasets
often ignored the textual cues from the image.

41

Realising the importance of scene text in understanding natural images, the computer vision
community introduced two new datasets—ST- VQA [155] and TextVQA [149]—that introduce
a new VQA task that requires reading text in natural images to answer questions. We shall refer
to this type of VQA as ‘Scene text VQA’ in the rest of the discussion. Around the same time,
there have been works on VQA on special categories of images such as charts and book covers
where reading the text on the images is necessary to answer the questions. A brief summary of
these datasets and some of the popular methods for such VQA tasks are discussed below.

2.5.1 Scene text VQA

VQA datasets like VQA V1 or Visual7W focused on asking questions concerning visual
aspects such as people, objects, and relationships between various semantic entities seen in the
image. Some of the questions in these datasets required reading text on the images to answer
the questions, but there were not many. Around 2019, ST-VQA and Text VQA datasets were
introduced, where reading text on the images is critical to answering almost all questions in the
datasets.

While TextVQA sourced images from OpenImages [156], images in Scene text VQA are
from various scene text detection and recognition datasets. In ST-VQA, all questions can be
answered purely using text present in the images. On the other hand, in TextVQA, while almost
every question requires reading text, there is no guarantee that answers are composed purely of
text tokens present in the image.

Figure 2.12: LoRRA for scene text VQA. In LoRRA [149] a question guided attention is used to

compute attention weights for visual features and embeddings of OCR tokens. The end-to-end trainable

network uses a classification layer that picks an answer either from a fixed vocabulary or from the OCR

tokens spotted on the image. Figure is from [149]

42

Below, we discuss two important multimodal architectures that were proposed for TextVQA
and Scene text VQA tasks.

2.5.1.1 LoRRA: Look, Read, Reason and Answer

LoRRA extends the original bottom-up and top-down attention [93] scheme with additional
bottom-up attention over OCR tokens from the images. In LoRRA, tokens in a question are
first embedded using a pretrained word embedding model (GloVe [157]), and then these tokens
are encoded using an LSTM [158] encoder. The model uses both grid-based features and
region-based features (see subsection 2.4.1). For grid features, a ResNet-152 [95], which is
pretrained on ImageNet [38] for image classification is used. For region-based features, a
Faster R-CNN trained on Visual Genome dataset [146] for object detection is used. OCR
tokens from the image are embedded using a pretrained word embedding (fastText [159]). An
attention mechanism is used to compute the attention weighed average of the image features
as well the OCR tokens’ embeddings. These averaged features are combined and fed into an
output module. The final classification layer of the model predicts an answer either from a fixed
vocabulary (made from answers in the train set) or copy an answer from a dynamic vocabulary
which essentially is the list of OCR tokens in an image. Here the copy mechanism can copy
only one of the OCR tokens from the image. Consequently, it cannot output an answer that
comprises two or more OCR tokens.

2.5.1.2 Multimodal Multi-Copy Mesh (M4C)

M4C uses a multimodal transformer and an iterative answer generation decoder to yield
state-of-the-art results on Text VQA, ST-VQA, and OCR-VQA [60] datasets. OCR-VQA is
a specialized VQA dataset for images of book covers. We discuss this dataset in subsubsec-
tion 2.5.2.1. In M4C, tokens in the question are embedded using a pretrained BERT. Images
are represented using (i) region-based features of the objects detected using an object detection
model—Faster-RCNN pretrained on Visual Genome and (ii) location information - bounding
box coordinates of the detected objects. Each OCR token recognized from the image is repre-
sented using (i) a pretrained word embedding (fastText [159]), (ii) visual feature for the OCR
token, (iii) PHOC [160] representation of the token and (iv) bounding box coordinates of the
OCR token. Visual features for OCR tokens are extracted using the same faster-RCNN that is
used to detect objects on the images. For the bounding box corresponding to each OCR token,
a visual feature is extracted using ROI pooling. Then these feature representations of the three
entities (question tokens, objects, and OCR tokens) are projected to a common, learned em-
bedding space. Then a stack of Transformer [135] layers is applied over these features in the

43

question: what is the speed limit of this road ?

answer: 75 mph

detected objects: car road sign …

OCR tokens: speed limit 75 exit …

question
word 2

question
word K

…
<begin>

……
OCR

token 1
OCR

token 2
OCR

token N
detected
object 1

detected
object 2

detected
object M

multimodal transformer layers

…

question
word 1

previous
output 1

previous
output T-1

dynamic pointer network

…

…

question word embedding detected object embedding OCR token embedding previous prediction embedding

vocab
scores 1

OCR
score 1

vocab
scores 2

vocab
scores T

…

…

75

speed limit
56exit

aragonite
1 mile

OCR
scores 2

OCR
scores T

output 1 output 2 <end>…

Figure 2.13: M4C for scene text VQA. M4C [94] uses a transformer block that jointly models rela-

tionships between the question tokens, detected objects, and OCR tokens. The model outputs answers

in an auto-regressive fashion using both a fixed vocabulary of the most common answers and a dynamic

vocabulary comprising OCR tokens spotted on the image. Figure is from [94]

common embedding space. The multi-head self attention in transformer layers enables both
inter-entity and intra-entity attention. Finally, answers are predicted through iterative decoding
in an auto-regressive manner. The fixed vocabulary used here is made up of the most common
answer words in the train split. Note that in this case, the fixed vocabulary comprises answer
words, not answers, as in the case of LoRRA. At each step in the decoding, the decoded word
is either an OCR token from the image or a word from the fixed vocabulary of common answer
words.

2.5.2 Specialized VQA datasets where reading text on images is neces-

sary.

In addition to VQA on natural images, there are a few specialized VQA tasks that require
reading text on the images in order to answer the questions. We briefly discuss these datasets
below.

2.5.2.1 VQA on images of book covers

OCR-VQA [60] comprises more than 1 million question-answer pairs over 207K+ images of
book covers. The questions in this dataset are domain-specific and generated based on template
questions and answers extracted from available metadata. More than 50% of the questions have

44

Q: Who wrote this book?

A: Alan Fisher

Q: Which item sold the most number of units

summed across all the stores?

A: a) branch

Figure 2.14: VQA on book covers and charts. Shown on the left is an example from the OCR-VQA

dataset [60] that comprises questions and answers asked on images of book covers. The example on

the right is from a VQA dataset for bar charts called DVQA [58]. The book covers in OCR-VQA

are sourced from the internet and the chart images in DVQA are synthetically generated using a chart

plotting library. Questions in both datasets are synthetically generated using a few question templates.

Owing to the nature of the images in both datasets, reading text is critical to answering most of the

questions.

answers that are not scene text instances, including 40% binary (yes/no) questions and 10%
questions about book genres, for example.

45

2.5.2.2 VQA on charts

The DVQA dataset presented by Kafle et al. [58] comprises synthetically generated images
of bar charts and template questions defined automatically based on the bar chart metadata.
The dataset contains more than three million question-answer pairs over 300,000 images. They
proposed a method called SANDY for DVQA. It is a modified version of the stacked attention
network (SAN) [161] that uses off-the-shelf OCR and dynamic encoding to represent out-of-
vocabulary words. They observe that contrary to VQA on natural images, small, localised,
changes in the chart image might have a big influence on the VQA performance. This stands
true with document images in general, as changing a single element (word, check box, etc.) in
a document image might completely alter the meaning of the data presented in the document.

Another dataset for VQA on charts, FigureQA [59], comprises over one million yes/no
questions, defined on over 100,000 images. The dataset comprises bar charts, line plots and
pie charts. Similar to DVQA, images are generated using a chart plotting library, and question-
answer pairs are created using a finite number of question templates. The authors propose a
relation network [162]-based model as a strong baseline for the task.

2.6 Multimodal QA tasks

Textbook Question Answering (TQA) [163] and RecipeQA [164] deal with QA in a mul-
timodal context. For TQA, contexts are textbook lessons, and for RecipeQA, contexts are
recipes containing text and images. TQA is probably the first work that deals with QA in a
multimodal context. Multiple choice questions are asked on lessons from science textbooks,
and each question is provided with passages from the lesson and associated diagrams. Sim-
ilarly,in RecipeQA, multiple-choice questions are asked about recipes. Each recipe includes
instructions (machine readable text) and images depicting these instructions. Contrary to VQA
datasets that invol ve reading text, text in multimodal QA datasets is not embedded in the
images but provided in machine readable form as a separate input.

46

Chapter 3

CTC-based Seq2seq OCR for low resource languages

In section 1.5 we note that research and development of DIA for Indic languages has been
lagging behind Latin-based languages. Deep learning based techniques that avoid the need for
script-specific handcrafted features and segmentation-free transcription have become a boon
for Indic languages OCR. Approaching text recognition as a structured prediction using CTC
is the most commonly used approach for segmentation-free OCR.

This chapter presents a comprehensive empirical study of various neural network models
that use CTC for transcribing step-wise predictions in the neural network output to a Unicode
sequence. The study is conducted for 13 Indic languages, using an internal dataset that has
around 1000 pages per language. We study the choice of line vs word as the recognition unit,
and use of synthetic data for training. We compare our models with publicly available OCR
tools for end-to-end document image recognition. By tying our recognition model with an ex-
isting text detection model, we evaluate end-to-end text recognition performance. We demon-
strate that our end-to-end pipeline outperforms the public OCR engines for 8 out of the 13
languages. We also introduce a new public dataset called Mozhi for word and line recognition
in Indic languages. The dataset contains more than 1.2 million annotated word images (around
120 thousand text lines) across the 13 languages. This work has been previously presented as
part of a technical report [112].

3.1 Introduction

Optical Character Recognition (OCR) is generally used as an umbrella term for the process
and technology involved in converting text present in a document image to machine readable
text. End-to-end OCR generally involves two steps: i) text detection: locating the regions
where text tokens are present in an image, and ii) text recognition: transcribing text present in

47

a line or word region identified in the detection step to machine readable sequence of characters
or Unicode points.

Commercial OCR engines for Latin-based languages began to appear during the mid-1960s.
These early OCR engines predominantly used template-matching techniques for recognizing
isolated characters [165]. This was followed by machines that could recognize machine-printed
and handwritten numerals. Simultaneously, Toshiba launched the first automatic letter-sorting
machine for postal code numbers. During the 1970-80 period, several OCR engines were de-
veloped that could recognize printed and handwritten English characters [165, 166]. Presently
there are several publicly available OCR systems for Latin scripts such as Tesseract 1, ocropy 2,
ABYY FineReader3 and Google cloud vision OCR 4 that can perform OCR even on documents
with complex layouts with sub 1% character error rates.

The challenges in text recognition vary based on the language/script the text is written
in, how the text is rendered—handwritten, printed, or typewritten—and how the document
is imaged— scanned, captured using a mobile device, or born-digital. This work deals with the
recognition of text printed in Indic languages. Our focus is on text recognition alone. That is,
we assume that cropped word or line images are provided.

This chapter presents our efforts to build OCR for multiple Indic languages. By Indic lan-
guages, we refer to languages that are spoken in the Indian subcontinent. Our work deals with
text recognition in 13 Indic languages. All 13 languages are granted official language status
in India and have more than a million speakers in India [167]. The languages are Assamese,
Bangla, Gujarati, Hindi, Kannada, Malayalam, Manipuri, Marathi, Odia, Punjabi, Tamil, Tel-
ugu and Urdu. Some of these languages are used widely in other countries in the Indian sub-
continent. 99% of the people (around 164 million people) in Bangladesh speak Bangla 5. Ac-
cording to the 2017 census of Pakistan 6, more than 38% of the population (around 80 million)
speak Punjabi and nearly 7% speak Urdu (around 15 million). Tamil, a Dravidian language that
is the primary language in the Indian state of Tamil Nadu, is spoken by more than 15% of the
population in Sri Lanka 7. Many of these languages share common linguistic and grammatical
structures. But the script remains very different except for a few languages. Among the 13
languages, Hindi and Marathi use Devanagari script, and Bangla, Assamese and Manipuri use
Bangla script. Others have their own unique scripts. Thus our study deals with printed text

1https://opensource.google.com/projects/tesseract
2https://github.com/ocropus/ocropy
3https://pdf.abbyy.com
4https://cloud.google.com/vision/docs/ocr
5http://www.bbs.gov.bd/site/page/47856ad0-7e1c-4aab-bd78-892733bc06eb/

Population-and-Housing-Census
6https://www.pbs.gov.pk/content/final-results-census-2017
7http://www.statistics.gov.lk/Population/StaticalInformation/CPH2011

48

https://opensource.google.com/projects/tesseract
https://github.com/ocropus/ocropy
https://pdf.abbyy.com
https://cloud.google.com/vision/docs/ocr
http://www.bbs.gov.bd/site/page/47856ad0-7e1c-4aab-bd78-892733bc06eb/Population-and-Housing-Census
http://www.bbs.gov.bd/site/page/47856ad0-7e1c-4aab-bd78-892733bc06eb/Population-and-Housing-Census
https://www.pbs.gov.pk/content/final-results-census-2017
http://www.statistics.gov.lk/Population/StaticalInformation/CPH2011

Assamese

Bengali
(Bangla)

Manipuri
(Meitei)

Bengali

Devanagari

Hindi

Marathi

Gujarati Gujarati

Gurmukhi Punjabi

Kannada Kannada

Malayalam Malayalam

গান্ধী

गांधी

ગાધંી
ਗਾਂਧੀ
ಗಾಂಧಿ

Nastaliq Urdu

Odia Odia

Tamil Tamil

Telugu Telugu

ଗାନ୍ଧୀ
காந்தி

గాంధీ

Script Language

Figure 3.1: Indic languages diversity. We study printed text recognition of 13 languages (10 different

scripts) that are used in the Indian subcontinent. Although these languages essentially use a common

alphabet, the script used to write these languages are different except for a few languages that share a

common script, such as Hindi and Marathi. In the last column, we show how the name “Gandhi” is

written in all 10 scripts.

49

recognition of 13 Indic languages that use 10 different scripts. Figure 3.1 shows how the name
Gandhi is written in the 10 scripts.

Though there had been many attempts to develop OCRs for Indic scripts from the 1970s
to the beginning of the last decade [168, 169, 170], methods that can scale across languages
and yield reasonable results over a wide variety of documents were not devised. Inherent
challenges with the scripts and languages and lack of large-scale annotated data hindered the
development of Indic languages OCR for decades. Following the success of Connectionist
Temporal Classification (CTC) for speech transcription, CTC has been adapted for recognition
of handwritten text [86], printed text [98, 97] and scene text [100, 46]. Most popular open
source OCR tools such as Tesseract, EasyOCR 8 and ocropy use a CTC-based model for text
recognition. The primary reason for the popularity of this approach is that text on a word or
line images can be recognized without the need for sub-word segmentation.

Segmenting a word into sub-word units is much more difficult for Indic languages than for
English [171]. Another challenge in developing recognizers for Indic languages is the complex
relationships between atomic units of the script (visual), language (text), and machine repre-
sentation. In a script, the atomic unit is an isolated symbol (a glyph), and from the language
perspective, the atomic unit is an akshara or an orthographic syllable. And for the machine
representation of text, the atomic unit is a Unicode point. An akshara can be a combination of
multiple glyphs in the script. Similarly, an akshara is often represented by a sequence of Uni-
code. Splitting text at aksharas and mapping from aksharas to the corresponding Unicode se-
quence requires knowledge of the language and script [171, 6]. For these reasons, approaching
text recognition as a sequence modeling problem using CTC has become the de-facto choice
for OCR of Indic languages[171, 99, 127]. This approach can directly map a sequence of
features from the word or line image to a target Unicode sequence and an explicit alignment
between the feature sequence and the output Unicode sequence is not required during training.

In this work, we present a comprehensive empirical study of the various design choices
involved in building a CTC-based printed text recognition model for Indic languages. Major
contributions of this chapter are i) we study the challenges to text recognition of Indic scripts
and investigate how the seq2seq transcription using CTC helps to overcome some of these
challenges, ii) for 13 Indic languages, we empirically compare the performance of four types of
CTC-based text recognition that differs in terms of feature extraction and sequence encoding,
iii) investigate the effectiveness of synthetic data as an alternative to real training data, iv)
compare performance of our recognition model against publicly available OCR tools and show
that our model yields better or comparable performance for 8 of the 13 languages, and v)

8https://github.com/JaidedAI/EasyOCR

50

https://github.com/JaidedAI/EasyOCR

introduce the largest ever dataset for printed text recognition of Indic languages that has more
than 1.2 million word images (nearly 100 thousand word images per language).

3.2 Related works

This section summarizes previous works that deal with printed text recognition of Indic
scripts. We organize the section into three subsections that reflect the evolutionary progress
made in this space over the years.

3.2.1 First-generation OCRs [1970 - 2000]

First-generation OCRs [168, 169] for Indic languages typically follow a template-matching
style approach for character matching and use intuitive features such as shape and water reser-
voir. Pal and Chaudhuri [172] provide an excellent summary of methods developed in this
period. Sinha and Mahabala [168] use a syntactic pattern analysis system with an embedded
picture language to recognize the Devanagari script. Structural representations for each symbol
of the Devanagari script are stored beforehand in terms of primitives and their relationships.
The input word is first digitized, cleaned, thinned, and segmented (segmented to isolated sym-
bols/glyphs) and labeled (local feature extraction process). Recognition involves searching
primitives on the labeled pattern based on the stored description. Contextual constraints are
also used to arrive at the correct recognition. Chaudhuri and Pal [169] propose an approach
that uses stroke-based features and a tree-based classifier for the recognition of printed Bengali
script. The classifier is followed by a template-matching approach to improve accuracy. The
character unigram statistics are used to make the tree classifier efficient. Several heuristics are
also used to speed up the template-matching approach.

Antani and Agnihotri [173] created a dataset for Gujarati from scanned images and various
sources on the internet. They use invariant moments and raw (regular) moments as features.
They use K- Nearest Neighbour (KNN) and minimum hamming distance classifiers. Negi et
al. [174] use connected component analysis to extract isolated symbols from Telugu words.
The segmented symbols are then matched against a stored template bank using fringe distance
as the distance measure to perform the classification. Pal and Sarkar [175] propose a system to
recognize Urdu script using a combination of topological, contour, and water reservoir-based
features and a tree-based classifier.

Lehal and Singh [176] developed a Gurumukhi OCR during this period. Their work uses
connected component analysis to extract sub-word components from word images. They use

51

two types of features called primary and secondary features. Primary features include features
like the number of junctions and loops and their positions. Secondary features include the
number of end-points and locations, and the nature of profiles of different directions. For
classification, a multistage classification scheme is used by combining a binary tree classifier
and a nearest neighbour classifier. They improve the performance using a post-processor that
makes use of statistical information of Punjabi syllable combinations and certain heuristics.

3.2.2 Second-generation OCRs [2000 - 2012]

The second-generation of OCRs started using statistical and data-driven features such as
Discrete Cosine Transform (DCT) and Principal Component Analysis (PCA). This period is
also characterized by the use of Machine learning models like Support Vector Machines (SVM)
and Artificial Neural Networks (ANN). A comparison and evaluation of state-of-the-art OCR
systems developed during this period are presented in [170].

A Tamil and English bilingual text recognition system introduced by Aparna et al. [177]
uses geometric moments and DCT coefficients to classify sub-word symbols. For the classifi-
cation of the symbols, a nearest neighbour classifier is used. Ashwin and Sastry [178] proposed
to use SVM for the recognition of Kannada characters. To capture the shapes of the Kannada
characters, they extract structural features that characterize the distribution of foreground pix-
els in the radial and angular directions. Kumar and Ramakrishnan [179] use coefficients of
the DCT, Discrete Wavelet Transform (DWT) and Karhunen-Louve Transform (KLT) as fea-
tures for Kannada OCR. They use both K-NN and Radial Basis Function(RBF) neural network
for classification. Kunte and Samuel [180] develop a Kannada OCR that uses Hu’s invariant
moments and Zernike moments as features. They use an RBF neural network for classification.

Jawahar et al. [181] proposed a bilingual OCR for Hindi and Telugu. Their model uses
PCA for feature extraction and SVM for the classification of isolated characters. They evaluate
the performance of this system on nearly 200K character images of Hindi and Telugu and
report a classification accuracy of 96.7%. Ghosh et al. [182] modified an existing Bangla OCR
model to recognize Assamese characters. Their model uses an SVM classifier followed by a
spell checker. Rasagna et al. [183] developed a multi-font Telugu OCR using the Histogram
of Oriented Gradients (HOG) features and an SVM classifier. They report more than 96%
character accuracy on a dataset that has more than 145,000 Telugu character samples in 359
classes and 15 fonts. Neeba and Jawahar [184] empirically evaluated different types of features
and character classification schemes for the problem of character classification. Classifiers
studied in this work are K-NN, decision trees, Multilayer Perceptron (MLP), Convolutional
Neural Network (CNN) and SVM.

52

Motivated by the success of Hidden Markov Models (HMM) for continuous speech recog-
nition, BBN BYBLOS OCR systems were introduced in the late 1990s [185, 186]. The HMM-
based approach followed in THE BBN BYBLOS system does not require word or character
level segmentation, and training is language independent. Natarajan et al. [187] extended this
approach for Devanagari text recognition. This is one of the first segmentation-free recognizers
for an Indic language.

3.2.3 Third-generation OCRs [2012 - 2022]

Third-generation OCRs for Indic scripts are primarily driven by segmentation-free approaches
that directly generate a sequence of labels given a word or line image. Sankaran et al. [97] were
the first to adopt CTC-based sequence modelling for the problem of printed text recognition of
an Indic language. They use an RNN encoder and CTC transcription to map from a sequence
of features extracted from a Devanagari word image (i.e., recognition unit is a word) to a se-
quence of class labels. Profile-based features [188] computed from a 25 x 1 sliding window
is used. The model uses aksharas as the output classes and employs a rule-based akshara
to Unicode mapping. They extend this approach in [171] wherein feature sequence from the
word image is directly mapped to the Unicode sequence and thereby avoiding the need for a
rule based mapping from aksharas to Unicode. The CTC-based transcription approach came
as a boon for Indic scripts since sub-word segmentation has always been a challenge for most
of the Indic scripts. In addition to it, transcribing the word image directly to machine readable
form (Unicode sequence) avoided the need to write language-specific rules to map from latent
output classes (for example, classes corresponding to the possible set of aksharas used in [97])
to a valid Unicode sequence. Krishnan et al. [127] use profile-based features and CTC-based
model similar to the one in [171] for the recognition of 7 Indian languages. They evaluate their
approach on a test set comprising thousands of document images per language. Their results
demonstrate that a unified framework that uses CTC-based transcription works well for the
recognition of multiple Indian languages without requiring language/script-specific modules.

Similar to the works discussed above, Hasan et al. [99] proposed using an RNN+CTC model
to recognize printed text in Urdu. This work directly outputs a Unicode sequence given an im-
age of a text line (i.e., the recognition unit is a line). Raw pixels extracted from the line image
using a 30 x 1 sliding window form the input feature sequence. Our previous work [6] in this
space deals with multilingual OCR for 12 Indian languages and English. Our work reports
the result of a two-stage system—a script identification module and a recognition module—
on thousands of pages per language. Similar to Hasan et al. [99], we used raw pixel values
as features and an RNN+CTC classifier. We demonstrated that the RNN+CTC model outper-

53

forms multiple free and commercial OCR engines for Devanagari text recognition on a newly
introduced public dataset.

Chavan et al. [189] conducts a comparative study by evaluating the performance of RNN
and multidimensional RNN (MDRNN) [131] encoders when used with the CTC transcription.
They use HOG (Histogram of Gradients) features with the RNN encoder and raw pixels for
the MDRNN. This study concludes that the MDRNN encoder performs better compared to the
RNN encoder. An RNN+CTC transcription model is proposed for the recognition of Bengali
script in [190]. This work reports 99%+ character/symbol accuracy for a test set that has word
images rendered using more than 20+ fonts. Kundaikar and Pawar [191] study the robustness of
CTC-based Devanagari OCR to font and font size variations. Dwivedi et al. [192] proposed to
use an encoder-decoder model for the recognition of Sanskrit. The proposed solution achieves
under 3% character/symbol error rate on a new private dataset of Sanskrit line images.

Most of the word-based and line-based recognition models for Indic languages that were de-
veloped recently rely on CTC-based transcription. In this chapter, we conduct a comprehensive
empirical study of CTC-based transcription for both line and word recognition by comparing
different types of encoders and features.

3.3 Datasets

This section presents details of the datasets we use in this study. We use three datasets: i)
an internal dataset that has nearly 1000 pages per language, ii) a new public dataset of cropped
words and lines and the corresponding ground truth transcriptions, and iii) a dataset of synthetic
word images for the experiments involving synthetic data.

3.3.1 Internal dataset

Our internal dataset is a subset of a multilingual dataset created for Indic languages by a
consortium of universities in India [193]. We shall refer to the original dataset as ‘Indic con-
sortium dataset’. The Indic consortium dataset is annotated with bounding boxes and Unicode
transcriptions of all words and lines in the page [194, 195]. For Urdu, owing to the difficulty in
annotating words, only line-level annotations were added. The pages are taken from multiple
books and scanned using a flatbed scanner. The pages are scanned in 300 PPI for Assamese,
Manipuri, and Urdu and in 600 PPI for the rest. The pages mostly contain a single column of
text arranged in paragraphs in simple layouts. There are a few pages that contain multi-column
text. An insignificant number of pages contain graphics or tables.

54

Language
Train Test

Books Pages Lines Words Books Pages Lines Words

Assamese 14 901 23,811 186,471 5 98 3,038 33,636

Bangla 11 900 24,490 199,890 2 100 3,120 26,307

Gujarati 17 899 23591 186555 8 99 3141 32626

Hindi 27 899 23752 195111 6 101 2416 26131

Kannada 22 899 24270 184323 5 101 3448 17269

Malayalam 24 900 24383 183462 7 100 3054 14796

Manipuri 22 897 23466 183304 3 101 2890 25834

Marathi 17 898 23982 191496 3 102 3140 26709

Odia 14 898 24054 192494 3 102 2959 30582

Punjabi 24 899 23725 194900 8 101 2683 32158

Tamil 18 900 24129 181238 5 100 2869 14638

Telugu 24 899 23596 181083 4 101 2791 16748

Urdu 8 866 23250 - 1 93 1829 -

Table 3.1: Statistics of the internal dataset used in our study. Each page is annotated with word

and line bounding boxes and the corresponding ground truth text transcriptions. For Urdu, word-level

annotations are not available.

From the Indic consortium dataset, for 13 languages (the ones shown in Figure 3.1), we
sample 1000 pages per language to form our internal dataset. For each language, the pages
are split approximately in an 80:10:10 ratio into train, validation, and test splits. The splits
are done in such a way that no two splits have pages from the same book. Statistics of the
dataset are presented in Table 3.1. Examples of page images in the internal dataset are shown
in section A.1 of Appendix A.

3.3.2 Mozhi dataset

To the best of our knowledge, there are no large-scale public datasets for the problem of
printed text recognition of Indic languages. Most of the early works in this space use a dataset
of cropped characters or isolated symbols since these works deal with the classification of dis-

55

Language
Train Validation Test

Lines Words Lines Words Lines Words

Assamese 9566 79959 1196 9945 1196 10146

Bangla 7579 80113 948 9787 947 10113

Gujarati 8632 79910 1080 10016 1079 10090

Hindi 6525 79762 816 10114 816 10173

Kannada 13462 80085 1683 10088 1683 9838

Malayalam 15112 80146 1889 9893 1889 9980

Manipuri 9765 79691 1221 10254 1221 10061

Marathi 8380 80151 1048 10005 1048 9855

Odia 8260 79945 1033 10089 1033 9994

Punjabi 6726 79931 841 10036 841 10038

Tamil 16074 80022 2010 10021 2009 9974

Telugu 12722 80337 1591 9811 1590 9876

Urdu 9100 - 1138 - 1137 -

Table 3.2: Statistics of the new Mozhi dataset. It is a public dataset for printed text recognition of

cropped words and lines. It has more than 1.2 million words annotated in total. For Urdu, only cropped

lines are annotated.

joint characters [180, 181]. Later works that make use of line or word-level annotated data
use either internal collections [97, 127, 6, 189, 196] or large-scale synthetically generated sam-
ples [192, 191, 99] to train their models. Some of the recent works, including ours, have
introduced public datasets containing real samples for a few Indic languages like Hindi and
Urdu. They contain a limited number of samples meant only for the evaluation of the mod-
els [6, 196]. To the best of our knowledge, except for these two datasets, there are no other
public benchmarks of real samples for word, line or page-level printed text recognition of Indic
languages. In an attempt to address the scarcity of annotated data and to standardize the data
used to train and evaluate printed text recognition models for Indic languages, we introduce
a new public dataset named Mozhi (meaning “language” or “word” in Tamil and Malayalam)
for all 13 languages we study in this work. The Mozhi dataset is created by sampling random
line-level samples from the Indic consortium dataset. We sampled the line segments randomly

56

Figure 3.2: Samples of synthetic word images created for Hindi, Malayalam, and Telugu.

so that we can release the dataset without copyright infringement. The dataset contains both
line and word-level annotations. For all the 13 languages, cropped line images and their cor-
responding ground truth text annotations are provided. Word images cropped from these text
lines and the corresponding word level ground truths are also included for all languages except
Urdu. The dataset has 1.2 million word annotations in total (nearly 100,000 per language),
making it the largest ever public dataset of real word images for text recognition in Indic lan-
guages. For each language, the line-level data is split randomly in an 80:10:10 ratio to train,
validation, and test splits, respectively. Words that are cropped from line images in train split
of lines form the train split for word-level recognition. Similarly, for validation and test splits.

Examples of line images in Mozhi dataset and distribution of lengths of words in the dataset
are given in section A.2 and section A.3 of Appendix A.

3.3.3 Synthetic dataset

With the advent of deep-learning-based data-driven methods, reliance on large-scale data
to build machine learning models has only increased[38, 197, 84]. Deeper networks have
more learnable parameters and require larger amounts of data to generalize well. Manually
annotating data to train these models is often a tedious and expensive task. An alternative to
using real data is to generate synthetic samples. This approach has successfully been used for
many Computer Vision problems [124, 198, 199]. The successful adaption of modern machine
learning models for the problem of text recognition—whether it is printed, handwritten, or
scene text—would not have been possible without large-scale synthetic datasets [200, 201,
124, 202, 8, 203]. Synthetic samples generated by font rendering have been used in many
works, including ours, that deal with OCR of Indic languages. [202, 99, 191, 192, 8]

In this work, we investigate the effectiveness of synthetic data as an alternative to real data
for training a text recognition model. To this end, we render synthetic word images for the same

57

set of words that make up the train split of the internal dataset for the specific language. We
compare the performances when the recognition model is trained on real and synthetic datasets.
We conduct this study for three languages— Hindi, Telugu, and Malayalam. Freely available
Unicode fonts are used to render the synthetic word images. The number of unique fonts used
for Hindi, Malayalam, and Telugu are 97, 19 and 62, respectively. For rendering text onto
images, we use the convert tool of ImageMagick 9, which makes use of Pango 10 text layout
engine and Cairo 11 graphics library. In order to mimic word images from pages of books that
our real data is composed of, we generate images whose background is always lighter (higher
intensity) compared to the foreground. Each word is rendered as an image using a random font.
Font size, font stylings such as bold and italic, foreground and background intensities, kerning,
and skew are varied for each image to generate a diverse set of samples. A random one-fourth
of the images are smoothed using a Gaussian filter with a standard deviation(σ) of 0.5. Finally,
all the images are resized to a height of 32 while keeping the original aspect ratio. Samples
from our synthetic dataset are shown in Figure 3.2

3.4 Text recognition using CTC transcription

Given an input image I of a word or a line, the task of text recognition aims to output the text
present on the image in machine readable form. We model the task as a sequence modelling
problem using CTC. Input is a sequence of features x = x1, x2, ..., xT where xt ∈ RD are
extracted from image I . Output is a sequence of class labels l = l1, l2, ..., lN , where ln ∈ L,
where L is the output alphabet, i.e., the set of unique class labels. In our case, L is the set of
all Unicode code points we are interested in recognizing.

