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Abstract

In machine learning, tasks like making predictions using a model and learning model parameters can

often be formulated as optimization problems. The feasibility of using a machine learning model de-

pends on the efficiency with which the corresponding optimization problems can be solved. As such, the

area of machine learning throws up many challenges and interesting problems for research in the field of

optimization. While in some cases, it is possible to directly apply off-the-shelf optimization methods for

problems in machine learning, in many other cases, it becomes necessary to develop optimization algo-

rithms that are tailor-made for specific problems. On the other hand, developing optimization algorithms

for specific problem domains can itself be helped by machine learning techniques. Learning optimiza-

tion algorithms from data can help relieve tedious effort required to develop optimization methods for

new problem domains. The challenge here is to appropriately parameterize the space of algorithms for

different optimization problems. In this context, we explore the interplay between the areas of optimiza-

tion and machine learning and make contributions in specific problems of interest that lie in the overlap

of these fields.

We look into the optimization challenge presented by multi-class classification with a large number

of output classes and propose a partial-linearization based approach that intuitively generalizes over sev-

eral popular optimization algorithms applicable to this task. It is popular to use measures like average

precision (AP) and normalized discounted cumulative gain (NDCG) to evaluate a model for a classifica-

tion task or a ranked retrieval task, however, they are not as popularly used for learning the parameters

of these models. This is because of the difficulty in optimizing these non-decomposable loss functions.

We propose a useful characterization of a large class of such loss functions that we show are amenable

to efficient optimization and present an algorithm that can be used to efficiently optimize this class of

loss functions. On the other hand, we explore the possible application of machine learning techniques

for developing optimization algorithms, specifically, for combinatorial optimization problems. A wide

class of approximate algorithms for NP-hard combinatorial optimization problems solve a continuous
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relaxation of the original problem and then round the fractional solution to obtain an approximate dis-

crete solution. The rounding procedures involved in such methods are non-trivial and generally have to

be ingeniously designed for each task. We propose a framework that allows the learning of such round-

ing procedures from unsupervised data. Such a learning based approach permits rapid development of

algorithms for novel optimization problems.
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Chapter 1

Introduction

Optimization as a method for problem solving is ubiquitous across all areas of human interest. In-

tuitively, optimization involves selecting an element from a set of options that is the best or worst in a

certain predefined way. Mathematically, a wide range of optimization problems can be formulated as

the task of finding an element that minimizes or maximizes a real valued function over an allowed set.

A large number of optimization problems of interest differ mainly in the type of the function that has to

be minimized or maximized and nature of the set of allowed elements. Several different forms of this

problem routinely come up in many real world scenarios like in the areas of operations research and

engineering.

Over the course of its development, optimization methods have progressed through phases that em-

ployed a diverse set of approaches. Early developments in optimization methods can be traced back to

ideas from differential calculus developed by Newton and Leibniz and those from calculus of variations

developed by Euler and Bernoulli. Over time the application of the Cauchy’s steepest descent method

for unconstrained optimization and Lagrange methods for constrained optimization gained wide pop-

ularity. More recently with the advent of computers and increase in compute capabilities led to rapid

development in optimization algorithms. Focus towards developing efficient methods catering to spe-

cific forms of optimization problems, which saw impact-making developments like Dantzig’s Simplex

algorithm [20] for Linear programs and Karmarkar’s interior point algorithm [50] for convex programs,

have since led to increased effort towards further specialization of optimization algorithms into new

classes like semi-definite programming (SDP) [96] and second order cone programming (SOCP) [61].

While a great deal of research in optimization methods can be associated with branching and special-

ization of the field based on theoretical structure of the problems, a substantial body of research has

also been motivated and directed by the several application domains. For example, operations research,
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circuit design, signal processing and artificial intelligence [11]. Of special interest to us here is the inter-

action between the fields of optimization methods and machine learning. Machine learning has not only

been a successful area of application for optimization algorithms but has also motivated new directions

of research in optimization methods [7, 87].

Machine learning is concerned with the task of making a machine learn from experience. Specifi-

cally, learning involves searching for a model of an environment or a task based on observations, with

the goal of making predictions for novel queries for that task. In a more formal sense, learning can be

imagined to be a sophisticated form of curve-fitting that tries to fit an appropriate model or function

to a collection of data points. Such a curve-fitting problem can be generally posed as an optimization

problem. For example, when trying to make a machine learn to play the board game of Go, the goal is

to build a model of the game that increases the chances of winning and this is done by optimizing for

the win based reward.

In the early days of machine learning, limited access to data and low compute capabilities encouraged

focus on models that catered to specific input data structures. This allowed the models to be designed

specifically to leverage the structure in the specific type of data and to be tuned for any particular task

with a small amount of data. Such focus on a specific problem or data structure allowed for thorough

theoretical analysis of the models and as a result for theoretical guarantees on the performance of the

models like support vector machines (SVMs) [17], decision forests [51] and boosting [82]. While in

some cases off-the-shelf optimization algorithms can be employed to search through the hypothesis

space for the optimal model, it is sometimes necessary to design novel optimization methods tailor-

made for the specific problem structure. This has been the motivation for a wide range of optimization

algorithms that have been developed to facilitate efficient learning in different domains.

On the other hand, with the availability of huge amount of data and compute capability, it has gradu-

ally become possible to use more complex and flexible machine learning models like deep neural nets.

While these models required more data and computational resources to properly fit to the task and data

at hand, on the upside, similar models could now be used for multiple different domains without having

to modify them too much for any specific domain. Such models while being difficult to theoretically

analyse (and therefore difficult to provide theoretical guarantees for performance), have been shown to

perform much better empirically for many real world settings. Because of the highly complex nature

of the hypothesis space represented by models like the deep neural networks, theoretical analysis of the

corresponding optimization algorithms is very difficult. This has led to increased attention being given
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to the practical efficiency and scalability of optimization methods being developed for training such

models rather than focusing too much on the theoretical guarantees.

While optimization methods form an integral part of machine learning pipelines, there is increasing

realization that learning techniques can also be used to estimate certain intermediate quantities or map-

pings that can be of help in solving an optimization problem. In this context, it is of interest to explore

the mutual relevance and usefulness of optimization methods and learning systems. We elaborate on the

interplay between optimization and learning in the following sections.

1.1 Optimization Problems in Machine Learning

In past few decades, there has been a fundamental shift in the approach humans have taken to design-

ing intelligent systems. Instead of trying to mimic the decision making process of humans, the machines

are now designed to mimic the learning process of humans. Such a machine learning framework com-

prises a model with parameters that are to be learned from appropriate task specific data presented to

it. The explosion in data that we have been witnessing since the last decade, along with the rapid de-

velopments in computational hardware has massively increased the viability and effectiveness of such

methods. Such an approach has also allowed development of intelligent systems for incredibly complex

tasks with minimal design effort from a human expert.

In a formal setting, let say we have a task at hand that requires us to predict the value of variable y

which depends on the input x. For instance, x can be an MRI scan of a tumor and y can correspond to a

binary variable that states if the tumor is benign or malignant. Applying machine learning to such a task

generally involves two different computational problems. If we can assume that y = f(x; θ), where

f is the function that maps the input to the output and has parameters θ, then the first computational

problem is to compute output y by evaluating function f(x; θ) at input x. This is called the prediction

problem or the inference problem. Second, given some dataD, the parameters θ of the function f can be

estimated as θ∗ = argminθ L(f,D), where L is an appropriate task specific loss function that measures

the quality of a parameter configuration. This is called the learning problem.

Generally, the inference problem and the learning problem in machine learning can be seen as op-

timization problems. The inference problem often involves selecting the candidate output y from a

allowed set Y that maximizes a certain score that estimates the quality of a prediction:

y∗ = argmax
y∈Y

score(x, y). (1.1)
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The domain set Y varies for every task. While it would be a categorical set for a classification prob-

lem, it would be a continuous space for a regression task. The domain set can sometimes be a more

sophisticated structured set like that of all possible rankings of a set of elements as in the case of ranked

retrieval tasks. While it is possible to deploy off-the-shelf optimization algorithms for solving many

such inference problems, certain cases demand developing novel optimization methods that can lever-

age the structure of the problem to solve the inference problem effectively. In many cases, the design of

the scoring function is influenced by its pliability for efficient optimization.

In a standard setting of the learning problem, the parameters θ of a machine learning model f(x; θ)

are chosen such that the model minimizes the expected value of the loss function L(f(x; θ), y) over the

data distribution Pdata:

θ∗ = argmin
θ

E(x,y)∼Pdata [L(f(x; θ), y)] . (1.2)

The objective function of the above optimization problem is called risk. Computing risk requires the

knowledge of the data distribution Pdata which we generally don’t know exactly. Therefore, we instead

optimize an empirical estimate of the expectation of the loss function on the training data Dtrain which

is called the empirical risk:

θ∗ = argmin
θ

1

|Dtrain|
∑

(x,y)∈Dtrain

L(f(x; θ), y). (1.3)

While the model is trained only on the training set, it is hoped that it also performs well on any un-

seen data from the data distribution. The generalization performance of a model can be evaluated by

computing the risk on a test set Dtest that is disjoint from the training set. In most cases, the learning

algorithm tends to over-fit the model onto the training set, thus harming the generalization performance.

This is generally dealt with by adding an additional regularization term to the objective function in

equation 1.3.

Many popular techniques in the optimization literature are directly applicable to solving the learning

problem in machine learning. At the same time however, direct application of generic optimization

solvers might be highly inefficient for certain cases. This can be because of the large scale of the

problem, in terms of the size of the dataset or output space involved, or can be because of the complexity

of the problem, in terms of the output space or the loss function. In order to deal with the large size of the

dataset, stochastic variants of optimization methods that work only with a subset of the dataset at a time,

have become popular. On the other hand, as in the case of inference, dealing with the complexity in the
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output space or the loss functions involved in the learning problem requires developing methods that can

leverage the structure specific to the task to make the optimization efficient. An interested reader might

want to refer to [76, 87] for a general overview of optimization problems and methods that are relevant

to machine learning. In the following sections, we will look at some specific optimization challenges

that are commonly encountered in machine learning systems and also discuss some approaches to deal

with them.

1.2 Learning for Optimization

Optimization algorithms can generally be seen as iterative search methods trying to find an optimal

element in the allowed set. In case of a continuous domain, each step of the algorithm generally involves

choosing an appropriate update direction and then taking a step in that direction. The update direction

and sometimes even the step size are generally a function of the objective function value or derivative at

the current or previously encountered points in the search space. The various optimization algorithms

over continuous domain differ in their choice of the update direction and the update step. Quite often it

makes sense to mould this update computation to fit the specific problem structure. Here in lies the scope

for using machine learning techniques to design appropriate update steps. In some cases, evaluating the

function value or derivative of the objective function can itself be non-trivial and may require complex

estimation techniques like variational approximation or sampling. Here again, learning based methods

can be used to help come up with good approximation functions and samplers.

In a more general sense, most optimization algorithms can be imagined to be algorithms that involve

sequential decision making. Apart from the continuous-domain optimization methods discussed above,

combinatorial optimization algorithms that deal with discrete domains, also generally proceed by taking

a sequence of decisions. For instance, a greedy algorithm to solve the graph based travelling salesman

problem would involve making a series of locally optimal decisions. Many such combinatorial opti-

mization problems happen to be NP-hard and the most popular solvers are often heuristic based. While

traditionally such clever heuristic algorithms have been designed by human experts, there is scope to

model these sequential algorithms as machine learning problems and try to learn them using data. In the

subsequent sections, we will look into some interesting problems in this domain and discuss different

approaches towards solving them.
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1.3 Problems of interest

In context of the increasingly intertwined domains of optimization and machine learning, there are

several problems that pose challenging questions to researchers. In this section, we shall look into some

of the interesting problems that lie in the junction of these two computational fields.

1.3.1 Large Scale Classification Problems

Many tasks in the real world can be formulated as multi-class classification problems. In other words,

given any object like an image, a video, a document or a speech sample, the task is to assign it a label

that belongs to a specified finite set. For example, in the case of object recognition in an image, the

label can be car, chair or person. Similarly, for action recognition from a video, actions categories like

jumping, kicking or clapping can be candidate labels. Given an input x ∈ X the aim of multi-class

classification is to predict the output y that belongs to the output space Y . If the number of classes is

denoted by c, the output space Y = {1, . . . , c}.