For the below discussion, we use an encoder-decoder style interpretation of the CTC as
given in [204].

3.4.1 Extracting feature sequence

Graves et al. [85] first used CTC to transcribe speech to text. In their work, features are
extracted along the time axis of the speech signal in a sliding window manner. They use a
window of size 10 milliseconds (ms) and a step size of 5 ms. A fixed-size feature vector is
extracted at each instance of the sliding window. Each individual unit of the input sequence is

9https://imagemagick.org
10https://pango.gnome.org/
11https://www.cairographics.org/

58

https://imagemagick.org
https://pango.gnome.org/
https://www.cairographics.org/

W` x H ` x C `

W` x H `· C `

W` x 2· HidJ

CTC

W` x | L’ |

W` x H ` x C `

W` x H `· C `

CTC

W` x | L’ |

CNN

⌊W/SW⌋ x H · WW

RNN

⌊W/SW⌋ x 2· HidJ

CTC

⌊W/SW⌋ x | L’ |

W x H

W x H

W x 2· HidJ

CTC

W x | L’ |

Col_RNN Win_RNN CNN_only CRNN

FC + Softmax

RNN

CNN

y ∈ R T x | L’ |

x’ ∈ R T x D’

Decoder

Encoder

FeatureExtract

x ∈ R T x D

I ∈ R W x H

CTC

W x H W x H W x H

RNN

CTC - based OCR

extract columns extract patches in sliding
windows

FC + Softmax FC + Softmax FC + Softmax

Figure 3.3: Different CTC-based transcription network configurations. We study four CTC based

text recognition approaches — Col RNN, Win RNN, CNN only and CRNN, that differ in terms of the

features extracted and the kind of sequence encoding used. W and H are width and height of the input

image I respectively. |L′| is the number of class labels including the blank label. Hidj denotes the

number of hidden units in the last layer of the RNN. For the Win RNN, WW and SW are width and step

size of the sliding window respectively.

referred to as a ‘time-step’ or a ‘frame’. Unlike a 1D time-varying signal like speech, a grey-
scale image is a 2D scalar-valued spatial signal. Therefore, in order to form a 1D sequence of
features, methods that use CTC to transcribe text from images conventionally extract features
along the horizontal axis of the image[171, 99, 46]. We follow the same approach. That is,
feature vectors in the input sequence x correspond to a sequence of horizontal segments of the

59

given image. Similar to the original work [85], an instance of the input sequence is referred to
as a ‘time-step’ or a ‘frame’. The horizontal extent of a frame varies based on how the features
are extracted. The feature sequence, x, is extracted in the same direction as the script is written.
That is, for all the languages except Urdu, features are extracted from left to right, and for Urdu
features are extracted in the opposite direction.

In summary, given an image I ∈ RW×H (we work with greyscale images), a feature se-
quence is extracted as follows:

x ∈ RT×D = FeatureExtract(I) (3.1)

3.4.2 Encoder

The job of the sequence encoder is to take the input sequence x and map it to the encoded
representation x′ ∈ RT×D′ where D′ is the encoding size; i.e., the fixed size to which each
feature vector is encoded into.

i.e.,

x′ ∈ RT×D′
= Encoder(x) (3.2)

3.4.3 Feature and encoder configurations

Below, we discuss 4 different types of feature and encoder combinations we study in this
work.

Col RNN: In this case, a frame or time step of the input corresponds to a single column
of the image. Features are nothing but normalized pixel values (normalized in 0–1 range) of
each column. This approach has been used in previous works, including ours, that deal with
printed text recognition of Indic languages [6, 127]. From the given image I ∈ RW×H , feature
sequence x ∈ RW×H is extracted, and an RNN is used to encode x to x′ ∈ RW×D′ .

Win RNN: Win RNN uses an approach similar to the original work [85] to extract features
in a sliding window manner. A sliding window of size Ww×H is moved across the image and at
each step t, pixel values of the columns in the window are stacked to form the feature vector xt.
If the sliding window is moved with a step size Sw, then x will be of shape ⌊W/Sw⌋×(H ·Ww).
Further, x is encoded using an RNN to x′ ∈ R⌊W/Sw⌋×D′ . Col RNN is in fact, a Win RNN with
Ww = Sw = 1.

CNN only: Unlike the above two approaches that use pixel intensities as features, a CNN
is used to extract features. Given an image I , CNN outputs a feature map F ∈ RW ′×H′×C′ . F

60

(W/2) x 16 x 64

W x 32 x 64

W x 32 x 1

(W/2) x 16 x 128

Conv2D (1, 64, (3,3), (1,1), (1,1))

MaxPool2D ((2,2), (2,2), (0,0))

Conv2D (64, 128, (3,3), (1,1), (1,1))

MaxPool2D ((2,2), (2,2), (0,0)) (W/4) x 8 x 128

(W/4) x 8 x 256
Conv2D (128, 256, (3,3), (1,1), (1,1))

Conv2D (256, 256, (3,3), (1,1), (1,1))

MaxPool2D ((2,2), (2,1), (0,1))

(W/4) x 8 x 256

((W/4) + 1) x 4 x 256

Conv2D (256, 512, (3,3), (1,1), (1,1))

Conv2D (512, 512, (3,3), (1,1), (1,1))

MaxPool2D ((2,2), (2,1), (0,1))

((W/4) + 1) x 4 x 512

((W/4) + 1) x 4 x 512

((W/4) + 2) x 2 x 512

((W/4) + 1) x 1 x 512Conv2D (512, 512, (2,2), (1,1), (0,0))

BatchNorm2d (256)

BatchNorm2d (512)

Figure 3.4: Architecture of the CNN used in CNN only and CRNN configurations. This archi-

tecture is the same as the one used in the original CRNN paper [46]. The size in width × height ×
num.ofchannels format is written below the image and feature maps. Conv2D, MaxPool2D, and

BatchNorm2D denote 2D convolution, 2D max pooling, and 2d Batch Normalization operations respec-

tively. The parameters for these operations are shown in the same format as the one used in PyTorch.

is then reshaped to W ′ × (H ′ · C ′) to form the sequence of features x. In other words, from
the feature map F , a sequence of W ′ feature vectors, each of size H ′ · C ′ are formed. In this

61

configuration, there is no dedicated sequence encoder. Or the encoder is an identity mapping.
That is, in this configuration, x′ = x.

CRNN: In this configuration, features are extracted using a CNN, and an RNN is used
to encode the sequence of features. This approach called, ”CRNN” was proposed by Shi et
al. [46] for English scene text recognition. Similar to the CNN only configuration, a CNN is
used to obtain a feature sequence x ∈ W ′× (H ′ ·C ′). x is then encoded using an RNN to form
the final encoded sequence x′ ∈ RW ′×D′ . All configurations we discuss above, but CNN only,
use an RNN at the encoder, and the size of the encoding D′ depends on the number of units
in the last recurrent layer. If a J layer bi-directional RNN is used, then D′ = 2 ·HidJ , where
HidJ is the size of the hidden state of the last layer of the RNN.

The RNN encoder used in the above configurations is essentially encoding a 1D sequence
of features. Or in other words, the RNN captures long-term dependencies along the horizon-
tal axis only. An obvious choice to capture dependencies along multiple axes is MDRNN.
However, as discussed in subsubsection 2.1.2.3, the MDRNN encoder is empirically found to
be an overkill for the text recognition problem. For this reason, we do not experiment with
MDRNNs in this work. Instead, our CNN only and CRNN configurations discussed above use
convolutional layers to model dependencies along both axes of an image.

3.4.4 Decoder

The encoded features x′ are projected to the size equivalent to the number of the output
classes using a linear projection layer followed by Softmax normalization. This step can be
viewed as the decoding part of the CTC as interpreted in [204]. The original output alphabet
L is augmented by adding an extra label for blank. That is, L′ = L∪ ∼. A blank label
corresponds to the case when we want to assign no label for an input. The result of Softmax
normalization at a time-step can be interpreted as class conditional probabilities at the time-
step. Or in other words, Softmax yields the posterior distribution over the classes.

In summary, given the sequence of encoded features x′,

y ∈ RT×L′
= Decoder(x′) (3.3)

where each yt ∈ RL′ represents activations at time step t. Thus ykt is a score indicating the
probability of kth label at time step t.

62

3.4.5 Transcription using CTC

The objective of the CTC transcription is to find the most probable sequence of class labels
given y. Let L′T be the set of sequences of length T over the alphabet L′. An element of L′T is
called a path and denoted by π. CTC assumes that the target label sequence’s length is always
shorter or equal to the length of the input sequence (T). Therefore, we consider all length T

sequences over the alphabet L′.
If we assume that network prediction at a particular time step is independent of the predic-

tions at other timesteps, the probability of a path is the product of probabilities of individual
labels in the path, at respective time steps. That is, probability of a path π, given input sequence
x is:

p(π|x) =
T∏
t=1

yπ
t

t (3.4)

where yπ
t

t is the probability of tth label of the path π.
A many-to-one sequence to sequence mapping B is defined from the set of all possible paths

to the set of all possible labellings whose length is at most T . i.e., B : L′T 7→ L≤T . Note
that the paths are defined over the augmented alphabet L′, and the labellings are defined over
the original alphabet L. B maps a path π to a labelling l by removing the blank labels and
the repeated labels. For example, the path “g∼∼aa∼nd∼hh∼∼ii” is mapped to the labelling
“gandhi”.

Given an input feature sequence x, the conditional probability of a labelling l is the sum of
probabilities of all paths in L′T that maps to l. That is,

p(l|x) =
∑

π∈B−1(l)

p(π|x) (3.5)

Explicitly computing the summation in Equation 3.5 is difficult since there are a large num-
ber of paths that map to a given labelling. Inspired by the forward-backward algorithm for
HMMs [205], Graves et al. [85] proposed a dynamic programming algorithm for the efficient
computation of Equation 3.5.

3.4.6 Training

Let the training dataset be S = {Ii, li} where Ii is a word or line image and li is the corre-
sponding ground truth labelling. The objective function for training the encoder-decoder neural
network for CTC transcription is based on the principle of Maximum Likelihood. Minimizing

63

the objective function maximizes the log likelihoods of the ground truth labelling. Therefore
the objective function used is,

O = −
∑

Ii,li∈S

log p(li|Ii) (3.6)

The above objective function can be optimized using gradient descent and backpropagation.

3.4.7 Inference

At the time of inference, given an input sequence x, our CTC-based classifier needs to
output the labelling l∗ that has the highest probability as defined in Equation 3.5. Thus the
CTC-based classifier can be expressed as a function h(x), where

h(x) = argmax
l∈L≤T

p(l|x) (3.7)

Similar to the HMMs, this step, where the most probable labelling is found, is called decoding.
But there is no tractable algorithm for finding the labelling l that maximizes p(l|x). Graves
et al. [85] proposed two approximate methods instead — best path decoding and prefix search
decoding. In this work, we use the former. ‘Best path decoding’, as the name suggests, output
the labelling corresponding to the most probable path as the most probable sequence. i.e.,

h(x) ≈ B(π∗) (3.8)

where π∗ is a path formed by concatenating the most probable labels in each time step. Note
that best path decoding is an approximation, and there is no guarantee that it will always yield
the most probable labelling.

3.5 Experimental setup

Details of the steps taken to preprocess the data, hyperparameters of the encoder and de-
coder, and specifics of the network training are presented in this section. We also summarize
the evaluation metrics we use to evaluate the text recognition performance in both recognition-
only and end-to-end settings.

64

3.5.1 Implementation details

In all experiments, input images of cropped words or lines are converted to greyscale and
resized to a height of 32 pixels while keeping the original aspect ratio. There is no separate
validation split for the internal dataset. Therefore, for all languages, we form a validation split
by taking random 5% pages from each of the books in the train split. Thus validation split of
the internal dataset has pages similar to the pages in the train split, while the test split has pages
from a different set of books.

While training our models on word or line samples from the internal dataset, the output
alphabet L for a language is the set of unique Unicode points found in the respective train
split for that language. Similarly, while working with the Mozhi dataset, the output alphabet
for a language is the set of Unicode points in the train split for that language in the Mozhi
dataset. For any language, the alphabet used for the line recognition model will have only one
extra label — the label corresponding to white space — compared to the alphabet used for
the word recognition model of the same language. Word images in the synthetic dataset for
a language (see subsection 3.3.3) are rendered using the same set of words in the train split
for that language in the internal dataset. Therefore, the output alphabet used while training on
synthetic data for a language is the same as the alphabet used for the language while training
on the internal dataset.

For Win RNN, the sliding window width WW is 20, and the step size WS is 5. The RNN
we use in Col RNN, Win RNN and CRNN has the number of layers J = 2. We use a bi-
directional LSTM with 256 hidden units per direction in each layer. Therefore the size of
the output of the RNN at each time step is 2 × 256 = 512. The CNN block in CNN only
and CRNN models have the exact same architecture (shown in Figure 3.4) as in the original
CRNN paper [46]. Our models are implemented in PyTorch [206]. We build on an existing
third-party implementation of CRNN architecture 12. All our models are trained on a single
Nvidia GeForce 1080 Ti GPU. While training on the internal dataset, we train all the models
for 15 epochs, and the CRNN models trained on the Mozhi dataset are trained for 30 epochs.
A batch size of 64 and 16 is used for word and line recognition models, respectively. We use
RMSProp [207] as the optimizer. For Col RNN and Win RNN, a learning rate of 10e − 03 is
used. For CNN only and CRNN variants, a slower learning rate of 10e − 04 was found to be
better for faster convergence. The checkpoint that yields the highest Character Accuracy (refer
to subsection 3.5.2) on the respective validation data is saved for evaluation on the test split.

12https://github.com/Holmeyoung/crnn-pytorch

65

https://github.com/Holmeyoung/crnn-pytorch

3.5.2 Evaluation

We require to evaluate text recognition in three scenarios, i) word OCR: recognition of a
cropped word image, ii) line OCR: recognition of a cropped line image, and iii) page OCR:
end-to-end text recognition where input is a document image. In all three cases, our primary
evaluation metric is Character Accuracy (CA), which is based on the Levenshtein distance
between predicted and ground truth strings.

For a formal definition of CA, let us denote the predicted text for a word/line/page as li and
the corresponding ground truth as gi. If there are N such samples, CA is defined as

CA =

∑
i len(gi)−

∑
i LD(li, gi)∑

i len(gi)
× 100 (3.9)

where len is a function that returns the length of the given string, and LD is a function that
computes the Levenshtein distance between the given pair of strings. Note that Character
Error Rate (CER), which is another commonly used metric for OCR evaluation, is essentially
100− CA.

For word OCR and line OCR, in addition to CA, we report Sequence Accuracy (SA). It is
the percentage of samples for which the prediction is fully correct (i.e., LD(li, gi) = 0). In the
case of a word recognition model, SA is the same as ‘word accuracy’ or ’accuracy’ as used in
scene text recognition literature. For a line recognition model, SA is nothing but the percentage
of text lines that are transcribed correctly.

For evaluating page-level OCR where the input is a document image, we use a standard
OCR evaluation toolkit. A modern port 13 of the original ISRI Analytic Tools for OCR Eval-
uation [208] is used. Using the ISRI toolkit, we report Character Accuracy (CA) and Word
Accuracy (WA). In ISRI toolkit, CA is computed in the same manner as given in Equation 3.9.
Word accuracy is computed by aligning the sequence of words in the prediction li and the se-
quence of words in ground truth gi, and finding the Longest Common Sub-sequence (LCS) of
the two. For a set of pages,

WA =

∑
i len(LCS(li, gi))∑

i len(gi)
× 100 (3.10)

where len returns the number of words in a given sequence of words.

13https://github.com/eddieantonio/ocreval

66

https://github.com/eddieantonio/ocreval

Language

Word Line

Col RNN Win RNN CNN only CRNN Col RNN Win RNN CNN only CRNN

CA SA CA SA CA SA CA SA CA SA CA SA CA SA CA SA

Assamese 98.6 95.4 97.6 92.9 98.3 96.0 99.0 96.5 99.1 78.8 98.1 65.5 99.0 73.8 99.2 80.8

Bangla 99.1 97.0 98.3 94.5 99.2 97.3 99.4 97.9 99.1 73.7 98.4 59.6 99.2 73.9 99.4 79.7

Guajrati 96.2 92.4 95.1 89.5 96.2 90.9 96.5 93.9 96.5 66.3 94.6 49.9 96.0 62.2 96.9 67.4

Hindi 97.6 95.1 96.3 92.3 97.4 94.2 98.2 96.3 98.8 64.9 97.8 48.8 98.8 64.3 98.9 66.9

Kannada 97.4 88.9 96.4 84.7 96.7 85.8 97.7 90.7 97.4 49.2 96.4 38.2 97.0 42.9 97.5 49.4

Malayalam 99.5 96.6 99.3 95.6 98.0 83.7 99.7 97.7 99.5 84.8 99.3 80.5 98.5 49.7 99.7 86.9

Manipuri 98.6 95.4 97.8 92.8 98.2 93.1 99.0 96.9 99.4 79.9 98.7 67.6 99.4 79.2 99.5 80.9

Marathi 99.0 96.2 98.5 94.2 98.9 95.0 99.2 96.9 99.1 71.2 98.4 55.0 99.0 67.1 99.1 71.7

Odia 96.8 93.5 95.7 90.8 96.9 93.7 97.2 94.8 97.9 73.9 96.8 60.2 97.9 70.5 98.1 74.2

Punjabi 99.1 97.7 98.4 96.4 99.2 97.8 99.5 98.7 99.1 76.6 98.3 62.5 99.2 78.7 99.3 79.9

Tamil 97.9 91.0 97.4 88.4 97.3 87.2 98.0 91.8 96.3 43.8 95.9 40.7 96.2 41.2 96.5 45.0

Telugu 96.3 91.4 95.3 86.8 96.4 92.0 96.8 93.6 96.5 68.9 95.2 50.5 96.7 68.4 97.0 75.0

Urdu - - - - - - - - 93.9 23.2 75.8 4.2 91.9 17.0 93.5 24.1

Table 3.3: Recognition-only results on the validation splits of an internal dataset. The left half

shows results when the recognition unit is a word (word OCR) and the other half shows results of the

line OCR setting. Note that we train a separate model for each language in each setting. In both settings,

we report Character Accuracy (CA) and Sequence Accuracy (SA) for all four model configurations. The

numbers shown in bold are the best CA and SA among the four feature + encoder configurations.

3.6 Experiments and results

In this section, we present the details of the experiments we conduct and report and discuss
the results.

3.6.1 Comparing different feature + encoder configurations

We evaluate the performance of the 4 different feature + encoder configurations (see sub-
section 3.4.3) on the internal dataset for word and line recognition performance. The results of
this experiment are shown in Table 3.3. Models are trained on the train split and evaluated on
the validation split of the respective language.

67

Language
Word Line

CA SA CA SA

Assamese 99.1 96.9 99.4 73.3

Bangla 98.9 96.7 98.7 75.4

Guajrati 97.2 93.0 97.5 53.1

Hindi 97.4 94.0 98.0 51.2

Kannada 94.2 86.5 93.7 49.8

Malayalam 99.3 94.8 99.3 77.7

Manipuri 98.1 93.7 98.7 63.2

Marathi 99.6 97.9 99.5 81.7

Odia 97.8 94.8 98.0 61.4

Punjabi 99.0 97.8 99.2 78.8

Tamil 95.4 84.5 95.9 41.2

Telugu 99.0 94.7 98.9 69.4

Urdu - - 93.5 7.5

Table 3.4: Recognition-only performance using CRNN on the test splits of the internal dataset.
Here we use the CRNN checkpoint that yielded the highest CA on validation split.

Note that each CA and SA pair in Table 3.3 correspond to a CTC-based network that was
trained separately for a certain combination of language, recognition unit (line or word) and
feature + encoder configuration (Col RNN, Win RNN, CNN only or CRNN). In all cases ex-
cept for Urdu line recognition, CRNN performs the best among the 4 configurations. CRNN
performing better than Col RNN and Win RNN substantiate the superiority of features learnt
using a CNN compared to handcrafted features like normalized pixel values.

Similarly, improved performance for CRNN compared to CNN only configuration validates
the need for modelling long-term dependencies in the word or line images. Unlike fully con-
nected networks, neurons in successive layers in a CNN ‘see’ only a local region of the input
feature map. In order to build a CNN where a neuron in the last layer has a receptive field
covering the entire input, we need to stack a large number of convolutional layers. The 7-layer
CNN we use is not deep enough to model long term dependencies along the horizontal axis.
This is compensated by using a sequence encoder (a bi-directional LSTM) that efficiently mod-

68

els long-term dependencies in both forward and backward directions along the horizontal axis
of the input.

Since CRNN works the best except for Urdu line-level recognition, we only evaluate the
CRNN configuration on the test set. These results are reported in Table 3.4. The Col RNN
configuration that performs the best for Urdu line recognition on the validation split yields a
CA of 92.0 and SA of 3.6 on the Urdu test split.

3.6.2 Page OCR evaluation on the internal dataset

In the page OCR setting, input to the OCR is a document image and the expected output is
the transcription of the textual content in the image. For a page OCR, a typical approach is to
use a page segmentation step that detects lines or words followed by a word or line-level text
recognition model. Finally, text transcriptions for individual lines or words are combined to
form a page-level transcription. In a typical scenario, end-to-end OCR involves layout analysis
to identify different document layout objects and techniques to identify the reading order. This
work focuses on text recognition (i.e., recognizing text present in a given word or line image).
Detecting words or lines on document images is beyond the scope of this work. Therefore we
build an end-to-end page OCR pipeline where text detection is done using existing methods
or tools, and recognition of words or lines is done using our CRNN models. Once we have
transcriptions for individual words or lines, we concatenate them in the same reading order as
found by the page segmentation tool. In order to assess the upper bound on the end-to-end
text recognition performance of our CRNN model, we evaluate an end-to-end pipeline where
the gold standard line or word detections are used. We further compare the results of our
end-to-end OCR with two publicly available OCR tools.

We use two public end-to-end OCR tools. Tesseract and Google cloud vision OCR’s DOC-
UMENT TEXT DETECTION API. The former is an open-source OCR while the latter is a
commercial, cloud-based solution. Tesseract version 5.1.4 is used. We used page segmentation
mode (psm) 3 of Tesseract, which does automatic page segmentation but without automatic
script detection. We used model checkpoints provided in the official Tesseract repository 14.
For Manipuri, since there is no trained model available, we used the model trained for Ben-
gali since both languages use the same script. At the time we used Google cloud vision OCR,
Manipuri was not supported, and Urdu and Odia OCRs were in the experimental stage.

While building end-to-end pipelines that use our recognition model with automatic text
detection, we try out text detections from the following: i) line and word detections from
Tesseract, ii) line and word detections from Google cloud vision OCR, and iii) line detections

14https://github.com/tesseract-ocr/tessdata

69

https://github.com/tesseract-ocr/tessdata

Language

GT detection + our CRNN Automatic detection + our CRNN End-to-end OCR tools

GT
word

GT
line

Tesseract
word

Tesseract
line

Google
word

Google
line

Scale space
line Tesseract Google

CA SA CA SA CA SA CA SA CA SA CA SA CA SA CA SA CA SA

Assamese 99.3 97.0 99.4 97.2 94.4 94.5 96.8 94.5 94.6 92.0 98.7 95.7 98.6 96.5 92.7 91.2 90.0 86.0

Bangla 99.1 97.3 99.0 96.8 97.7 96.2 98.6 96.3 91.8 92.0 96.3 92.5 96.4 94.9 93.5 96.2 84.0 91.3

Gujarati 98.0 93.7 97.7 91.9 91.7 81.9 93.6 88.4 88.6 74.3 93.1 79.6 75.2 67.7 96.9 92.4 93.0 95.2

Hindi 98.1 96.0 98.0 95.6 94.6 91.5 95.5 93.2 92.4 87.6 95.7 92.3 96.1 93.7 95.0 93.3 95.2 97.3

Kannada 95.6 89.2 95.9 86.4 70.0 61.1 70.6 62.1 72.5 63.9 72.2 64.2 67.2 64.6 94.9 85.1 85.7 84.6

Malayalam 99.4 98.0 99.3 97.9 98.1 91.6 98.8 96.7 96.3 83.2 97.7 91.9 98.2 96.3 96.2 78.7 88.0 74.8

Manipuri 98.4 94.7 98.7 94.9 95.9 89.2 97.4 93.7 86.9 64.0 96.4 87.5 98.0 93.8 90.9 80.6 85.7 77.4

Marathi 99.6 98.2 99.5 98.0 96.3 96.1 97.2 96.2 97.4 93.2 98.1 95.6 86.5 82.9 97.9 97.4 98.3 98.4

Odia 98.6 95.4 98.0 94.5 95.4 89.2 96.9 93.3 86.6 67.1 96.0 89.5 98.3 94.8 94.0 83.6 92.6 90.0

Punajbi 99.2 98.3 99.3 97.9 94.7 91.6 96.0 95.1 91.5 85.0 97.6 95.3 96.5 95.7 93.2 89.8 92.7 96.7

Tamil 96.1 85.6 96.5 85.4 92.4 80.0 93.6 83.4 88.0 60.6 93.7 79.1 93.3 82.0 79.3 42.4 92.5 93.1

Telugu 99.1 95.1 98.9 94.0 89.3 83.2 89.2 83.5 91.4 71.9 96.3 86.0 83.8 79.9 93.7 79.3 94.2 89.2

Urdu - - 94.7 81.5 - - 88.9 74.4 - - 90.0 68.8 56.4 45.5 68.3 26.2 92.7 85.7

Table 3.5: Performance of our page OCR pipelines compared to other public OCR tools. In this

setting, we evaluate text recognition in an end-to-end manner on the test split of the internal dataset.

For text detection, either gold standard word/line bounding boxes or automatic text detection tools are

used. Under ‘End-to-end OCR tools ’we show results of Tesseract and Google Cloud Vision OCR.

Given a document image, these tools output a transcription of the page along with the bounding boxes

of the lines and words detected. Under ‘GT detection + our CRNN’, we show results of end-to-end

pipeline where gold standard word and line detections are used. For instance, ’GT Word’ means we

used ground truth (GT) word bounding boxes and the CRNN model trained for recognizing words, for

that particular language. Under ‘Automatic detection + our CRNN’ we show results of the following

end-to-end pipelines: i) Tesseract word detections + our CRNN word model, ii) Tesseract line detections

+ our CRNN line model, iii) Google OCR word detections + our CRNN word model, iv) Google OCR

line detections + our CRNN line model and v) Scale space [209] line detections + our CRNN line model.

using a third party implementation [209] of the scale space method proposed by Manmatha et
al. [210]. The Tesseract and Google OCR that we use for text detection is the same as the ones
we use in the end-to-end setting. Along with the text transcriptions, these tools provide the
bounding boxes of detected lines and words. These detections are used with our recognition
model to build an end-to-end OCR. The parameters for scale space method are set as instructed
in [209]. We use different parameter values for different languages. Values of the parameters
are determined based on the average height and aspect ratio of the text lines in the train split.

70

The lines detected using the scale space technique are ordered in the default reading order.
The default order may not be correct in the case of complex layouts and multi-column text.
Since our internal dataset comprises mostly document images with single-column text, using
default reading order to order line detections works for most of the images. We found the word
detections using scale space method highly noisy with many under segmentation cases. For
this reason, we do not try out an end-to-end pipeline that uses word detections from the scale
space method.

Results of all the end-to-end evaluations are reported in Table 3.5.

Model Trained on finetuned on

Hindi Malayalam Telugu

CA SA CA SA CA SA

real-only real NA 97.4 94.0 99.3 94.8 99.0 94.7

synth-only synthetic NA 93.3(⇓ 4.2%) 84.9(⇓ 9.7%) 98.2(⇓ 1.1%) 88.4(⇓ 6.7%) 95.5(⇓ 3.5%) 80.0(⇓ 15.5%)

synth + 0.1 real synthetic 10% real 96.9(⇓ 0.5%) 92.8(⇓ 1.2%) 99.2(⇓ 0.1%) 94.2(⇓ 0.6%) 98.7(⇓ 0.3%) 93.1(⇓ 1.6%)

synth + 0.5 real synthetic 50% real 97.4(⇕ 0.0%) 94.0(⇕ 0.0%) 99.3(⇕ 0.0%) 94.7(⇓ 0.1%) 99.0(⇕ 0.0%) 94.7(⇕ 0.0%)

Table 3.6: Synthetic to real transfer learning results. The numbers reported are evaluation results on

the word-level test split of the internal dataset for the respective language. ‘real-only’ and ‘synth-only’

are models trained exclusively on real and synthetic samples, respectively. We finetune the synth-only

models using varying amounts of real data. Synth + 0.1 real is the case when the synth-only model

is finetuned with a random 10% of the real samples. Similarly, synth + 0.5 real is a model where the

synth-only model is finetuned with half of the real training data. The values shown in brackets next

to accuracy values are relative gain or drop in accuracy compared to the corresponding accuracy for

real-only model. ⇓ indicates drop in accuracy and ⇕ is used when there is no change in accuracy. For

all languages, the synth-only model can be finetuned for performance on par with the real-only model

using only half of the real training data.

3.6.3 Transfer learning from synthetic to real

We investigate the effectiveness of synthetic data for training word recognition models. The
results of these experiments are reported in Table 3.6. For three languages—Hindi, Malayalam
and Telugu—we train word-level CRNN models on the respective synthetic datasets (see sub-
section 3.3.3). These models are called ’synth-only’ since they are trained purely on synthetic
data. The validation data used for these experiments contains not synthetic but real samples.
The validation data we use is the same as the validation data used for the respective languages
for training word-level models on the internal dataset. The model checkpoint that yields the

71

Figure 3.5: Transfer learning from real to synth by finetuning the synth-only model. The plot shown

above is for Hindi. The model that uses no real data for finetuning is called ‘synth-only’. That is, it is

trained purely on synthetic data. This model is then finetuned with real data that is randomly sampled

from the train split of the internal dataset. With finetuning on just 1% of the real data, the CA jumps

from 93.3 to 95.9, and the SA jumps from 84.9 to 90.6. With 40% or more real data, the performance

gain from the finetuning starts saturating and matches the performance of the real-only model.

best CA on the validation data is saved for evaluation on the test split. The saved checkpoint
is then evaluated on the respective word-level test split of the internal dataset. In Table 3.6,
a ’real-only’ model for a language is a CRNN model that is trained on the word samples in
the train split of the internal dataset for the language. Thus the results of real-only models we
report in the table are the same as the numbers we report for the three languages for word-level
CRNN on validation and test splits in Table 3.3 and Table 3.4, respectively. As expected, for
all languages, the synth-only model has a lower performance than the real-only model. But
the drop in performance is not large. The relative drop in CA, compared to the corresponding
real-only model, is not more than 5% for any language.