The binary classification problem which deals with only two classes is a much simpler problem to

solve, with a plethora of classical solutions like the Support Vector Machine (SVM), Perceptron and

Logistic Regression [10]. There have been several works which have presented extensions of these

methods to a multi-class setting [19, 27, 64, 79]. A popular thread of approaches to deal with a large

number of output classes has been to decompose the multi-class classification task into classification

problems that have to deal with smaller subsets of the bigger output space, most often binary. The

multi-class classification problem then can be performed by solving a series of binary classification

problems instead. Binary classifiers can be used to perform one-vs-one or one-vs-all classifications and

the results can then be aggregated to make a multi-class classification [41]. Another set of methods try to

partition the output space into individual classes by using a large number of binary decision boundaries.

The output space can be partitioned using a decision tree or a directed acyclic graph [78] and such a

partitioning can be informed by prior knowledge about structural relationship among the output classes.

While the above idea of decomposing the multi-class classification problem into a series of binary

classification problems presents a simple yet powerful approach, such methods can not generally model

the correlations between output classes unless they are explicitly encoded into the model. On the other

hand, there are methods like multi-class SVMs [19] and neural networks which try to learn a single

complex decision boundary that distinguishes among all the output classes. In doing so, these models are
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able to capture the correlation that the different output classes may have among them. However, learning

the parameters for those models generally involve solving a single complex optimization problem that

includes all the output classes. The complexity of the optimization problem rapidly rises with increase

in the number of output classes and can become practically infeasible for several real world problems.

In order to make the optimization problem for learning a multi-class classification model feasible

for a large output space, it is common to opt for simple learning objectives like the cross-entropy loss

applied on softmax output scores. While computing the output scores require normalization over all the

output classes and it can become very inefficient when the number of output classes are very large, it is

still the most popular objective function that is used to train models like neural networks for multi-class

classification. On the other hand, using more sophisticated learning criteria like margin-maximization

can potentially give better classification performance [89]. The optimization problem that comes up

in margin-maximization frameworks are however more complicated and can many times deter their

usage for training large scale multi-class classification models. Investigation into efficient optimization

methods for learning of large classification models in context of the margin-maximization framework is

an important and interesting problem.

1.3.2 Optimization of Rank-based Loss Functions

The loss function involved in the training and evaluation of a machine learning model should ideally

correspond to the performance of the model for a particular task. For example, in most cases of regres-

sion, we can use mean squared error as a loss function and optimize the corresponding empirical risk

to learn the model parameters. Similarly in case of classification, 0-1 loss, that assigns a loss of 1 to

every misclassification and 0 to every correct classification, is a sensible loss function. In case of tasks

like classification and regression, the popular loss functions are generally an aggregate of loss computed

over each individual sample. For example, the mean squared error is an average of the squared errors

for individual samples. Similarly, the 0-1 loss is the average over individual misclassifications. Even

though 0-1 loss might not be differentiable, there are good differentiable surrogate loss functions that

are additively decomposable onto individual samples. The additive decomposablilty property allows

for efficient optimization as the optimization problem can then be broken down into sub-problems over

individual samples.

In case of other tasks like that of information retrieval which often involves ranking the samples in

a dataset, most popular evaluation measures are a non-decomposable function of the entire dataset. For
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Precision@5 = 0.4

AP = 1.0

NDCG = 1.0

Precision@5 = 0.4

AP = 0.7

NDCG = 0.85

Ranked retrievals for query “Jumping”

Figure 1.1: Example demonstrating the relative sensitivity of evaluation measures to the ranks of the

retrieved samples. While AP and NDCG are sensitive to the change in ranking, precision@k is not.

example, Average Precision (AP) is a very well-known measure that is used for evaluating the perfor-

mance of information retrieval systems. However, AP is not differentiable and also does not additively

decompose onto individual samples. It is therefore difficult to optimize AP to train information retrieval

systems. In this context, we look into the accuracy-of-approximation and difficulty-of-optimization

based considerations involved in choice of loss functions, in the context of information retrieval sys-

tems.

Information retrieval systems require us to rank a set of samples according to their relevance to a

query. Let us begin by providing a brief description of a general retrieval framework that employs a

rank-based loss function, hereby referred to as the ranking framework. This framework is the same as or

generalizes the ones that are popular in the literature [14, 45, 86, 105]. The risk of the predicted ranking

is measured by a user-specified loss function. Several intuitive loss functions have been proposed in

the literature. These include simple loss functions such as 0-1 loss [60, 70], loss based on evaluation

measures like precision@k and area under the ROC curve (AUC) [46], as well as the more complex loss

functions such as those based on average precision (AP) [13, 105], normalized discounted cumulative

gain (NDCG) [14] and F1-score [46]. Some of these loss functions like the 0-1 loss and that based

on precision@k are very weakly sensitive to the ranking order of the retrieval. For example, let us
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consider the example portrayed in Figure 1.1 which consists of two sets of ranked retrievals of images

corresponding to the query “jumping”. Assuming + represents positive sample (green box in the figure)

and − a negative sample (red box) the two rankings can be represented as: R1 = [+ + − − −−] and

R2 = [+ − − − +−]. In this case, precision@5 would have the same value of 0.4 for both R1 and

R2. While intuitively it is quite clear that R1 is a much better retrieval result compared to R2, using

precision@5 as an evaluation measure does not quite capture this difference in performance.

On the other hand, more complex evaluation measures like average precision have a stronger sen-

sitivity to the ranking order of the retrieval. In the above illustrative example, the ranking R1 would

have an AP value of 1.0 compared to the lower AP value of 0.7 for ranking R2. Similarly, the NDCG

score for ranking R1 is 1.0 compared to that of 0.85 for R2. This is consistent with the intuition that

R1 is a more desirable retrieval ranking compared to R2. Therefore, it makes more sense to use rank

sensitive evaluation measures like AP and NDCG to measure the performance of the retrieval systems.

Further, it would be desirable to use loss functions that are based on these evaluation measures to learn

the model parameters of the retrieval system. However, these complex loss functions are generally dif-

ficult to optimize and can lead to highly inefficient training procedures. This difficulty in optimization

often discourages usage of complex loss functions, like those based on AP and NDCG, for learning model

parameters. Efficient optimization of such non-decomposable rank-based loss functions is a challenging

problem that holds the key towards their application for learning information retrieval models.

1.3.3 Learning for Combinatorial Optimization

Combinatorial optimization problems are frequently encountered in the real world. They essentially

include all problems that can be formulated as a function minimization or maximization over a finite

discrete domain. Problems like the travelling salesman problem, scheduling problems and graph based

problems like minimum spanning tree fall in this category. Most of the combinatorial optimization prob-

lems that are of interest in fields like artificial intelligence, machine learning and software engineering,

are NP-hard. Exact algorithms like those based on exhaustive search or branch and bound techniques

can not be scaled to reasonably big domains. For many problems, approximation algorithms that are

often based on some type of relaxation of the original discrete problem can be designed. While design-

ing such methods can be of theoretical interest and often provide worst case theoretical guarantees, their

practical usage might be limited for large scale problems.
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For many combinatorial optimization problems, heuristic algorithms are the most successful for

finding a reasonably approximate solution in a feasible amount of time, particularly when looking at

large scale problems. However, designing such heuristic algorithms generally requires expert knowledge

of the specific problem domain and a certain amount of trial and error is involved in the process. This

can be a tedious process to engage in and is difficult to repeat for every new problem. While meta-

heuristic methods like simulated annealing and genetic algorithms provide a framework for designing

heuristic algorithms for a wide class of problems, tailoring them to a specific problem again requires

expert domain knowledge. Interestingly, most heuristics based combinatorial optimization algorithms

can be thought of as sequential decision making processes. The decision in each iteration can be often

modeled as a simple classification task that takes the current state of the system as input and selects an

action from a discrete action space.

While exact and approximation algorithms work with a more rigid framework that allows for con-

crete theoretical analysis and guarantees, practical efficiency of these methods is again dependent on

their capability to adapt to specific problem structures. For example, consider the branch and bound

algorithm which searches for the optimal solution by partitioning the feasible space in a tree-structured

manner. The partitioning of the feasible space is achieved by progressively splitting the space with

respect to individual variables. In such a setting, the order in which the variables are considered for

branching is critical for the efficiency of the algorithm. Unfortunately, there is no general method to

come up with an optimal ordering, instead it comes down to designing good heuristic methods by lever-

aging the structure of the domain of interest. Here again lies the scope for using learning based methods

to discover good heuristics from data instead of relying on domain experts to fulfill the onerous task

of designing them every time we are dealing with a new domain. A similar idea is also relevant for

approximation algorithms, whose efficiency can be improved with better heuristics that can potentially

be learned from data.

A popular approach for devising approximate algorithms for combinatorial optimization problems is

to relax the original discrete problem to a more tractable one. The most common approach is to relax

the discrete domain to a continuous one. However, characterization of the relaxed continuous domain is

non-trivial and might itself be computationally intractable. Therefore, there is often a trade off between

the computational tractability and the tightness of the relaxation that one has to keep in mind. Moreover,

solving the new relaxed problem would generally give a fractional solution that has to be rounded to

get an integer solution. The rounding procedure is again non-trivial and the best performing ones are
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generally hand designed for specific problem domains. It should be possible to parameterize the space

of relaxation and rounding procedures and apply learning based techniques to design approximation

algorithms.

1.4 Contributions

Partial Linearization based Optimization for Multi-class SVM. Many tasks in computer vision can

be formulated as multi-class classification problems. In other words, given an image or a video, the task

is to assign it a label that belongs to a specified finite set. For example, in the case of object recognition

from an image, the label can be car, chair or person. Similarly, for action recognition from a video,

actions categories like jumping, kicking or clapping can be candidate labels. There has been extensive

research in the area of multi-class classification with a plethora of solutions being proposed [19, 27, 64,

79]. We focused on multi-class SVM (MC-SVM), which is one of the most popular methods for this task.

We proposed a novel partial linearization based approach for optimizing the multi-class SVM learning

problem. Our method is an intuitive generalization of the Frank-Wolfe and the exponentiated gradient

algorithms. In particular, it allows us to combine several of their desirable qualities into one approach:

(i) the use of an expectation oracle (which provides the marginals over each output class) in order to

estimate an informative descent direction, similar to exponentiated gradient; (ii) analytical computation

of the optimal step-size in the descent direction that guarantees an increase in the dual objective, similar

to Frank-Wolfe; and (iii) a block coordinate formulation similar to the one proposed for Frank-Wolfe,

which allows for solving the problem for large datasets.

Efficient optimization of rank-based loss functions. The accuracy of information retrieval systems

is often measured using complex loss functions such as the average precision (AP) or the normalized

discounted cumulative gain (NDCG). Given a set of positive and negative samples, the parameters of a

retrieval system can be estimated by minimizing these loss functions. However, the non-differentiability

and non-decomposability of these loss functions does not allow for simple gradient based optimization

algorithms. This issue is generally circumvented by either optimizing a structured hinge-loss upper

bound to the loss function or by using asymptotic methods like the direct-loss minimization framework.

Yet, the high computational complexity of loss-augmented inference, which is necessary for both the

frameworks, prohibits its use in large training data sets. To alleviate this deficiency, we present a novel

quicksort flavored algorithm for a large class of non-decomposable loss functions. Our algorithm has a
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superior runtime of O(|N | log |P| + |P| log |N |) compared to O(|P| |N | + |N | log |N |) of [14, 105],

where, P and N denote the sets of positive and negative samples respectively. We provide a complete

characterization of the loss functions that are amenable to our algorithm, and show that it includes both

AP and NDCG based loss functions. Furthermore, we prove that no comparison based algorithm can

improve upon the computational complexity of our approach asymptotically. We also demonstrate that

it is however possible to reduce the constant factors of the complexity by exploiting the special structure

of specific loss functions like the AP loss. Apart from these exact methods, we additionally present

an approach that approximates the AP loss over all samples by the AP loss over difficult samples (for

example, those that are incorrectly classified by a binary SVM), while ensuring the correct classification

of the remaining samples.

Learning to Round for Discrete Labeling Problems. Discrete labeling problems are often solved by

formulating them as an integer program, and relaxing the integrality constraint to a continuous domain.

While the continuous relaxation is closely related to the original integer program, its optimal solution

is often fractional. Thus, the success of a relaxation depends crucially on the availability of an accu-

rate rounding procedure. The problem of identifying an accurate rounding procedure has mainly been

tackled in the theoretical computer science community through mathematical analysis of the worst-case.

However, this approach is both onerous and ignores the distribution of the data encountered in practice.

We present a novel interpretation of rounding procedures as sampling from a latent variable model,

which opens the door to the use of powerful machine learning formulations in their design. Inspired

by the recent success of deep latent variable models, we parameterize rounding procedures as a neural

network, which lends itself to efficient optimization via back-propagation. By minimizing the expected

value of the objective of the discrete labeling problem over training samples, we learn a rounding pro-

cedure that is more suited to the task at hand.

1.5 Outline of the Thesis

The rest of the thesis is organized in the following parts.

Efficient optimization for large scale classification. In this part, we discuss the problem of large

scale classification where large number of output classes present an optimization challenge. We discuss

our work based on the partial-linearization approach for efficient optimization of the multi-class SVM.

This includes our work published in the European Conference on Computer Vision (ECCV) 2016.
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Efficient optimization of rank-based loss functions. This part discusses the challenge posed by

the complexity of some rank-based loss functions in terms of the difficulty of optimizing them for

learning retrieval systems. We discuss our contribution towards characterizing a class of rank-based loss

functions in terms of their amenability for efficient optimization and present our quick-sort flavoured

algorithm for efficient optimization. This includes our work published in the Conference on Neural

Information Processing Systems (NeurIPS) 2014 and the International Conference of Computer Vision

and Pattern Recognition (CVPR) 2018.

Learning to optimize for combinatorial problems. In this part, we discuss the reverse problem of

the potential use of machine leaning techniques for improving optimization, specifically combinatorial

optimization. We discuss our contribution in developing a learning based framework for the rounding

step of a continuous relaxation based approximation algorithm. This includes our work published in the

International Conference on Artificial Intelligence and Statistics (AISTATS) 2018.

Conclusion and future work. This part of the thesis includes a summary of the contributions and

draws directions for future research in related areas.

1.6 Publications

Part of the work described in this thesis has previously been presented as the following publications:

• P. Mohapatra, M. Rolinek, C. V. Jawahar, V. Kolmogorov and M. Pawan Kumar, Efficient Optimiza-

tion for Rank-based Loss Functions, IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2018. (Won best paper honorable mention award)

• P. Mohapatra, C. V. Jawahar and M. Pawan Kumar, Learning to Round for Discrete Labeling Prob-

lems, International Conference on Artificial Intelligence and Statistics (AISTATS), 2018.

• P. Mohapatra, P. K. Dokania, C. V. Jawahar and M. Pawan Kumar, Partial Linearization based

Optimization for Multi-class SVM, European Conference on Computer Vision (ECCV), 2016.

• A.Behl, P. Mohapatra, C. V. Jawahar and M. Pawan Kumar, Optimizing Average Precision using

Weakly Supervised Data, IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),

2015.

• P. Mohapatra, C. V. Jawahar and M. Pawan Kumar, Efficient Optimization for Average Precision

SVM, In Proceedings of Advances in Neural Information Processing Systems (NeurIPS), 2014.
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Chapter 2

Partial Linearization based Optimization for Multi-class SVM

2.1 Introduction

Many tasks in computer vision can be formulated as multi-class classification problems. In other

words, given an image or a video, the task is to assign it a label that belongs to a specified finite set.

For example, in the case of object recognition from an image, the label can be car, chair or person.

Similarly, for action recognition from a video, action categories like jumping, kicking or clapping can

be candidate labels. There has been extensive research in the area of multi-class classification with a

plethora of solutions being proposed [19, 27, 64, 79]. In this work, we focus on multi-class SVM (MC-

SVM), which is one of the most popular methods for this task. The MC-SVM model provides a linear

function that gives a score for each class. Given a test sample, its class is predicted by maximizing the

score. During learning, the MC-SVM objective minimizes an upper bound on the empirical risk over the

training data, for which we know the ground-truth labels. The risk is typically measured by the standard

0−1 loss function. However, any other loss function can be easily substituted into the MC-SVM learning

framework.

The size of the MC-SVM learning problem rapidly increases with the number of classes and size of the

training dataset. In order to enable the use of MC-SVM with large scale problems, several optimization

algorithms for minimizing its learning objective have been proposed in the literature. One of the most

successful algorithms is a recent adaptation of the Frank-Wolfe algorithm [34]. Briefly, the algorithm

solves the dual of the MC-SVM optimization problem iteratively. At each iteration, it obtains a descent

direction by minimizing a linear approximation of the dual objective. It was shown in [44] that the

computation of the descent direction corresponds to a call to the the so-called max-oracle for each

sample. In other words, for each training sample, we maximize over the set of output classes with
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respect to the loss-augmented scores. As the max-oracle can be solved efficiently for the MC-SVM, the

Frank-Wolfe algorithm can be effectively used to learn such models. There are two main advantages

of the Frank-Wolfe algorithm. First, the optimal step-size in the descent direction can be computed

analytically, thereby avoiding a tedious line search [44]. Second, it can be suitably modified to a block-

coordinate version [43], where the max-oracle is solved for only one training sample at each iteration.

The gain in efficiency obtained by this version does not affect the accuracy of the solution.

A key disadvantage of the Frank-Wolfe algorithm is that it only provides a very local approximation

of the objective function with the aid of the max-oracle. In other words, it effectively focuses on one

constraint (the most violated one) of the primal MC-SVM learning problem. In contrast, the exponenti-

ated gradient algorithm [16] makes use of a more informative expectation oracle. To elaborate, instead

of maximizing, it computes an expectation over the set of output classes with respect to a distribution

parameterized by the loss-augmented scores. However, the exponentiated gradient algorithm suffers

from the difficulty of choosing an optimal step-size, for which it has to resort to line search. Further-

more, despite the availability of a stochastic version of the algorithm, its worst-case time complexity is

worse than that of the Frank-Wolfe algorithm.

Contributions. In this work, we propose a novel algorithm for optimizing the MC-SVM learning

problem based on partial linearization [77]. Our algorithm provides a natural generalization to the

Frank-Wolfe and the exponentiated gradient algorithms, thereby combining their desirable properties.

Specifically, (i) it allows for the use of a potentially more informative descent direction based on the

expectation oracle; (ii) it computes the optimal step-size in the descent direction analytically; and (iii)

it can also be applied in a block coordinate fashion without losing the accuracy of the solution. We

demonstrate the efficacy of our approach on the challenging computer vision problems of action classi-

fication, object recognition and gesture recognition using standard publicly available datasets. In certain

cases, our method can also be used for efficient optimization of the more general structured SVM (SSVM)

models. Specifically, in case of output spaces that have a low tree-width structure, we can employ ef-

ficient max-oracles and expectation-oracles. This in turn means that similar to the Frank-Wolfe [44]

and exponentiated gradient algorithms [16], our method can be effectively used for learning an SSVM

model. We demonstrate this on the problem of handwritten word recognition using a chain structured

output space.
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2.2 Related Work

Several algorithms have been proposed for optimizing multi-class SVMs. Most of the popular meth-

ods are iterative algorithms that make use of efficient sub-routines called oracles in each iteration

[16, 44, 48, 81, 108]. The most popular algorithms can be bracketed into two classes depending on

the type of oracles they use: ones that use the max-oracle [44, 48, 81]; and the ones that use the expec-

tation oracle [16, 108].

A max-oracle sub-routine maximizes the loss-augmented score over the output space. In other words,

given the current estimate of the parameters and a training sample, it returns the output that maximizes

the sum of the classifier score and the loss. The sub-gradient descent algorithm [81] calls the max-oracle

to compute the sub-gradient of the primal objective and uses it as the update direction in each iteration.

The cutting-plane algorithm [48] uses the max-oracle to get the most violating constraint or the cutting

plane. It accumulates the cutting planes to generate increasingly accurate approximations to the primal

problem that it solves in each iteration. The recent adaptation [44] of the Frank-Wolfe algorithm to the

MC-SVM and SSVM learning problems uses the max-oracle to compute the conditional gradient of the

dual problem. All three aforementioned algorithms have a complexity of O(1/ε), where ε is the user-

specified optimization tolerance. However, in practice, the block-coordinate Frank-Wolfe algorithm has

been shown to provide faster convergence on a variety of problems [44].

In contrast to the max-oracle, the expectation-oracle computes an expectation over the output space

with respect to a distribution parameterized by the loss-augmented scores. In [16], the expectation-

oracle is used to make exponentiated gradient updates [54], which guarantees descent in each iteration.

The Bregman projection based excessive gap reduction technique presented in [108] also uses the expec-

tation oracle. While this algorithm has a highly competitive complexity of O(1/
√
ε), the method does

not work with noisy oracles and hence cannot lend itself to a stochastic or a block-coordinate version.

As will be seen shortly, our approach naturally generalizes over algorithms from both the categories

with the use of a temperature hyperparameter. When the temperature is set to 0, the expectation oracle

resembles the max-oracle and our method reduces to the Frank-Wolfe algorithm[44]. Importantly, for a

non-zero temperature, the use of the expectation-oracle can provide us with a less local approximation

of the objective function. Hence, for the multi-class SVM learning problem, it may be beneficial to

use the expectation-oracle instead of the max-oracle. Another key aspect of our algorithm is that it

chooses an optimal step-size at each iteration. If we instead fix the step-size to 1 in every iteration and
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use a non-zero value of the temperature hyperparameter, then our method reduces to the exponentiated

gradient algorithm [16]. Moreover, unlike the cutting plane [48] and the excessive gap reduction [108]

algorithms our approach allows for a block-coordinate version, which leads to faster rate of convergence

without affecting the accuracy of the solution.

2.3 Preliminaries

2.3.1 The Multi-class SVM Optimization Problem

We provide a brief overview of the multi-class SVM (MC-SVM) formulated as a structured SVM

learning problem [94]. Given an input x ∈ X the aim of multi-class classification is to predict the

output y that belongs to the output space Y . If the number of classes is denoted by c, the output

space Y = {1, . . . , c}. Let the feature representation of sample x be ϕϕϕ(x), then a joint feature map

Φ(x, y) : X × Y → Rd is defined as

Φ(x, y) = [υυυ>1 . . . υυυ>j . . . υυυ>c ]> (2.1)

where, υυυj =

 ϕϕϕ(x) if j = y,

0 otherwise.

A multi-class SVM, parameterized by w, provides a linear prediction rule as follows:

hw(x) = argmax
y∈Y

(
w>Φ(x, y)

)
.

Given a set of labelled samplesD = {(x1, y1), ..., (xn, yn)}, the parameter vector w is learnt by solving

the following convex optimization problem:

min
w,ξ

λ

2
||w||2 +

1

n

n∑
i=1

ξi (2.2)

s.t. w>Ψi(y) ≥ ∆(yi, y)− ξi, ∀i ∈ [n],∀y ∈ Y

Here, Ψi(y) = Φ(xi, yi)−Φ(xi, y) and the loss incurred for predicting y, given the ground truth yi for

the sample xi, is defined as

∆(yi, y) =

 0 if y = yi,

1 otherwise.
(2.3)
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We use [n] to denote the set {1, 2, . . . , n} and shall use ∆i(y) as a short hand for ∆(y, yi). The La-

grangian dual of problem (2.2) is given by:

min
ααα≥0

T (ααα) = −b>ααα+
λ

2
ααα>A>Aααα (2.4)

s.t.
∑
y∈Y

αααiy = 1,∀i ∈ [n].

Here the dual variable vector ααα is of size m = n × c; b ∈ Rm is defined as b = {biy = 1
n∆i(y) | i ∈

[n], y ∈ Y} and the matrix A ∈ Rd×m is defined as A = {Aiy = 1
λnΨi(y) ∈ Rd | i ∈ [n], y ∈ Y}.

It is possible to cheaply evaluate the objective of the primal MC-SVM formulation since the following

problem lends itself to efficient optimization. Specifically, in order to compute the MC-SVM objective

at a given set of parameters w, we can solve the following problem for each sample i.

ȳi = argmax
y∈Y

∆i(y)−w>Ψi(y). (2.5)

Given yi, the value of the slack variable ξi = ∆i(yi)−w>Ψi(yi). We refer to the above problem as the

max-oracle. Let P (y) denote the probability distribution over the set of output classes, parameterized

by the loss augmented scores, that is,

P (y) =
exp

(
∆i(y)−w>Ψi(y)

)∑
y∈Y exp (∆i(y)−w>Ψi(y))

. (2.6)

The max-oracle gives the most probable class according to the distribution P (y). It has been shown

through several works, including cutting-plane algorithms [48], subgradient descent [81] and Frank-

Wolfe [43], that an inexpensive max-oracle is sufficient to minimize problem (2.2) and/or its Lagrangian

dual (2.4) efficiently.