We conduct transfer learning experiments where we finetune the synth-only models using
real data. The results of these experiments are shown in the last two rows of Table 3.6. ‘synth
+ 0.1 real’ is a model where we finetune the synth-only model using a random 10% of the real
samples from the train split of the internal dataset. Similarly, ‘synth + 0.5 real’ is finetuned
using a random 50% of the internal dataset’s train split. With finetuning on 50% of the real

72

data, the CA is the same as that of the real-only models for all the languages. In Figure 3.1, we
show how increasing the amount of real data used for finetuning improves the performance of
the synth-only model for Hindi. Both CA and SA saturate and matches the performance of the
real-only model with 40% of the real data.

3.6.4 Evaluating CRNN on Mozhi dataset

Results of word and line recognition on the new Mozhi benchmark dataset using CRNN are
reported in Table 3.7. For a language, for both word and line, we train a CRNN from scratch
on the respective train split of the Mozhi dataset.

Language

Validation Test

Word Line Word Line

CA SA CA SA CA SA CA SA

Assamese 98.0 95.1 98.7 76.9 98.9 96.2 99.2 76.8

Bangla 99.2 97.0 98.4 69.5 99.0 96.9 98.1 68.4

Guajrati 98.3 95.3 97.8 61.4 98.0 94.9 97.4 63.1

Hindi 98.2 95.9 98.8 61.8 98.1 95.5 98.8 63.5

Kannada 96.6 88.4 97.1 53.2 97.1 88.7 97.5 53.9

Malayalam 99.6 97.2 99.5 86.0 99.5 97.3 99.5 87.3

Manipuri 98.4 95.8 99.1 80.3 98.4 95.9 99.2 79.4

Marathi 99.2 96.7 99.2 73.5 99.3 97.0 99.3 73.8

Odia 98.1 85.2 98.9 74.4 97.5 94.3 98.8 73.1

Punjabi 99.4 98.6 99.4 81.9 99.2 98.2 99.3 79.7

Tamil 98.2 92.0 98.5 70.1 98.0 91.6 98.3 68.1

Telugu 99.2 96.1 98.9 74.2 99.1 95.4 98.9 71.7

Urdu - - 93.6 26.5 - - 93.8 24.2

Table 3.7: CRNN evaluation on Mozhi dataset. For each language, we train both word and line level

CRNN models on the respective train split of the Mozhi dataset. The models are trained from scratch.

73

3.7 Summary

In this chapter, we conduct an empirical study of different CTC-based models for word and
line recognition for 13 Indic languages. Our study concludes that CRNN, which uses a CNN for
feature representation and a dedicated RNN-based sequential encoder, works the best. Using
existing text detection tools and our recognition models, we build page OCR pipelines and
show that our approach works better than two popular OCR tools for most languages. We
create font-rendered synthetic word image samples and train word recognition models for 3
languages. We conduct a transfer learning experiment where we analyze how the performance
of models trained purely on synthetic data improves when finetuned on real data. Our results
show that models pretrained on synthetic data and then finetuned with half of the real training
data perform equally well as the models trained on the whole of the real data. The results
suggests that font-rendered synthetic samples are a good alternative to real data to train text
recognition models for low-resource Indic languages. We also introduce a new public dataset
for cropped word/line recognition in 13 Indic languages, which has more than 1.2 million
annotated words in total.

74

Chapter 4

DocVQA: VQA on business documents

In the previous chapter we presented an empirical study comparing different feature and
encoder configurations for CTC-based printed text recognition of Indic languages. We believe
our study and the new benchmark dataset would broaden the language coverage of DIA and
make it more universal. In this chapter and the subsequent chapters, we present our works that
contribute to deepening the machine understanding capabilities of DIA. As discussed in sec-
tion 1.3, question answering tasks and similar tasks that require human-like reasoning skills
gained a lot of traction since the second half of last decade. However, QA/VQA is not actively
studied in the context of document images. Previous datasets that deal with VQA on document
images have template-based questions, and the images are limited to certain types of document
images, such sd book covers, and charts subsection 2.5.2. In this chapter, we present a new
task and dataset for VQA on document images from a wide variety of business documents.
The dataset consists of 50,000 questions defined on 12,000+ document images. Detailed anal-
ysis of the dataset in comparison with similar datasets for VQA and MRC is presented. We
report several baseline results by adopting existing VQA and MRC models for the DocVQA.
Although the existing models perform reasonably well on certain types of questions, there is a
significant performance gap compared to human performance (94.36% accuracy). The models
need to improve specifically on questions where understanding the structure of the document
is crucial. This work has previously been presented in our publication [5].

4.1 Introduction

As discussed in section 1.4, current research in DIA is generally focused on information
extraction tasks that aim to convert the information in document images into machine read-
able form, such as character recognition [211], table extraction [212] or key-value pair ex-

75

Q: Mention the ZIP code written?

A: 80202

Q: What date is seen on the seal at the top of the letter?

A: 23 sep 1970

Q: Which company address is mentioned on the letter?

A: Great western sugar Co.

Figure 4.1: Examples of question-answer pairs in DocVQA. Answering questions in the new dataset

require models not just to read text but interpret it within the layout/structure of the document.

traction [213]. Such algorithms tend to be designed as task-specific blocks, blind to the end-
purpose the extracted information will be used for. Progressing independently in such infor-
mation extraction processes has been quite successful, although it is not necessarily true that
holistic document image understanding can be achieved through a simple constructionist ap-
proach, building upon such modules. The scale and complexity of the task introduce difficulties
that require a different point of view.

In this chapter, we introduce Document Visual Question Answering (DocVQA) as a high-
level task dynamically driving DAR algorithms to interpret document images conditionally.
By doing so, we seek to inspire a “purpose-driven” point of view in DIA research. In the case
of Document VQA, as illustrated in Figure 4.1, an intelligent reading system is expected to

76

respond to ad-hoc requests for information, expressed in natural language questions by human
users. To do so, reading systems should not only extract and interpret the textual (handwrit-
ten, typewritten or printed) content of the document images but exploit numerous other visual
cues, including layout (page structure, forms, tables), non-textual elements (marks, tick boxes,
separators, diagrams) and style (font, colours, highlighting), to mention just a few.

Departing from generic VQA (see section 2.4) and scene text VQA (see subsection 2.5.1)
approaches, the document images warrant a different approach to exploit all the above visual
cues, making use of prior knowledge of the implicit written communication conventions used,
and dealing with the high-density semantic information conveyed in such images. Answers in
the case of document VQA cannot be sourced from a closed dictionary, but they are inherently
open-ended. Previous approaches to bringing VQA to the domain of document images have
either focused on specific document entities such as charts or on specific collections such as
book covers (subsection 2.5.2). In contrast to such approaches, we recast the problem to its
generic form and put forward a large scale, varied collection of real documents.

The main contributions of this work are the following:

• We introduce DocVQA, a large-scale dataset of 12,767 document images of varied types
and content, over which we have defined 50,000 questions and answers. The questions
defined are categorised based on their reasoning requirements, allowing us to analyze
how DocVQA methods fare for different question types.

• We define and evaluate various baseline methods over the DocVQA dataset, ranging
from simple heuristic methods and human performance analysis that allow us to de-
fine upper-performance bounds given different assumptions to state-of-the-art scene text
VQA models and MRC models.

4.2 DocVQA dataset

In this section, we explain the data collection and annotation process and present statistics
and analysis of DocVQA.

77

Tobacco Food Drug Fossil Fuel Chemical

(a) Industry-wise distribution of the documents.

N
um

be
r o

f D
oc

um
en

ts

0

500

1000

1500

<date not known>
1900-09

1910-19
1920-29

1930-39
1940-49

1950-59
1960-69

1970-79
1980-89

1990-99
2000-09

2010-19

(b) Year wise distribution of the documents.

N
um

be
r o

f
D

oc
um

en
ts

0

500

1000

1500

2000

let
ter for

m
rep

ort

ag
en

da
mem

o

sc
ien

tifi
c r

ep
.

tra
ns

ac
tio

n d
oc

.
tab

le

pu
bli

ca
tio

n

fin
an

cia
l re

p.

tel
ep

ho
ne

 re
c.

co
ntr

ac
t

art
icl

e
em

ail

gra
ph

ics
no

tes

bu
dg

et

minu
tes

ph
oto

gra
ph

inv
oic

e

(c) Various types of documents used.

Figure 4.2: Distribution of documents by industry, document creation date and document type.
Document images we use in the dataset come from 6071 documents from the UCSF industry documents

library, spanning many decades, of a variety of types and originating from 5 different industries.

78

Stage1 1 instructions Stage 2 instructions

1. You need to add questions and corresponding answers

based on the given image.

2. Make sure the questions you ask can be answered purely

based on the content in the image

3. Try to frame more questions based on tables, figures and

forms.

4. You are allowed to reject the image if,

(a) the image is of bad resolution or mostly contains

illegible text.

(b) the content is almost entirely in a non-English lan-

guage.

(c) you are unable to frame any question.

5. The text which forms your answer must be

(a) found verbatim in the image as a contiguous se-

quence of tokens in the reading order

1. You need to enter answers for the questions shown based

on the given image

2. if you cannot find the answer to the question based on the

image, flag the question as ”can’t answer”

3. For each question, add appropriate question type(s) from

the below list. It is possible that a question can have more

than one question type associated with it.

(a) Handwritten: The question is based on a content

that is handwritten

(b) Form: The question is based on content that is

presented like a form.

(c) Layout: If the question is about headings, page

numbers or anything concerning the location or

layout of text or any other document entity

(d) Table/list: The question is grounded on data pre-

sented in the form of a table or a list

(e) Running text: The question is grounded on the

information presented in the form of sentences or

paragraphs.

(f) Photograph: The question is grounded on a pic-

ture of a person or a thing.

(g) Figure: The question is grounded on a diagram,

visualization, figure or schematic.

(h) Yes/No: The answer to the question is yes/no.

(i) Other: If none of the above types is valid for the

question, assign ”Other”

Table 4.1: DocVQA annotation instructions.

79

Figure 4.3: Screenshot of annotation stage 1 - question-answer collection. Questions and answers

are collected for a given document image. An annotator can add up to 10 questions for an image. The

image can be skipped if it is not possible to frame questions on it.

Figure 4.4: Screenshot of annotation stage 2 - data verification. For each question shown annotators

have to (i) enter answer(s) (answer(s) from the first stage are not shown) and (ii) Tag the question with

one or more question types from the 9 question types shown in a drop-down (question types assigned to

a question are shown in green highlight color.) or (iii) flag/ignore the question by selecting the check-

box corresponding to one of the reasons such as “invalid question”, “Serious lang. issue” etc. (the

reasons chosen for flagging a question are shown in red highlight color)

4.2.1 Data collection

4.2.1.1 Document images

Images in the dataset are sourced from documents in UCSF Industry Documents Library1.
The library is a digital archive of documents from various industries concerning public health.

1https://www.industrydocuments.ucsf.edu/80

https://www.industrydocuments.ucsf.edu/

Figure 4.5: Screenshot of annotation stage 3 - reviewing answer mismatch cases. If none of the

answers entered in the first stage for a question match with any of the answers entered in the second

stage, the question is sent for review in the third stage. In this stage, the worker is allowed to edit

question as well as answers or add new answers before accepting the question.

As of June 2020, the library hosts over 15 million documents. The documents are organized
under different industries and further under different collections. We downloaded documents
from different collections, and hand-picked pages from these documents for use in the dataset.
The majority of documents in the library are binarized, which has taken on a toll on the image
quality. We tried to minimize binarized images in DocVQA since we did not want poor image
quality to be a bottleneck for VQA. We also prioritized pages with tables, forms, lists and
figures over pages that only have running text.

The final set of images in the dataset is drawn from pages of 6,071 industry documents. We
made use of documents from as early as 1900 to as recent as 2018. (Figure 4.2b). Most of the
documents are from the 1960-2000 period, and they include typewritten, printed, handwritten
and born-digital text. There are documents from all 5 major industries for which the library
hosts documents — tobacco, food, drug, fossil fuel and chemical. We use many documents
from food and nutrition-related collections, as they have a good number of non-binarized im-
ages. The majority of the documents we use are from food-related collections since a good
share of them are not binarized. See Figure 4.2a for industry-wise distribution of the 6071
documents used. The dataset comprises a wide variety of document types, as shown in Fig-
ure 4.2c.

81

What is the total

what is the heading of the
document

what is the date mentioned in
this document

to whom is this letter
addressed

what is the date mentioned in
the top of the document

what is the date mentioned in
the given page

what is the first title in the
document

when is the document date

what is the date mentioned in
the document

what is the page no mentioned
in this document

what is the date

what is the date mentioned

what is the date on the
document

what is the page number

what is the title of the
document

0 200 400 600

Figure 4.6: Top 15 most frequent questions in DocVQA and their frequencies.

4.2.1.2 Selection of workers

Initially, we hosted a pilot annotation on a crowd-sourcing platform for collecting question-
answer pairs. But more than 40% of the question-answer pairs added during the pilot annota-
tion were noisy. We realized that some of the requirements were not easy to understand from
written instructions. For example, the kind of question-answers that are allowed—only ex-
tractive questions—and assigning question types are better understood when explained using
examples. Consequently, we decided to use an internal web-based tool for the annotation and
hired workers with whom we could interact closely.

To select the workers, we reached out to individuals looking for annotation-type jobs through
mailing lists and other online groups. Interested applicants were invited to join a 90-minute
webinar explaining the process and all the requirements. Table 4.1 lists the written annotation
instructions that were handed out to the applicants. During the webinar, we explained each of
the instructions with many examples of the accepted types of questions. Following the webinar,
the applicants were asked to take an online quiz to assess how well they understood the process
and the policies. Based on the quiz scores we selected 45 individuals for the annotation. The
selected workers were called for another round of webinar, where we discussed the answer
key for the quiz and clarified their doubts. The workers were added to an online forum so that

82

9

0

12

9

20

da-49-007-md-1024

washington university

6

7

10

5

4

3

1

2

0 100 200 300 400

Figure 4.7: Top 15 most frequent answers in DocVQA and their frequencies.

they could post their queries related to the annotation in the forum. They were encouraged to
post questions with screenshots whenever in doubt. They would keep the particular image in
pending and move on to other images in the queue until one of the authors give a reply to the
question they raised. This way, we could reduce annotation errors drastically. Every time a
worker is in doubt, they were advised to keep the document in pending, post their question in
the forum and move to another image. The image kept in pending will be cleared later when
one of the authors replies to the question.

4.2.1.3 Questions and answers

The annotation process was organized into three stages. In stage 1, workers were shown
a document image and asked to define at most 10 question-answer pairs on it. They were
given the option to skip an image if it is of bad quality or if the worker could not frame any
question. We encouraged the workers to add more than one ground truth answer per question
when warranted. Figure 4.3 shows a screenshot from stage 2 of the annotation.

The second annotation stage aims to verify the data collected in the first stage. We made sure
that the second stage was done by a worker different from the one who collected questions and

83

director

president

dr. william j. darby

american heart association

vanderbilt university

the nutrition foundation, inc.

william j. darby

robert e. shank, m.d.

dr. robert e. shank

new york

yes

winston

no

da-49-007-md-1024

washington university

0 25 50 75 100 125

Figure 4.8: Top 15 non numeric answers in DocVQA and their frequencies.

N
um

be
r o

f Q
ue

st
io

ns

0

5000

10000

15000

20000

han
dwrit

ten form
lay

out

tab
le/

lis
t

other

ru
nning te

xt

photograp
h

fig
ure

ye
s/n

o

Figure 4.9: The 9 question types in DocVQA dataset and share of questions in each type. For each

question in the dataset we collect additional meta data called question types that indicate the nature of

the question and the kind of information the question is grounded on.

answers on the same image in the first stage. Here a worker was shown an image and questions
defined on it in the first stage (but not the answers from the first stage), and was required to
enter answers for the questions. In this stage, workers were also required to assign one or

84

Number of words in question

N
um

be
r o

f q
ue

st
io

ns
 (%

)

0

10

20

30

10 20 30 40

DocVQA VQA 2.0 TextVQA ST-VQA SQuAD 1.1

(a) Questions with a particular length.

Number of words in answer

N
um

be
r o

f a
ns

w
er

s
(%

)

0

25

50

75

100

1 3 5 7 9 11 13 15

DocVQA VQA 2.0 TextVQA ST-VQA SQuAD 1.1

(b) Answers with a particular length.

Number of tokens in image/context

N
um

be
r o

f m
ag

es
/c

on
te

xt
s

 (%
)

0

5

10

15

0 25 50 75 100

DocVQA VQA 2.0 TextVQA ST-VQA SQuAD 1.1

(c) Images/contexts with a particular length of text tokens

Figure 4.10: Question, answer and OCR tokens’ statistics compared to similar datasets from VQA—

VQA 2.0 [153], ST-VQA [155], TextVQA [149]—and SQuAD 1.1 [91] reading comprehension dataset.

more question types to each question. The different question types in DocVQA are discussed
in subsection 4.2.2. During the second stage, if the worker finds a question inapt owing to

85

language issues or ambiguity, an option to flag the question was provided. Such questions are
not included in the dataset. Figure 4.4 shows a screenshot from stage 2 of the annotation.

If none of the answers entered in the first stage match exactly with any of the answers from
the second stage, the particular question is sent for review in the third stage. In the third stage,
the question and all the answers that were entered during the first and second annotation stages
are shown. Questions and answers are editable, and the reviewer either accepts the question-
answer (after editing if necessary) or ignores it. The third stage review is done by the authors
themselves. Figure 4.4 shows a screenshot of this stage. For a question, we retain all the unique
answers (i.e, unique strings after converting all answers to lower case) . Hence a question can
have more than 1 valid answer.

4.2.2 Statistics and analysis

The DocVQA comprises 50,000 questions framed on 12,767 images. The data is split ran-
domly in an 80-10-10 ratio to train, validation and test splits. The train split has 39,463 ques-
tions and 10,194 images, the validation split has 5,349 questions and 1,286 images, and the test
split has 5,188 questions and 1,287 images.

As mentioned before, questions are tagged with question type(s) during the second stage of
the annotation process. Figure 4.9 shows the 9 question types and the number of questions
in each type. A question type signifies the type of data where the question is grounded. For
example, ‘table/list’ is assigned if answering the question requires an understanding of a table
or a list. If the information is presented like a form—i.e., in key:value format—the ‘form’
type is assigned. ‘Layout’ is assigned for questions that require spatial/layout information to
find the answer. For example, questions asking for a title or heading require one to understand
the structure of the document. If a question is based on a picture of a person or a thing,
“photograph” type is assigned. Similarly, a question that is based on a figure/plot/visualization
is tagged as of type “figure”. Any question that has a yes or no answer is assigned “yes/no”
type. If the answer for a question is based on information in the form of sentences/paragraphs,
the type assigned is ‘running text’. For all questions where the answer is based on handwritten
text, the ‘handwritten’ type is assigned. If none of the above-mentioned question types is valid
for a question, the workers were asked to assign the type for the question as ”other”. It must
be noted that a question can have more than one question type assigned to it. For example, if a
question is based on a handwritten form, both “form” and “handwritten” types are assigned. In
some cases, multiple question types are assigned when it is difficult to decide what document
entity the question is based on. For example, there are many instances where a form looks very

86

similar to tabular data. In such cases, we advised the workers to assign both “table/list” and
“form” types.

In the following analysis, we compare statistics of questions, answers, and OCR tokens with
other similar datasets for VQA —VQA 2.0 [153], TextVQA [149] and ST-VQA [155] and
SQuAD 1.1 [91] dataset for reading comprehension. Statistics for other datasets are computed
based on their publicly available data splits. For statistics on OCR tokens, for DocVQA, we
use OCR tokens generated using Microsoft’s Read OCR2. For VQA 2.0, TextVQA and ST-
VQA, we use OCR tokens made available by authors of LoRRA [149] and M4C [94] as part
of the MMF framework [214]. For statistics involving question or answer tokens, tokens are
generated by splitting question or answer at white space.

Figure 4.10a shows the distribution of question lengths for questions in DocVQA compared
to other similar datasets. The average question length is 8.12, which is the second highest
among the compared datasets. The minimum question length is 1, and the longest question has
29 words. In DocVQA, 35,362 (70.72%) questions are unique, which is lower compared to
other datasets except VQA 2.0. Figure 4.6 shows the top 15 most frequent questions and their
frequencies. There are questions repeatedly being asked about dates, titles, and page numbers.
For example ”What is the title of the document” is asked at least 500 times. A sunburst of the
first 4 words of the questions is shown in Figure 4.12. Here, for better visualization, we only
show words that occur at least 80 times. It can be seen that a large majority of questions start
with “what is the”, asking for the date, title, total, amount, or name.

The distribution of answer lengths is shown in Figure 4.10b. We observe in the figure that
both DocVQA and SQuAD 1.1 have a higher number of longer answers compared to the VQA
datasets. The average answer length is 2.17. The longest answer in DocVQA has 30 words in
it. 63.2% of the answers are unique, which is second only to SQuAD 1.1 (72.5%). The top
15 answers in the dataset are shown in Figure 4.7. The most common answer is an answer
for only 0.7% of questions in the dataset. We observe that almost all of the top answers are
numeric values, which is expected since there are a good number of document images of reports
and invoices. In Figure 4.8, we show the top 15 non-numeric answers. These include named
entities such as names of people, institutions, and places. The word cloud in Figure 4.11a
shows frequent words in answers. The most common words are the names of people and the
names of calendar months.

In Figure 4.10c, we show the number of images (or ‘context’s as called in the case of SQuAD
1.1) containing a particular number of text tokens. The average number of text tokens in an
image or context is the highest in the case of DocVQA (182.75). It is considerably higher

2https://learn.microsoft.com/en-us/azure/cognitive-services/
computer-vision/overview-ocr

87

https://learn.microsoft.com/en-us/azure/cognitive-services/computer-vision/overview-ocr
https://learn.microsoft.com/en-us/azure/cognitive-services/computer-vision/overview-ocr

(a) Word cloud of tokens in answers in DocVQA

(b) Word cloud of OCR tokens in DocVQA

Figure 4.11: Word clouds of answers and OCR tokens in DocVQA dataset

compared to SQuAD 1.1, where contexts are usually small paragraphs whose average length is

88

Figure 4.12: Distribution of questions by their starting 4-grams. Most questions aim to retrieve

common data points in documents such as date, title, total mount, and page number.

117.23. In the case of VQA datasets that comprise real-world images average number of OCR
tokens is not more than 13. The word cloud in Figure 4.11b shows the most common words
spotted by the OCR on the images in DocVQA. There is a high overlap between common OCR
tokens and words in answers.

4.3 Baselines

In this section, we explain the baselines we use, including heuristics and trained models.

89

4.3.1 Heuristics and upper bounds

The heuristics we evaluate are: (i) Random answer: measures performance when we pick
a random answer from the answers in the train split. (ii) Random OCR token: performance
when a random OCR token from the given document image is picked as the answer. (iii)
Longest OCR token is the case when the longest OCR token in the given document is selected
as the answer. (iv) Majority answer measures the performance when the most frequent answer
in the train split is considered as the answer.

We also compute the following upper bounds: (i) Vocab UB: This upper bound measures the
performance upper bound one can get by predicting correct answers for the questions, provided
the correct answer is present in a vocabulary of answers, comprising all answers which occur
more than once in the train split. (ii) OCR substring UB: is the upper bound on predicting
the correct answer provided the answer can be found as a substring in the sequence of OCR
tokens. The sequence is made by serializing the OCR tokens recognized in the documents as
a sequence separated by space, in top-left to bottom-right order. (iii) OCR subsequence UB:
the upper bound on predicting the correct answer provided the answer is a subsequence of the
OCR tokens’ sequence.

4.3.2 VQA models

In subsection 2.5.1. we discussed two scene text VQA models—LoRRA and M4C— that
have the capability to read and reason over text spotted on the images. We evaluate the models
on DocVQA. In our experiments, we use original LoRRA and M4C models and a few variants
of these models. Document images in DocVQA usually contain a higher number of text tokens
compared to images in scene text VQA datasets. Hence we try out larger dynamic vocabularies
(i.e., more OCR tokens are considered from the images) for both LoRRA and M4C. For both
models, we also evaluate performance when no fixed vocabulary is used. Since the notion of
visual objects in real world images is not directly applicable in the case of document images,
we also try out variants of LoRRA and M4C where region features are omitted.

4.3.3 Reading comprehension models

In addition to the VQA models, which can read text, we try out extractive QA/MRC models
from NLP. In particular, we use the BERT [113] QA model(subsubsection 2.2.1.1).

90

4.4 Experiments

In this section, we explain evaluation metrics and our experimental settings and report the
results of experiments.

4.4.1 Evaluation metrics

Two evaluation metrics we use are Average Normalized Levenshtein Similarity (ANLS) and
Accuracy (Acc.). ANLS was originally proposed for the evaluation of VQA on ST-VQA [215].
The Accuracy metric measures the percentage of questions for which the predicted answer
matches exactly with any of the target answers. The accuracy metric awards a zero score
even when the prediction differs slightly from the target answer. Since no OCR is perfect,
we propose to use ANLS as our primary evaluation metric so that minor answer mismatches
stemming from OCR errors are not severely penalized.

The ANLS score is defined as:

ANLS =
1

N

N∑
i=0

(
max

j
s(aij, oqi)

)
(4.1)

s(aij, oqi) =

(1−NL(aij, oqi)) if NL(aij, oqi) < τ

0 if NL(aij, oqi) ⩾ τ

In Equation 4.1 N is the number of questions and M is the number of ground truth answers
per question. The ground truth answers are denoted as aij . Index i in the range {0, ..., N}
corresponds to the question, and index j indicates the index of the particular ground answer for
a question. oqi is the predicted answer for the ith question qi. NL(aij, oqi) is the Normalized
Levenshtein distance between the strings aij and oqi after converting both the strings to lower
case. The distance is a value between 0 and 1. The similarity score s(aij, oqi) for aij and oqi is
set to 1 − NL(aij, oqi) if the normalized distance is less than a threshold τ = 0.5. Otherwise,
the similarity score is set to zero. The rationale for the threshold is that it is unlikely that the
mismatch is caused by OCR error if a predicted answer has a normalised edit distance of more
than 0.5 to a ground truth answer.

4.4.2 Experimental setup

For measuring human performance, we collect answers for all questions in the test split, with
the help of a few volunteers from our institution. In all our experiments, including heuristics

91

Baseline
val test

ANLS Acc. ANLS Acc.

Human - - 0.981 94.36

Random answer 0.003 0.00 0.003 0.00

Random OCR token 0.013 0.52 0.014 0.58

Longest OCR token 0.002 0.05 0.003 0.07

Majority answer 0.017 0.90 0.017 0.89

Vocab UB - 31.31 - 33.78

OCR substring UB - 85.64 - 87.00

OCR subsequence UB - 76.37 - 77.00

Table 4.2: Results of different heuristic baselines and upper bounds. Predicting random answers or

majority answer do not even yield 1% accuracy. Answers are a substring of the serialized OCR output

in more than 85% of the cases.

and trained baselines, the OCR tokens we use are extracted using a commercial OCR appli-
cation. For the heuristics and upper bounds, we use a vocabulary 4, 341 answers which occur
more than once in the train split.

For LoRRA and M4C, we use official implementations available as part of the MMF frame-
work. The training settings and hyperparameters are the same as the ones reported in the
original works. Grid features and region features for LoRRA and region features for M4C are
extracted using the models originally used in the respective works. The fixed vocabulary we
use for LoRRA is the same as the vocabulary we use for computing vocabulary-based heuris-
tics and upper bounds. For M4C, the fixed vocabulary we use is a vocabulary of the 5,000 most
frequent words from the answers in the train split of DocVQA.

For QA using BERT, three pretrained BERT models3 from the Hugging face library [216]
are used. The models we use are bert-base-uncased, bert-large-uncased-whole-word-masking,
and bert-large-uncased-whole-word-masking-finetuned-squad. We abbreviate the model names
as bert-base, bert-large, and bert-large-squad, respectively. Among these, bert-large-squad is a
pretrained model, which is also finetuned on SQuAD 1.1 for question answering. In the case
of extractive QA or MRC datasets, ‘contexts’ on which questions are asked are passages of
electronic text. But in DocVQA, ‘contexts’ are document images. Hence to finetune the BERT

3https://huggingface.co/transformers/pretrained_models.html

92

https://huggingface.co/transformers/pretrained_models.html

Method Region features Fixed vocab. Dynamic vocab. size
val test

ANLS Acc. ANLS Acc.

LoRRA [149]

✓ ✓ 50 0.110 7.22 0.112 7.63

✓ ✗ 50 0.041 2.64 0.037 2.58

✗ ✓ 50 0.102 6.73 0.100 6.43

✓ ✓ 150 0.101 7.09 0.102 7.22

✓ ✓ 500 0.094 6.41 0.095 6.31

M4C [94]

✓ ✓ 50 0.292 18.34 0.306 18.75

✓ ✗ 50 0.216 12.44 0.219 12.15

✗ ✓ 50 0.294 18.75 0.310 18.92

✗ ✓ 150 0.352 22.66 0.360 22.35

✗ ✓ 300 0.367 23.99 0.375 23.90

✗ ✓ 500 0.385 24.73 0.391 24.81

Table 4.3: Performance of the VQA models which are capable of reading text— LoRRA [149] and
M4C[94] on DocVQA. Detection of visual objects and their features (bottom-up attention), which is a

common practice in VQA is ineffective in the case of DocVQA.

QA models on DocVQA, we need to prepare the data in SQuAD style format where the answer
to a question is a ‘span’ of the context, defined by start and end indices of the answer. To this
end, we first serialize the OCR tokens recognized on the document images to a single string,
separated by space, in top-left to bottom-right order. To approximate the answer spans, we
follow an approach proposed in TriviaQA [217], which is to find the first match of the answer
string in the serialized OCR string.

The bert-base model is finetuned on DocVQA on 2 Nvidia GeForce 1080 Ti GPUs, for 2
epochs, with a batch size of 32. We use Adam optimizer [218] with a learning rate of 5e− 05.
The bert-large and bert-large-squad models are finetuned on 4 GPUs for 6 epochs with a batch
size of 8, and a learning rate of 2e− 05.

4.4.3 Results

The results of the heuristic baselines and upper bounds are reported in Table 4.2. We can
see that none of the heuristics get even a 1% accuracy on the validation or test splits. OCR

93

substring UB yields more than 85% accuracy on both validation and test splits. However, the
substring match in all cases need not be an actual answer match. For example, if the answer is
“2” which is the most common answer in the dataset, it will match with a “2” in “2020” or a
“2” in “2pac”. This is the reason why we evaluate the OCR subsequence UB. An answer is a
sub sequence of the serialized OCR output for around 76% of the questions in both validation
and test splits.

The results of our trained VQA baselines are shown in Table 4.3. The first rows for both
methods report the results of the original model proposed in those works. In the case of
LoRRA, the original setting proposed by the authors yields the best results compared to the
variants we try out. With no fixed vocabulary, the performance of the model drops sharply,
suggesting that the model primarily relies on the fixed vocabulary to output answers. Larger
dynamic vocabulary results in a slight performance drop, suggesting that incorporating more
OCR tokens from the document images does little help. Unlike LoRRA, M4C benefits from
a larger dynamic vocabulary. Increasing the size of the dynamic vocabulary from 50 to 500
improves the ANLS by around 50%. In the case of LoRRA, although region features help, the
improvement is insignificant. For M4C, the setting where region features are omitted performs
slightly better compared to the original setting. These results can be attributed to the fact that
the region features used by LoRRA and M4C come from an object detection model trained
on natural images. The document images in DocVQA are significantly different from natu-
ral images, and the definition of objects in natural images makes little sense in the context of
document images.