As we will see shortly, our work exploits the fact that, for multi-class classification problems, a

related problem known as the expectation-oracle can be solved efficiently as well (with the same time

complexity as the max-oracle). While the max-oracle gives the most probable class, the expectation-

oracle returns an expectation over the complete output space with respect to the distribution P (y). By

cleverly exploiting this observation, we obtain a natural generalization of the Frank-Wolfe algorithm that

retains many of its desirable properties such as: guaranteed descent direction, analytically computable

optimal step size and guaranteed convergence even in block-coordinate mode. At the same time it also

allows the use of the expectation-oracle to find a valid descent direction that can often lead to improved

performance in practice.
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Figure 2.1: Illustration of linear vs. partially-linear local approximation of a function: (a) Frank-Wolfe

solves a linear local approximation of the function, whereas, (b) Partial linearization based approach

solves a local convex approximation of the function, over the compact domain.

2.3.2 Partial Linearization

Let us consider the following optimization problem with a convex and continuously differentiable

objective T (ααα) defined over a compact and convex feasible set U : minααα∈U T (ααα). For this problem, Pa-

triksson [77] proposes a framework that unifies several feasible-direction finding methods for non-linear

optimization through the concept of partial linearization of the objective function. The idea of partial

linearization is to construct a convex approximation to the original objective T (ααα) at each iteration.

The approximation involves switching the original function with a substitute function. Furthermore, in

order to model the difference between the original function and the substitute function, we add a first

order approximation of this difference. Figure 2.1 illustrates the local approximation made by the partial

linearization based method compared to a linear approximation as made in Frank-Wolfe [44].

Formally, at each iteration k, we solve the following problem:

min
ααα∈U

T k(ααα) = f(ααα,αααk) + T (αααk)− f(αααk,αααk) (2.7)

+[∇T (αααk)−∇αααf(αααk,αααk)]T (ααα−αααk).

The term f(ααα,αααk) denotes the substitute function defined at the current solutionαααk. The term T (αααk)−

f(αααk,αααk) + [∇T (αααk)−∇αααf(αααk,αααk)]T (ααα−αααk) is the first order Taylor expansion of the actual error

term T (αααk)− f(ααα,αααk) and is used as an approximation for it. Patriksson [77] showed that the approx-

imation proposed in equation (2.7) actually preserves the gradient of the original objective function.
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This guarantees that a valid descent direction for the approximate problem (2.7) is also a valid descent

direction for the original problem. The optimal solution ᾱααk to problem 2.7 gives a descent direction.

This allows us to update the solution as αααk+1 = (1 − γ)(αααk) + (γ)(ᾱααk), where γ is the step-size that

can be determined via line search in general. Interestingly, in some special cases, including the one con-

sidered in this work, the optimal step-size can also be computed analytically, which avoids the tedious

line search. For convergence, f(x,y) has to be convex and continuously differentiable with respect to

x and continuous with respect to y. We adapt the partial linearization method for solving problem (2.4)

in the following section.

2.4 Partial Linearization for Multi-class SVM Optimization

The dual multi-class SVM problem defined in problem (2.4) has a compact convex feasible set and has

a continuously differentiable convex objective. This allows us to use the partial linearization method to

solve the optimization problem. However, as the above description shows, partial linearization is a very

general framework. For it to be applied successfully, we need to ensure that we make the right choice for

the substitute function. Specifically, the resulting problem (2.7) must lend itself to efficient optimization.

Furthermore, in our case, we would like to ensure that problem (2.7) captures the information regarding

how much each constraint of the primal multi-class SVM problem is violated, similar to the expectation-

oracle. To this end, we define the substitute function as follows:

f(ααα,αααk) =
τ

n

∑
i∈[n]

∑
y∈Y

αααiy log(αααiy). (2.8)

Here, τ is a non-negative hyperparameter, which we refer to as the temperature. Here, the function

f(α, αk) is independent of αk and is similar to a mirror function as employed in a mirror descent

method. In the following subsection, we show that for the above choice of substitute function, the partial

linearization approach generalizes both the Frank-Wolfe and the exponentiated gradient algorithm.

2.4.1 Partial linearization in the dual space

When we use the substitute function defined in equation (2.8) for partial linearization of the dual

multi-class SVM problem, the form of the update direction in the resulting optimization algorithm is

described by the following proposition.
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Proposition 1. If the substitute function is defined as

f(ααα,αααk) =
τ

n

∑
i∈[n]

∑
y∈Y

αααiy log(αααiy),

then the update direction sk in iteration k for given i and y ∈ Y can be computed as

skiy =
exp

(
log(αααk−1

iy ) + 1
τ (∆i(y)−wk−1>Ψi(y))

)
zi

. (2.9)

Proof. Given the choice of the substitute function as,

f(ααα,αααk) =
τ

n

∑
i∈[n]

∑
y∈Yi

αααiy log(αααiy), (2.10)

the objective of the optimization problem that has to be solved in the kth iteration becomes,

T k(ααα) =
τ

n

∑
i∈[n]

∑
y∈Yi

αααiy log(αααiy)− b>αααk

+
λ

2
αααk
>
A>Aαααk

− τ
n

∑
i∈[n]

∑
y∈Yi

αααkiy log(αααkiy)

+((−b+ λA>Aαααk)− τ

n
(1 + log(αααk)))>(ααα−αααk)

Therefore, the approximate optimization problem to be solved in the kth iteration looks like,

min
α≥0

T k(ααα) (2.11)

s.t.
∑
y∈Yi

αααiy = 1,∀i ∈ [n]

The Lagrangian of problem 2.11, with βββ = [βββ1, ...,βββn]> as the set of Lagranian multipliers can be

defined as,

L(ααα ≥ 0,βββ) = T k(ααα) +
∑
i∈[n]

βββi

∑
y∈Yi

αααi − 1
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Differentiating the Lagrangian with respect to the variables,

∂L

∂αααiy
= 0

⇒ τ

n
(1 + log(αααiy)) + (−biy + λ(ATA)iyααα

k)

− τ
n

(1 + log(αααkiy)) + βββi = 0

⇒ τ

n
(1 + log(αααiy)) + (−biy +

1

n
wk>Ψi(y))

− τ
n

(1 + log(αααkiy)) + βββi = 0

⇒ τ

n
log(αααiy) =

τ

n
log(αααkiy) + biy −

1

n
wk>Ψi(y)− βββi

⇒ αααiy = exp

(
log(αααkiy) +

n

τ
(biy −

1

n
wk>Ψi(y)− βββi)

)

⇒ αααiy =
exp

(
log(αkiy) + 1

τ (∆i(y)−wk>Ψi(y)
)

exp
(
n
τ βi
) (2.12)

∂L

∂βββi
= 1 ⇒

∑
y∈Yi

αααiy = 0

⇒
∑
y∈Yi

exp
(

log(αααkiy) + 1
τ (∆i(y)−wk>Ψi(y))

)
exp

(
n
τ βββi
) = 1

⇒
∑
y∈Yi

exp

(
log(αααkiy) +

1

τ
(∆i(y)−wk>Ψi(y))

)
= exp

(n
τ
βββi

)
⇒ zi = exp

(n
τ
βββi

)
(2.13)

Hence, using 2.12 and 2.13, the optimal solution is,

skiy =
exp

(
log(αkiy) + 1

τ (∆i(y)−wk>Ψi(y))
)

zi

In equation 2.9, for each sample i, ski (y) forms a probability distribution over the set of classes Y . In

the primal setting, this is equivalent to having an expectation over the entire output space as the update

direction and is therefore similar to an expectation-oracle. In each iteration of the algorithm, given the

update direction, we need to perform a line search to find the optimal step size γ in that direction. Since

the dual multi-class SVM problem involves optimizing a quadratic function, it is possible to analytically

compute the optimal step-size. The following proposition that gives the form of the optimal step size

directly follows from the work of Jaggi et al. [43].

22



Proposition 2. The optimal step-size along the update direction sk can be computed to be equal to

γ =
< αααk−1 − sk,−b +A>Aαααk−1 >

λ||A(αααk−1 − sk)||2
. (2.14)

Here it should be observed that setting the temperature parameter τ to 0 results in a distribution ski

that has probability 1 for the label

ȳi = argmax
y∈Y

(
Li(y)−wk−1TΨi(y)

)
and 0 elsewhere. This results in an update direction that is the same as that of the Frank-Wolfe algorithm

and thus reduces the partial linearization method to the Frank-Wolfe algorithm [43]. Moreover, fixing

the step-size γ to 1 for all iterations reduces our approach to the exponentiated-gradient algorithm [16].

Hence, our partial linearization based approach for optimizing the MC-SVM problem generalizes both

the Frank-Wolfe as well as the exponentiated-gradient algorithms. Importantly, the descent direction

obtained using some τ > 0 can be significantly better than that obtained using τ = 0. This is illustrated

in the following example.

In Problem 2.4, let n = 1, λ = 1, A = [2, 0, 0; 0, 1, 0; 0, 0, 3] and b = [1; 1; 0]. Assume, af-

ter the (k − 1)th iteration of the optimization algorithm, the location in the feasible set is αk−1 =

[0.125, 0.5, 0.5]>. Now, if we take τ = 0, the descent direction for the kth iteration can be computed to

be skτ=0 = [1, 0, 0]>. Similarly, for τ = 1, the descent direction would be skτ=1 = [0.199, 0.796, 0.005]>.

In each case, we take the optimal step in the descent direction. It can be verified that while the step along

skτ=0 reduces the objective function by 0.5341, the step along skτ=1 reduces the objective function by a

bigger value of 1.2550. This is primarily due to the fact that the Frank-Wolfe algorithm (τ = 0) con-

straints the descent directions to be only towards vertices of the feasible domain polytope. For instance

in this example, skτ=0 can only take values from among {[1, 0, 0]>, [0, 1, 0]>, [0, 0, 1]>}, which prevents

it from taking a more direct path towards the optimal solution ([0.25, 1, 0]>) which lies on one of the

facets of the polytope and hence away from the direction of any of the vertices. On the other hand, with

τ > 0, our algorithm can explore more direct descent paths towards the solution.

The partial linearization algorithm for optimizing the dual MC-SVM problem is outlined in Algo-

rithm 1. Step 6 in Algorithm 1 requires us to explicitly compute the update direction correspond-

ing to each dual variable. For the MC-SVM problem, as the number of dual variables is a reasonable

(number of samples) × (number of classes), skiy can be efficiently computed for every sample xi

as the marginal probability of each class y. Once we have the update direction we take a step in that
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Algorithm 1 Partial linearization for optimizing multi-class SVM

1: D = (xi, yi), . . . , (xn, yn)

2: Initialize ααα0 such that w(ααα0) ∼ [0]d, k ← 1

3: repeat

4: for i ∈ [n] do

5: ∀y ∈ Y ,

6: skiy ←
exp

(
log(αααk−1

iy )+ 1
τ

(∆i(y)−wk−1>Ψi(y))
)

zi

7: Optimal step size, γ ← <αααk−1−sk,−b+A>Aαααk−1>
λ||A(αααk−1−sk)||2

8: Update ααα, αααk ← (1− γ)αααk−1 + (γ)sk

9: Update w, wk ← Aαααk

10: k ← k + 1

11: until Convergence

12: Optimal parameter, w

direction with optimal step-size γ as computed in Step 8. Then the dual and the primal variables are

updated to complete an iteration of the algorithm.

2.4.2 Block-Coordinate Partial Linearization

In many tasks, it is very common to learn classification models using very large datasets. In such

scenarios, learning an MC-SVM model using the partial linearization algorithm described in Algorithm

1 can be very slow. This is because, each update iteration of Algorithm 1 requires a pass through the

entire dataset. In order to circumvent this expensive step, we present a block-coordinate version of

the algorithm, which updates the model parameters after every single sample encounter. Algorithm 2

outlines the details of the block-coordinate partial linearization algorithm. The key difference is that,

unlike Algorithm 1, Algorithm 2 does not have to loop through all the samples in the training set before

updating the primal variable vector. Instead, we pick a random sample i from the training set (step 5)

and compute the marginals just for this sample. Accordingly we update the primal weight vector w

with this new marginal for sample i while the marginals for all other samples remain unchanged. This is

similar to the coordinate descent method and is more efficient compared to the batch method as instead

of solving n convex optimization problems, we have to solve only one in each iteration. As shown in

the following proposition, this improvement in run-time does not affect the accuracy of the solution.
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Algorithm 2 Block-Coordinate Partial linearization for optimizing multi-class SVM

1: D = (xi, yi), . . . , (xn, yn)

2: Initialize ααα0 such that w(ααα0) ∼ [0]d, k ← 1

3: Initialize a (d× n) matrix W such that ith column of W , wi = w(ααα0
i )

4: repeat

5: Chose a random i ∈ [n]

6: ∀y ∈ Y ,

7: skiy ←
exp

(
log(αααk−1

iy )+ 1
τ

(∆i(y)−wk−1>Ψi(y))
)

zi

8: Optimal step size, γ ← <αααk−1
i −ski ,−b+A>Aαααk−1

i >

λ||A(αααk−1
i −ski )||2

9: Update αααi, αααki ← (1− γ)αααk−1
i + (γ)ski

10: Update wi, wk
i ← Aαααki

11: Update w, wk ← wk−1 −wk−1
i + wk

i

12: k ← k + 1

13: until Convergence

14: Optimal parameter, w

Proposition 3. The block-coordinate partial linearization algorithm is guaranteed to converge to the

global optima of the multi-class SVM learning problem.