The results of different variants of the BERT QA model are reported in Table 4.4. We
observe that all BERT models perform better than the best VQA baseline using M4C (last
row in 4.3). The best-performing model out of all the baselines analysed is the bert-large-

Pretrained model Finetuned on DocVQA
val test

ANLS Acc. ANLS Acc.

bert-base ✓ 0.556 45.6 0.574 47.6

bert-large ✓ 0.594 49.28 0.610 51.08

bert-large-squad ✗ 0.462 36.72 0.475 38.26

bert-large-squad ✓ 0.655 54.48 0.665 55.77

Table 4.4: Performance of BERT QA model on DocVQA. A BERTLARGE model which is finetuned

on both SQuAD 1.1 [91] and DocVQA performs the best.

94

Q: What is the underlined heading
just above the table?

GT: Indications for implantation

M4C best: indications for implanta-
tion

BERT best: total aneurism

Human: indications for implantation

Q: What is the Extension Number as
per the voucher?

GT: (910) 741-0673

M4C best: 963.12

BERT best: (910) 741-0673

Human: (910) 741-0673

Q: How many boxed illustrations are
there ?

GT: 9

M4C best: 4

BERT best: 4

Human: 9

Figure 4.13: Qualitative results from our experiments. For example, we show the original image at

the top, and the crop of the image that is relevant to the question is shown in the inset. The leftmost

example is a ‘layout’ type question answered correctly by the M4C model but erred by the BERT model.

In the second example, the BERT model correctly answers a question on a form, while the M4C model

fails. In the case of the rightmost example, both models fail to understand a step-by-step illustration.

squad model, finetuned on DocVQA. Answers predicted by this model match one of the target
answers exactly for around 55% of the questions.

In Figure 4.14, we show performance by question type. We compare the best models among
VQA models and BERT QA model’s variants against the human performance on the test split.
We observe that the human performance is uniform while the models’ performance varies for
different question types. In Figure 4.13, we show a few qualitative results from our experi-
ments. More qualitative results are added in Appendix B.

95

0.00

0.25

0.50

0.75

1.00

ove
ral

l

fig
ure

form

tab
le/

lis
t

lay
out

ru
nning te

xt

photograp
h

han
dwrit

ten

ye
s/n

o
other

BERT best M4C best Human

Figure 4.14: Performance of baseline models for different question types. Best baselines from VQA

space and reading comprehension space pitted against the human performance for different question

types. We need models which can understand figures and text on photographs better. We need better

handwriting recognizers too!

4.5 Summary

We introduce a new data set and an associated VQA task with the aim to inspire a “purpose-
driven” approach in document image analysis and recognition research. Our dataset comprises
a variety of business documents that feature structured and unstructured text, tables, figures
and photographs. However existing text-based VQA models perform poorly on DocVQA as
they are developed exclusively for natural images. We believe DocVQA could drive methods
that use low-level cues (text, layout, arrangements) and high-level goals (purpose, relationship,
domain knowledge) in solving problems of practical importance.

96

Chapter 5

InfographicVQA: VQA on infographics

In the previous chapter, we presented a novel VQA task called DocVQA, where images
comprise pages from business documents. Our experiments on DocVQA show that a text-only
baseline using BERT correctly answers nearly 55% of the questions. Additionally, results of
the DocVQA challenge [219] suggest that a good share of the questions in the DocVQA can be
answered without using any visual information. The findings drove us to create a DocVQA++,
where visual cues are indispensable for answering the questions. To this end, we present In-
fographicVQA, a new dataset that comprises a diverse collection of infographics along with
question-answer annotations. Infographics communicate information using a combination of
textual, graphical and visual elements. We believe infographics that feature complex multi-
modal interactions and rich in information, are an excellent benchmark for multimodal reason-
ing. We curate the dataset with an emphasis on questions that require elementary reasoning
and arithmetic skills. We propose a multimodal BERT-like architecture for VQA on Info-
graphicVQA. Although our approach performs better than the baselines, there is a significant
performance gap compared to near-perfect human performance on the dataset. This work on
VQA on infographics has previously been presented in our publication [9].

5.1 Introduction

Infographics are documents created to convey information in a compact manner using a
combination of textual and visual cues. The presence of the text, numbers, and symbols, along
with the semantics that arises from their relative placements, make infographics understanding
a challenging problem. Machine understanding of infographics requires methods to jointly rea-
son over the document layout, text, graphical elements, data visualisations, color schemes and
visual art, among others. Motivated by the multimodal nature of infographics, and the human

97

centered design, we propose a Visual Question Answering (VQA) approach to infographics
understanding.

Figure 5.1: Example image from InfographicVQA along with questions and answers. For each

question, source of the answer, type of evidence the answer is grounded on, and the discrete operations

required to find the answer are shown.

In this work, we introduce a dataset for VQA on infographics named InfographicVQA.
The dataset comprises 30,035 questions over 5,485 images. An example from our dataset is
shown in Figure 5.1. Questions in the dataset include questions grounded on tables, figures
and visualizations and questions that require combining multiple cues. We believe our dataset
is ideal for benchmarking the progress of algorithms at the meeting point of vision, language
and document understanding.

We propose a multimodal BERT-like model called VLL-BERT (vision, language and layout
BERT) for VQA on the new dataset. LayoutLM (subsection 2.3.1) and VisualBERT(subsec-
tion 2.4.2 serve as inspiration for our model. Despite the fact that our method outperforms a

98

strong baseline like M4C, there remains a sizable performance difference when compared to
near-perfect human performance on the dataset.

5.2 Related works

Dataset Images
Synthetic Template

Text type # Images # Questions Answer type
Images questions

TQA [163] Science diagrams ✗ ✗ MR 1K 26K MCQ

RecipeQA [164] Culinary pictures ✗ ✓ MR 251K 37K MCQ

ST-VQA [155] Natural images ✗ ✗ ST 23K 31K Ex

TextVQA [149] Natural images ✗ ✗ ST 28K 45K Ex, SAb

OCR-VQA [60] Book covers ✗ ✓ BD 207K 1M Ex, Y/N

DVQA [58] Bar charts ✓ ✓ BD 300K 3.4M Ex, Nm, Y/N

FigureQA [59] Charts - 5 types ✓ ✓ BD 120K 1.5M Y/N

LEAF-QA [220] Charts - 4 types ✓ ✓ BD 250K 2M Ex, Nm, Y/N

VisualMRC [221] Webpage screenshots ✗ ✗ BD 10K 30K Ab

DocVQA [5] Industry documents ✗ ✗ Pr, Tw, Hw, BD 12K 50K Ex

InfographicVQA Infographics ✗ ✗ BD 5.4K 30K Ex, Nm

Table 5.1: Summary of VQA and Multimodal QA datasets where text on the images needs to be
read to answer questions. Text types are: Machine Readable (MR), Scene Text (ST), Born Digital

(BD), Printed (Pr), Handwritten (Hw), and Typewritten (Tw). Answer types are: Multiple Choice

(MCQ), Extractive (Ex), Short abstractive (SAb), Abstractive (Ab), Yes/No (Y/N), and Numerical

(Nm)—when answer is numerical and not extracted from image or question.

5.2.1 Question answering in a multimodal context.

Textbook Question Answering (TQA) and RecipeQA deal with QA in a multimodal context
(see section 2.6). Contrary to InfographicVQA and other datasets mentioned below, text in
these two datasets is not embedded on the images but provided separately in machine readable
form. ST-VQA and TextVQA (see subsection 2.5.1) comprise images captured in the wild
with sparse text content. InfographicVQA has born-digital images with an order of magnitude
more text tokens per image, richer in layout and in the interplay between textual and visual ele-
ments. Compared to the OCR-VQA dataset (subsubsection 2.5.2.1 which focuses exclusively
on book covers and contains text-centric template questions, questions in InfographicVQA re-
quire multimodal reasoning and the dataset contains visually rich images. Charts in chart VQA

99

tasks (subsubsection 2.5.2.2) are a type of infographics. But these datasets contain a few types
of standard charts and contain only template questions. Compared to these, InfographicVQA
contains complex infographics that go beyond the definition of a ”chart” and questions are
manually annotated.

VisualMRC [221] is a document VQA dataset that was introduced concurrently to Info-
graphicVQA. VisualMRC is an abstractive VQA (answers cannot be directly extracted from
text in the images or questions) benchmark where images are screenshots of web pages. Com-
pared to VisualMRC, InfographicVQA is an extractive VQA (answers are extracted as ‘span’(s)
of the question or text present in the given image), except for questions that require certain dis-
crete operations resulting in numerical non-extractive answers. InfographicVQA can be seen as
a natural extension of DocVQA to a new category of images that are information rich and more
challenging in terms of layout complexity and vision-language interplay. Table 5.1 presents a
high-level summary of the QA/VQA datasets related to InfographicVQA.

5.2.2 Multimodal pretraining for vision and language tasks

Following the success of BERT [113], there have been multiple works extending it to the
Vision-Language space. Models like VisualBERT(subsection 2.4.2), VL-BERT [151], Vil-
BERT [222], LXMERT [223] and UNITER [152] show that pretraining of BERT-like archi-
tectures on vision and language inputs achieve SoTA performances on downstream tasks such
as VQA on natural images. Similarly, BERT inspired similar models for DIA tasks where
2D position embeddings of OCR tokens are used in addition to the embeddings of the text
tokens. LAMBERT [141] and LayoutLM [115] are two prior works that fall into this category.
LayoutLM is a basis for the model we propose for InfographicVQA. We discuss details of
LayoutLM architecture in subsection 2.3.1.

5.2.3 Infographics understanding.

Bylinskii et al. [224] and Madan et al. [225] looked at generating textual and visual tags
from infographics. Landman uses an existing text summarization model to generate captions
for infographics [226]. But the model uses only text recognized from infographics to generate
the captions, and layout/visual information is not considered. These three works use Visu-
ally29K dataset that comprises images from a single infographics website. MASSVIS [227]
is a collection of infographics created to study infographics from a cognitive perspective. As
observed by Lu et al. [228], it is a specialized collection focusing on illustrations of scien-
tific procedures and statistical charts, therefore not representative of general infographics. To

100

summarize, existing datasets containing infographics are either specialized collections or in-
fographics collected from a single source. In contrast, the InfographicVQA dataset comprises
infographics drawn from hundreds of different sources, with diverse layouts and designs, and
without any topic specialization.

5.3 InfographicVQA

Details of the data collection and analysis of the images, questions, and answers are pre-
sented here.

5.3.1 Collecting infographics

Images in the dataset are sourced from the internet. Initially, we downloaded more than 10K
images for the search query “infographics” using Google and Bing image search engines. The
downloaded images were first de-duped using a Perceptual Hashing approach implemented
in imagededup library 1. This step helped us to remove nearly 2000 duplicates. In the second
round of de-duplication, we compared the images using the Jaccard similarity of the text tokens
spotted on the images. For recognizing text tokens on the images, we used Amazon Textract
OCR 2. After the two rounds of de-duplication, around 7K images were left. These were added
to the annotation system for question-answer annotation.

5.3.2 Collecting questions and answers

The annotation tool used for InfographicVQA is the same as the one used for DocVQA
annotation (see subsection 4.2.1). Minor changes were incorporated into the tool to support
the collection of new question-answer types that we discuss in subsection 5.3.3. Workers who
had been part of the DocVQA annotation were invited for InfographicVQA annotation. We
conducted an online webinar to explain the process to the prospective workers using examples
from pilot annotation that the authors themselves did. Following the webinar, a quiz was
conducted to ensure that the workers understood the annotation guidelines correctly. Similar
to DocVQA annotation (subsection 4.2.1), the annotation of InfographicVQA involved three
stages. The process followed in the three stages is same as how we annotated the DocVQA

1https://github.com/idealo/imagededup
2https://aws.amazon.com/textract

101

https://github.com/idealo/imagededup
https://aws.amazon.com/textract

dataset (subsubsection 4.2.1.3). The only major difference compared to DocVQA annotation
is the question-answer types—similar to question types in DocVQA—that were collected.

N
um

be
r o

f Q
ue

st
io

ns

0

500

1000

1500

2000

Image-span Question-span Multi-span Non-extractive

(a) Answer-sources and their counts

N
um

be
r o

f Q
ue

st
io

ns

0

500

1000

1500

2000

Text Table/List Figure Map Visual/Layout

(b) Evidence types and their counts

N
um

be
r o

f Q
ue

st
io

ns

0

500

1000

1500

2000

Counting Sorting Arithmetic None

(c) Operation types and their counts

Figure 5.2: Count of questions in validation set by their Answer-source, (Figure 5.2a), Evidence re-

quired to answer (Figure 5.2b) and the discrete Operation performed to find the answer (Figure 5.2c).

102

5.3.3 Question-answer types: answer-source, evidence and operation

In the second stage, in addition to answering questions collected in the first stage, we in-
structed the workers to add question-answer types (QA types). QA types are a set of category
labels assigned to each question-answer pair. DocVQA and VisualMRC have QA types that
indicate the kind of document entity a question is based on. In InfographicVQA, we collect
QA types under three categories: Answer-source, Evidence, and Operation.

There are four types of Answer-source—Image-span, Question-span, Multi-span, and Non-
extractive. Akin to the definition of ‘span’ in SQuAD and DocVQA, an answer is considered
Image-span if it is a single span (a contiguous sequence) of text extracted verbatim in the
reading order from text present in the image. Similarly, when the answer is a span from the
question, it is labelled as Question-span. In Figure 5.1, the answer to the second question is
a span of text found both in the image and the question. Consequently, both Image-span and
Question-span are valid answer sources for the question. A Multi-span answer is composed of
multiple spans of text from the image. We instructed our workers to enter Multi-span answers
by separating each individual span by a comma and a white space. For example, in Figure 5.1,
for the last question, the answer is the names of two cities that do not appear in a contiguous
sequence of text. Hence it is a Multi-span answer. For a Multi-span answer, any order of the
individual spans is a valid answer. In the above example, both “Vancouver, Montreal” and
“Montreal, Vancouver” are valid answers. Since such answers are unordered lists, we consider
all permutations of the list as valid answers for the question at evaluation time. The ’Non-
extractive’ type is assigned when the answer is not an extracted one. We instructed the workers
not to add Non-extractive questions unless the answer is a numerical value.

The inclusion of Question-span, Multi-span, and numerical Non-extractive answers in Info-
graphicVQA is inspired by QAs collected in the DROP dataset [82]. We see this as a natural
next step in VQA involving text, different from the purely extractive QA setting in datasets like
DocVQA and ST-VQA and abstractive question answering in VisualMRC where automated
evaluation is difficult. Allowing non-extractive answers only when the answer is a numeri-
cal value makes sure that such answers are short and unique, giving no room for variability.
This ensures that automatic evaluation metrics can be used effectively even though answers
are generated, not extracted. Near perfect human performance while using automatic evalua-
tion metrics (Table 5.4) validates that answers in InfographicVQA are unique with minimal
variability when answered by different individuals.

The Evidence type indicates the kind of evidence behind the answer. Types of evidence are
Text, Figure, Table/List, Map, and Visual/Layout. For example, Map is used if the question
is based on data shown on a geographical map. Visual/Layout type is added when evidence

103

is based on the visual or layout aspect of the image. For example, questions such as “What
is the color of the hat – brown or black?” or “What is written at the top left corner” fall in
this category. Sometimes it is difficult to discern evidence for a question-answer pair. For
example, for the first question in Figure 5.1, although the evidence type assigned by the worker
is ‘Figure’, it could even be ‘Table/List’ since the visualization looks like a table.

The operation type captures the kind of discrete operation(s) required to arrive at an answer
— Counting, Arithmetic or Sorting. Figure 5.2 shows the distribution of questions in the vali-
dation split based on Answer-source, Evidence, and Operation. As evident from Figure 5.1, a
question can have multiple types of answer sources, evidence, or operation and many questions
do not require any of the specified discrete operations to find the answer. For these reasons,
counts in plots shown in Figure 5.2 do not add up to 100%.

5.3.4 Statistics and analysis of the dataset

The InfographicVQA dataset has 30,035 questions and 5,485 images in total. These images
are from 2,594 distinct websites. The data is split randomly into 23,946 questions and 4,406
images in train, 2,801 questions and 500 images in validation, and 3,288 questions and 579
images in test splits.

To analyze the topics covered by images in InfographicVQA, we used the Latent Dirichlet
Allocation (LDA) [230] model. LDA implementation in Gensim library [231] is used. Since
our dataset comprises images, the text recognized from the images using the Textract OCR
is used for the topic modelling. Table 5.2 shows that images in InfographicVQA cover a
wide range of topics such as energy, war, health, and social media. In Figure 5.4, we show a
visualization of the top 20 topics in the dataset, visualized using the pyLDAvis tool 3.

We report basic statistics of questions, answers, and OCR tokens in InfographicVQA and
similar datasets in Table 5.3. Table 5.3 shows that InfographicVQA has the highest percentage
of unique questions and the highest average question length compared to similar datasets. Fig-
ure 5.5 shows a sunburst of the common questions in the dataset. There are a good number of
questions asking for “How many...” or percentages. This is expected since infographics carry
a lot of numerical data.

Table 5.3 shows that the percentage of questions having unique answers in InfographicVQA
is the lowest (48.84%) among the compared datasets. InfographicVQA has the shortest aver-
age answer length (1.60) compared to other document VQA datasets—VisualMRC (9.55) and
DocVQA (2.49)—and slightly longer than scene text VQA datasets such as ST-VQA (1.56)
and TextVQA (1.51). It can be seen in Figure 5.3a that the most common answers are num-

3https://github.com/bmabey/pyLDAvis

104

https://github.com/bmabey/pyLDAvis

(a) Prominent tokens in answers in InfographicVQA.

(b) Common text tokens spotted on the images in InfographicVQA.

Figure 5.3: Word cloud of answers and OCR tokens in InfographicVQA.

bers. This is the reason why InfographicVQA has a smaller number of unique answers and a
smaller average answer length.

105

No. Topic

1 cost lead increase system non risk energy reduce cause clean

2 war violence symptom domestic potential die injury mil acquire birth

3 health person white black police department doctor respiratory smith officer

4 child food water parent potential eat drink essential green sugar already

5 death woman age man old adult love likely statistic rate

6 country high account say month report change global survey event

7 social medium job value program find direct authority salary candidate

8 first purchase call sport still house kid name bring early

9 case university point physical idea language mass brain thought presentation

10 fire act min sunday encounter concentration daily active th monthly

11 paper common check photo add type virus print christmas present

12 game mobile internet app olympic london medal online device mm mm

13 public right patient human goal influence earth plant face individual

14 help free american likely provide need support contact tip hand

15 company school design content employee college technology create offer audience

16 new state top city rank york art west east california

17 business customer service population sale product small software increase investment

18 force industry car line waste register decrease driver victim throw

19 year world people day make time com average number source

20 user use facebook share site video post google search worldwide

Table 5.2: Top 20 topics in InfographicVQA found using LDA. We used text tokens spotted on the

images for topic modelling.

The number of average text tokens in InfographicVQA images is 217.89. Compared to ST-
VQA and TextVQA, this value is much higher and it is even higher than the average number
of OCR tokens in document images in DocVQA. This is expected since infographics in the
dataset are often originally made to be used as posters or leaflets and generally contain more
text tokens compared to a page from a business document. The word cloud of OCR tokens
spotted in the images is shown in Figure 5.3b. Since infographics are rich in numerical data,

106

Figure 5.4: Visualization of the top 20 topics in InfographicVQA dataset. We used LDA to find

the topics of infographics in the dataset. On the left is an inter-topic distance map where each circle

represents a topic. The area of a circle is proportional to the overall relevance of the topic. Distance

between two topics is computed using Jensen–Shannon divergence. The distances are then mapped to

a two dimensional space using Multidimensional Scaling [229]. On the right, we show the top 30 most

salient terms(most prevalent terms in the entire corpus) among the text present in the images. This

diagram was created using the pyLDAvis tool.

Dataset
Questions Answers OCR tokens

%Unique Avg. len %Unique Avg. len Avg. len

ST-VQA 84.84 8.80 65.63 1.56 7.52

TextVQA 80.36 8.12 51.74 1.51 12.17

VisualMRC 96.26 10.55 91.82 9.55 151.46

DocVQA 72.34 9.49 64.29 2.43 182.75

InfographicVQA 99.11 11.54 48.84 1.60 217.89

Table 5.3: Statistics of questions, answers, and OCR tokens in InfographicVQA and other similar VQA

datasets.

numbers dominate the word cloud. It is evident from the two word clouds that the common
answers and common text tokens in the infographics are similar.

107

Figure 5.5: Staring 4-grams of common questions in InfographicVQA.

5.4 VLL-BERT

We propose a BERT-like architecture called VLL-BERT for extractive VQA on the Info-
graphicVQA dataset. The input to the model comprises Vision, Language and Layout (VLL)
features. VLL-BERT is inspired by LayoutLM (subsection 2.3.1) that was proposed for
DIA tasks such as document classification and form understanding, and VisualBERT(sub-
section 2.4.2) that was proposed for vision and language tasks like VQA and image captioning
on natural images. In the below subsections, we present details of the input representation for
the model, model architecture, and how the model is trained.

108

Which company has 12000 employees?

E(0)

CLS VF

E(0)

E([CLS])

E(0)

E(1000)

E(1000)

E(0)

E(0)

0

E(1)

E(which)

0

0

0

0

E(0)

0

E(K)

E(employees)

0

0

0

0

E(0)

0

E(K+1)

E([SEP])

0

0

0

0

E(1)

OCR-1 VF

E(K+2)

E(who)

E(OCR-1 y1)

E(OCR-1 x2)

E(OCR-1 y2)

E(OCR-1 x1)

E(1)

OCR-N VF

E(K+N)

E(ottawa)

E(OCR-N y1)

E(OCR-N x2)

E(OCR-N y2)

E(OCR-N x1)

E(1)

0

E(K+N+2)

E([SEP])

0

0

0

0

E(2)

VisTok-1 VF

E(K+N+2)

E([VisTok])

E(VisTok-1 y1)

E(VisTok-1 x2)

E(VisTok-1 y2)

E(VisTok-1 x1)

E(2)

VisTok-M VF

E(K+N+M)

E([VisTok])

E(VisTok-M y1)

E(VisTok-M x2)

E(VisTok-M y2)

E(VisTok-M x1)

Question tokens OCR tokens Visual tokens

Segment embedding

Visual embedding

x1 embedding

y1 embedding

x2 embedding

y2 embedding

1D position embedding

Text embedding

[CLS] which employees [SEP] [SEP] VisTok-1 VisTok-M Input stream

Figure 5.6: Input representation for the VLL-BERT. Input to the model comprises text tokens from

the question, OCR tokens, and visual tokens. E() denotes a learnt embedding function. In the figure,

we show a case where there are K question tokens, N OCR tokens, and M visual tokens. x1, y1, x2,

and y2 are the 4 coordinates of the bounding box of an OCR token or a visual token. Visual tokens

correspond to local image regions.

5.4.1 Model architecture

Our model backbone is a stack of transformer layers like in BERT. Specifically, we use the
BERTBASE architecture.

5.4.2 Input representation

Input to the model consists of three types of tokens: i) tokens from the question, ii) tokens
from the text spotted on the image using an OCR, and iii) visual tokens. The visual tokens
we use are either grid-based or region-based. The two styles of visual tokens are inspired by
the use of grid-based and region-based features that are popular in the VQA literature(subsec-
tion 2.4.1). In the case of grid-based visual tokens, the tokens correspond to different spatial
locations on a convolutional feature grid which in turn correspond to a uniform grid of image

109

patches. In the case of region-based visual tokens, each token corresponds to the spatial extent
of an object detected on the image using an object detector.

The input stream starts with a special [CLS] token, followed by the question tokens, OCR
tokens, and visual tokens. Question and OCR tokens are separated by a special [SEP] token.
Similarly, OCR tokens and visual tokens are also separated by a [SEP] token. A token in the
input stream is represented by a representation that is the sum of the following embeddings.

Text embedding. Following the original setting in BERT, for text embedding, we use the
WordPiece embedding [137] that uses a vocabulary comprising 30,000 tokens. These embed-
dings are of size 768. For the question and the OCR tokens, WordPiece embeddings of the
respective text tokens are used. For all the visual tokens, we use a special text token: [VisTok].
Consequently, all the visual tokens get the same text embedding; a WordPiece embedding for
the token [VisTok].

Segment embedding differentiates different segments in the input. Question tokens, OCR
tokens, and visual tokens are given segment ids of 0, 1, and 2, respectively.

1D position embedding is used to indicate the order of a token within the input stream. For
the question tokens, the sequential order of the tokens is used. For the OCR tokens, we use the
default reading order by serializing the tokens in top-left to bottom-right order. For the visual
tokens, as there is no 1D order for the visual tokens, all of them are given the same 1D position
and consequently have the same 1D position embedding.

2D position embedding is used to capture the 2D position of the OCR tokens and visual
tokens in the image plane. For this, we follow the same process as LayoutLM. Given the
bounding box coordinates (x1, y1, x2, y2) of an OCR token or a visual token, we embed all
4 coordinate values using 4 separate embedding layers. Bounding box coordinates for the
grid-based visual tokens are found by estimating the spatial extent of the image patch that
each spatial location on the feature map is based on. If the image is of size W × H and the
feature map is of size w × h × c, then w · h feature vectors each of size c correspond to a
uniformly spaced grid over the input image. For example, bounding box coordinates for the
first visual token—the one corresponding to the top left location in the gird—will be (0, 0)

and (W/w,H/h). Similarly, coordinates for the last visual token—the one corresponding to
the bottom right location in the gird—will be ((w − 1)W/w, (h − 1)H/h) and (W,H). x1

and x2 share the same embedding table and y1 and y2 share another common embedding table.
Similar to LayoutLM, the coordinate values are normalized to lie in the range 0–1000 before
embedding. For the [CLS] token, we use the 2D embedding corresponding to the coordinates
(0, 0, 1000, 1000). For the question tokens, all four 2D position embeddings are set to 0s.

Visual embeddings / Visual features. For a token, visual embedding is a visual feature (VF)
corresponding to the token. Unlike the other embeddings that are learnt using an embedding

110

table, the visual embedding is extracted using a separate network. The visual features we use
as visual embedding for the tokens are of two styles—grid-based and region-based.

In either case, there are no visual embeddings for the question tokens and [SEP] tokens.
They are set to zeros. When the grid-based visual tokens are used, visual features for the visual
tokens are the grid-based features corresponding to each token. Assume the feature map from
the CNN used for the grid-based features is of the shape w × h× c. Then each location on the
spatial extent of the feature map is a visual token and the c dimensional feature vector at the
location is the visual embedding/visual feature for the token. The visual feature for the [CLS]
token is taken as the average of visual embeddings for all the visual tokens. We refer to it as
‘Grid avg.’ in further discussion. Visual embeddings for OCR tokens are set to zero when the
grid-based visual tokens are used.

When region-based visual tokens are used, visual embedding for the visual tokens are ROI
pooled feature corresponding to each visual token. Remember in this case a visual token cor-
responds to an object detected on the image using an object detection model. The ROI pooled
feature is extracted from the box head of an object detection model like Faster-RCNN. Simi-
larly, for the OCR tokens, ROI pooled features corresponding to the bounding box of the OCR
token are extracted. For the [CLS] token, the ROI pooled feature corresponding to a bounding
box spanning the entire image is used. In the following discussion, we will refer to it as ‘Full
Img.’.

In Figure 5.6, we show how an input stream comprising question tokens, OCR tokens, and
visual tokens are represented as a sum of text, layout—1D and 2D position—, visual and
segment embeddings.

5.4.3 Pretraining

At the time of pretraining, similar to how Large Language Models(LLM) like BERT are
trained, we train the model in a self-supervised manner. Following the LayoutLM, we use
Masked Visual-Language Model (MVLM) task for pretraining with a masking probability of
0.15. The training objective is to predict the masked token. Whenever masking, we replace an
OCR token with the [MASK] token 80% of the time, with a random token 10% of the time,
and keep it unchanged 10% of the time. Note that we do not mask or zero out the positional
information or the visual information for the token that is being masked. A schematic of the
pretraining setup is shown in Figure 5.7.

111

E(1)

OCR-1 VF

E(K+2)

E(who)

E(OCR-1 y1)

E(OCR-1 x2)

E(OCR-1 y2)

E(OCR-1 x1)

E(1)

OCR-N VF

E(K+N)

E([MASK])

E(OCR-N y1)

E(OCR-N x2)

E(OCR-N y2)

E(OCR-N x1)

E(1)

0

E(K+N+2)

E([SEP])

0

0

0

0

E(2)

VisTok-1 VF

E(K+N+2)

E([VisTok])

E(VisTok-1 y1)

E(VisTok-1 x2)

E(VisTok-1 y2)

E(VisTok-1 x1)

E(2)

VisTok-M VF

E(K+N+M)

E([VisTok])

E(VisTok-M y1)

E(VisTok-M x2)

E(VisTok-M y2)

E(VisTok-M x1)

OCR tokens Visual tokens

[SEP] VisTok-1 VisTok-M

Masked Visual Language Modelling (MVLM)

Transformer

E(0)

CLS VF

E(0)

E([CLS])

E(0)

E(1000)

E(1000)

E(0)

[CLS]

Figure 5.7: Pretraining LayoutLM-based model using MVLM We pretrain the model using Masked

Visual Language Modelling (MVLM). MVLM aims to predict a masked OCR token given other OCR

tokens and visual tokens. In this case, the OCR token ”ottawa” is picked for masking. For this token,

text embedding of a special [MASK] token is used. Other embeddings remain the same.

5.4.4 Finetuning

Similar to the output head of the BERT QA model (subsubsection 2.2.1.1, we use an output
head that predicts the answer as a single continuous span of the OCR tokens spotted on the
image. Therefore, our model can only handle questions whose Answer-source is Image-span.
Nearly 70% of questions in validation and test split are of this type. Extending this model
to include the questions with other Answer-sources—Question-Span, Multi-Span, and Non-
Span—is an interesting direction for future work. Figure 5.8 depicts the finetuning setup.

112

E(0)

CLS VF

E(0)

E([CLS])

E(0)

E(1000)

E(1000)

E(0)

E(0)

0

E(1)

E(which)

0

0

0

0

E(0)

0

E(K)

E(employees)

0

0

0

0

E(0)

0

E(K+1)

E([SEP])

0

0

0

0

E(1)

OCR-1 VF

E(K+2)

E(who)

E(OCR-1 y1)

E(OCR-1 x2)

E(OCR-1 y2)

E(OCR-1 x1)

E(1)

OCR-N VF

E(K+N)

E(ottawa)

E(OCR-N y1)

E(OCR-N x2)

E(OCR-N y2)

E(OCR-N x1)

E(1)

0

E(K+N+2)

E([SEP])

0

0

0

0

E(2)

VisTok-1 VF

E(K+N+2)

E([VisTok])

E(VisTok-1 y1)

E(VisTok-1 x2)

E(VisTok-1 y2)

E(VisTok-1 x1)

E(2)

VisTok-M VF

E(K+N+M)

E([VisTok])

E(VisTok-M y1)

E(VisTok-M x2)

E(VisTok-M y2)

E(VisTok-M x1)

Question tokens OCR tokens Visual tokens

[CLS] which employees [SEP] [SEP] VisTok-1 VisTok-M

Start and End token prediction

Transformer

Figure 5.8: Finetuning LayoutLM-based model for extractive VQA. At the time of finetuning, tokens

from both the question and the image are used. The training objective is to predict the Start and End

tokens of the answer among the OCR tokens. This finetuning setup is similar to finetuning BERT for

MRC(subsubsection 2.2.1.1).

5.5 Experimental setup

In this section, we present details of the experiments we conduct, implementation details of
models we use, and the evaluation metrics.