Proof. Consider the following optimization problem whose feasible domain and objective function are

a cross-section of the original dual SSVM learning problem.

min
αααk≥0

T (ααα) = −b>ααα+
λ

2
ααα>A>Aααα (2.15)

s.t.
∑
y∈Yj

αααjy = 1,

αααi = ᾱααi,∀i ∈ [n]− j,

where ᾱααi’s are fixed and satisfy
∑

y∈Yi ᾱααiy = 1,∀i ∈ [n]− j. We can devise a partial-linearization

algorithm for solving this optimization problem using f(αααj ,αααj
k) = τ

n

∑
y∈Yj αααjy log(αααjy), as the

substitute function. Following the procedure similar to the proof for proposition 1, it can be shown that

the update direction in the kth iteration of the algorithm would take the following form.

skiy =
exp

(
log(αk−1

jy ) + 1
τ (∆j(y)−wk−1TΨjy)

)
zj

. (2.16)
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It follows from the work of Patriksson in [77] that this update direction is guaranteed to be a feasible

descent direction of the objective function of problem 2.15. As the objective function in 2.15 is a

cross-section of the objective function of problem (2) over αααj , this update direction would also be

a feasible descent direction of the original objective of the dual SSVM learning problem. It can be

easily verified that in the kth iteration of the block-coordinate partial-linearization (BCPL) algorithm,

the update direction is of the form of 2.16 with ᾱααiy = αααkiy,∀i ∈ [n]− j. Therefore, the update direction

in each iteration of BCPL is guaranteed to reduce the original dual SSVM objective. Since the dual

SSVM learning problem is convex, the BCPL algorithm is guaranteed to converge to the global optima.

2.5 Partial Linearization for Structured SVM Optimization

The multi-class SVM solves a prediction problem in which the output space is a set of classes. How-

ever, for many tasks, the output space can have a more complicated structure. The structured SVM

(SSVM), which is a generalization of the binary SVM to structured output spaces, can effectively model

such structures. Given an input x ∈ X , the aim is to predict the output y that belongs to a structured

space Y(x). Borrowing the notations from section 2.3.1, a structured SVM, parameterized by w, pro-

vides a linear prediction rule as follows: hw(x) = argmaxy∈Y
(
w>Φ(x,y)

)
. Given a set of labelled

samples D = {(x1,y1), ..., (xn,yn)}, the parameter vector w is learnt by solving the following convex

optimization problem:

min
w,ξ

λ

2
||w||2 +

1

n

n∑
i=1

ξi, s.t. w>Ψi(y) ≥ ∆(yi,y)− ξi,∀i ∈ [n], ∀y ∈ Yi (2.17)

The key differences from the multi-class SVM formulation are that here we can have any general joint

feature map Φ(x,y) and loss function ∆(yi,y) designed to effectively model the structure of the output

space. The Lagrangian dual of problem (2.19) is given by:

min
ααα≥0

T (ααα) = −b>ααα+
λ

2
ααα>A>Aααα, s.t.

∑
y∈Yi

αααiy = 1,∀i ∈ [n]. (2.18)

Here the dual variable vector ααα is of size m =
∑n

i=1 |Yi|; b and A have the same definition as in

section 2.3.1.

In general the size of output space can be exponential in the number of output variables. This would

result in exponentially large number of primal constraints and dual variables, which can be hard to deal
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with. However, these problems can be overcome by making clever use of the structure of the output

space. The key observation behind our effective partial linearization based optimization algorithm is

that we can efficiently compute the marginals of the output variables. Now, when the output space Yi

has a low tree-width graph structure, it is possible to efficiently compute the exact marginals of the

output variables, by solving the expectation-oracle problem. This can be done using a message passing

algorithm over a junction tree corresponding to the underlying graph of the output space [100]. In such a

setting, our algorithm can be used for efficient optimization of the SSVM learning problem for low tree-

width models. We discuss the partial-linearization algorithm for learning low tree-width SSVM models

in detail in the following subsection.

2.5.1 Partial linearization with primal update for optimization of low tree-width SSVM

We provide a brief overview of the structured SVM optimization problem. Given an input x ∈ X

the aim of structured prediction is to predict the output y that belongs to a structured space Y(x).

A joint feature map Φ(x,y) : X × Y → Rd, encodes the relationship between an input x and

an output y. A structured SVM, parameterized by w, provides a linear prediction rule as follows:

hw(x) = argmaxy∈Y
(
w>Φ(x,y)

)
, which is parameterized by w. Given a set of labelled samples

D = {(x1,y1), ..., (xn,yn)}, the parameter vector w is learnt by solving the following convex opti-

mization problem:

min
w,ξ

λ

2
||w||2 +

1

n

n∑
i=1

ξi (2.19)

s.t. w>Ψi(y) ≥ ∆(yi,y)− ξi,∀i ∈ [n], ∀y ∈ Y(xi)

Here Ψi(y) = Φ(xi,yi)−Φ(xi,y) and ∆(yi,y) is the loss incurred for predicting y given the ground

truth yi for the sample xi. We use [n] to denote the set {1, 2, . . . , n} and shall use Yi and ∆i(y) as a

short hand for Y(xi)and ∆(y,yi) respectively. The Lagrangian dual of the problem (2.19) is given by:

min
ααα≥0

T (ααα) = −b>ααα+
λ

2
ααα>A>Aααα (2.20)

s.t.
∑
y∈Yi

αααiy = 1,∀i ∈ [n].

Here the dual variable vector ααα is of size m =
∑n

i=1 |Yi|; b ∈ Rm is defined as b = {biy =

1
n∆i(y) | i ∈ [n],y ∈ Yi} and the matrix A ∈ Rd×m is defined as

A = {Aiy =
1

λn
Ψi(y) ∈ Rd | i ∈ [n],y ∈ Yi}.
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Figure 2.2: An example of a plausible underlying graph structure of the output space. Here, the graph

has 3 maximal cliques: C1 = {y1,y2}, C2 = {y2,y3,y4}, C3 = {y4,y5}

.

In general the size of output space can be exponential in the number of output variables. This would

result in exponentially large number of primal constraints and dual variables which can be hard to deal

with. For example, consider the problem of recognizing the handwritten word depicted in an image,

which has been segmented into p letters. The total number of possible words is 26p. In other words,

given the current set of parameters, we would require O(n26p) time in order to compute the objective

function of Problem (2.19), since we would have to find the value of the slack variable ξi for each

sample. In order to alleviate this deficiency, the structure of the output space is often exploited. For

example, in the handwritten word recognition example, we can consider the output space to consist of

a set of p parts. Each part corresponds to a letter of the word. Consider a joint feature vector Ψi(y)

that decomposes over the parts, that is, Ψi(y) = [Ψi(y
1); Ψi(y

2); ...; Ψi(y
p)]. It can be verified that,

for a given set of parameters, we can compute the objective function value of Problem (2.19) in O(np)

time. However, the above joint feature vector fails to capture the interdependency between the letters.

For example, if the qth letter is a ‘q’ then the likelihood of the (q + 1)th letter to be ‘u’ is very high. To

capture this, one can use a slightly more complex joint feature vector of the form:

Ψi(y) = [Ψi(y
1,y2); ...; Ψi(y

q,yq+1); ...; Ψi(y
p−1,yp)].

More generally, one can visually represent the output space as a graph where the vertices are the

parts of the output and the edges represent their interdependency. Using a “Markovian” style argument,

we define a joint feature vector that decomposes into features defined over the maximal cliques of

the graph. In other words, Ψi(y) = [Ψi(C1); Ψi(C2); ...; Ψi(Ch)], where {C1, C2, ..., Ch} is the set of

maximal cliques of the graph. For example, consider the graph shown in Figure 2.2. In this case, the

graph consists of 3 maximal cliques and the joint feature vector decomposes as:

Ψi(y) = [Ψi(y
1,y2); Ψi(y

2,y3,y4); Ψi(y
4,y5)].
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When the underlying graphical structure of the output space has a low tree-width, it is still possible to

efficiently evaluate the objective of problem (2.19), since the following problem lends itself to efficient

optimization:

ȳi = argmax
y∈Yi

∆i(y)−w>Ψi(y) (2.21)

Note that the value of ξi can be computed using yi as ξi = ∆i(yi) − w>Ψi(yi). We refer to the

above problem as the max-oracle. Let P (y) denote the probability distribution represented by the graph

parameterized by the loss augmented scores as potential functions. The max-oracle gives the most

probable configuration of this distribution P (y). It has been shown through several works, including

cutting-plane algorithms [48], subgradient descent [81] and Frank-Wolfe [43], that an efficient solution

to the above problem is sufficient to solve problem (2.19) and/or its Lagrangian dual (2.20) efficiently.

As we will see shortly, our work exploits the fact that, for low tree-width graphs, a related problem

known as the expectation-oracle can be solved efficiently as well (with the same time complexity as

the max-oracle). While the max-oracle gives the most probable configuration, the expectation-oracle

gives the marginals for the parts over which the output space decomposes. For example, the marginal

for part yq can be represented as µi(yq) =
∑

yl 6=yq P (y1, ...,yp). Similarly, the marginal for a clique

C = {yq,yr} would be µi(yq,yr) =
∑

yl 6∈{yq ,yr} P (y1, ...,yp). By cleverly exploiting this observa-

tion, we obtain a natural generalization of the Frank-Wolfe algorithm that retains many of its desirable

properties such as guaranteed descent direction, analytically computable optimal step size and guaran-

teed convergence even in block-coordinate mode, while allowing the use of the expectation-oracle to

find a valid descent direction that can often lead to improved performance in practice.

The partial-linearization algorithm for optimizing the dual multi-class SVM problem is outlined in

Algorithm 1. Step 6 in Algorithm 1, requires us to explicitly compute the update direction correspond-

ing to each dual variable. When the number of dual variables are small as in the case of multiclass

classification, this step can be performed efficiently. However, in general, the number of dual variables

is proportional to the size of the output space Y . So, when |Y| is big, it becomes computationally

infeasible to explicitly compute the update direction for each dual variable. When the temperature hy-

perparameter τ = 0, that is when partial-linearization reduces to Frank-Wolfe, this deficiency can be

alleviated using an equivalent algorithm that updates the primal variables only. We now show that such

an efficient implementation is actually possible for all values of the temperature hyperparameter.

The key observation behind an efficient implementation of partial-linearization using primal vari-

ables is that we are only required to compute the marginals of the output variables. Recall from the
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above discussion that when the output space Yi has the underlying graph structure of a tree or a low

tree-width graph, it is possible to efficiently compute the exact marginals of the parts of output space,

over which it decomposes, by solving the expectation-oracle problem. This can be done using a mes-

sage passing algorithm over a junction tree corresponding to the underlying graph of the output space

[100]. For higher tree-width graph structures, although it is not generally possible to efficiently compute

the exact marginals, we can get good approximations efficiently.

In order to compute the required marginals with respect to the distribution ski , we parameterize the

underlying graph of the output space by node potentials:

θs
k

i (yq) = θα
k−1

i (yq) +
1

τ
(∆i(y

q)−wk−1>Ψi(y
q))

and edge potentials:

θs
k

i (yq,yr) = θα
k−1

i (yq,yr)

+ 1
τ (∆i(y

q,yr)−wk−1>Ψi(y
q,yr)).

Where, θα
k−1

i are the potential functions corresponding to the marginals from the (k − 1)th iteration.

They can be computed from the marginals as θα
k−1

i (yq) = (1−deg(yq)) log(µki (yq)) for the nodes and

as θα
k−1

i (yq,yr) = log(µki (yq,yr)) for the edges. Here, deg(yq) denotes the degree of the node yq.