5.5.1 Experimental setup for VLL-BERT

5.5.1.1 Extracting visual features

Following Anderson et al.’s work [93] that proposed to use attention over both the region-
based and grid-based features, models like LoRRA (subsubsection 2.5.1.1) followed suit to
utilize both the grid-based and the region-based features. However, the recent works on VQA,

113

such as M4C and multimodal pretrained models like VisualBERT (for a list of models similar
to VisualBERT, see subsection 5.2.2), use only grid-based features. All these models make
use of the ROI pooled features from a Faster-RCNN [96] trained for object detection on Vi-
sual Genome [146]. LayoutLM, which is a pretrained model for DIA tasks, uses region-based
features as ‘image embedding’ of the OCR tokens. Although document images are quite differ-
ent from natural images, authors of LayoutLM use a Faster-RCNN trained on Visual Genome
dataset, for region-based features.

Inspired by the use of the region-based features in the aforementioned works, we first de-
cided to follow the same approach in VLL-BERT. In addition to the region-based features
from an object detection model for natural images, we also try out region-based features us-
ing a model that is trained for Document Layout Analysis (DLA). In DLA, the objective is to
detect layout objects of interest, such as titles, text blocks, and tables. Our initial experiments
showed that VLL-BERT which uses region-based features performed poorer compared to the
VLL-BERT variant which doesn’t use any visual features. Consequently, we investigated other
means to incorporate visual information into the VLL-BERT model. Ultimately as presented
in subsection 5.4.2, in addition to region-based features, we also experimented with grid-based
features.

For grid-based features and region-based features following are the 5 different visual feature
(VF) sources that we experiment with.

1. VG-regions. Similar to M4C, VisualBERT and other recent works, we use a Faster-
RCNN trained on Visual Genome (VG). We used the scripts and pretrained Faster-RCNN
checkpoint used in the MMF framework [214]. As done in M4C, for VLL-BERT, we
extract ROI pooled features of size 2048 from the penultimate fully-connected layer of
the box head of this network. But unlike in M4C, we do not finetune the last fully-
connected layer of the box head while pretraining or finetuning the VLL-BERT.

2. DLA-regions. It is a Mask-RCNN trained on document images in PubLayNet [48] for
DLA. PubLayNet dataset has annotations for 5 document layout object classes—text,
title, list, table, and figure. We used a publicly available Detectron2 4-based implemen-
tation 5 of Masked-RCNN trained on PubLayNet. We use the pretrained checkpoint pro-
vided in the repository. ROI pooled features of size 1024 from the last fully-connected
layer of the box head of the model are used as the visual features.

4https://github.com/facebookresearch/detectron2
5https://github.com/hpanwar08/detectron2

114

https://github.com/facebookresearch/detectron2
https://github.com/hpanwar08/detectron2

3. ImageNet-grid. Grid-based features from a ResNet-152 trained for image classifica-
tion on the ImageNet dataset are used. We used the pretrained checkpoint available in
PyTorch. The feature map from which we extract the grid features is of size 7×7×2048

4. RVL-CDIP-grid. We finetuned the ‘Imagenet-grid’ model on RVL-CDIP dataset [232]
for document image classification. The RVL-CDIP is a document image classification
dataset containing 400,000 images in 16 document classes. The images in RVL-CDIP
are a subset of the IIT-CDIP [147] collection.

5. Visually29K-grid. We finetuned a pretrained ResNet-152—the one that is used for
ImageNet-grid—for multi-label image classification on Visually29K [224]. In Visu-
ally29K, each infographic is annotated with a category label and one or more tags. There
are a total of 26 different categories and 391 different tags. While finetuning, we replace
the last fully-connected layer with a new fully-connected layer that has 391 units and uses
Sigmoid activation (since the model is being finetuned for multi-label classification) for
the last layer. The model is finetuned using binary cross-entropy loss.

VLL-BERT is implemented in PyTorch. In all our experiments, we start from a pretrained
checkpoint of LayoutLM. Specifically, we use the ‘layoutlm-base-uncased’ checkpoint 6. Text,
segment, and 1D and 2D position embeddings are of size 768 (see subsection 5.4.2). Since
the visual features we use is of a different size—2048 in the case of VG-regions, 2048 for the
grid-based features, and 1024 in the case of DLA-regions—than the common embedding size
of 768, we use a linear layer to project the visual features to this common embedding size. This
layer is initialized from scratch. For pretraining on InfographicVQA using MVLM, we used
Adam optimizer with a learning rate of 2e − 5. We used a batch size of 4. For finetuning, we
used a batch size of 8 and a learning rate of 1e−5. For pretraining—i.e., in-domain pretraining
on InfographicVQA—and finetuning, no additional data other than train split of Infograph-
icVQA is used. Since we train VLL-BERT for extractive VQA, answers need to be mapped
as spans of OCR tokens. To map answers in the InfographicVQA train split to SQUAD-style
spans, we follow the same approach we used for DocVQA(see subsection 4.4.2). We take the
first subsequence match of an answer in the serialized transcription as the corresponding an-
swer span. This way, we find approximate spans for 52% of questions in the train split. The
rest of the questions are not used for finetuning the model.

6https://huggingface.co/microsoft/layoutlm-base-uncased

115

https://huggingface.co/microsoft/layoutlm-base-uncased

5.5.2 Experimental setup for heuristics, upper bounds, and human per-

formance.

On DocVQA, we evaluated various heuristic baselines and upper bounds as presented in sub-
section 4.3.1. We evaluate them on InfographicVQA as well. For evaluating human perfor-
mance, all questions in the test split of the dataset are answered by a volunteer. For Vocab UB
and heuristics involving a vocabulary, we use a vocabulary of 5,000 most common answers in
the train split.

5.5.3 Experimental setup for M4C.

In addition to VLL-BERT, we evaluate M4C on InfographicVQA. We use the official im-
plementation of the model [214]. The training parameters and other implementation details are
the same as the ones used in the original paper. As done in the original M4C, the fixed vocab-
ulary used with the model is created from the 5,000 most common words among words from
answers in the train split. The original M4C uses region-based features from a Faster-RCNN
trained on Visual Genome. We call this feature extractor VG-regions in subsubsection 5.5.1.1.
In addition to it, we experiment with region-based features from DLA-regions as well. We also
evaluate an M4C variant without visual features and one with features drawn from only one
region that covers the entire image extent.

5.5.4 Evaluation metrics

The evaluation setup is same as the evaluation for DocVQA (see subsection 4.4.1). We use
two metrics: ANLS and accuracy.

5.6 Results

The results of heuristic baselines, upper bounds, and human performance are shown in Ta-
ble 5.4. Human performance is comparable to human performance on DocVQA. This suggests
that humans can answer questions on infographics with the same level of easiness as answering
questions on business documents such as letters and reports. Vocab + OCR UB suggests that
more than three-quarters of questions have their answers present as a span of the OCR tokens
or in a vocabulary of the most common answers in the train split.

116

Baseline
ANLS Accuracy(%)

val test. val test

Human performance - 0.980 - 95.70

Random answer 0.006 0.005 0.00 0.00

Random OCR token 0.011 0.014 0.29 0.49

Majority answer 0.041 0.035 2.21 1.73

Vocab UB - - 53.16 51.34

OCR subsequence UB - - 53.95 56.96

Vocab + OCR subsequence UB - - 76.71 77.4

Table 5.4: Results of heuristics and upper bounds and human performance evaluation. Heuristics

yield near-zero results. From the numbers for different upper bounds, it is evident that more than 75%

of the answers are either present in the present vocabulary or found as a sub sequence of the OCR tokens

spotted on the respective image.

We show results using M4C in Table 5.5. The first row in the table corresponds to the
settings used in the original M4C. The other rows show the results of different ablations and
variants of the original setting. It can be seen that the region-based features from VG-regions
and DLA-regions do little help for VQA on InfographicVQA. At the same time, using region-
based feature corresponding to the entire image (i.e., the ‘Full Img.’) works better than the
variant that does not use any visual features. With more OCR tokens taken as part of the
input to the M4C, the performance is steadily increasing. In the original M4C, the maximum
number of OCR tokens that are fed to the model is 50. However, on average, InfographicVQA
images have a lot more OCR tokens. Therefore, including more OCR tokens helps with the
performance.

The results of extractive VQA using VLL-BERT are given in Table 5.6. The first row in the
table is essentially a LayoutLM finetuned on the InfographicVQA. The second row shows the
case when the LayoutLM is pretrained and finetuned on InfographicVQA. It can be seen that
the in-domain pretraining significantly improves the performance. The rest of the rows show
results of VLL-BERT that use visual features, either region-based or grid-based. Similar to
M4C, VLL-BERT variants that use region-based features using VG-regions or DLA-regions
perform poorer compared to the VLL-BERT which does not use any visual features. Although
the grid-based features from ImageNet-grid and RVL-CDIP-grid do little to help in improving

117

VF Finetune Region
regions

OCR val test

source VF source type tokens ANLS Acc. ANLS Acc.

VG-regions ✓ objects 100 50 0.11 4.81 0.12 4.87

VG-regions ✓ objects 20 50 0.11 4.82 0.12 4.87

VG-regions ✗ objects 20 50 0.13 4.89 0.13 4.89

VG regions ✗ objects 20 300 0.13 4.90 0.13 5.08

VG-regions ✗ None 0 300 0.14 5.86 0.14 6.58

VG regions ✗ Full Img. 1 300 0.14 5.93 0.15 6.64

DLA-regions ✗ objects 20 50 0.11 4.86 0.13 5.02

DLA-regions ✗ objects 20 300 0.13 5.95 0.14 6.50

DLA-regions ✗ None 0 300 0.14 5.90 0.14 6.39

DLA-regions ✗ Full Img. 1 300 0.14 5.97 0.14 6.42

Table 5.5: Performance of different variants of the M4C. The setting used in the original M4C is the

one shown in the first row. The column ‘VF source’ indicates the source of the visual features (VF)

used. ‘Finetune detector’ denotes the case when features from the penultimate fully-connected layer of

the box head of the detector are used for VQA while the last fully-connected layer is finetuned along

with the M4C model. This is the default setting in M4C. In our experiments, we get better results without

finetuning the detector. In the column ‘Region type’, ‘objects’ means grid-based features corresponding

to the objects detected on the images are used. ‘Full Img.’ stands for the case where only one region-

based feature corresponding to the bounding box covering the entire infographic is considered. Using no

visual features and only the Full Img’s feature gives better results than using the region-based features

corresponding to the objects detected on the image. The original M4C considers only the first 50 OCR

tokens. We experiment with up to 300 OCR tokens since the number of OCR tokens per image is much

higher for InfographicVQA compared to the scene text VQA datasets, as shown in Table 5.3.

the performance, the grid-based features from Visually29K-grid yield the best among all the
variants we try out.

W believe the region-based visual features we use impart little information since the object
detectors we use— a detector trained for detecting objects on natural scene images and another
for document layout analysis—are not suitable for infographics. This is evident from Table 5.7.
Both detectors detect only a few instances of objects on infographics.

118

In-domain VF Visual OCR [CLS] val test

pretraining source tokens VF VF ANLS Acc. ANLS Acc.

✗ ✗ ✗ ✗ ✗ 0.21 13.40 0.23 15.30

✓ ✗ ✗ ✗ ✗ 0.25 18.14 0.27 19.74

✓ DLA-regions ✗ ✗ Full Img. 0.25 18.56 0.26 19.16

✓ VG-regions ✗ ✗ Full Img. 0.22 16.47 0.24 16.51

✓ VG-regions ✓ ✗ Full Img. 0.19 10.20 0.19 10.60

✓ DLA-regions ✓ ✗ Full Img. 0.23 16.14 0.25 17.58

✓ VG-regions ✓ ✓ Full Img. 0.18 9.90 0.17 10.30

✓ DLA-regions ✓ ✓ Full Img. 0.24 16.14 0.25 17.61

✓ ImageNet-grid ✓ ✗ Grid avg. 0.21 16.22 0.24 16.21

✓ RVL-CDIP-grid ✓ ✗ Grid avg. 0.20 15.40 0.20 16.18

✓ Visually29K-grid ✓ ✗ Grid avg. 0.28 19.91 0.29 21.10

Table 5.6: Performance of VLL-BERT on InfographicVQA. The first column indicates if the VLL-

BERT is pretrained using MVLM on InfographicVQA. For different visual feature sources that we show

in the second column, refer to subsubsection 5.5.1.1. The ‘OCR VF’ column indicates if visual embed-

dings are used for the OCR tokens. When visual features are not used, they are set to zeros. Similarly,

the ‘CLS VF’ column shows what visual feature is used for the [CLS] token. When region-based visual

features are used, the visual feature for the [CLS] token is the ROI pooled feature corresponding to the

full image (abbreviated as ‘Full Img.). In the case of grid-based features, the visual feature for [CLS] is

computed as the average of the visual features for all the visual tokens. We refer to it as ‘Grid avg.’.

In Figure 5.10, the performance of our trained baselines on the test split is compared against
the upper bounds and human performance. The M4C and VLL-BERT models used for this
comparison are the variants that yield the best ANLS on the test data. A few qualitative results
of our experiments are shown in Figure 5.9. More qualitative examples are shown in Ap-
pendix C.

119

How many social media managers are

registered on LinkedIn?

VLL-BERT: 21,106

M4C: 28

Human: 21,106

GT: 21,106

Which is the least populated continent

in the world?

VLL-BERT: EU

M4C: Oceania

Human: Oceania

GT: Oceania

What percentage of workers are not

working from home?

VLL-BERT: 77%

M4C: 66%

Human: 23%

GT: 23%

Figure 5.9: Qualitative results. Shown in the first row are the original infographics on which the

questions are asked. The second row shows the crops of the respective original images that are relevant

to the question. For the leftmost question, VLL-BERT gets the answer correct, while M4C fails. In

the case of the second question, where evidence is a Table/List and Sorting is involved, M4C answers

the question correctly. In the case of the last question that requires the subtraction of a number from

another, neither M4C, nor VLL-BERT gets the answer correct.

5.7 Summary

We introduce a new dataset for VQA on infographics with the goal of developing a VQA
benchmark that necessitates non-trivial multimodal reasoning in order to respond to the ques-
tions. We present a comprehensive comparison of the new dataset with other similar datasets.

120

Detector
TextVQA DocVQA InfographicVQA

Avg. <2 det.(%) Avg. <2 det.(%) Avg. <2 det.(%)

VG-regions 28.8 0.0 4.1 43.9 7.4 23.9

DLA-regions 1.0 97.9 4.7 0.0 2.9 43.4

Table 5.7: Statistics of object detections using two detectors – VG-regions and DLA-regions. DLA-

regions is trained for detecting document layout objects in PubLayNet, and VG-regions is an object

detection model trained on natural images in Visual Genome. Avg. shows the average number of

detections per image. ‘ <2 det.(%)’ is the percentage of images on which the number of detected

objects is less than 2.

AN
LS

0.00

0.25

0.50

0.75

1.00

Overall Image-span Question-span Multi-span Non-extractive Text Table/list Figure Map Visual/Layout Counting Sorting Arithmetic

Human Vocab + OCR UB VLL-BERT M4C

Figure 5.10: Performance of VLL-BERT and other baselines for different question-answer types.

Inspired by multimodal transformer-based models, we propose a BERT-like model for ex-
tractive VQA on InfographicVQA. The proposed model, called VLL-BERT, takes in textual,
layout, and visual features as its input. Additionally, we evaluate different variants of M4C and
many heuristic baselines and upper bounds on the dataset. Unlike images in DocVQA, info-
graphics in InfographicVQA are significantly different from generic document images like the
ones in popular DIA datasets such as IIT-CDIP, RVL-CDIP and PubLayNet. Infographics are
not like natural images either. Due to this distribution shift, visual feature extractors(both grid-
based and region-based) trained on natural images or generic document images were proven to
be ineffectual in extracting visual features from Infographics.

121

Chapter 6

Recognition-free QA on handwritten document collection

DocVQA and InfographicVQA adhere to the mainstream VQA setting where a question
is asked on a single image and a textual answer is returned. Recognizing text on the given
image and/or understanding its semantics is essential for building solutions for the two tasks.
Consequently, noisy OCR can act as a bottle neck for recognition-based solutions to VQA on
document images. In this chapter, we investigate the possibility of extracting information from
document images in a recognition-free manner. To this end, we propose a new recognition-
free QA task. We prefer to call this a QA task not a VQA, as the handwritten document
images we work with are text-only pages with little visual content. Additionally all the images
contain text in the form of paragraphs in a single column layout, making the layout analysis
trivial. Unlike typical QA and VQA formulations where the answer is a short text, we aim
to locate a document snippet where the answer lies. The proposed approach works without
recognizing the text in the documents. We argue that the recognition-free approach is suitable
for handwritten documents and historical collections where robust text recognition is often
difficult. At the same time, for human users, document image snippets containing answers act
as a valid alternative to textual answers. The proposed approach uses an off-the-shelf deep
embedding network that can project both textual words and word images into a common sub-
space. This embedding bridges the textual and visual domains and helps us retrieve document
snippets that potentially answer a question. We evaluate results of the proposed approach on
two new datasets: (i) HW-SQuAD: a synthetic, handwritten document image counterpart of
SQuAD1.0 dataset, and (ii) BenthamQA: a smaller dataset containing QA pairs defined on
documents from the Bentham manuscripts collection. We also present a thorough analysis of
the proposed recognition-free approach compared to a SoTA recognition-based approach. This
work has previously been presented in our publication [7].

122

In which year was John
McIntire murdered?

Document Retriever

Answer Snippet
Extraction

Figure 6.1: This work addresses the problem of Question Answering on handwritten document collec-

tion. Given a natural language question, a document snippet that answers the question is returned.

6.1 Introduction

Although deep learning-based techniques have led to considerable performance improve-
ment in handwriting recognition [101, 233, 234], it is still far from OCR performance on
printed documents. Owing to variability in handwriting and prevalence of degradation, text
recognition from manuscripts—particularly historical manuscripts—is a challenging problem.
Recognizing text on a new manuscript collection using a generic OCR that is not finetuned
or retrained on the target collection, often result in noisy OCR transcriptions. A recent study
by Bazzo et al. [235] observes that even a 5% word error significantly impacts information
retrieval from document images that are automatically transcribed using an OCR. In another
study based on data in a large digital library, Chiron et al. [236] observe that a significant
number of user queries are affected by OCR errors. They also observe that at least 15% of
the OCR errors are for named entities that dictionary-based error correction approaches cannot
correct. This motivates us to devise a retrieval-based solution for QA that does not require
text recognition and extracts a relevant region from an image in the collection that answers the
question.

We propose to return answers to the questions as image/document snippets. Figure 6.1 de-
picts an example case where the answer to a natural language question on a document collection
is an image snippet/crop from one of the documents in the collection. Although this approach
does not yield a textual answer to the question, it would still meet the requirement of human
users looking for information from document collections. This is in line with works in VQA,

123

which argue that visual evidence is as important as coming up with a textual answer [237, 238].
For example, in the STE VQA dataset [238], in addition to the textual answer for a question,
a visual answer is also provided. The visual answer is a bounding box representing the image
region on which the question is grounded. Moreover, returning image snippets as answers is
similar to extractive QA tasks in NLP/IR, where an answer is not generated but returned as a
span (a sequence of contiguous text tokens) of the given context [91, 239].

We propose a method that performs QA in the image space without any explicit text recog-
nition from the documents in the collection. We use an end-to-end deep embedding net-
work [101] to extract feature embeddings of both textual words in questions and word images
in documents. These representations are aggregated for each question, document, or snippet
to form question vectors, document vectors, and snippet vectors, respectively. This way, docu-
ments best matching a question or snippets best matching a question can be retrieved using the
nearest neighbour search.

Major contributions of this chapter are:

• Formulate the problem of information extraction from a document image collection as a
question answering task. This is motivated by VQA in Computer Vision and QA in NLP.
The question is defined as a natural language query resulting in an answer in the form of
image snippets.

• Introduce two new datasets: HW-SQuAD and BenthamQA, for QA on handwritten doc-
ument collection. HW-SQuAD is curated using an existing dataset for electronic text —
SQuAD1.0 [91]. We render passages in SQuAD1.0 as images using handwritten fonts.
For BenthamQA, we annotate questions and answers on handwritten manuscripts from
Transcribe Bentham Project [17].

• Propose an evaluation protocol to evaluate QA, where the answer is a document image
snippet.

• A two-stage solution for QA on document collection and evaluate it on the newly in-
troduced datasets. Our method is segmentation-based (requires word and line bound-
ing boxes), recognition-free (does not require to recognize text in the documents), and
lexicon-free (does not depend on a fixed vocabulary). We compare our approach against
a recognition-based approach and analyze how the two approaches fare when text recog-
nition is noisy.

124

6.2 Related works

Work presented in this chapter is related to QA and VQA works in NLP and Computer
Vision. We discuss important tasks, datasets and popular methods for QA on electronic text
in section 2.2. The main difference between QA on electronic text and the problem we address
in this chapter is that, text, in our case is not in machine readable form. We address the problem
of answering questions asked on a set of document images without any given transcription.

As noted in section 2.2, most of the early VQA datasets and methods disregard text present
in the images, and the problem is often modelled as a multi-class classification. Questions
in these datasets typically focus on visual aspects, such as objects, attributes, and relation-
ships. On the other hand, scene text VQA, requires reading text on natural images(see subsec-
tion 2.5.1). Our work is different from the scene text VQA on two accounts: (i) these datasets
contain images “in the wild” which are drawn from popular scene text datasets or datasets like
OpenImages [156] that predominantly have scattered text tokens compared to the handwritten
document images we consider, and (ii) almost all VQA problems, including the ones involving
text on the images, are formulated as QA on a single image, while the proposed QA task is for
a collection of document images.

Our works on single document VQA—DocVQA and InfographicVQA—that we present
in the previous two chapters are closely related to the work presented in this chapter. While
DocVQA and InfographicVQA stick to the standard VQA setting where the answer is textual,
work done in this chapter propose to respond to natural language queries by providing “visual
answers” in the form of image snippets. HW-SQuAD and BenthamQA datasets contain hand-
written and/or historical documents whose OCR transcription is generally noisy. Compared to
multimodal document images in DocVQA and InfographicVQA that feature tables, text, fig-
ures and photographs, the document images in datasets for the proposed recognition-free QA
task contain only handwritten or historical manuscripts that predominantly contain text in the
form of sentences and paragraphs.

6.3 Recognition-free QA

In the following discussion, we use the term ‘document’ to refer to a handwritten document
image. ‘Word’ refers to a textual word in questions and a word image in documents. We define
a document snippet or a ‘snippet’ as a horizontal slice of one or more contiguous text lines
from a document.

The proposed QA method returns the answer to a given question as a snippet extracted
from one of the queried documents. Given a question like In which year was John McIntire

125

Answer Snippet
Extraction

Document
Retriever

In which year was
John McIntire
murdered?

Document Collection

Top N Documents

Q

QuestionVector

Q

Cosine
SimilaritySnippetVector

QuestionVector

End2End
Embedding

Net

Aggregate -
FV / SUM

Word Images in
Document / Snippet

In which
year

john
mcintire

murdered

Textual Words in
Question

Word Images’
Embeddings

Textual words’
Embeddings

DocumentVector /
SnippetVector

QuestionVector

End2End
Embedding

Net

Aggregate -
FV / SUM

was

Q:

Cosine
SimilarityDocumentVector

Figure 6.2: Proposed recognition-free approach to QA on document collection. Our approach works

by aggregating embeddings of words in a question, a handwritten document or a document snippet to

a QuestionV ector, DocumentV ector or SnippetV ector respectively. We use an end-to-end embed-

ding network [101] for the embeddings. These vector representations help us to retrieve documents

similar to a question or snippets similar to a question in a Vector Space model. The snippets are ex-

tracted in a two-step process. In the first step, a small number of relevant documents are retrieved. In

the second step, a document snippet answering the question is extracted from one of the previously

retrieved documents.

murdered? (see Figure 6.1) we want to find an embedding/representation for the question. We
aim to find a snippet in the new embedding space that can be the most probable answer using
a simple nearest neighbour search. This approach leads to the following technical challenges:

126

• We need an embedding where both text (questions) and image (document/snippet) modal-
ities can be embedded.

• The embedding of a question must be independent of its length and its paraphrasing.

• In the joint embedding space, a question’s matching snippet must have its embedding
similar to the question.

We describe a solution that meets the above requirements below. Figure 6.2 shows a schematic
representation of the proposed solution.

6.3.1 Joint embedding of textual words and word images

In order to come up with a joint space where questions and snippets can match, we first
embed the constituent words of a question or snippet into a joint space. Later these individual
embeddings are aggregated to form a single global embedding for the question or the snip-
pet. For the joint embedding of words, we use an end-to-end embedding network introduced
in [101], which simultaneously learns both text and image embeddings using a multi-task loss.
It is an end-to-end trainable network which does not require to embed image and text in sep-
arate steps and later combine them. The network learns a feature space where words that are
lexically similar lie closer to each other. This facilitates word spotting in this joint space in
both query-by-string and query-by-example settings.

6.3.2 Aggregating word embeddings

The answer extraction process we discuss below requires us to represent questions, doc-
uments, and snippets as vectors of a fixed dimension. This is achieved by aggregating the
embeddings of the constituent words of a question/document/snippet into a global represen-
tation whose size is independent of the number of words being aggregated. Stop words in
questions and documents/snippets are removed prior to the aggregation of word embeddings
(see auto6.5.1 for details). Two different approaches are tried out for aggregating the word
embeddings and they are discussed below.

6.3.2.1 Aggregate by summing (SUM)

A set of M word embeddings {x1, x2....xM} of size Dw are summed together to form an
aggregate vector of the same size.

127

6.3.2.2 Aggregate using Fisher Vector (FV) framework

The Fisher Vector (FV) framework introduced in [240] has been widely used to aggre-
gate local image descriptors to a global descriptor in image retrieval and classification prob-
lems [241, 242, 243]. Given a set of word embeddings X = {x1, x2....xM} we assume that
these continuous word embeddings have been generated by a Gaussian Mixture Model (GMM).
We denote the parameters of the GMM, λ = {wi, µi,Σi, i = 1 . . . K}, where K is the number
of Gaussians. wi, µi and Σi are, respectively, the mixture weight, mean vector and covariance
matrix of the Gaussian i. We assume that the covariance matrices are diagonal and hence it is
denoted by the variance vector, σ2

i . The GMM, uλ is estimated/trained offline from a represen-
tative set of samples using Maximum Likelihood (ML) estimation.

For the ith Gaussian in the GMM, let Gλ
µ,i be the gradient with respect to the mean (µi)

and Gλ
σ,i be the gradient with respect to the standard deviation (σi). FV of the given set of

embeddings X will be the gradient vector Gλ
X which is obtained by concatenating Gλ

µ,i and Gλ
σ,i

for i = 1 . . . K. Following the standard practice, we do not consider gradients with respect
to the mixture weights, wis, since it adds little discriminative information [244, 243]. Finally,
we apply Power normalization and L2 normalization to the FV as suggested in [242]. Power
normalization proposed by Perronnin et al. [243] helps to “unsparisfy” the FV as it becomes
sparser with more Gaussians. To each dimension of the FV, power normalization applies the
following function f(z) = sign(z)|z|α. 0 ≤ α ≤ 1 is the power normalization parameter and
usually set to 1/2.

6.3.3 Document retriever

Following the standard practice in QA systems for electronic text [138], we first select a
small set of documents that are likely to contain the answer. We call this step “Document Re-
triever”. Given a question and a document collection of M documents, the Document Retriever
generates N proposals (N << M) for the ‘target document’, i.e., the document where the
potential answer to a given question lies. For this step, the question and the documents are
summarized into a QuestionV ector and DocumentV ectors of fixed size using one of the ag-
gregation methods mentioned above. Subsequently, target document proposals are generated
by retrieving N documents best matching the question by computing cosine similarity between
the QuestionV ector and the DocumentV ectors.

128

6.3.4 Answer snippet extraction

Once a set of document images are retrieved—as proposals for the target document—-by
the Document Retriever, all possible snippets from these proposals are considered as ‘candi-
date snippets’. Since our approach assumes that word and line segmentations are known, the
candidates are extracted in a sliding window manner, scanning text lines in a document from
top to bottom. For instance, if the size of answer snippets is set as 2 text lines, we group
each pair of consecutive text lines as a snippet. Then, candidate snippets are converted into
SnippetV ectors using one of the aggregation methods proposed in subsection 6.3.2. The ag-
gregation method used for this step could be different from the one used with the document
retriever. The best aggregation scheme for each step shall be found empirically by evaluating
different options on a validation set. Finally, similar to Document Retriever, cosine similarity
between the QuestionV ector and SnippetV ectors are computed and the top matching snippet
is returned as the answer to the given question.

Figure 6.3: Sample documents in the newly introduced HW-SQuAD and BenthamQA datasets.
The first two are synthetically rendered images in HW-SQuAD. The synthetic samples have diverse

fonts, backgrounds, textures, image artifacts, and inter-word and inter-line spacing. The last two are

real handwritten manuscripts that are part of the BenthamQA dataset.

6.4 HW-SQuAD and BenthamQA datasets

The annotation of a QA dataset on a handwritten document collection requires considerable
human effort. Moreover, modern deep learning-based supervised models benefit from large
amounts of training data. As an alternative to costly human annotation, we build a dataset us-
ing an existing QA dataset for electronic text by reusing the questions and answers. Since this

129

dataset is a derivative of the existing SQuAD1.0 dataset, we term it HW-SQuAD. We use HW-
SQuAD for experimenting with different ablations of the proposed approach. For benchmark-
ing the approach on a real collection of handwritten manuscripts, we create another dataset
called BenthamQA. Images in BenthamQA are scanned images of handwritten manuscripts
from the 18th and 19th centuries.

6.4.1 HW-SQuAD

SQuAD1.0 [91] is a popular benchmark dataset used by NLP and IR communities for QA
and MRC on electronic text. It contains 100,000+ question–answer pairs on 23,000+ passages
drawn from over 500 Wikipedia articles. Every question is associated with a passage, and the
answer to the question is marked as a ‘span’ of contiguous words in the passage. The train set
of the dataset has only one answer mapped per question. But in the development (public test)
set, each question is provided with one or more target (ground truth) answers. The analysis
presented in [91] shows the dataset has diverse questions in terms of i) syntactic and lexical
variations and ii) the extent of reasoning required to answer the questions.

The passages need to be rendered as document images to reuse SQuAD1.0 for our purpose.
Motivated by the success of synthetic datasets for OCR problems [124, 101], we synthetically
render the passages in SQuAD1.0 as handwritten document images. In the following, we
describe how we use SQuAD1.0 data to create the new HW-SQuAD dataset.

6.4.1.1 Data preprocessing

Samples in SQuAD1.0 are first subjected to standard pre-processing steps1 to tokenize ques-
tions and passages, and to generate question–passage correspondences in terms of token off-
sets. Non-ASCII tokens in the questions and the passages are then converted to the nearest
ASCII transliterations using the Unidecode library2. This was required since most of the
handwritten fonts we use do not support characters outside the ASCII character set. Following
the pre-processing step, a few questions—corresponding to the answers for which mapping the
character offsets to the token offsets fail—are excluded. The original train set of SQuAD1.0
is split randomly into two subsets in HW-SQuAD — 95% in train and 5% for validation (val).
We use the original development set (public test set) of SQuAD1.0 to create the test set in
HW-SQuAD.

1https://github.com/facebookresearch/DrQA
2https://pypi.org/project/Unidecode/

130

https://github.com/facebookresearch/DrQA
https://pypi.org/project/Unidecode/

HW-SQuAD BenthamQA

train val test

Number of questions 67887 7578 9477 200

Number of documents 17007 1889 2067 338

Average number of words per document 116.6 117.2 122.8 202.0

Average number of words per question 10.1 10.1 10.2 18.0

Average number of words per answer 2.4 2.4 2.7 3.9

Table 6.1: HW-SQuAD and BenthamQA dataset statistics.

6.4.1.2 Synthetic rendering of SQuAD1.0 passages as handwritten document images

We render a passage as a single-column document image using a handwriting-style font.
The font used is randomly sampled from over 100 handwriting-style fonts downloaded from
Google Fonts3.

The first step is to render each word in a passage in SQuAD1.0 onto a transparent back-
ground. The font size is set randomly from a range of 28–52 pts. The intensity of the fore-
ground (i.e., the pixels making up the text strokes) is varied randomly in the 0–50 range (0
being the darkest and 255 being the brightest). This means all our documents have darker
text on lighter backgrounds, which is the case for document images in general. For a random
15% of the word images, we induced degradation by eroding the images using the erode()
function available in OpenCV [245].

In the next step, all the word images are pasted onto a background image in the same order
as in the original passage using alpha blending. The background image is randomly sampled
from a set of 20+ manuscripts like textures downloaded from the internet. While pasting the
words onto the background image, we break the lines after every few words. The number of
words in a line is varied randomly, with a minimum of 5 and a maximum of 7. For a document,
the fixed inter-word spacing is the average per-character width (width of a word image divided
by the number of characters in it) of the document. Similarly, the fixed inter-line spacing used
for a document is the average height of word images. For a random 15%, we used a different
spacing than the fixed value. In such cases, we multiply the fixed value by a random multiplier
in the range of 0.9–2.5 for inter-word spacing and a random multiplier in the range of 0.9–1.3
for inter-line spacing. The borders on all 4 sides of the document are also set as a function of

3https://fonts.google.com/

131

https://fonts.google.com/

the inter-word spacing used in the document. The border on each side is the fixed inter-word
spacing for the document multiplied by a random value in the range 1.5–5.

Once all word images were pasted onto the background image, we subjected the image to a
random amount of skew. The skew angle we used is a random value in the range of -5–5. Then
a random 15% of the images are re-sampled and brought back to the original dimensions to
induce artifacts resulting from the re-sampling of images. For re-sampling, we used a random
scaling factor in the 0.6–1.4 range.

6.4.2 BenthamQA

Compared to HW-SQuAD which contains synthetically rendered images, BenthamQA con-
tains real historical manuscripts. We decided to use a manuscript collection with word and
line bounding box annotation already available so that QA methods that require gold-standard
annotations for words or lines can use them. We used manuscripts from the ImageCLEF 2016
Bentham Handwritten Retrieval dataset [246]’s dev split. The manuscripts are at least 200
years old. At first, duplicate and near duplicate images were removed by comparing the im-
ages using Jaccard Similarity of their gold-standard transcriptions. 338 images were left after
the de-duplicaton.

To annotate QAs on the manuscripts, we used a hosted version of the Haystack annotation
tool4. The gold-standard transcriptions of the manuscripts were shown to the annotators to
add questions and answers. Similar to the typical extractive QA annotation, the answers were
marked as spans of the transcripts. Once the textual spans are annotated, the equivalent visual
region on the document image that encompass the textual answer are marked. Since we know
which words constitute the textual answer and the bounding boxes of these words are known
(since we have ground truth for locations and transcriptions of the words in the manuscripts),
marking the answers’ visual regions can be done without any manual effort. With the help
of two volunteers, 200 question–answer pairs based on 94 different document images were
collected. There were 224 images that were not annotated with any question. We keep these
images also in the dataset as distractors for the QA task. In other words, we have 200 questions
on 338 images and 94 images have at least one question based on them.

Basic statistics of questions, answers and documents in both HW-SQuAD and BenthamQA
are shown in Table 6.1. Questions in BenthamQA are almost double the length of questions
in HW-SQuAD. This is expected since the SQuAD1.0 dataset was annotated for MRC, where
each question is asked in the context of a single passage. A detailed discussion on this aspect
is given in section 6.3, when we analyze the performance based on the length of the questions.

4https://annotate.deepset.ai

132

https://annotate.deepset.ai

While annotating BenthamQA, annotators were instructed not to ask questions specific to a
particular document, such as What is the title of the document? or What is the name of the city
mentioned in the first paragraph? This made the annotators ask longer questions. For example,
take this question; In one of the notes where the author talks about “Genus” and “Species” in
the context of law, he makes a comparison with a flower. Which flower is it?’. The question
gives context that helps find the target manuscript from the collection and then talks about
the context within the manuscript. On average, document images in BenthamQA have more
words in them since these documents are manuscript pages compared to passages rendered
as document images in HW-SQuAD. We show two documents each from HW-SQuAD and
BenthamQA in Figure 6.3.

6.4.3 Performance evaluation

QA and MRC benchmarks use evaluation metrics like F1 score and Exact Match [91, 138].
On the other hand, standard VQA benchmarks, particularly those that do not involve text, use
a metric called VQA Accuracy. It treats a predicted answer as correct if at least 3 of the 10
annotators entered the exact same answer [55]. ST-VQA and and DocVQA use ANLS sub-
section 4.4.1. Since all these metrics are conceptualized for textual answers, they cannot be
used for a QA task where answers are document snippets. Hence a new evaluation scheme is
devised where the predicted answer snippet is evaluated against a ground truth defined in the
image space.

Wang et al. [238] propose a VQA task where models need to predict a textual answer and
a bounding box as ‘evidence’. The ground truth ‘evidence’ is used to assess the predicted
‘evidence’. Inspired by evaluation in object detection benchmarks, the authors propose to use
Intersection Over Union (IOU) as a measure to evaluate the predicted box. We considered a
similar evaluation scheme by treating the minimum rectangle bounding the answer words as the
ground truth (GT) box. Methods that work without recognizing the text in the documents, such
as the method we propose in this work, do not understand the semantics of the text and must be
relying on the similarity between words in question and the context where the answer lies. It is
unlikely that such approaches can narrow down to a tight box around the answer words. This
would result in low IOU scores when pitted against a GT box which tightly bounds the answer.
An alternative is to check if the GT box is inside the predicted snippet. However, a method can
always output bigger snippets that contain the answer words and satisfy the condition. This
motivated us to develop an evaluation scheme that accommodates methods that return answers
as short snippets containing the exact answer and some context. At the same time, we need to
make sure that larger snippets with too much context are discouraged.

133

Q: Telnet used what interface technology?

A1: host interface to X.25 and terminal interface to X.29

A1: X.25

A1: ARPANET
A1 A2

A3

Figure 6.4: A question–answer pair and the associated document from the test set of HW-SQuAD
dataset. To evaluate answer snippet extraction, we define ground truth in the image space in terms of

a Large Box (LB), which includes the lines where the answer is, plus a line above and below it and a

Small Box (SB), which tightly encloses the words constituting the answer. In this case, there are three

ground truth answers. For visualization, they are denoted as A1, A2, and A3 and drawn using red, blue

and green colours, respectively. Note: the margins of the boxes shown in the figure are changed a bit to

show the overlapping boxes without clutter.

We treat the predicted answer snippet (or Answer Box; AB for short) as a correct prediction
if: (i) AB is inside a Large Box (LB), which is the region in the image enclosing the text lines
where the words making up the ground truth answer lie and one line above and one line below
it and (ii) the smallest box containing the words constituting the textual answer (i.e., a Small
Box or SB) is inside the AB. In short, the condition for an answer snippet to be a correct
prediction is a double inclusion criterion: AB ⊂ LB ∧ SB ⊂ AB. To understand this better,

134

we show LB and SB for an example case in Figure 6.4. To incorporate the double inclusion
criterion into a score, we define Double Inclusion Score (DIS) as:

DIS =
AB ∩ SB

|SB|
× AB ∩ LB

|AB|
For a question, if the predicted answer snippet has a DIS > 0.8 with any of the ground truth
answers, we consider it a correct prediction. Accuracy is then calculated as the percentage of
questions for which we have a correct prediction. Note that the HW-SQuAD and BenthamQA
datasets can also be used for recognition-based QA where textual answers are expected. In
such a setting, it is ideal to use the standard metrics for text-based QA, such as Exact Match
(EM) score and F1 score [91]. In subsection 6.5.4, we report results on both the datasets in the
recognition-based setting where textual answers are expected.

6.5 Experiments and results

In this section, we present experimental settings, the results of our experiments, and a dis-
cussion of the results.

6.5.1 Implementation details

Questions are split into constituent words, and stop words are removed using NLTK [247].
Words from the documents are extracted using gold-standard word bounding boxes available
with the datasets. In practice, word bounding boxes are obtained using a document segmenta-
tion algorithm, and the segmentations need not be perfect. Hence results we report below do
not factor in possible segmentation errors in such scenarios. We train a Convolutional Neural
Network (CNN)- based binary classifier, to filter out word images of stop words. The fea-
ture extraction block of this network follows the same architecture as the one in CRNN [46]
network. Feature maps after the last convolutional layer are mapped to a binary classification
layer. The classifier is trained using synthetic, handwritten word images in the HW-SYNTH
dataset [203] and word images from the IAM dataset [248].

After stop words removal, words from both the questions and documents are fed to the end-
to-end embedding network to represent them as word embeddings. We use a pretrained model5

for this network, made publicly available by the authors. The pretrained model is trained on
HW-SYNTH and IAM datasets. The network output is an L2 normalized embedding vector
x ∈ R2048. We use Principal Component Analysis (PCA) [249] to map x to a x′ ∈ RDw in

5https://github.com/kris314/e2eEmbed

135

https://github.com/kris314/e2eEmbed

Embedding size (Dw)
HW-SQuAD BenthamQA

val test

2048 26.0 22.1 23.5

200 21.8 - -

128 20.5 - -

64 16.3 - -

Table 6.2: Top-5 accuracy for the document retriever when the individual embeddings are added together

to obtain document and question representations. That is the aggregation scheme used is SUM.

a lower dimensional space. PCA rotation matrices are learnt on the training set of the HW-
SQuAD. In our experiments, particularly while using the FV aggregation scheme, we work
with these dimensionality reduced vectors.

Parameters of the GMMs are estimated offline using embeddings of around 1.2 million
words (after filtering stop words) drawn from documents in the train set of HW-SQuAD. Since
words in questions are almost a subset of the words in the documents, and word images add
more variability than textual words, we use only words from documents to fit the GMMs.
To get candidate snippets from the document proposals generated by the document retriever
(see subsection 6.3.4), we use sliding windows of size 2 and a step size of 1 over the text lines,
scanning from top to bottom. For example, from a document proposal having l text lines, we
have l − 1 candidate snippets, each one enclosing two contiguous text lines.

6.5.2 Performance of document retriever

.

Since the performance of the answer snippet extraction step (see subsection 6.3.4) is de-
pendent on the quality of the document proposals generated by the document retriever (see
subsection 6.3.3), we first evaluate the document retriever. Top-N accuracy—the percentage
of questions for which the target document is in top N proposals—is used as the evaluation
metric. Table 6.2 reports top-5 accuracy for the proposals retrieval on both the datasets for dif-
ferent word embedding sizes (Dw) when the aggregation scheme used is SUM. We appreciate
that the original embedding vector (without any dimensionality reduction) of size 2048 yields
the best results in this case.

136

HW-SQuAD BenthamQA

val test

Dw

K
32 64 128 256 512 512 512

Gradients w.r.t to both mean and SD are considered i.e. FV = Gλ
µ,is and Gλ

σ,is ; |FV | = 2KDw

64 14.6 15.6 16.2 - - - -

128 10.8 14.4 17.5 - - - -

200 6.8 12.9 15.4 - - - -

Only gradients w.r.t to mean are considered i.e - FV = Gλ
µ,is ; |FV | = KDw

64 31.9 39.5 40.9 44.0 48.2 - -

128 36.6 43.2 45.7 48.3 50.4 46.5 55.5

200 30.1 40.9 42.0 44.7 46.5 - -

Table 6.3: Top-5 accuracy (%) for the document retriever when FV aggregation is used. The top

half shows the results when FV is a concatenation of gradients with respect to means (Gλ
µ,i) and standard

deviations of the Gaussians. (Gλ
σ,i). The bottom half shows results when FV formed is a concatenation

of gradients with respect to means alone. In all the cases the resulting FVs are normalized using power

normalization and L2 normalization.

The performance of the document retriever using FV aggregation for different word embed-
ding sizes and the number of Gaussians in GMM (K) is shown in Table 6.3. The top half of the
table shows results when the FV is a concatenation of gradients with respect to both the mean
(Gλ

µ,i) and standard deviation (Gλ
σ,i) of the Gaussians. Thus the size of the resulting FV (|FV |)

is 2KDw, since each gradient vector is of size Dw (see subsubsection 6.3.2.2). We repeat the
same set of experiments using FVs where only the gradients with respect to the means of the
Gaussians are concatenated to form the FV. These results are shown in the bottom half of the
table. This setting yields much better performance, consistent across different values of K and
Dw. It also helps in faster computations since |FV | becomes half in this case. For this rea-
son, experiments considering gradients with respect to both the mean and standard deviation
of Gaussians are not conducted for higher values of K. On the test set of the HW-SQuAD and
on BenthamQA, we report results only for the setting which yields the best performance on the
validation (val) set of HW-SQuAD.

The best performance on the validation set is for K = 512 and dimensionality-reduced
word embeddings of size Dw = 128. Embeddings of size 128 give better results compared to

137

Figure 6.5: Number of document proposals (N) vs top-N accuracy. The higher the number of docu-

ment proposals for the target document, the better the chance of finding the answer to a question in the

proposals. When the number of proposals is more than 2000, the answer is found within the proposals

for almost all the questions. The given plot is for the validation set of HW-SQuAD.

a larger embedding size of 200 for all values of K. This is in line with the finding in [244] that
dimensionality reduction of the local features using PCA improves the overall performance of
classification and retrieval. In [244] the authors cite two possible reasons for this: (i) decorre-
lated data can be fitted more accurately when the covariance matrices of the GMM are diago-
nal, and (ii) GMM estimation is less noisy if only the ‘stronger’ components are considered.
In Table 6.3, it can be seen that the larger the number of Gaussians K, the better the retrieval
performance. However, for higher values of K dimensionality of the FV becomes very large
and it is computationally expensive to work with such large vectors in practical scenarios.

Although we apply L2 normalization and power normalization to the fisher vectors as a
default choice, we study how power normalization helps in improving the results. Figure 6.6
depicts the effect of power normalization of the FVs for the document retriever step. The chart
plots top-5 accuracy for the document retriever on the HW-SQuAD validation set as a function
of |FV |. We use dimensionality-reduced embeddings of size Dw = 128 for different values
of K. It can be seen that power normalization of the FVs consistently improves performance.
The impact is more prominent as |FV | increases. This trend is in line with the observation in
previous studies [244, 242] that power normalization helps in improving the quality of fisher
vectors for classification/retrieval problems.

Figure 6.5 shows how the number of questions for which the target document is found
within the proposals grows as a function of the number of proposals. With the number of
proposals > 2000, every question’s target document is found among the proposals.

138

Figure 6.6: Top-5 accuracy for document retriever for different sizes of FV , with and without
power normalization. Embedding size used in this experiment, Dw = 128. Power normalization

yields improved performance for FV of all sizes, but the effect is prominent for larger FVs.

6.5.3 Evaluating end-to-end answer snippet extraction

Next, we evaluate our full pipeline, which retrieves relevant documents first and then ex-
tracts the answer snippet. Qualitative results of snippet extraction using the full pipeline are
shown in Figure 6.7.

Table 6.4 shows results for different aggregation schemes used for the snippet extraction
step with our best setting for document retriever. In addition to the accuracy measure using
DIS, we use a metric that measures the F1 score at the level of text lines.

Since our approach generates candidate snippets as a set of two consecutive text lines, we
believe it is meaningful to define a metric at the level of text lines. We define Precision (P)
as the ratio of the number of text lines common to the answer snippet and the target answer
to the number of text lines in the answer snippet. Recall (R) is the ratio of the number of
lines common to the answer snippet and target answer to the number of text lines in the target
answer. F1 is computed as the Harmonic mean of P and R. This metric makes sense only when
the answer snippets are defined in terms of text lines. This is the reason why we do not define
this metric in subsection 6.4.3, where we define a generic evaluation scheme for the proposed
QA task where answers are document snippets.

We evaluate performance on the test set of HW-SQuAD when the target document for each
question is made available to the answer extraction step directly, bypassing the proposal gen-
eration step. This is equivalent to an MRC task since the document containing the answer

139

HW-SQuAD BenthamQA

val test

Aggregation scheme for the answer extraction step Acc. F1(lines) Acc. F1(lines) Acc. F1(lines)

FV (Dw = 128, K = 64) 15.1 12.5 14.44 11.7 11.0 10.4

FV (Dw = 128, K = 512) 10.6 9.9 - - - -

SUM (Dw = Do = 2048) 15.9 12.7 15.9 12.7 17.5 15.1

Table 6.4: Performance evaluation of end-to-end answer snippet extraction. In all cases, the doc-

ument retriever generates 5 document proposals. The aggregation scheme used for document retriever

is FV (Dw = 128, K = 512). Acc. stands for the snippet extraction accuracy in percentage based

on the DIS score proposed in subsection 6.4.3 for a DIS threshold of 0.8. F1 (lines) is the F1 score in

percentage for the text lines.

is given, and the only job left is to extract the answer snippet. In this case, using the SUM
aggregation, answers are found with an accuracy of 43%.

Figure 6.8 shows how the performance varies when the number of proposals generated
varies. When only one document proposal is generated, snippet extraction accuracy is 7.6%,
and it goes up to 16.72% when the number of proposals is 25 and then starts dropping. When
all the documents in the test set are considered as proposals for every question in the set, the
accuracy is 12.7%.

Chen et al. [138] note that open-domain QA performance on the SQuAD1.0 dataset is sig-
nificantly affected by the nature of questions. The dataset was originally created for MRC and
the questions are asked in the context of a short paragraph. Information sought in the ques-
tion is ambiguous in many cases if the context is not given. For example, questions like What
day was the game played on? or Why did he walk? which are part of the development set of
SQuAD1.0 cannot be answered unless the associated passage or document is given. In order to
study the impact of such questions on QA on HW-SQuAD, we analyze in Figure 6.9 how the
performance varies when the question length varies (question length is measured in terms of
the number of non-stop words). The trend seen in the plot is that performance improves with
more words in the question. This could mean that, with more words in the question, questions
become less ambiguous and hence easier to locate the right answer snippet.

In our experiments, two aspects make the experimental setting (see subsection 6.5.1) ad-
vantageous for HW-SQuAD, compared to the BenthamQA dataset. Firstly, the off-the-shelf,
end-to-end embedding model, which we use for word embeddings, is trained on the HW-
SYNTH dataset, whose synthetic word images are similar to the word images in the HW-

140

When is the oldest recorded incident of civil

disobedience?

Why was the Merit network formed in Michi-

gan?

In every quasi jury, how many classes of

quasi jurors are there?

What caused scarcity of wheat in public

stores towards the end of the year 1799?

Figure 6.7: Qualitative Results of end-to-end answer snippet extraction. The first row shows a

success and failure case from the test set of HW-SQuAD. In the case of the second question (the one

on the right) although the extracted snippet talks about the formation of the Merit network, it does not

answer the question. The second row shows examples from the BenthamQA dataset. The left one is a

success. In the case of the right one, our model returns a snippet talking about wheat scarcity, but it does

not say anything about the reason for the scarcity.

SQuAD dataset. Both HW-SYNTH and HW-SQUAD use handwritten fonts to render text and
there could be many common fonts between the two datasets. Secondly, PCA rotation matrices
and GMMs used for the FV aggregation scheme are learnt on the train split of the HW-SQuAD
dataset alone. Despite the disadvantages, the document retriever and the answer extraction
steps perform better on BenthamQA. We attribute this to i) the smaller size of the dataset,
which makes the proposal generation easier with a lesser number of distractors, and ii) longer,
unambiguous questions in BenthamQA, as discussed in subsection 6.4.2.

6.5.4 Evaluating a recognition-based QA approach on HW-SQuAD and

BenthamQA

To study how recognition-based QA models work on HW-SQuAD and BenthamQA, we
evaluate a full pipeline QA framework on the text transcriptions of the datasets. In NLP/IR
domain, the standard approach to QA over a document collection is to use a document retriever
first and then use a document reader that extracts final answers. The document retriever is

141

Figure 6.8: Snippet accuracy vs number of document proposals. The plot shows the performance of

answer snippet extraction step on the test set of HW-SQuAD as a function of the number of document

proposals generated. The performance flattens when the number of proposals > 20, suggesting that with

more proposals, answer extraction becomes difficult.

Figure 6.9: Snippet accuracy vs question length. Longer questions are likely to carry more informa-

tion helpful in finding the right answer snippet when there are multiple candidates with similar content.

Better performance for longer questions substantiate this.

similar in function to the one we use, i.e., to generate document proposals for the document
which is likely to contain the answer. The document reader— typically an extractive QA
model—extracts an answer using the document proposals as its context. In our experiments,

142

we use a TF–IDF-based document retriever, the same as the one used by Chen et al. [138]
in their work on recognition-based full pipeline QA. They observe that a simple TF–IDF-
based retriever performs better than other similar models such as, ElasticSearch [250]. For
the document reader part, we use a BERT [113] QA model. The specific model we use is
a BERTLARGE model finetuned for QA on the SQuAD1.0 dataset. The exact model name in
Transformers model zoo6 is ‘bert-large-uncased-whole-word-masking-finetuned-squad’. Note
that HW-SQuAD, which is a derivative of SQuAD1.0, has little domain gap with HW-SQuAD
data, provided the text transcriptions are good.

Word acuuracy(%)

OCR Training data HW-SQuAD test BenthamQA

SynthIam HW-SYNTH [203] + IAM [248] 44.87 13.72

SynthIamHwSq HW-SYNTH + IAM + HW-SQuAD 97.85 23.17

Table 6.5: Performance of a CRNN [46] OCR model on the documents in the newly introduced datasets.

Without in-domain training data, the OCR transcriptions are quite noisy. Compared to HW-SQuAD,

performance on BenthamQA is much worse.

6.5.4.1 Transcribing handwritten images using a CRNN OCR

To recognize text in the handwritten documents in HW-SQuAD and BenthamQA, we used
a CRNN [46] OCR model. By the OCR model, we refer to a word recognition model, and it
is assumed that segmented word images are available. Since the gold-standard word bounding
boxes are available for both the datasets, we use them directly to crop the word images. We
trained two OCRs: i) SynthIam: trained on 9 million synthetic handwritten word images in
HW-SYNTH [203] and the train split of IAM dataset with real handwritten images, and ii)
SynthIamHwSq: trained on HW-SYNTH, IAM train split and train split of HW-SQuAD. Ex-
cept for different training data, both the OCRs are the same in terms of network architecture
and training setting.

In Table 6.5, we show the performance of both the OCRs on the test set of HW-SQuAD and
BenthamQA. We report word accuracy, which is the percentage of words for which the recog-
nized text matches exactly with the ground truth. The 9 million word images in HW-SYNTH
are synthetically generated using handwriting fonts, it is likely that a lot of these fonts are used
to render document images in HW-SQuAD. This must be the reason why SynthIam performs

6https://huggingface.co/transformers/pretrained_models.html

143

https://huggingface.co/transformers/pretrained_models.html

significantly better on HW-SQuAD compared to it’s performance on BenthamQA. On Ben-
thamQA, although both OCRs yield low word accuracy, SynthIamHwSq is significantly better
than SynthIam. We believe better performance with SynthIamHwSq is primarily due to the
paper/manuscript style backgrounds used while rendering document images in HW-SQuAD.
This is in contrast to IAM and HW-SYNTH, where backgrounds are solid colors. Some of the
background images and textures used for HW-SQuAD resemble the background of historical
manuscripts. The diversity in backgrounds and textures for pages in HW-SQuAD must have
helped the SynthIamHwSq model to better recognize the word images in BenthamQA.

6.5.4.2 Evaluating TF–IDF-based document retriever

Table 6.6 shows the performance of the TF–IDF-based document retriever for different
types of transcriptions. The results are directly comparable with our recognition-free document
retriever (subsection 6.3.3) since the task and evaluation metrics are the same. As expected,
with higher OCR accuracy, the recognition-based approach is better at retrieving documents.
However, when OCR transcriptions are noisy, the proposed recognition-free approach is better
at retrieving documents. In the case of BenthamQA, TF–IDF-based retrieval on transcriptions
from SynthIamHwSq results in a top-5 accuracy of 32%. At the same time, the recognition-free
approach using FV yields a top-5 accuracy of 55.5%, as reported in Table 6.3.

6.5.4.3 Evaluating TF–IDF + BERT full pipeline QA framework

We build a text-based QA pipeline, which uses the TF–IDF-based document retriever to
generate document proposals and a BERTLARGE-based extractive QA model. We discuss BERT
QA model in subsubsection 2.2.1.1. We use the BERTLARGE architecture. The results are
shown in Table 6.7. In the table, “F1” stands for the F1 score which is the most commonly
used evaluation metric for QA and MRC benchmarks like SQuAD1.0. It measures the average

top-5 Accuracy(%)

Transcriptions HW-SQuAD test BenthamQA

SynthIam 47.93 15.76

SynthIamHwSq 86.10 32.00

Gold-standard 90.2 98.5

Table 6.6: Results of a TF–IDF-based document retriever on transcriptions of the documents in HW-

SQuAD and BenthamQA.

144

HW-SQuAD test BenthamQA

Transcription F1 EM Snippet Acc. F1 EM Snippet Acc.

SynthIam 23.05 13.54 19.13 1.05 0.34 0.82

SynthIamHwSq 65.24 55.31 59.26 3.00 1.5 2.46

Gold-standard 76.82 70.73 74.76 78.41 66.00 72.85

Table 6.7: Results of text-based full pipeline QA model. F1 score, Exact Match (EM) percentage and

Snippet Accuracy (Snippet Acc.) for full pipeline QA using the transcribed text from the documents

in the datasets. F1 is the standard evaluation metric used for evaluating extractive QA. For calculating

Snippet Acc., we map the textual answers to document snippets and evaluate them using the DIS score

proposed in subsection 6.4.3.

overlap between the predicted answer and the ground truth answer [91]. Do not confuse this F1
score, with the F1 score for text lines we compute to evaluate snippet extraction performance
in Table 6.4. Exact Match (EM) is the percentage of questions for which an answer matches
exactly with at least one of the ground truth answers. The predicted answers are mapped to
a corresponding document snippet and evaluated for snippet extraction performance as well.
Since the predicted answers are extracted as spans from the given documents, we take the text
lines where the span lies as the answer snippet and evaluate snippet accuracy by calculating
the DIS score as given in subsection 6.4.3. These numbers are shown under “Snippet Acc.”
in the table. Comparing the snippet extraction accuracy in Table 6.4 with the Snippet Acc.
inTable 6.7, it is evident that the proposed recognition-free approach works better when robust
OCR transcriptions are not available.

Results in Table 6.7 suggest that highly noisy OCR transcriptions lead to sub-standard QA
performance even when state-of-the-art NLP/IR QA models are used. Although some works
address recognition-based document retrieval in the presence of noisy OCR outputs [251, 252],
we do not explore this direction since our approach focuses on QA without explicit OCR.

6.6 Summary

In this chapter, we have introduced the problem of QA on handwritten document collections
and presented two new datasets — HW-SQuAD and BenthamQA. The problem has proven to
be challenging, and we expect it to attract the interest of the research community. We also have
presented a new method for QA that is segmentation-based, recognition-free, and lexicon free.

145

We have presented extensive experiments with different aggregation schemes that allow us to
find answers as nearest neighbours of a given question representation in the space of possible
answer snippets. The results demonstrate that the proposed solution would perform better than
recognition-based document retrieval and QA models that use noisy OCR transcriptions.

146

Chapter 7

Conclusion and future work

In this thesis, we presented our works dealing with machine-understanding of document
images. We believe our works expand the applicability of DIA by expanding the language
coverage and launching new lines of inquiry that call for a holistic, human-like understanding
of document images. In this chapter, we present a summary of the thesis reiterating our major
contributions and list potential directions for future research.

7.1 Conclusions

Works presented in this thesis contribute to DIA on two fronts. It makes DIA more uni-
versal by developing OCRs for low-resource Indic languages and releasing the largest ever
public benchmarks for these languages. Secondly, different from the bottom-up approaches in
DIA that are focused on machine reading, we motivate a purpose-driven DIA with machine-
understanding as the core objective.

In section 1.5, we listed the slower development of DIA technologies for non-Latin-based
languages as one of the hurdles to the development of universal DIA solutions. We believe
our work on printed text recognition of 13 Indic languages (chapter 3) contributes to the
development of robust DIA solutions in Indic languages. The combined number of speakers
of Indic languages is more than 1.5 billion. Developing robust OCRs and other DIA solutions
for these languages can contribute significantly to streamlining office work in governments and
businesses, preserving the the cultural heritage of the region, and most importantly improving
the AI-readiness of data in these languages.

In chapter 4 we introduced the novel problem of VQA on business documents called
DocVQA. We showed that neither models for VQA on natural images nor MRC models work
well for VQA on document images. DocVQA has emerged as one of the most popular tasks in

147

the DIA space, attracting thousands of downloads for the dataset and models developed for it 1.
Followed by DocVQA, we introduced a more challenging document images VQA task on in-
fographics called InfographicVQA (chapter 5). Infographics are rich in the interplay of visual,
textual and layout elements, and machine understanding of infographics requires strong multi-
modal reasoning capabilities. This is validated by the poor performance of existing vision and
language models on the InfographicVQA dataset. The results also highlight the need for better
visual encoders for images like infographics that are quite different from natural images and
generic document images. We conducted open challenges on both DocVQA and Infograph-
icVQA [219, 253]. The challenges remain open for submissions and the two datasets have
evolved as an important benchmark not only in DIA but also in Vision and language research
space.

In section 1.5, while discussing challenges to DIA in general, we note that text recognition
from handwritten and/or historical documents remains an open problem. Often, these docu-
ment images are part of a collection that has historical or cultural significance. To be able to
query these collections and extract information is an important requirement. However, poor
text recognition performance remains a bottleneck. To motivate study on information extrac-
tion from such collections, we propose a new QA task that returns answers as image snippets.
We presented this work in chapter 6. Since recognition-based approaches are ineffective when
OCR transcriptions are noisy, we propose a recognition-free approach that relies on cross-
model retrieval to retrieve a document snippet that best matches the question. Although the
retrieval is based on the lexical similarity between the question and the snippet–and does not
take into account the semantics—, the proposed approach works better than SoTA recognition-
based models when the OCR transcription is noisy.

7.2 Future directions

The following are some of the prospective directions that the thesis opens up:

• AI-readiness of low-resource languages OCR technology for non-Latin scripts have
been gaining momentum since the last decade thanks to deep learning-based text recog-
nition models that are largely language-agnostic. Our work presented in chapter 3 vali-
dates the robustness of CTC-based transcription for segmentation-free OCR of 12 Indic
languages. However, there are many more Indic languages that lack functional OCRs
and text recognition benchmark datasets. Although the script is different for most of the

1https://huggingface.co/models?pipeline_tag=document-question-answering

148

https://huggingface.co/models?pipeline_tag=document-question-answering

Indic languages, the languages share many linguistic properties. We believe the com-
mon linguistic heritage can be exploited to build OCRs for these languages. Rather than
building large-scale annotated datasets for each of these languages, cross-lingual domain
adaptation and use of synthetic datasets need to be explored.