Proposition 4. For tree structured output space, given the marginals for the parts, the parameter vector

w can be computed as,

w =
∑

i

∑
yq µi(y

q)Ψi(y
q)

+
∑

i

∑
yq ,yr µi(y

q,yr)Ψi(y
q,yr) (2.22)

Proof. As we discuss the case in which the output space has a tree structure, any output can be

decomposed on to a set of parts p ∈ P . P being the set of parts. Let rp be a configuration a part

can have from a set of all possible configurations Rp for the part p. Then any output vector y can be

composed of a combination of r ∈ Rp for the different parts p ∈ P . The feature vector Ψi(y) can also

be decomposed into a sum of feature vectors for individual parts.

Ψi(y) =
∑
p∈P

Ψi(rp)
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We define θki as the potentials computed at iteration k for sample i and σy as the mapping from

potentials to the distribution.

αααiy = σy(θ
k
i )

We can compute the weight vector w for the corresponding vector sk in the dual space as follows.

w(sk) =
∑
i

∑
y

skiy (Ψi(y))

=
∑
i

∑
y

skiyΨi(y)

=
∑
i

∑
y

σy(θ
k
i )Ψi(y)

=
∑
i

∑
y

σy(θ
k
i )
∑
rp∈y

Ψi(rp)

=
∑
i

∑
y

∑
rp∈y

σy(θ
k
i )Ψi(rp)

=
∑
i

∑
p∈P

∑
rp∈Rp

 ∑
y:rp∈y

σy(θ
k
i )

Ψi(rp)

=
∑
i

∑
p∈P

∑
rp∈Rp

µi,rp(θ
k
i )Ψi(rp) (2.23)

Here, µi,rp(θ
k
i ) is the marginal probability of the configuration rp of part p for sample i in the kth iter-

ation.

The complete partial linearization based optimization algorithm involving iterative update of the

primal variables is outlined in Algorithm 3. In the kth iteration of the algorithm, we compute the

marginals µki for a chosen sample i (steps 5-7). We first compute the potentials θki to parameterize the

graph underlying the output space. The marginals µki are then computed by a message passing algorithm

over the graph. In step 8, making use of proposition 3, we compute the primal vector ws in the update

direction from the marginals. We also compute the expected loss ls using the marginals in step 9. Next,

we compute the optimal update step γ (step 10) and update the primal variable vector w, the loss l and

the marginals µ in steps 11-15. The epochs are repeated until the convergence of the dual objective.

2.5.2 Numerically stable implementation of sum-product Belief Propagation

During the training process, we can encounter situations in which the range of the values of the

potentials associated with the graph structure is very big. Computing factors by exponentiating these
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Algorithm 3 Block-Coordinate Partial-linearization with primal variable update for optimizing SSVM

1: D = (xi,yi), . . . , (xn,yn)

2: Initialize marginals µ0 such that w(µ0) ∼ [0]d, k ← 1, l0 ← 0 and ∀i ∈ [n], l0i ← 0

3: Initialize a (d× n) matrix W such that ith column of W , wi = w(µ0
i )

4: repeat

5: Chose a random i ∈ [n]

6: Compute potential functions to parameterize the graph:

∀ nodes yq,

θs
k

i (yq) = θα
k−1

i (yq) + 1
τ (∆i(y

q)−wk−1>Ψi(y
q))

and ∀ edges (yq,yr),

θs
k

i (yq,yr) = θα
k−1

i (yq,yr) + 1
τ (∆i(y

q,yr)−wk−1>Ψi(y
q,yr)).

7: Compute marginals µks(i) by doing message passing over the graph

parameterized by potentials θs
k

i .

8: ws ←
∑

yq µ
k
i (y

q)Ψi(y
q) +

∑
yq ,yr µ

k
i (y

q,yr)Ψi(y
q,yr)

9: ls ←
∑q

y µ
k
i (y

q)∆i(y
q)

10: Optimal step size,

γ ← λ<wk
i ,w

k
i −ws>−(lki −ls)

λ||wk
i −ws||2

11: Update wi: wk
i ← (1− γ)wk−1

i + (γ)wk
s

12: Update li: lki ← (1− γ)lk−1
i + (γ)lks

13: Update w: wk ← wk−1 −wk−1
i + wk

i

14: Update l: lk ← lk−1 − lk−1
i + lki

15: Update the marginals: µk = (γ)µks + (1− γ)µk−1

16: k ← k + 1

17: until Convergence

18: Optimal parameter, w

potentials would inadvertently lead to underflow or overflow. Overflow leads to numerical infinities

which are difficult to handle. Whereas, underflow leads to factors getting truncated to 0, which leads to

dual variables getting stuck on facets of the domain polytope. In order to avoid such kind of numerical

instability, we try to do all our computations in the log-space or the potential space, as far as possible.

We shall illustrate our method with a simple example. Consider a tree with 2 nodes {u1, u2} and a

single edge e12. Let xi denote the random variable associated with node ui. Then the unary potentials
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associated with node ui is denoted by θ(xi) and the pairwise potential associated with the edge e12 is

denoted by θ(x1, x2). In the belief propagation algorithm, let the message that is passed from node ui
to node uj be denoted by msgij(xj). We compute the message msg21(x1) as follows,

msg21(x1) =
∑
x2

exp (θ2(x2) + θ12(x1, x2)− C1(x1)) (2.24)

Where, C1(x1) = maxx2 (θ2(x2) + θ12(x1, x2)) − M , M being a number chosen according to the

maximum representational capacity of the machine. This clamping operation before exponentiation,

guarantees that at least one element inside the summation in equation 2.24 is equal to M . Hence, the

message never gets truncated to 0. Once all the messages are computed, the log-marginals for example

log(P (x1)) are computed as follows,

log (P (x1)) = θ1(x1) + log (msg21(x1)) + C1(x1)− log(z) (2.25)

Where, log(z) is the log-partition function. This method requires us to store the clamping constants

Ci(xi)’s along with the messages. This implementation allows us to run our optimization algorithm for

very low values of lambda and temperature without any numerical instability.

2.6 Experiments

We now demonstrate the efficacy of our algorithm on the challenging multi-class classification tasks

of action classification, object recognition and gesture recognition. We also present some preliminary

results for tree-structured models on the task of handwritten word recognition and scene text recognition.

2.6.1 Results for Multi-class SVM

2.6.1.1 Datasets and Tasks

Action Classification

Dataset. We use the PASCAL VOC 2011 [30] action classification dataset for our experiments. This

dataset consists of 4846 bounding boxes of persons, each of which is labeled using one of ten action

classes. It includes 3347 ‘trainval’ person bounding boxes for which the ground-truth action classes are

known.

Modelling and Features. We train a multi-class SVM as an action classifier using 2800 labelled

bounding boxes from the ‘trainval’ set. We use the standard poselet [62] activation features as sample
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feature for each person bounding box. The feature vector consists of 2400 action poselet activations and

4 object detection scores. We refer the reader to [62] for details regarding the feature vector.

Object Recognition on CIFAR-10 dataset

Dataset. We use the CIFAR-10 dataset [57] for this set of experiments. It consists of a total of 60,000

images of 10 different object classes with 6,000 images per class. The dataset is divided into a ‘trainval’

set of 50,000 images and a ‘test’ set of 10,000 images.

Modelling and Features. We train a multi-class SVM for object recognition on the trainval set. To

represent each image, we use a feature representation that is extracted from a trained Convolutional

Neural Network. Specifically, we pass the resized image as input to the VGG-NET [85] network and use

the activation vector of its penultimate layer as the feature vector. The length of the resulting feature

vector is 4096.

Object Recognition on PASCAL VOC dataset

Dataset. We use the PASCAL VOC 2007 [29] object detection dataset, which consists of a total of

9963 images of which 5011 images are in the ‘trainval’ set. All the images are labelled to indicate the

presence or absence of the instances of 20 different object categories. Each image can have multiple

instances of an object and we are provided with tight bounding boxes around each of them.

Modelling and Features. We train a multi-class SVM for object recognition on 12,608 object bounding

boxes extracted from the trainval set. For each object bounding box, we use a feature representation

extracted from a trained Convolutional Neural Network (CNN). Specifically, we pass the bounding box

as input to the CNN and use the activation vector of the penultimate layer of the CNN as the feature

vector. Inspired by the work of Girshick et al. [35], we use the CNN that is trained on the ImageNet

dataset [21], by rescaling each window to a fixed size of 224× 224. The length of the resulting feature

vector is 4096.

Gesture Recognition

Dataset. We use the MSRC-12 data set [33] which contains 594 sequences of motion capture data

obtained using a Kinect sensor. Each sequence corresponds to a person repeatedly performing one out

34



of the 12 gestures represented in the dataset. For each frame of the sequence, we are given the 3D world

position of 20 human body joints. In addition to the sequence level gesture annotations, we are also

provided with frame level annotations which we ignore in our experiments.

Modelling and Features. We treat each sequence as a single sample and train a multi-class latent-SVM

for sequence level gesture recognition. The exact location of the gesture in a sequence is held by a latent

variable. We represent a sequence x using a feature vector φ(x, h) which is extracted from the frame in

the sequence denoted by the latent variable h. We extract the same 130 dimensional feature vector from

a frame as used in [33].

2.6.1.2 Methods

For all the tasks, we compare the runtime of our block-coordinate partial linearization (BCPL) ap-

proach to those of two baseline algorithms for solving the multi-class SVM, namely the block-coordinate

Frank-Wolfe algorithm [43] (BCFW) and the online exponentiated gradient (OEG) algorithm [16]. We

ran each of the algorithms for 3 different values (0.1, 0.01, 0.001) of the regularization parameter λ. For

most practical setups λ is chosen to be very low since large datasets avoid the problem of high gener-

alization error via overfitting. In all the experiments, we used a fixed temperature of τ = 0.01 for our

algorithm. For OEG, we repeated the experiments for 8 different values (100, 10, 1, 0.1, 0.01, 0.001,

0.0001, 10−5, 10−10) of the temperature parameter τ and report the results for the best performing value.

We initialize all the optimization algorithms in a manner which ensures that the weight parameters are

almost equal to 0. In each iteration of training, we sample without repetition from the dataset. For the

BCPL and OEG algorithms, in order to avoid getting stuck on a facet of the domain polytope, we truncate

the step size γ at each iteration to 1− ε. Where, ε = 2.2204× 10−16 is the machine epsilon.

2.6.1.3 Results

We report the performance of the different methods in terms of the increase in the dual MC-SVM

objective function with respect to training time. Figure 2.3 provides the detailed plots for the experi-

ments for different values of λ. As can be observed from the plots, in most cases, our BCPL algorithm

converges faster than BCFW and OEG. It should be noted that the relative difference between the rate of

convergence of the two algorithms may seem comparatively small. However, due to the low absolute

rate of convergence of both the algorithms in the later stages, this small gap leads to significant saving
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Figure 2.3: Comparison of different optimization algorithms for the multi-class SVM learning problem

in terms of change in the dual objective (negative of the objective of problem (2.4)) with respect to

training time. The results correspond to (a) Action classification (b) Object recognition on CIFAR-

10 (c) Object recognition on PASCAL VOC (d) Gesture recognition. The figures are zoomed-in along

the vertical axis to highlight the differences between the top most competing methods. Note that for

λ = 0.01 and λ = 0.001, the exponentiated gradient algorithm performs significantly worse than the

other two methods, and is therefore not visible in the plots. This figure is best viewed in colour.
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Figure 2.4: Comparison of Block-coordinate Frank-Wolfe (BCFW) and Block-coordinate Partial linearization

(BCPL) in terms of the mean training time. The results correspond to (a) Action classification (b) Object recogni-

tion on CIFAR-10 (c) Object recognition on PASCAL VOC (d) Gesture recognition.

in terms of iterations and time for our algorithm. The OEG algorithm performs consistently worse than

the other 2 algorithms for these set of experiments. For all the tasks, we also report the mean time taken

for training by our method and the Frank-Wolfe algorithm. For each task, the training time is averaged

over all values of λ. Figure 2.4 shows that our approach consistently does better than the Frank-Wolfe

algorithm. Note that since we solve a convex optimization problem, all the methods are guaranteed to

converge to the same or very similar solutions. Hence, we have focused on only a comparison of the run

time here.

2.6.2 Results for Structured SVM

2.6.2.1 Datasets and Tasks

Handwritten Text Recognition

Dataset. We use the OCR dataset [91] for our experiments. The dataset consists of 6251 images of

handwritten words. We use 626 images for training and the rest for testing. Each word image is already

segmented into individual characters. Each character can be of one of the 26 classes: {a, ..., z}.