• Multi-page DocVQA. In both DocVQA and InfographicVQA, an answer for a question
needs to be found from a single page or image. A natural extension of the single-page
VQA is the multi-page VQA. This is similar to open-domain QA [50] in NLP. Multi-page
VQA would not be as trivial as recognizing text on these images and then employing an
existing open domain QA model. We are talking about a collection of multimodal doc-
ument images, i.e., document images that feature not just text but tables, visualizations,
figures and forms. One of the challenges in creating such a dataset is the difficulty in
annotating question answers on document collections. One possibility is to take exist-
ing questions in DocVQA and pose them over the whole set of document images in the
dataset. However, many of the questions in DocVQA are ambiguous in the context of
the whole images in the dataset. For example, questions in DocVQA such as ”What is
the title of the document?” or ”Who sent this letter?” make little sense when asked on a
document collection that contains many pages with titles and many letters. A possible
way to annotate a multi-page VQA dataset is to follow the way MS-MARCO [134] is
annotated. That is, to collect a set of questions that users ask over a document collection
and then employ workers to find and mark answers for each question in one of the pages
(or images) in the collection or flag the question as unanswerable.

• Generative document VQA. Another important direction to pursue in both single doc-
ument and multi-document VQA is generative/abstractive VQA—a VQA task where
answers are not extracted—from text present in the images—but generated. In Info-
graphicVQA, there are some questions that require generated answers, such as questions
that require counting and arithmetic operations. Abstractive answers in InfographicVQA
are always short, numerical answers. Recent works such as VisualMRC [221] deal with
abstractive VQA on single document images. However, document images in VisualMRC
are born-digital, Wikipedia screenshots. They are significantly different from the major-
ity of the documents that are created and disseminated in real life, such as letters, reports,
newspapers and periodicals.

149

Appendix A

Appendix to chapter 3

A.1 Examples of pages in the internal page OCR dataset

In chapter 3, in order to conduct page-level OCR experiments an internal dataset that com-
prises 1000 pages per language is used (see subsection 3.3.1). This dataset is a subset of the
Indic consortium dataset. In figures Figure A.1– Figure A.4, we show examples of pages in the
internal dataset.

A.2 Examples of line images in the Mozhi dataset

In chapter 3, we introduced a new public dataset called Mozhi (see subsection 3.3.2) for line-
level and word-level text recognition in 13 Indian languages. In figures Figure A.5– Figure A.7,
we show examples of line images in the dataset.

A.3 Distribution of lengths of words in the Mozhi dataset

In figures Figure A.8– Figure A.12, we show the distribution of word lengths for all lan-
guages in the Mozhi dataset.

150

(a) Assamese (b) Bangla

(c) Gujarati (d) Hindi

Figure A.1: Assamese, Bangla, Gujarati and Hindi samples from our internal OCR dataset.

151

(a) Kannada (b) Malayalam

(c) Manipuri (d) Marathi

Figure A.2: Kannada, Malayalam, Manipuri and Marathi samples from our internal OCR dataset.

152

(a) Odia (b) Punjabi

(c) Tamil (d) Telugu

Figure A.3: Odia, Punabi, Tamil and Telugu samples from our internal OCR dataset.

153

Figure A.4: A sample page image of Urdu from our internal OCR dataset.

154

(a) Assamese

(b) Bangla

(c) Gujarati

(d) Hindi

Figure A.5: Samples of Assamese, Bangla, Gujarati and Hindi text-line images in the newly introduced

Mozhi dataset for text recognition.

155

(a) Kannada

(b) Malayalam

(c) Manipuri

(d) Marathi

Figure A.6: Samples of Kannada, Malayalam, Manipuri and Marathi text-line images in the newly

introduced Mozhi dataset for text recognition.

156

(a) Odia

(b) Punjabi

(c) Tamil

(d) Telugu

(e) Urdu

Figure A.7: Samples of Odia, Punjabi, Tamil, Telugu and Urdu text-line images in the newly introduced

Mozhi dataset for text recognition.

157

word length

co
un

t

0

5000

10000

15000

20000

25000

1 3 5 7 9 11 13 15 17 19 21 23 25 35 38

(a) Assamese

word length

co
un

t

0

5000

10000

15000

20000

25000

1 3 5 7 9 11 13 15 17 19 21 23 26 31 41

(b) Bangla

word length

co
un

t

0

5000

10000

15000

20000

25000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 32 42

(c) Gujarati

Figure A.8: Distribution of word lengths of Assamese, Bangla and Gujarati samples in the new Mozhi

OCR dataset.

158

word length

co
un

t

0

10000

20000

30000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

(a) Hindi

word length

co
un

t

0

5000

10000

15000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 39 48 56

(b) Kannada

word length

co
un

t

0

2500

5000

7500

10000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 44

(c) Malayalam

Figure A.9: Distribution of word lengths of Hindi, Kannada and Malayalam samples in the new Mozhi

OCR dataset.

159

word length

co
un

t

0

5000

10000

15000

20000

1 3 5 7 9 11 13 15 17 19 21

(a) Manipuri

word length

co
un

t

0

5000

10000

15000

20000

1 3 5 7 9 11 13 15 17 19 21 23 25

(b) Marathi

word length

co
un

t

0

5000

10000

15000

20000

1 3 5 7 9 11 13 15 17 19 21 23 25 33

(c) Odia

Figure A.10: Distribution of word lengths of Manipuri, Marathi and Odia samples in the new Mozhi

OCR dataset.

160

word length

co
un

t

0

10000

20000

30000

1 3 5 7 9 11 13 15 17 19 21 24

(a) Punjabi

word length

co
un

t

0

2500

5000

7500

10000

12500

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

(b) Tamil

word length

co
un

t

0

5000

10000

15000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 36 38 41 43

(c) Telugu

Figure A.11: Distribution of word lengths of Punjabi, Tamil and Telugu samples in the new Mozhi OCR

dataset.

161

word length

co
un

t

0

10000

20000

30000

40000

50000

1 3 5 7 9 11 13 15 17 19 21 23 26 34

Figure A.12: Distribution of word lengths of Urdu samples in the new Mozhi OCR dataset.

162

Appendix B

Appendix to chapter 4

In Figure B.1– Figure B.5, we show qualitative examples of performance of baseline
models–BERT and M4C, on the DocVQA dataset introduced in chapter 4.

163

Q: What is the total cost for Fat cell size (Mt.

SInai) in the -05 year ?

Question type: table/list

GT: $35,864

M4C best: 4400

BERT best: $35 , 864

Human: $35,864

Q: What is the first recipe on the page?

Question type: table/list

GT: hawaiian fruit cake

M4C best: island desserts (continued from

cake

BERT best: hawaiian fruit cake

Human: hawaiian fruit cake

Figure B.1: DocVQA: Examples where BERT QA model [113] answers questions other than ‘run-
ning text’ type. On the left is a question based on a table and for the other question one needs to know

the ‘first recipe’ out of the two recipes shown. For the first question the model gets the answer correct

except for an extra space, and in case of the second one the predicted answer matches exactly with the

ground truth answer.

164

Q: What is written inside logo in the bottom of

the document?

Question type: layout

GT: let yourself grow!

M4C best: yourself grow!

BERT best: < no prediction >

Human: let yourself grow!

Q: What Tobacco brand of GPI is shown in the

picture?

Question type: photograph

GT: Prince

M4C best: prince

BERT best: < no prediction >

Human: prince

Figure B.2: DocVQA: M4C [94]’s performance on questions based on pictures or photographs.
Here we show two examples where the best variant of the M4C model outperform the BERT best model

in answering ‘layout’ type questions seeking to read what is written in a logo/pack. The BERT model

doesnt make any predictions for the questions.

165

Q: What was the committee strength for the

first meeting?

Question type: table/list

GT: 6

M4C best: 6

BERT best: 6

Human: 6

Q: What was the committee strength for the

last meeting?

Question type: table/list

GT: 5

M4C best: 6

BERT best: 6

Human: 5

Figure B.3: DocVQA: Contrasting results for similar questions. Both questions ask for ‘committee

strength’ for a particular meeting (first or last). Both models get the answer right for the first one only.

This suggests that the models’ predictions are not backed by a proper reasoning/grounding in all cases.

166

Q: What is the position above ”vice chairman” ?

Question type: figure

GT: chairman

M4C best: legal counsel

BERT best: legal counsel

Human: chairman

Q: What is the highest value shown on the vertical

axis?

Question type: figure

GT: 99.99

M4C best: 50

BERT best: 32

Human: 99.99

Figure B.4: DocVQA: Questions based on figures and diagrams. In case of the question on the

left, one needs to understand an organizational hierarchy diagram. For the second question, one needs

to know what a ‘vertical axis’ is, and then find the largest value. Both the models fail to answer the

questions.

167

Q: What is the name of the passenger?

Question type: form, handwritten

GT: dr. william j. darby

M4C best: larry

BERT best: larry

Human: dr. william j. darry

Q: What is the date present in the memo ?

Question type: form, handwritten

GT: 1/7/77

M4C best: 1 7 77

BERT best: 1 / 7

Human: 1/7/77

Figure B.5: DocVQA: Impact of OCR errors. Here the models are able to ground the questions

correctly on the relevant information in the image, but failed to get the answers correct owing to the

OCR errors. In case of the question on the left, even the answer entered by the human volunteer is not

exactly matching with the ground truth. In case of the second question, OCR has split the date into

multiple tokens due to over segmentation, resulting in incorrect answers by both the models.

168

Appendix C

Appendix to chapter 5

In Figure C.1– Figure C.7, we show qualitative examples of performance of VLL-BERT
model on InfographicVQA (see chapter 5), covering different QA types in the dataset.

169

Q: what percent of researchers in Chile were men in the duration of 2011-15?

GT: [84%, 84]

VLL-BERT: 23%

M4C: 23%

Human: 84%

Answer-source: Image-span

Evidence: Map

Operation: none

Figure C.1: InfographicVQA: A question where color codes and information on a Map are re-
quired to arrive at the answer. To answer this question, models require to understand that the blue

color correspond to women and then pick the number corresponding to the blue color from the data

given for Chile. Both the baseline models get this question wrong. Note that here there are two valid

answers (GT), one added during the first stage of annotation and the other during the second stage.

170

Q: Which quadrant does the country India fall into, blue, pink, or gray?

GT: pink

VLL-BERT: country

M4C: pink

Human: pink

Answer-source: Question-span

Evidence: Figure Visual/Layout

Operation: none

Figure C.2: InfographicVQA : An example for Question-span To answer this question, a model needs

to first locate ”India” on the image and then identify the background color there. M4C gets this question

correct.

171

Q: Which are the top 2 best selling non violent video games of all time?

GT: super mario brothers, pokemon

VLL-BERT: super mario brothers

M4C: instagram youth

Human: super mario brothers, pokemon

Answer-source: Multi-span

Evidence: Table/List

Operation: Sorting

Figure C.3: InfographicVQA: An example for multi-Span answer. Multi-span answer type allows us

to include questions where answer is formed by multiple single ‘span’s. In this example top 2 items in

a category need to be found. This can only be answered if we allow answers containing multiple spans.

Since the LayoutLM-based model we train for extractive QA can handle only single spans, it gets first

part of the answer correct.

172

Q: How many championships has Kobe Bryant won?

GT: 5

VLL-BERT: 5

M4C: 5

Human: 5

Answer-source: Non-extractive

Evidence: Figure

Operation: Counting

Figure C.4: InfographicVQA : Example where symbols/markers need to be counted to find an
answer. Both the models get the answer correct for this question that require one to count the yellow

squares next to ”CHAMPIONSHIPS”.

173

Q: Which drug was used more frequently during lockdown, MDMA, Cocaine, Cannabis, or Amphetamines?

GT: cannabis

VLL-BERT: cannabis

M4C: cocaine

Human: cannabis

Answer-source: Question-span Image-span

Evidence: Figure

Operation: Sorting

Figure C.5: InfographicVQA : An example where values shown in a bar chart need to be sorted
to find the answer. In this question, answer is a span of question (Question-span) and a span of the

text on the image (Image-span) as well. The largest among the given items is explicit in the bar chart

representation. Alternatively the same can be found by finding the largest by comparing the numbers.

Hence ‘Sorting’ is added as the Operation.

174

Q: What % of schoolgirls in South Asia do not know that menstrual blood comes from the uterus?

GT: [97.5, 97.5%]

VLL-BERT: 2.5%

M4C: 25

Human: 97.5%

Answer-source: Non-extractive

Evidence: Text

Operation: Arithmetic

Figure C.6: InfographicVQA: Question requiring arithmetic operation. To answer this question, the

given percentage value needs to be subtracted from 100. Both the models fail to get the answer correct.

175

Q: Playing against which country did he reach the most number of his milestone runs?

GT: sri lanka

VLL-BERT: bangladesh

M4C: pakistan

Human: sri lanka

Answer-source: Image-span

Evidence: Text Figure

Operation: Counting Sorting

Figure C.7: InfographicVQA: Performing multiple discrete operations to find the answer. Here the

context required to find the answer spans the entire image. Hence we do not show a crop of the image

in the inset. This question requires a model to do Counting — count number of milestone runs scored

against each country and then perform Sorting — find the country against which the player scored most

milestone runs.

176

Bibliography

[1] S. Briet and L. Martinet, What is documentation?: English translation of the classic French text. Scare-

crow Press, 2006.

[2] D. L. Hoffmann, C. D. Standish, M. Garcı́a-Diez, P. B. Pettitt, J. A. Milton, J. Zilhão, J. J. Alcolea-

González, P. Cantalejo-Duarte, H. Collado, R. De Balbı́n, et al., “U-th dating of carbonate crusts reveals

neandertal origin of iberian cave art,” Science, vol. 359, 2018.

[3] A. Robinson, Writing and script: a very short introduction. Oxford University Press, 2009, vol. 208.

[4] E. L. Eisenstein, E. Elizabeth Lewisohn, et al., The printing revolution in early modern Europe. Cam-

bridge University Press, 2005.

[5] M. Mathew, D. Karatzas, and C. Jawahar, “Docvqa: A dataset for vqa on document images,” in WACV,

2021.

[6] M. Mathew, A. K. Singh, and C. V. Jawahar, “Multilingual OCR for indic scripts,” in DAS, 2016.

[7] M. Mathew, L. Gomez, D. Karatzas, and C. Jawahar, “Asking questions on handwritten document collec-

tions,” IJDAR, vol. 24, 2021.

[8] M. Mathew, M. Jain, and C. V. Jawahar, “Benchmarking scene text recognition in devanagari, telugu and

malayalam,” in MOCR Workshop, ICDAR, 2017.

[9] M. Mathew, V. Bagal, R. Tito, D. Karatzas, E. Valveny, and C. Jawahar, “Infographicvqa,” in WACV, 2022.

[10] “Global paper and paperboard production volume from 2010 to 2020, by type,” https://www.

statista.com/statistics/270317/production-volume-of-paper-by-type/? ga=2.204976272.1018593204.

1622837058-191240632.1618425162, accessed on 04 June 2022.

[11] V. Ambati, N. Balakrishnan, R. Reddy, L. Pratha, and C. Jawahar, “The digital library of india project:

Process, policies and architecture,” in ICDL, 2006.

[12] “Project gutenberg,” https://gutenberg.org, accessed on 04 June 2022.

[13] L. Vincent, “Google Book Search: Document Understanding on a Massive Scale,” in ICDAR, 2007.

[14] J. Purday, “Europeana: Digital access to europe’s cultural heritage,” Alexandria, vol. 23, 2012.

[15] M. Moyle, J. Tonra, and V. Wallace, “Manuscript transcription by crowdsourcing: Transcribe bentham,”

Liber Quarterly, vol. 20, 2010.

177

https://www.statista.com/statistics/270317/production-volume-of-paper-by-type/?_ga=2.204976272.1018593204.1622837058-191240632.1618425162
https://www.statista.com/statistics/270317/production-volume-of-paper-by-type/?_ga=2.204976272.1018593204.1622837058-191240632.1618425162
https://www.statista.com/statistics/270317/production-volume-of-paper-by-type/?_ga=2.204976272.1018593204.1622837058-191240632.1618425162
https://gutenberg.org

[16] G. Michalek, “The Heinz Electronic Library Interactive On-Line System (HELIOS): Building A Digital

Archive Using Imaging, OCR, and Natural Language Processing Technologies,” 1995.

[17] T. Causer and V. Wallace, “Building A Volunteer Community: Results and Findings from Transcribe

Bentham,” Digital Humanities Quarterly, vol. 6, 01 2012.

[18] D. Tkaczyk, P. Szostek, M. Fedoryszak, P. J. Dendek, and L. Bolikowski, “Cermine: Automatic extraction

of structured metadata from scientific literature,” IJDAR, vol. 18, 2015.

[19] C. Clark and S. K. Divvala, “Looking beyond text: Extracting figures, tables and captions from computer

science papers,” in AAAI Workshop: Scholarly Big Data, 2015.

[20] D. Doermann, “The indexing and retrieval of document images: A survey,” CVIU, vol. 70, 1998.

[21] L. Vincent, “Google book search: Document understanding on a massive scale,” in ICDAR, 2007.

[22] G. Jaume, H. K. Ekenel, and J.-P. Thiran, “Funsd: A dataset for form understanding in noisy scanned

documents,” in ICDAR Workshops, 2019.

[23] S. S. Paliwal, V. D, R. Rahul, M. Sharma, and L. Vig, “TableNet: Deep learning model for end-to-end table

detection and tabular data extraction from scanned document images,” in ICDAR, 2019.

[24] “Amazon textract form data,” https://docs.aws.amazon.com/textract/latest/dg/how-it-works-kvp.html, ac-

cessed on 04 June 2022.

[25] “Amazon textract tables,” https://docs.aws.amazon.com/textract/latest/dg/how-it-works-tables.html, ac-

cessed on 04 June 2022.

[26] T. Kanahori and M. Suzuki, “Scientific pdf document reader with simple interface for visually impaired

people,” in ICCHP, 2006.

[27] S. K. Kane, B. Frey, and J. O. Wobbrock, “Access lens: a gesture-based screen reader for real-world

documents,” in SIGCHI Conference on Human Factors in Computing Systems, 2013.

[28] C. Ponsard, R. Ramdoyal, and D. Dziamski, “An ocr-enabled digital comic books viewer,” in ICCHP,

2012.

[29] A. Domale, B. Padalkar, R. Parekh, and M. Joshi, “Printed book to audio book converter for visually

impaired,” in Texas Instruments India Educators’ Conference, 2013.

[30] M. Suzuki, T. Kanahori, N. Ohtake, and K. Yamaguchi, “An integrated ocr software for mathematical

documents and its output with accessibility,” in ICCHP, 2004.

[31] S. Ruder, “NLP Progress: Named entity recognition,” http://nlpprogress.com/english/named entity

recognition.html, accessed on 07 June 2022.

[32] ——, “NLP Progress: Part-of-speech tagging,” http://nlpprogress.com/english/part-of-speech tagging.

html, accessed on 07 June 2022.

[33] M. Banko and R. C. Moore, “Part-of-speech tagging in context,” in COLING, 2004.

[34] S. Ruder, “NLP Progress: Intent detection and slot filling,” http://nlpprogress.com/english/intent detection

slot filling.html, accessed on 07 June 2022.

178

https://docs.aws.amazon.com/textract/latest/dg/how-it-works-kvp.html
https://docs.aws.amazon.com/textract/latest/dg/how-it-works-tables.html
http://nlpprogress.com/english/named_entity_recognition.html
http://nlpprogress.com/english/named_entity_recognition.html
http://nlpprogress.com/english/part-of-speech_tagging.html
http://nlpprogress.com/english/part-of-speech_tagging.html
http://nlpprogress.com/english/intent_detection_slot_filling.html
http://nlpprogress.com/english/intent_detection_slot_filling.html

[35] ——, “NLP Progress: Sentiment analysis,” http://nlpprogress.com/english/sentiment analysis.html, ac-

cessed on 07 June 2022.

[36] A. Yadav and D. K. Vishwakarma, “Sentiment analysis using deep learning architectures: A review,” Artif.

Intell. Rev., vol. 53, 2020.

[37] A. Krizhevsky, “Learning multiple layers of features from tiny images,” 2009.

[38] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A large-scale hierarchical image

database,” in CVPR, 2009.

[39] W. Rawat and Z. Wang, “Deep convolutional neural networks for image classification: A comprehensive

review,” Neural computation, vol. 29, 2017.

[40] Z. Zou, Z. Shi, Y. Guo, and J. Ye, “Object detection in 20 years: A survey,” arXiv preprint

arXiv:1905.05055, 2019.

[41] Z.-Q. Zhao, P. Zheng, S.-t. Xu, and X. Wu, “Object detection with deep learning: A review,” TNNLS,

vol. 30, 2019.

[42] A. Garcia-Garcia, S. Orts-Escolano, S. Oprea, V. Villena-Martinez, and J. Garcia-Rodriguez, “A review on

deep learning techniques applied to semantic segmentation,” arXiv preprint arXiv:1704.06857, 2017.

[43] T. Grüning, G. Leifert, T. Strauß, J. Michael, and R. Labahn, “A two-stage method for text line detection

in historical documents,” IJDAR, vol. 22, 2019.

[44] N. Stamatopoulos, B. Gatos, G. Louloudis, U. Pal, and A. Alaei, “ICDAR 2013 handwriting segmentation

contest,” in ICDAR, 2013.

[45] G. Cohen, S. Afshar, J. Tapson, and A. Van Schaik, “Emnist: Extending mnist to handwritten letters,” in

IJCNN, 2017.

[46] B. Shi, X. Bai, and C. Yao, “An end-to-end trainable neural network for image-based sequence recognition

and its application to scene text recognition,” TPAMI, vol. 39, 2016.

[47] X. Yang, E. Yumer, P. Asente, M. Kraley, D. Kifer, and C. Lee Giles, “Learning to extract semantic structure

from documents using multimodal fully convolutional neural networks,” in CVPR, 2017.

[48] X. Zhong, J. Tang, and A. J. Yepes, “Publaynet: largest dataset ever for document layout analysis,” in

ICDAR, 2019.

[49] S. Ruder, “NLP Progress: Question answering,” http://nlpprogress.com/english/question answering.html,

accessed on 07 June 2022.

[50] F. Zhu, W. Lei, C. Wang, J. Zheng, S. Poria, and T.-S. Chua, “Retrieving and reading: A comprehensive

survey on open-domain question answering,” arXiv preprint arXiv:2101.00774, 2021.

[51] S. Liu, X. Zhang, S. Zhang, H. Wang, and W. Zhang, “Neural machine reading comprehension: Methods

and trends,” Applied Sciences, vol. 9, 2019.

[52] S. Ruder, “NLP Progress: Dialogue,” http://nlpprogress.com/english/dialogue.html, accessed on 07 June

2022.

179

http://nlpprogress.com/english/sentiment_analysis.html
http://nlpprogress.com/english/question_answering.html
http://nlpprogress.com/english/dialogue.html

[53] J. Ni, T. Young, V. Pandelea, F. Xue, and E. Cambria, “Recent advances in deep learning based dialogue

systems: A systematic survey,” 2021.

[54] H. Chen, X. Liu, D. Yin, and J. Tang, “A survey on dialogue systems: Recent advances and new frontiers,”

SIGKDD Explor. Newsl., vol. 19, 2017.

[55] S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra, C. L. Zitnick, and D. Parikh, “Vqa: Visual question

answering,” in ICCV, 2015, pp. 2425–2433.

[56] Q. Wu, D. Teney, P. Wang, C. Shen, A. Dick, and A. van den Hengel, “Visual question answering: A survey

of methods and datasets,” CVIU, vol. 163, 2017.

[57] A. Das, S. Kottur, K. Gupta, A. Singh, D. Yadav, J. M. Moura, D. Parikh, and D. Batra, “Visual Dialog,”

in CVPR, 2017.

[58] K. Kafle, B. Price, S. Cohen, and C. Kanan, “DVQA: Understanding data visualizations via question

answering,” in CVPR, 2018.

[59] S. E. Kahou, V. Michalski, A. Atkinson, Á. Kádár, A. Trischler, and Y. Bengio, “FigureQA: An annotated

figure dataset for visual reasoning,” arXiv preprint arXiv:1710.07300, 2017.

[60] A. Mishra, S. Shekhar, A. K. Singh, and A. Chakraborty, “OCR-VQA: Visual question answering by

reading text in images,” in ICDAR, 2019.

[61] S. Ruder, “NLP Progress: Summarization,” http://nlpprogress.com/english/summarization.html, accessed

on 07 June 2022.

[62] R. Nallapati, B. Zhou, C. Gulcehre, B. Xiang, et al., “Abstractive text summarization using sequence-to-

sequence rnns and beyond,” arXiv preprint arXiv:1602.06023, 2016.

[63] W. S. El-Kassas, C. R. Salama, A. A. Rafea, and H. K. Mohamed, “Automatic text summarization: A

comprehensive survey,” Expert Systems with Applications, vol. 165, 2021.

[64] D. Xu, Y. Zhu, C. B. Choy, and L. Fei-Fei, “Scene graph generation by iterative message passing,” in

CVPR, 2017.

[65] X. Chang, P. Ren, P. Xu, Z. Li, X. Chen, and A. G. Hauptmann, “A comprehensive survey of scene graphs:

Generation and application,” TPAMI, 2021.

[66] M. Z. Hossain, F. Sohel, M. F. Shiratuddin, and H. Laga, “A comprehensive survey of deep learning for

image captioning,” ACM Computing Surveys (CsUR), vol. 51, 2019.

[67] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and tell: Lessons learned from the 2015 MSCOCO

image captioning challenge,” TPAMI, vol. 39, 2016.

[68] X. Zhong, E. ShafieiBavani, and A. J. Yepes, “Image-based table recognition: data, model, and evaluation,”

arXiv preprint arXiv:1911.10683, 2019.

[69] Z. Huang, K. Chen, J. He, X. Bai, D. Karatzas, S. Lu, and C. V. Jawahar, “ICDAR 2019 competition on

scanned receipt ocr and information extraction,” in ICDAR, 2019.

180

http://nlpprogress.com/english/summarization.html

[70] K. Davila, B. U. Kota, S. Setlur, V. Govindaraju, C. Tensmeyer, S. Shekhar, and R. Chaudhry, “Icdar 2019

competition on harvesting raw tables from infographics (chart-infographics),” in ICDAR, 2019.

[71] S. Ruder, “NLP Progress: Relation prediction,” http://nlpprogress.com/english/relation prediction.html,

accessed on 07 June 2022.

[72] V. Ng and C. Cardie, “Improving machine learning approaches to coreference resolution,” in ACL, 2002.

[73] S. Ruder, “NLP Progress: Coreference resolution,” http://nlpprogress.com/english/coreference resolution.

html, accessed on 07 June 2022.

[74] R. Yu, A. Li, V. I. Morariu, and L. S. Davis, “Visual relationship detection with internal and external

linguistic knowledge distillation,” in CVPR, 2017.

[75] N.-V. Nguyen, X.-S. Vu, C. Rigaud, L. Jiang, and J.-C. Burie, “Icdar 2021 competition on multimodal

emotion recognition on comics scenes,” in ICDAR, 2021.

[76] C. Rigaud, N. Le Thanh, J.-C. Burie, J.-M. Ogier, M. Iwata, E. Imazu, and K. Kise, “Speech balloon and

speaker association for comics and manga understanding,” in ICDAR, 2015.

[77] W. Huang, C. L. Tan, and W. K. Leow, “Associating text and graphics for scientific chart understanding,”

in ICDAR, 2005.

[78] R. Smith, “An overview of the Tesseract OCR engine,” in ICDAR, 2007.

[79] N. Nayef, Y. Patel, M. Busta, P. N. Chowdhury, D. Karatzas, W. Khlif, J. Matas, U. Pal, J.-C. Burie, C.-l.

Liu, and J.-M. Ogier, “ICDAR 2019 robust reading challenge on multi-lingual scene text detection and

recognition — rrc-mlt-2019,” in ICDAR, 2019.

[80] D. Girish, V. Singh, and A. Ralescu, “Understanding action recognition in still images,” in CVPR Work-

shops, 2020.

[81] B. Yao, X. Jiang, A. Khosla, A. L. Lin, L. Guibas, and L. Fei-Fei, “Human action recognition by learning

bases of action attributes and parts,” in ICCV, 2011.

[82] D. Dua, Y. Wang, P. Dasigi, G. Stanovsky, S. Singh, and M. Gardner, “DROP: A Reading Comprehension

Benchmark Requiring Discrete Reasoning Over Paragraphs,” in NAACL-HLT, 2019.

[83] K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun, L. Kaiser, M. Plappert, J. Tworek, J. Hilton,

R. Nakano, et al., “Training verifiers to solve math word problems,” arXiv preprint arXiv:2110.14168,

2021.

[84] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural

networks,” in NeurIPS, 2012.

[85] A. Graves, S. Fernández, F. J. Gomez, and J. Schmidhuber, “Connectionist temporal classification: la-

belling unsegmented sequence data with recurrent neural networks,” in ICML, 2006.

[86] A. Graves, M. Liwicki, S. Fernandez, R. Bertolami, H. Bunke, and J. Schmidhuber, “A Novel Connectionist

System for Unconstrained Handwriting Recognition,” TPAMI, 2009.

181

http://nlpprogress.com/english/relation_prediction.html
http://nlpprogress.com/english/coreference_resolution.html
http://nlpprogress.com/english/coreference_resolution.html

[87] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning to align and trans-

late,” arXiv preprint arXiv:1409.0473, 2014.

[88] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural networks,” NeurIPS,

2014.

[89] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, “Microsoft

coco: Common objects in context,” in ECCV, 2014.

[90] X. Chen, H. Fang, T.-Y. Lin, R. Vedantam, S. Gupta, P. Dollár, and C. L. Zitnick, “Microsoft coco captions:

Data collection and evaluation server,” arXiv preprint arXiv:1504.00325, 2015.

[91] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “Squad: 100,000+ questions for machine comprehension

of text,” arXiv preprint arXiv:1606.05250, 2016.

[92] Y. Yang, W.-t. Yih, and C. Meek, “Wikiqa: A challenge dataset for open-domain question answering,” in

EMNLP, 2015.

[93] P. Anderson, X. He, C. Buehler, D. Teney, M. Johnson, S. Gould, and L. Zhang, “Bottom-up and top-down

attention for image captioning and visual question answering,” in CVPR, 2018.

[94] R. Hu, A. Singh, T. Darrell, and M. Rohrbach, “Iterative answer prediction with pointer-augmented multi-

modal transformers for textvqa,” in CVPR, 2020.

[95] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” 2015.

[96] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detection with region

proposal networks,” in NeurIPS, 2015.

[97] N. Sankaran and C. Jawahar, “Recognition of Printed Devanagari text using BLSTM neural network,” in

ICPR, 2012.

[98] Thomas M. Breuel and Adnan Ul-Hasan and Mayce Ibrahim Ali Al Azawi and Faisal Shafait, “High-

Performance OCR for Printed English and Fraktur Using LSTM Networks,” in ICDAR, 2013.

[99] Adnan Ul-Hasan and Saad Bin Ahmed and Sheikh Faisal Rashid and Faisal Shafait and Thomas M. Breuel,

“Offline Printed Urdu Nastaleeq Script Recognition with Bidirectional LSTM Networks,” in ICDAR, 2013.

[100] B. Su and S. Lu, “Accurate scene text recognition based on recurrent neural network.” in ACCV, 2014.