Modelling and Features. The dataset provides the handwritten-word images in binary format. Each

segmented character image in the dataset is of size 16 × 8 pixels. We use binary pixel values of the

character images to construct a 128 dimensional feature vector for each character. We use an indicator

basis function to represent the correlation between adjacent characters. We also use indicator basis
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functions to represent location independent bias for each of the characters and additional bias for the

first and the last characters of any word. This makes the overall size of the feature vector equal to

(128 × 26 + 26 × 26 + 26 + 26 × 2) = 4082. Note that the underlying graph has a ‘chain’ structure,

which enables the computation of exact marginals via sum-product belief propagation [100].

Scene-text recognition

Dataset. We use the IIIT-5k dataset [65] for the scene-text recognition problem. The dataset consists

of 5000 word images collected from natural scenes. It includes 2000 ‘trainval’ and 3000 ‘test’ images.

We are also given the bounding boxes of the characters in each word image. Each character can be of

one of the 62 classes: {a, ..., z, A, ..., Z, 0, ..., 9}.

Modelling and Features. The word images in the dataset are of different sizes. Consequently, the

size of the character bounding boxes vary over a wide range. We run 2 sets of experiments by resizing

each of the segmented character images first to the size of 50 × 25 pixels and then to 70 × 35 pixels.

We represent each character image using either a 1250 sized or a 2450 sized feature vector constructed

from its gray-scale pixel values. Similar to the handwritten word recognition problem, we use indicator

basis functions to represent the correlation between adjacent characters, location independent bias for

each of the characters and additional bias for the first and the last characters of any word. This makes

the overall size of the feature vector equal to (1250×26+26×26+26+26×2) = 33254 for character

image size of 50× 25 and (2450× 26 + 26× 26 + 26 + 26× 2) = 64454 for character image size of

70× 35.

2.6.2.2 Methods

We compare our block-coordinate partial linearization (BCPL) algorithm with the block-coordinate

Frank-Wolfe algorithm [43] (BCFW) and the online exponentiated gradient (OEG) algorithm [16]. For

the scene text recognition task, we repeated the same set of experiments for both character image size

of 50 × 25 as well as 70 × 35. We ran each method for 2 values (0.1, 0.01) of λ. For the handwritten

text recognition task, we used a fixed temperature of τ = 0.01 for our algorithm, same as in case of the

multi-class SVM experiments. Whereas for the scene text recognition task, we repeat the BCPL algorithm

for 5 values (1, 0.1, 0.01, 0.001, 10−5) of τ and report the best results. Similar to the multi-class SVM

experiments, we initialize all the optimization algorithms in a manner which ensures that the weight
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parameters are almost equal to 0 and for the BCPL and OEG algorithms, also truncate the step size γ at

each iteration to 1− ε.

2.6.2.3 Results

We report the performance of the different optimization algorithms for the structured SVM learning

problem. Figure 2.5 shows the progress of the optimization algorithms over time. For the handwritten

text recognition problem, our BCPL algorithm converges faster than BCFW and OEG. For the scene-text

recognition problem, while for a character image size of 50×25, BCFW has a faster rate of convergence

than our method, for 70 × 35, our method performs better and beats BCFW for λ = 0.1. In all the

experiments, while the number of iterations required is always lower for our method, the time taken by

each iteration can be significantly more for each iteration for some problems. In general for a given

problem, our method performs better when the size of the feature vector is large. It’s quite common to

have large feature vectors for many practical problems particularly those related to computer vision and

are potential candidates for application of our optimization algorithm.

2.6.3 Comparison between Partial-linearization at low temperatures and Frank-Wolfe

For very low values (≤ 10−5) of temperature, as can be seen in figure 2.6, BCPL behaves almost

exactly same as BCFW when change in objective function value is considered over number of iterations.

The small gap observed between the BCFW and BCPL at low temperature is because of the difference in

running time of the oracles for the respective algorithms.

2.7 Discussion

We proposed a partial linearization based approach for optimizing multi-class SVM, which naturally

generalizes the Frank-Wolfe and the exponentiated gradient algorithms. Our method introduces the key

temperature hyperparameter for which we keep a fixed value through out the optimization. This leaves

scope for exploring ideas for varying the temperature across iterations for faster convergence. In this

work, we discussed our approach only in context of multi-class classification models and structured SVM

models that have a tree structure. However, the efficacy of our approach in the context of loopy graphs

that require approximate evaluation of the expectation oracle is still unknown. Another interesting

direction for future research would be to explore the applicability of our approach for variations of the
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Figure 2.5: Comparison of optimization algorithms for the structured SVM learning problem in terms of

change in the dual objective with respect to training time. The results correspond to (a) Handwritten text

recognition (b) Scene-text recognition with character image size of 50 × 25 (c) Scene-text recognition

with character image size of 70× 35. Here, the broken red curves correspond to the Frank-Wolfe algo-

rithm, solid green to our partial-linearization algorithm. Note in most of the cases, the exponentiated

gradient algorithm performs significantly worse than the other two methods, and is therefore not visible

in the plots. This figure is best viewed in colour.
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Figure 2.6: Comparison of the Frank-Wolfe algorithm with Partial-linearization at very low temperature

(τ = 10−10). Left plot shows change in dual objective over training iterations where as the right plot

shows the change in dual objective over time. Here, the broken red curves correspond to the Frank-Wolfe

algorithm and the solid green to our partial-linearization algorithm with τ = 10−10.

SVM optimization problem (such as those that use soft constraints), or for other learning frameworks

such as neural networks.
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Chapter 3

Efficient optimization of rank-based loss functions

3.1 Introduction

Information retrieval systems require us to rank a set of samples according to their relevance to a

query. The risk of the predicted ranking is measured by a user-specified loss function. Several intuitive

loss functions have been proposed in the literature. These include simple decomposable losses (that is,

loss functions that decompose over each training sample) such as 0-1 loss [60, 70] and the area under the

ROC curve [3, 39], as well as the more complex non-decomposable losses (that is, loss functions that

depend on the entire training data set) such as the average precision (AP) [13, 105] and the normalized

discounted cumulative gain (NDCG) [14].

When learning a retrieval system, one can use a training objective that is agnostic to the risk, such as

in the case of LambdaMART [12]. In this work, we focus on approaches that explicitly take into account

the loss function used to measure the risk. Such approaches can use any one of the many machine

learning models such as structured support vector machines (SSVM) [90, 93], deep neural networks [88],

decision forests [51], or boosting [82]. To estimate the parameters of the model, it is common to employ

a training objective that is related to the empirical risk associated with a rank-based loss function. Many

of the rank-based loss functions that we are interested in happen to be non-decomposable, that is, they

can not be expressed as summation of terms dependent on individual samples.

There have been considerable amount of prior work towards designing of efficient methods for op-

timizing non-decomposable rank-based loss functions. A wide array of work has been focused on

encoding the loss function in the form of constraints on classification rates for which then differentiable

surrogates are employed to allow for gradient based optimization [18, 25, 37, 72, 74]. Our approach is

more closely related to methods that involve designing convex surrogates for a specific class of rank-
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based loss functions [49, 73, 75, 105]. Specifically, we focus on a structured hinge upper bound to

the rank-based loss function [14, 105], or an asymptotic alternative such as direct loss minimization

[38, 86].

The feasibility of both the structured hinge loss and the direct loss minimization approach depends

on the computational efficiency of the loss-augmented inference procedure. When the loss function

is decomposable, the loss-augmented inference problem can be solved efficiently by independently

considering each training sample. However, for non-decomposable loss functions, it presents a hard

computational challenge. For example, given a training data set with P positive (relevant to the query)

and N negative (not relevant to the query) samples, the best known algorithms for loss-augmented

inference for AP and NDCG loss functions have a complexity of O(PN +N logN) [14, 105]. Since the

number of negative samples N can be very large in practice, this prohibits their use on large data sets.

Contributions. In order to address the computational challenge of non-decomposable loss functions

such as those based on AP and NDCG, we make three contributions.

• We characterize a large class of ranking based loss functions that are amenable to a novel quicksort

flavored optimization algorithm for the corresponding loss-augmented inference problem. We

refer to this class of loss functions as QS-suitable.

• We show that the AP and the NDCG loss functions are QS-suitable, which allows us to reduce the

complexity of the corresponding loss-augmented inference to O(P logN +N logP ).

• We prove that there cannot exist a comparison based method for loss-augmented inference that

can provide a better asymptotic complexity than our quicksort flavored approach.

For the sake of clarity, we limit our discussion to the structured hinge loss upper bound of the loss

function. However, as our main contribution is to speed-up loss-augmented inference, it is equally

applicable to direct loss minimization. We demonstrate the efficacy of our approach on the challenging

problems of action recognition, object detection and image classification, using publicly available data

sets. Rather surprisingly, we show that in case of some models, parameter learning by optimizing

complex non-decomposable AP and NDCG loss functions can be carried out faster than by optimizing

simple decomposable 0-1 loss. Specifically, while each loss-augmented inference call is more expensive

for AP and NDCG loss functions, it can take fewer calls in practice to estimate the parameters of the

corresponding model.
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3.2 Background

We begin by providing a brief description of a general retrieval framework that employs a rank-based

loss function, hereby referred to as the ranking framework. Note that this framework is the same as or

generalizes the ones employed in previous works [14, 45, 86, 105]. The two specific instantiations of the

ranking framework that are of interest to us employ the average precision (AP) loss and the normalized

discounted cumulative gain (NDCG) loss respectively. A detailed description of the two aforementioned

loss functions is provided in the subsequent subsection.

3.2.1 The Ranking Framework

Input. The input to this framework is a set of n samples, which we denote by X = {xi; i = 1, . . . , n}.

For example, each sample can represent an image and a bounding box of a person present in the image.

In addition, we are also provided with a query, which in our example could represent an action such

as ‘jumping’. Each sample can either belong to the positive class (that is, the sample is relevant to the

query) or the negative class (that is, the sample is not relevant to the query). For example, if the query

represents the action ‘jumping’ then a sample is positive if the corresponding person is performing the

jumping action and negative otherwise. The set of positive and the negative samples are denoted by P

and N respectively, which we assume are provided during training but are not known during testing.

Output. Given a query and a set of n samples X, the desired output of the framework is a ranking

of the samples according to their relevance to the query. This is often represented by a ranking matrix

R ∈ {−1, 0, 1}n×n such that Rx,y = 1 if x is ranked higher than y, -1 if x is ranked lower than y

and 0 if x and y are ranked the same. In other words, R is an anti-symmetric matrix that represents the

relative ranking of a pair of samples.

Given the sets P andN during training, we construct a ground truth ranking matrix R∗, which ranks

each positive sample above all the negative samples. Formally, the ground truth ranking matrix R∗ is

defined such that R∗x,y = 1 if x ∈ P and y ∈ N , -1 if x ∈ N and y ∈ P , and 0 if x,y ∈ P or

x,y ∈ N . Note that the ground truth ranking matrix only defines a partial ordering on the samples

since R∗i,j = 0 for all pairs of positive and negative samples. We will refer to rankings where no two

samples are ranked equally as proper rankings. Without loss of generality, we will treat all rankings

other than the ground truth one as a proper ranking by breaking ties arbitrarily.
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Discriminant Function. Given an input set of samples X, the discriminant function F (X,R; w) pro-

vides a score for any candidate ranking R. Here, the term w refers to the parameters of the discriminant

function. We assume that the discriminant function is piecewise differentiable with respect to its param-

eters w. One popular example of the discriminant function used throughout the ranking literature is the

following:

F (X,R; w) =
1

|P| |N |
∑
x∈P

∑
y∈N

Rx,y(φ(x; w)− φ(y; w)). (3.1)

Here, φ(x; w) is the score of an individual sample, which can be provided by a structured SVM or a

deep neural network with parameters w.

Prediction. Given a discriminant function F (X,R; w) with parameters w, the ranking of an input

set of samples X is predicted by maximizing the score, that is, by solving the following optimization

problem:

R(w) = argmax
R

F (X,R; w). (3.2)

The special form of the discriminant function in equation (3.1) enables us to efficiently obtain the pre-

dicted ranking R(w) by sorting the samples in descending order of their individual scores φ(x; w). We

refer the reader to [45, 105] for details.

Parameter Estimation. We now turn towards estimating the parameters of our model given input

samples X, together with their classification into positive and negative setsP andN respectively. To this

end, we minimize the risk of prediction computed using a user-specified loss function ∆(R∗,R(w)),

where R∗ is the ground truth ranking that is determined by P andN and R(w) is the predicted ranking

as shown in equation (3.2). We estimate the parameters of our model as

w∗ = min
w

E[∆(R∗,R(w))]. (3.3)

In the above equation, the expectation is taken with respect to the data distribution.