[101] P. Krishnan, K. Dutta, and C. Jawahar, “Word spotting and recognition using deep embedding,” in DAS,

2018.

[102] S. Sudholt and G. A. Fink, “PHOCNet: A Deep Convolutional Neural Network for Word Spotting in

Handwritten Documents,” in ICFHR, 2016.

[103] L. Kang, J. Kumar, P. Ye, Y. Li, and D. Doermann, “Convolutional neural networks for document image

classification,” in ICPR, 2014.

[104] G. Csurka, D. Larlus, A. Gordo, and J. Almazan, “What is the right way to represent document images?”

arXiv preprint arXiv:1603.01076, 2016.

182

[105] A. Das, S. Roy, U. Bhattacharya, and S. K. Parui, “Document image classification with intra-domain

transfer learning and stacked generalization of deep convolutional neural networks,” in ICPR, 2018.

[106] S. Long, X. He, and C. Yao, “Scene text detection and recognition: The deep learning era,” IJCV, vol. 129,

2021.

[107] T. Kanungo, R. M. Haralick, and I. Phillips, “Global and local document degradation models,” in ICDAR,

1993.

[108] A. Sulaiman, K. Omar, and M. F. Nasrudin, “Degraded historical document binarization: A review on

issues, challenges, techniques, and future directions,” Journal of Imaging, vol. 5, p. 48, 2019.

[109] A. Magueresse, V. Carles, and E. Heetderks, “Low-resource languages: A review of past work and future

challenges,” arXiv preprint arXiv:2006.07264, 2020.

[110] N. TS, “Word recognition in indic scripts,” Ph.D. dissertation, IIIT Hyderabad, 2014. [Online]. Available:

https://cvit.iiit.ac.in/research/thesis/thesis-students/word-recognition-of-indic-scripts

[111] R. Kasturi, L. O’gorman, and V. Govindaraju, “Document image analysis: A primer,” Sadhana, vol. 27,

2002.

[112] M. Mathew and C. Jawahar, “An empirical study of ctc based models for ocr of indian languages,” arXiv

preprint arXiv:2205.06740, 2022.

[113] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidirectional transformers

for language understanding,” in ACL, 2019.

[114] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, et al., “Improving language understanding by gen-

erative pre-training,” 2018.

[115] Y. Xu, M. Li, L. Cui, S. Huang, F. Wei, and M. Zhou, “Layoutlm: Pre-training of text and layout for

document image understanding,” in ACM SIGKDD, 2020.

[116] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry,

A. Askell, et al., “Language models are few-shot learners,” NeurIPS, 2020.

[117] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham, H. W. Chung, C. Sutton,

S. Gehrmann, et al., “Palm: Scaling language modeling with pathways,” arXiv preprint arXiv:2204.02311,

2022.

[118] L. Zhao, E. Yu, Z. Ge, J. Yang, H. Wei, H. Zhou, J. Sun, Y. Peng, R. Dong, C. Han, and X. Zhang,

“Chatspot: Bootstrapping multimodal llms via precise referring instruction tuning,” 2023.

[119] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le, D. Zhou, et al., “Chain-of-thought

prompting elicits reasoning in large language models,” NeurIPS, 2022.

[120] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel, “Backprop-

agation applied to handwritten zip code recognition,” Neural Computation, vol. 1, 1989.

[121] Y. LeCun, K. Kavukcuoglu, and C. Farabet, “Convolutional networks and applications in vision,” in ISCAS,

2010.

183

https://cvit.iiit.ac.in/research/thesis/thesis-students/word-recognition-of-indic-scripts

[122] D. C. Ciresan, U. Meier, L. M. Gambardella, and J. Schmidhuber, “Convolutional neural network commit-

tees for handwritten character classification,” in ICDAR, 2011.

[123] T. Wang, D. J. Wu, A. Coates, and A. Y. Ng, “End-to-end text recognition with convolutional neural

networks,” in ICPR, 2012.

[124] M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zisserman, “Synthetic data and artificial neural networks

for natural scene text recognition,” in NeurIPS Deep Learning Workshop, 2014.

[125] ——, “Deep structured output learning for unconstrained text recognition,” in ICLR, 2015.

[126] G. H. Bakir, T. Hofmann, B. Schölkopf, A. J. Smola, B. Taskar, and S. V. N. Vishwanathan, Eds., Predicting

Structured Data, ser. Neural Information Processing. MIT Press, 2007.

[127] P. Krishnan, N. Sankaran, A. K. Singh, and C. V. Jawahar, “Towards a robust OCR system for indic scripts,”

in DAS, 2014.

[128] Z. Niu, G. Zhong, and H. Yu, “A review on the attention mechanism of deep learning,” Neurocomputing,

vol. 452, 2021.

[129] C. Lee and S. Osindero, “Recursive recurrent nets with attention modeling for OCR in the wild,” in CVPR,

2016.

[130] B. Shi, X. Wang, P. Lyu, C. Yao, and X. Bai, “Robust scene text recognition with automatic rectification,”

in CVPR, 2016.

[131] A. Graves, S. Fernández, and J. Schmidhuber, “Multi-dimensional recurrent neural networks,” in ICANN,

2007.

[132] Alex Graves and Jürgen Schmidhuber, “Offline Handwriting Recognition with Multidimensional Recurrent

Neural Networks,” in NIPS, 2008.

[133] J. Puigcerver, “Are Multidimensional Recurrent Layers really necessary for handwritten text recognition?”

in ICDAR, 2017.

[134] T. Nguyen, M. Rosenberg, X. Song, J. Gao, S. Tiwary, R. Majumder, and L. Deng, “MS MARCO: A

Human Generated MAchine Reading COmprehension Dataset.” CoRR, vol. abs/1611.09268, 2016.

[135] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, and I. Polosukhin,

“Attention is all you need,” in NeurIPS, 2017.

[136] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, and Q. V. Le, “Xlnet: Generalized autoregres-

sive pretraining for language understanding,” in NeurIPS, 2019.

[137] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao, Q. Gao,

K. Macherey, et al., “Google’s neural machine translation system: Bridging the gap between human and

machine translation,” arXiv preprint arXiv:1609.08144, 2016.

[138] D. Chen, A. Fisch, J. Weston, and A. Bordes, “Reading Wikipedia to Answer Open-Domain Questions,”

in ACL, 2017.

184

[139] K. M. Hermann, T. Kocisky, E. Grefenstette, L. Espeholt, W. Kay, M. Suleyman, and P. Blunsom, “Teach-

ing machines to read and comprehend,” NeurIPS, vol. 28, 2015.

[140] Y. Zhu, O. Groth, M. Bernstein, and L. Fei-Fei, “Visual7w: Grounded question answering in images,” in

CVPR, 2016.

[141] Ł. Garncarek, R. Powalski, T. Stanisławek, B. Topolski, P. Halama, M. Turski, and F. Graliński, “LAM-

BERT: Layout-aware language modeling for information extraction,” in ICDAR, 2021.

[142] Y. Xu, Y. Xu, T. Lv, L. Cui, F. Wei, G. Wang, Y. Lu, D. Florencio, C. Zhang, W. Che, M. Zhang, and

L. Zhou, “LayoutLMv2: Multi-modal pre-training for visually-rich document understanding,” in ACL —

IJCNLP, 2021.

[143] S. Appalaraju, B. Jasani, B. U. Kota, Y. Xie, and R. Manmatha, “Docformer: End-to-end transformer for

document understanding,” in CVPR, 2021.

[144] R. Powalski, Ł. Borchmann, D. Jurkiewicz, T. Dwojak, M. Pietruszka, and G. Pałka, “Going full-tilt boogie

on document understanding with text-image-layout transformer,” in ICDAR, 2021.

[145] Y. Li, Y. Qian, Y. Yu, X. Qin, C. Zhang, Y. Liu, K. Yao, J. Han, J. Liu, and E. Ding, “Structext: Structured

text understanding with multi-modal transformers,” in ACM Multimedia, 2021.

[146] R. Krishna, Y. Zhu, O. Groth, J. Johnson, K. Hata, J. Kravitz, S. Chen, Y. Kalantidis, L.-J. Li, D. A.

Shamma, M. S. Bernstein, and L. Fei-Fei, “Visual Genome: Connecting Language and Vision Using

Crowdsourced Dense Image Annotations,” IJCV, 2017.

[147] D. Lewis, G. Agam, S. Argamon, O. Frieder, D. Grossman, and J. Heard, “Building a test collection for

complex document information processing,” in ACM SIGIR, 2006.

[148] Y. Jiang, V. Natarajan, X. Chen, M. Rohrbach, D. Batra, and D. Parikh, “Pythia v0. 1: the winning entry to

the vqa challenge 2018,” arXiv preprint arXiv:1807.09956, 2018.

[149] A. Singh, V. Natarjan, M. Shah, Y. Jiang, X. Chen, D. Parikh, and M. Rohrbach, “Towards vqa models that

can read,” in CVPR, 2019.

[150] L. H. Li, M. Yatskar, D. Yin, C. Hsieh, and K.-W. Chang, “VisualBERT: A Simple and Performant Baseline

for Vision and Language,” ArXiv, vol. abs/1908.03557, 2019.

[151] W. Su, X. Zhu, Y. Cao, B. Li, L. Lu, F. Wei, and J. Dai, “Vl-bert: Pre-training of generic visual-linguistic

representations,” ArXiv, vol. abs/1908.08530, 2020.

[152] Y. Chen, L. Li, L. Yu, A. E. Kholy, F. Ahmed, Z. Gan, Y. Cheng, and J. Liu, “UNITER: learning universal

image-text representations,” CoRR, vol. abs/1909.11740, 2019.

[153] Y. Goyal, T. Khot, D. Summers-Stay, D. Batra, and D. Parikh, “Making the v in vqa matter: Elevating the

role of image understanding in visual question answering,” in CVPR, 2017.

[154] D. Gurari, Q. Li, A. J. Stangl, A. Guo, C. Lin, K. Grauman, J. Luo, and J. P. Bigham, “Vizwiz grand

challenge: Answering visual questions from blind people,” in CVPR, 2018.

185

[155] A. F. Biten, R. Tito, A. Mafla, L. Gomez, M. Rusinol, E. Valveny, C. Jawahar, and D. Karatzas, “Scene text

visual question answering,” in ICCV, 2019.

[156] I. Krasin, T. Duerig, N. Alldrin, V. Ferrari, S. Abu-El-Haija, A. Kuznetsova, H. Rom, J. Ui-

jlings, S. Popov, S. Kamali, M. Malloci, J. Pont-Tuset, A. Veit, S. Belongie, V. Gomes, A. Gupta,

C. Sun, G. Chechik, D. Cai, Z. Feng, D. Narayanan, and K. Murphy, “Openimages: A pub-

lic dataset for large-scale multi-label and multi-class image classification.” Dataset available from

https://storage.googleapis.com/openimages/web/index.html, 2017.

[157] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for word representation,” in EMNLP,

2014.

[158] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Comput., 1997.

[159] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word vectors with subword information,”

ACL, vol. 5, 2017.

[160] J. Almazán, A. Gordo, A. Fornés, and E. Valveny, “Word spotting and recognition with embedded at-

tributes,” TPAMI, 2014.

[161] Z. Yang, X. He, J. Gao, L. Deng, and A. Smola, “Stacked attention networks for image question answering,”

in CVPR, 2016.

[162] A. Santoro, D. Raposo, D. G. Barrett, M. Malinowski, R. Pascanu, P. Battaglia, and T. Lillicrap, “A simple

neural network module for relational reasoning,” in NeurIPS, 2017.

[163] A. Kembhavi, M. Seo, D. Schwenk, J. Choi, A. Farhadi, and H. Hajishirzi, “Are You Smarter Than A Sixth

Grader? Textbook Question Answering for Multimodal Machine Comprehension,” in CVPR, 2017.

[164] S. Yagcioglu, A. Erdem, E. Erdem, and N. Ikizler-Cinbis, “RecipeQA: A Challenge Dataset for Multimodal

Comprehension of Cooking Recipes,” in EMNLP, 2018.

[165] S Mori and C.Y Suen and K Yamamoto, “Historical review of OCR research and development,” in Pro-

ceedings of IEEE, 1992.

[166] G Nagy, “At the frontiers of OCR,” in Proceedings of IEEE, 1992.

[167] “Census 2011,” https://censusindia.gov.in/2011-Common/CensusData2011.Html, accessed on 1 Novem-

ber 2021.

[168] R. M. K. Sinha and H. Mahabala, “Machine recognition of devnagari script,” in IEEE Trans. on Systems,

Man and Cybernetics, 1979.

[169] B. B. Chaudhuri and U. Pal, “A complete printed bangla ocr system,” Pattern Recognition, vol. 31, pp.

531–549, 1998.

[170] D. Arya, T. Patnaik, S. Chaudhury, C. V. Jawahar, B.B.Chaudhuri, A.G.Ramakrishna, C. Bhagvati, and

G. S. Lehal, “Experiences of Integration and Performance Testing of Multilingual OCR for Printed Indian

Scripts,” in MOCR Workshop, ICDAR , 2011.

186

https://censusindia.gov.in/2011-Common/CensusData2011.Html

[171] N. Sankaran and C. V. Jawahar, “Devanagari Text Recognition:A Transcription Based Formulation,” in

ICDAR, 2013.

[172] U. Pal and B. B. Chaudhuri, “Indian Script Character Recognition: A Survey ,” in Pattern Recognition,

2004.

[173] S. Antanani and L. Agnihotri, “Gujarati Character Recognition,” in ICDAR, 1999.

[174] A. Negi, C. Bhagavati, and B. Krishna, “An OCR system for Telugu,” in ICDAR, 2001.

[175] U. Pal and A. Sarkar, “Recognition of printed Urdu script,” in ICDAR, 2003.

[176] G S Lehal and C Singh, “A Gurumukhi Script Recognition System,” in ICPR, 2000.

[177] K. Aparna and A. Ramakrishnan, “A complete Tamil Optical Character Recognition system,” in Document

Analysis System, 2002.

[178] T. Ashwin and P. S. Sastry, “A font and size independent OCR system for printed kannada documents using

support machines,” Sadhana, 2002.

[179] B. Vijay Kumar and A. G. Ramakrishnan, “Machine Recognition of Printed Kannada Text,” in Document

Analysis Systems V, 2002.

[180] R. Sanjeev Kunte and R. Sudhaker Samuel, “A simple and efficient optical character recognition system

for basic symbols in printed kannada text,” Sadhana, vol. 32, no. 5, 2007.

[181] C. V. Jawahar, MNSSK Pavan Kumar and S. S. Ravikiran, “A Bilingual OCR system for Hindi-Telugu

Documents and its Applications,” in ICDAR, 2003.

[182] Ghosh, Subhankar and Bora, P. K. and Das, Sanjib and Chaudhuri, B. B., “Development of an Assamese

OCR Using Bangla OCR,” in Proceeding of the Workshop on Document Analysis and Recognition, 2012.

[183] Venkat Rasagna, Jinesh K.J. and C.V. Jawahar, “On Multifont Character Classification in Telugu,” in In-

ternational Conference on Information Systems for Indian Languages (ICISIL), 2011.

[184] N. N.V. and C. Jawahar, “Emperical evaluation of Character Classification schemes,” in International Con-

ference on Advances in Pattern Recognition, 2009.

[185] J. Makhoul, R. Schwartz, C. R. Christopher Lapre, and I. Bazzi, “Language-independent and segmentation-

free techniques for optical character recognition,” in Document Analysis Systems II, J. J. Hull and S. L.

Taylor, Eds., 1996, pp. 67–82.

[186] Z. Lu, R. M. Schwartz, P. Natarajan, I. Bazzi, and J. Makhoul, “Advances in the BBN BYBLOS OCR

System,” in ICDAR, 1999.

[187] P. Natarajan, E. MacRostie, and M. Decerbo, “The BBN Byblos Hindi OCR system,” in DRR, 2005.

[188] Toni M. Rath and R. Manmatha, “Features for Word Spotting in Historical Manuscripts,” in ICDAR, 2003.

[189] V. Chavan, A. Malage, K. Mehrotra, and M. K. Gupta, “Printed text recognition using blstm and mdlstm

for indian languages,” in ICIIP, 2017.

[190] D. Paul and B. B. Chaudhuri, “A blstm network for printed bengali ocr system with high accuracy,” ArXiv,

vol. abs/1908.08674, 2019.

187

[191] T. Kundaikar and J. D. Pawar, “Multi-font devanagari text recognition using lstm neural networks,” in

International Conference on Sustainable Technologies for Computational Intelligence, 2020.

[192] A. Dwivedi, R. Saluja, and R. K. Sarvadevabhatla, “An ocr for classical indic documents containing arbi-

trarily long words,” in CVPR Workshops, 2020.

[193] C. Jawahar, A. Kumar, A. Phaneendra, and K. Jinesh, “Building data sets for indian language ocr research,”

Guide to OCR for Indic Scripts: Document Recognition and Retrieval, pp. 3–25, 2010.

[194] A. Kumar and C. Jawahar, “Content-level annotation of large collection of printed document images,” in

ICDAR, 2007.

[195] G. Harit, K. Jinesh, R. Garg, C. Jawahar, and S. Chaudhury, “Managing multilingual ocr project using

xml,” in International Workshop on Multilingual OCR, 2009, pp. 1–10.

[196] M. Jain, M. Mathew, and C. V. Jawahar, “Unconstrained ocr for urdu using deep cnn-rnn hybrid networks,”

in ACPR, 2017, p. 6.

[197] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman, “The pascal visual object

classes (voc) challenge,” International Journal of Computer Vision, 2010.

[198] A. Rozantsev, V. Lepetit, and P. Fua, “On rendering synthetic images for training an object detector,” CVIU,

2015.

[199] G. Ros, L. Sellart, J. Materzynska, D. Vazquez, and A. M. Lopez, “The synthia dataset: A large collection

of synthetic images for semantic segmentation of urban scenes,” in CVPR, 2016.

[200] K. P. Sankar, C. V. Jawahar, and R. Manmatha, “Nearest Neighbor based Collection OCR,” in Document

Analysis Systems, 2010.

[201] J. A. Rodrı́guez-Serrano, F. Perronnin, J. Lladós, and G. Sánchez, “A similarity measure between vector

sequences with application to handwritten word image retrieval,” in CVPR, 2009.

[202] N. Sabbour and F. Shafait, “A segmentation free approach to arabic and urdu ocr,” Proceedings of SPIE -

The International Society for Optical Engineering, vol. 8658, 2013.

[203] P. Krishnan and C. V. Jawahar, “Generating synthetic data for text recognition,” 2016.

[204] A. Hannun, “Sequence modeling with ctc,” Distill, 2017, https://distill.pub/2017/ctc.

[205] L. R. Rabiner, “A tutorial on hidden Markov models and selected applications in speech recognition,”

Proceedings of the IEEE, vol. 77, 1989.

[206] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,

L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,

L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-performance deep learning library,”

in NeurIPS, 2019.

[207] Hinton, “Neural Networks for Machine Learning, Lecture 6,” http://www.cs.toronto.edu/∼tijmen/csc321/

slides/lecture slides lec6.pdf, 2012, accessed on 10 November 2021.

188

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

[208] S. V. Rice and T. A. Nartker, “The isri analytic tools for ocr evaluation version 5.1,” https://citeseerx.ist.

psu.edu/viewdoc/summary?doi=10.1.1.216.9427, 1996, accessed on 3 December 2021.

[209] H. Scheidl, “WordDetector,” https://github.com/githubharald/WordDetector, 2021, accessed on 10 Novem-

ber 2021.

[210] R. Manmatha and N. Srimal, “Scale space technique for word segmentation in handwritten documents,” in

Scale-Space Theories in Computer Vision, 1999.

[211] D. Doermann, K. Tombre, et al., Handbook of document image processing and recognition. Springer,

2014.

[212] I. Kavasidis, C. Pino, S. Palazzo, F. Rundo, D. Giordano, P. Messina, and C. Spampinato, “A saliency-based

convolutional neural network for table and chart detection in digitized documents,” in ICIAP, 2019.

[213] R. B. Palm, O. Winther, and F. Laws, “Cloudscan-a configuration-free invoice analysis system using recur-

rent neural networks,” in ICDAR, 2017.

[214] A. Singh, V. Goswami, V. Natarajan, Y. Jiang, X. Chen, M. Shah, M. Rohrbach, D. Batra, and D. Parikh,

“MMF: A multimodal framework for vision and language research,” https://github.com/facebookresearch/

mmf, 2020.

[215] A. F. Biten, R. Tito, A. Mafla, L. Gómez, M. Rusiñol, M. Mathew, C. V. Jawahar, E. Valveny,

and D. Karatzas, “ICDAR 2019 competition on scene text visual question answering,” CoRR, vol.

abs/1907.00490, 2019.

[216] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf, M. Funtow-

icz, and J. Brew, “Huggingface’s transformers: State-of-the-art natural language processing,” ArXiv, vol.

abs/1910.03771, 2019.

[217] M. Joshi, E. Choi, D. Weld, and L. Zettlemoyer, “TriviaQA: A large scale distantly supervised challenge

dataset for reading comprehension,” in ACL, 2017.

[218] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in ICLR, 2015.

[219] M. Mathew, R. Tito, D. Karatzas, R. Manmatha, and C. V. Jawahar, “Document visual question answering

challenge 2020,” in DAS short papers, 2020.

[220] R. Chaudhry, S. Shekhar, U. Gupta, P. Maneriker, P. Bansal, and A. Joshi, “Leaf-qa: Locate, encode attend

for figure question answering,” in WACV, 2020.

[221] R. Tanaka, K. Nishida, and S. Yoshida, “VisualMRC: Machine reading comprehension on document im-

ages,” in AAAI, 2021.

[222] J. Lu, D. Batra, D. Parikh, and S. Lee, “ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representa-

tions for Vision-and-Language Tasks,” 2019.

[223] H. Tan and M. Bansal, “Lxmert: Learning cross-modality encoder representations from transformers,”

arXiv preprint arXiv:1908.07490, 2019.

189

https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.216.9427
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.216.9427
https://github.com/githubharald/WordDetector
https://github.com/facebookresearch/mmf
https://github.com/facebookresearch/mmf

[224] Z. Bylinskii, S. Alsheikh, S. Madan, A. Recasens, K. Zhong, H. Pfister, F. Durand, and A. Oliva, “Under-

standing infographics through textual and visual tag prediction,” ArXiv, vol. abs/1709.09215, 2017.

[225] S. Madan, Z. Bylinskii, M. Tancik, A. Recasens, K. Zhong, S. Alsheikh, H. Pfister, A. Oliva, and F. Du-

rand, “Synthetically trained icon proposals for parsing and summarizing infographics,” arXiv preprint

arXiv:1807.10441, 2018.

[226] N. Landman, “Towards abstractive captioning of infographics,” Master’s thesis, Massachusetts Institute of

Technology, Massachusetts Institute of Technology, 2018.

[227] M. A. Borkin, A. A. Vo, Z. Bylinskii, P. Isola, S. Sunkavalli, A. Oliva, and H. Pfister, “What Makes a

Visualization Memorable?” IEEE Transactions on Visualization and Computer Graphics, vol. 19, 2013.

[228] M. Lu, C. Wang, J. Lanir, N. Zhao, H. Pfister, D. Cohen-Or, and H. Huang, “Exploring Visual Information

Flows in Infographics,” in ACM CHI, 2020.

[229] M. A. A. Cox and T. F. Cox, Multidimensional Scaling. Springer Berlin Heidelberg, 2008, pp. 315–347.

[230] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” J. Mach. Learn. Res., vol. 3, p.

993–1022, 2003.

[231] R. Řehůřek and P. Sojka, “Software Framework for Topic Modelling with Large Corpora,” in LREC 2010

Workshop on New Challenges for NLP Frameworks, 2010.

[232] A. W. Harley, A. Ufkes, and K. G. Derpanis, “Evaluation of deep convolutional nets for document image

classification and retrieval,” in ICDAR, 2015.

[233] C. Wigington, C. Tensmeyer, B. L. Davis, W. A. Barrett, B. L. Price, and S. Cohen, “Start, Follow, Read:

End-to-End Full-Page Handwriting Recognition,” in ECCV, 2018.

[234] L. Kang, P. Riba, M. Rusiñol, A. Fornés, and M. Villegas, “Pay Attention to What You Read: Non-recurrent

Handwritten Text-Line Recognition,” 2020.

[235] G. T. Bazzo, G. A. Lorentz, D. Suarez Vargas, and V. P. Moreira, “Assessing the Impact of OCR Errors

in Information Retrieval,” in Advances in Information Retrieval, J. M. Jose, E. Yilmaz, J. Magalhães,

P. Castells, N. Ferro, M. J. Silva, and F. Martins, Eds., 2020.

[236] G. Chiron, A. Doucet, M. Coustaty, M. Visani, and J.-P. Moreux, “Impact of OCR Errors on the Use of

Digital Libraries: Towards a Better Access to Information,” in ACM/IEEE JCDL, 2017.

[237] K. J. Shih, S. Singh, and D. Hoiem, “Where To Look: Focus Regions for Visual Question Answering,”

2016.

[238] X. Wang, Y. Liu, C. Shen, C. C. Ng, C. Luo, L. Jin, C. S. Chan, A. van den Hengel, and L. Wang, “On the

General Value of Evidence, and Bilingual Scene-Text Visual Question Answering,” 2020.

[239] A. Trischler, T. Wang, X. Yuan, J. Harris, A. Sordoni, P. Bachman, and K. Suleman, “Newsqa: A machine

comprehension dataset,” CoRR, vol. abs/1611.09830, 2016.

[240] T. S. Jaakkola and D. Haussler, “Exploiting Generative Models in Discriminative Classifiers,” in NeurIPS,

1999.

190

[241] F. Perronnin and C. R. Dance, “Fisher Kernels on Visual Vocabularies for Image Categorization.” in CVPR,

2007.

[242] J. Sánchez, F. Perronnin, T. Mensink, and J. Verbeek, “Image Classification with the Fisher Vector: Theory

and Practice,” Int. J. Comput. Vision, 2013.

[243] F. Perronnin, J. Sánchez, and T. Mensink, “Improving the Fisher Kernel for Large-scale Image Classifica-

tion,” in ECCV, 2010.

[244] H. Jegou, F. Perronnin, M. Douze, J. Sánchez, P. Perez, and C. Schmid, “Aggregating Local Image De-

scriptors into Compact Codes,” TPAMI, 2012.

[245] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools, 2000.

[246] M. Villegas, J. Puigcerver, A. Toselli, J.-A. Sánchez, and E. Vidal, “Overview of the ImageCLEF 2016

Handwritten Scanned Document Retrieval Task,” in CLEF., 2016.

[247] E. Loper and S. Bird, “NLTK: The Natural Language Toolkit,” in ACL ETMTNLP, 2002.

[248] U.-V. Marti and H. Bunke, “The IAM-database: an English sentence database for offline handwriting

recognition,” IJDAR, 2002.

[249] C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2007.

[250] C. Gormley and Z. Tong, Elasticsearch: The Definitive Guide. O’Reilly Media, Inc., 2015.

[251] H. Cao, V. Govindaraju, and A. Bhardwaj, “Unconstrained handwritten document retrieval,” IJDAR, 2011.

[252] Y. Fataicha, M. Cheriet, J. Y. Nie, and C. Y. Suen, “Retrieving Poorly Degraded OCR Documents,” IJDAR,

vol. 8, 2006.

[253] R. Tito, M. Mathew, C. Jawahar, E. Valveny, and D. Karatzas, “Icdar 2021 competition on document visual

question answering,” in ICDAR, 2021.

191

	Introduction
	Scope
	Applications
	Machine understanding of images and text: existing tasks and perspectives
	Motivation
	Challenges
	Problem space
	Our major contributions
	Re-evaluating thesis locus and contributions at the dawn of an LLM era.
	Thesis outline
	Publications

	Background
	Text recognition in the deep learning era
	Feature learning using CNNs.
	 Text recognition as a structured prediction using RNNs
	CTC-based text recognition
	Encoder-Decoder Networks for text recognition
	Multidimensional RNN

	Question Answering for electronic text
	Machine Reading Comprehension (MRC)
	BERT for QA/MRC

	Open domain QA

	Layout-aware BERT-like models for DIA tasks
	LayoutLM

	Visual Question Answering (VQA)
	Grid-based and region-based features for VQA
	VQA on natural images using VisualBERT

	VQA tasks that require reading text on images
	Scene text VQA
	LoRRA: Look, Read, Reason and Answer
	Multimodal Multi-Copy Mesh (M4C)

	Specialized VQA datasets where reading text on images is necessary.
	VQA on images of book covers
	VQA on charts

	Multimodal QA tasks

	CTC-based Seq2seq OCR for low resource languages
	Introduction
	Related works
	First-generation OCRs [1970 - 2000]
	Second-generation OCRs [2000 - 2012]
	Third-generation OCRs [2012 - 2022]

	Datasets
	Internal dataset
	Mozhi dataset
	Synthetic dataset

	Text recognition using CTC transcription
	Extracting feature sequence
	Encoder
	Feature and encoder configurations
	Decoder
	Transcription using CTC
	Training
	Inference

	Experimental setup
	Implementation details
	Evaluation

	Experiments and results
	Comparing different feature + encoder configurations
	Page OCR evaluation on the internal dataset
	Transfer learning from synthetic to real
	Evaluating CRNN on Mozhi dataset

	Summary

	DocVQA: VQA on business documents
	Introduction
	DocVQA dataset
	Data collection
	Document images
	Selection of workers
	Questions and answers

	Statistics and analysis

	Baselines
	Heuristics and upper bounds
	VQA models
	Reading comprehension models

	Experiments
	Evaluation metrics
	Experimental setup
	Results

	Summary

	InfographicVQA: VQA on infographics
	Introduction
	Related works
	Question answering in a multimodal context.
	Multimodal pretraining for vision and language tasks
	Infographics understanding.

	InfographicVQA
	Collecting infographics
	Collecting questions and answers
	Question-answer types: answer-source, evidence and operation
	Statistics and analysis of the dataset

	VLL-BERT
	Model architecture
	Input representation
	Pretraining
	Finetuning

	Experimental setup
	Experimental setup for VLL-BERT
	Extracting visual features

	Experimental setup for heuristics, upper bounds, and human performance.
	Experimental setup for M4C.
	Evaluation metrics

	Results
	Summary

	Recognition-free QA on handwritten document collection
	Introduction
	Related works
	Recognition-free QA
	Joint embedding of textual words and word images
	Aggregating word embeddings
	Aggregate by summing (SUM)
	Aggregate using Fisher Vector (FV) framework

	Document retriever
	Answer snippet extraction

	HW-SQuAD and BenthamQA datasets
	HW-SQuAD
	Data preprocessing
	Synthetic rendering of SQuAD1.0 passages as handwritten document images

	BenthamQA
	Performance evaluation

	Experiments and results
	Implementation details
	Performance of document retriever
	Evaluating end-to-end answer snippet extraction
	Evaluating a recognition-based QA approach on HW-SQuAD and BenthamQA
	Transcribing handwritten images using a CRNN OCR
	Evaluating TF–IDF-based document retriever
	Evaluating TF–IDF + BERT full pipeline QA framework

	Summary

	Conclusion and future work
	Conclusions
	Future directions

	Appendix A: Appendix to chapter 3
	Examples of pages in the internal page OCR dataset
	Examples of line images in the Mozhi dataset
	Distribution of lengths of words in the Mozhi dataset

	Appendix B: Appendix to chapter 4
	Appendix C: Appendix to chapter 5
	Bibliography