Optimization for Parameter Estimation. For many intuitive rank based loss functions such as AP

loss and NDCG loss, owing to their non-differentiability and non-decomposability, problem (3.3) can

be difficult to solve using simple gradient based methods. One popular approach is to modify problem

(3.3) to instead minimize a structured hinge loss upper bound to the user-specified loss. We refer the

reader to [105] for further details about this approach.
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Formally, the model parameters can now be obtained by solving the following problem:

w∗ = min
w

E[J(w)] (3.4)

J(w) = max
R

∆(R∗,R) + F (X,R; w)− F (X,R∗; w)

The function J(w) in problem (3.4) is continuous and piecewise differentiable, and is amenable to

gradient based optimization. The semi-gradient 1 of J(w) takes the following form:

∇wJ(w) = ∇wF (X, R̄; w)−∇wF (X,R∗; w), (3.5)

with, R̄ = argmax
R

∆(R∗,R) + F (X,R; w). (3.6)

Borrowing terminology from the structured prediction literature [47, 105], we call R̄ the most violating

ranking and problem (3.6) as the loss-augmented inference problem. An efficient procedure for loss-

augmented inference is key to solving problem (3.4).

While we focus on using loss-augmented inference for estimating the semi-gradient, it can also be

used as the cutting plane [47] and the conditional gradient of the dual of problem (3.4). In addition to

this, loss-augmented inference is also required for solving problem (3.3) using the direct loss minimiza-

tion framework [86].

3.2.2 Loss Functions

A particular property of the loss functions that affects the ease of optimizing them is the decompos-

ability of the loss function onto samples. Based on this property, loss functions can be categorized into

decomposable and non-decomposable loss functions.

Notation. In order to discuss the optimizability of loss functions, it would be helpful to introduce some

additional notation. We define ind(x) to be the index of a sample x according to the ranking R. Note

that the notation does not explicitly depend on R as the ranking will always be clear from context. If

x ∈ P (that is, for a positive sample), we define ind+(x) as the index of x in the total order of positive

samples induced by R. For example, if x is the highest ranked positive sample then ind+(x) = 1 even

though ind(x) need not necessarily be 1 (in the case where some negative samples are ranked higher

than x). For a negative sample x ∈ N , we define ind−(x) analogously: ind−(x) is the index of x in

the total order of negative samples induced by R.
1For a continuous function f(x) defined on a domain of any generic dimension, we can define semi-gradient ∇sf(x) to

be a random picking from the set {∇f(t) : ||x− t|| < ε}, for a sufficiently small ε.
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Decomposable loss function. A loss function is called decomposable if it can be written as summation

of terms that depend on individual samples. That is, a decomposable loss function ∆d(R
∗,R) can be

written as:

∆d(R
∗,R) =

|X|∑
i=1

gi (ind(xi)) .

Such loss functions are generally easily optimizable because they can be optimized by independently

optimizing each of the terms in the summation that depend only on a single sample:

argmax
R

∆d(R
∗,R) = argmax

R

|X|∑
i=1

gi (ind(xi)) =

[
argmax
ind(xi)

gi (ind(xi)) ; i = 1 . . . |X|

]
. (3.7)

Example of a decomposable loss function is the 0-1 loss. The loss function based on the area under the

ROC curve (AUC), though not decomposable onto individual samples, can be decomposed onto pairs of

samples.

0-1 Loss. The 0-1 loss is simply equal to the ratio of incorrect retrievals to that of the total number

of retrievals. It does not as such depend on the ranking of the retrievals and instead depends on the

classification of the retrievals based on a threshold. The 0-1 loss can be additively decomposed onto

individual samples as follows:

∆01(R∗,R) =

|X|∑
i=1

1

|X|
I (I(ind(xi) ≤ indTh) 6= I(ind∗(xi) ≤ |P|)) .

Here, I is the indicator function and indTh is the highest index among samples that are classified as

correct retrievals.

AUC Loss. AUC is an evaluation measure that is computed as the total area under the receiver oper-

ating characteristic (ROC) curve. The AUC loss is simply 1-AUC. Unlike the 0-1 loss, AUC loss is not

decomposable onto individual samples. However, it can be additively decomposed onto pairs of samples

as follows:

∆AUC(R∗,R) =

|X|∑
i=1

|X|∑
j=1

I ((ind(xi) ≤ ind(xj)) and (ind∗(xi) > ind∗(xj)))

|P| |N |
.

Non-decomposable loss function. A loss function is called non-decomposable if it cannot be written

as summation of terms that depend only on individual samples. Many sophisticated loss functions that

are strongly sensitive to the ranking order are non-decomposable. Such loss functions are generally
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difficult to optimize as the problem cannot be broken down into independent simpler optimization prob-

lems over individual samples. This includes popular rank-based loss functions like those based on AP

and NDCG.

AP Loss. Using the above notation, we can now concisely define the average precision (AP) loss of a

proper ranking R given the ground truth ranking R∗ as follows:

∆AP (R∗,R) = 1− 1

|P|
∑
x∈P

ind+(x)

ind(x)
.

For example, consider an input X = {x1, · · · ,x8} where xi ∈ P for 1 ≤ i ≤ 4, and xi ∈ N for

5 ≤ i ≤ 8, that is, the first 4 samples are positive while the last 4 samples are negative. If the proper

ranking R induces the order

(x1,x3,x8,x4,x5,x2,x6,x7), (3.8)

then, ∆AP (R∗,R) = 1− 1

4

(
1

1
+

2

2
+

3

4
+

4

6

)
≈ 0.146.

NDCG Loss. We define a discount D(i) = 1/ log2(1 + i) for all i = 1, · · · , |N | + |P|. This allows

us to obtain a loss function based on the normalized discounted cumulative gain as

∆NDCG(R∗,R) = 1−
∑

x∈P D(ind(x))∑|P|
i=1D(i)

.

For example, consider the aforementioned input where the first four samples are positive and the last

four samples are negative. For the ranking R that induces the order (3.8), we can compute

∆NDCG(R̂,R) = 1− 1 + log−1
2 3 + log−1

2 5 + log−1
2 7

1 + log−1
2 3 + log−1

2 4 + log−1
2 5

≈ 0.056.

Both AP loss and NDCG loss are functions of the entire dataset and are not decomposable onto individual

samples.

While solving problem (3.6) is non-trivial, especially for non-decomposable loss functions, the

method we propose in this work allows for an efficient loss-augmented inference procedure for such

complex loss functions. For our discussion, we focus on the average precision (AP) loss and the normal-

ized discounted cumulative gain (NDCG) loss. While the AP loss is very popular in the computer vision

community as evidenced by its use in the various challenges of PASCAL VOC [30], the NDCG loss is

very popular in the information retrieval community [14].
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3.3 Quicksort Flavored Optimization

In order to estimate the parameters w in the ranking framework by solving problem (3.4), we need to

compute the semi-gradient of J(w). To this end, given the current estimate of parameters w, as well as

a set of samples X, we are interested in obtaining the most violated ranking by solving problem (3.6).

At first glance, the problem seems to require us to obtain a ranking matrix R̄. However, it turns out that

we do not explicitly require a ranking matrix.

In more detail, our algorithm uses an intermediate representation of the ranking using the notion

of interleaving ranks. Given a ranking R and a negative sample x, the interleaving rank rank(x) is

defined as one plus the number of positive samples preceding x in R. Note that, similar to our notation

for ind(·), ind+(·) and ind−(·), we have dropped the dependency of rank(·) on R as the ranking

matrix would be clear from context. The interleaving rank of all the samples does not specify the total

ordering of all the samples according to R as it ignores the relative ranking of the positive samples

among themselves, and the relative ranking of the negative samples among themselves. However, as

will be seen shortly, for a large class of ranking based loss functions, interleaving ranks corresponding

to the most violating ranking are sufficient to compute the semi-gradient as in equation (3.5).

In the rest of the section, we discuss the class of loss functions that are amenable to a quicksort

flavored algorithm, which we call QS-suitable loss functions. We then describe and analyze our quicksort

flavored approach for finding the interleaving rank in some detail.

3.3.1 QS-Suitable Loss Functions

As discussed earlier, many popular rank-based loss functions happen to be non-decomposable. That

is, they can not be additively decomposed onto individual samples. However, it turns out that a wide

class of such non-decomposable loss functions can be instead additively decomposed onto the negative

samples. We will call this the negative-decomposability property. Further, many of those rank-based loss

functions do not depend on the relative order of positive or negative samples among themselves. Rather,

the loss for a ranking R, ∆(R∗,R), depends only on the interleaving rank of positive and negative

samples corresponding to R. We will call this the interleaving-dependence property. We characterize a

class of loss functions, which we call QS-suitable, that has such desirable properties. Formally, a proper

loss function ∆ = ∆(R∗,R) is called QS-suitable if it meets the following three conditions.
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(C1) Negative decomposability with interleaving dependence. There are functions δj : {1, . . . , |P|+

1} → R for j = 1, . . . , |N | such that for a proper ranking R one can write

∆(R∗,R) =
∑
x∈N

δind−(x)(rank(x)).

(C2) j-monotonicity of discrete derivative. For every 1 ≤ j < |N | and 1 ≤ i ≤ |P| we have

δj+1(i+ 1)− δj+1(i) ≥ δj(i+ 1)− δj(i).

(C3) Fast evaluation of discrete derivative. For any j ∈ {1, . . . , |N |} and i ∈ {1, . . . , |P|}, can the

value δj(i+ 1)− δj(i) be computed in constant time.

From (C1), we can see that the loss function depends only on the interleaving ranks of the negative

samples. More accurately, it depends on the vector r = (r1, . . . , r|N |) where ri is the interleaving rank

of the i-th most relevant negative sample (i.e. with the i-th highest score).

Another way to interpret this type of dependence is by looking at the ±-pattern of a ranking which

can be obtained as follows. Given a proper ranking R (in the form of a permutation of samples), it is the

pattern obtained by replacing each positive sample with a “+” symbol and each negative sample with

a “−” symbol. It is easy to see that the ±-pattern uniquely determines the vector r and vice versa and

thus (C1) also implies dependence on the ±-pattern.

As will be evident later in the section, the above properties in a loss function allows for an efficient

quicksort flavored divide and conquer algorithm to solve the loss augmented problem. We formally

define the class of loss functions that allow for such a quicksort flavored algorithm as QS-suitable loss

functions. The following propositions establish the usefulness for such a characterization.

Proposition 5. ∆AP is QS-suitable.

Proof. Regarding (C1), the functions δj were already identified in [105] as

δj(i) =
1

|P|

|P|∑
k=i

(
j

j + k
− j − 1

j + k − 1

)
(3.9)

so after writing

δj(i+ 1)− δj(i) =
j − 1

j + i− 1
− j

j + i

we again have (C3) for free and (C2) reduces to

2gi(j) ≥ gi(j − 1) + gi(j + 1),

where gi(x) = x
x+i , and the conclusion follows from concavity of gi(x) for x > 0.
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Proposition 6. ∆NDCG is QS-suitable.

Proof. As for (C1), let us first verify that the functions δj can be set as

δj(i) =
1

C
(D(i+ j − 1)−D(|P|+ j)) ,

where C =
∑|P|

i=1D(i). Indeed, one can check that

∆(R∗,R)

= 1−
∑

x∈P D(ind(x))∑|P|
i=1D(i)

=
1

C

|P|∑
i=1

D(i)−
∑
x∈P

D(ind+(x) + rank(x)− 1)

=
1

C

∑
x∈N

D(ind−(x)+rank(x)−1)−D(|P|+ind−(x))

=
∑
x∈N

δind−(x)(rank(x))

as desired. As for (C2) and (C3), let us realize that

δj(i+ 1)− δj(i) =
1

C
(D(i+ j)−D(i+ j − 1)) .

Then (C3) becomes trivial and checking (C2) reduces to

D(i+ j + 1) +D(i+ j − 1) ≥ 2D(i+ j)

which follows from convexity of the function D.

Having established that both the AP and the NDCG loss are QS-suitable, the rest of the section will

deal with a general QS-suitable loss function. A reader who is interested in employing another loss

function need only check whether the required conditions are satisfied in order to use our approach.

3.3.2 Key Observations for QS-Suitable Loss

Before describing our algorithm in detail, we first provide some key observations which enable effi-

cient optimization for QS-suitable loss functions. To this end, let us define an array {s+
i }
|P|
i=1 of positive

sample scores and an array {s−i }
|N |
i=1 of negative sample scores. Furthermore, for purely notational pur-

poses, let {s∗i } be the array {s−i } sorted in descending order. For j ∈ {1, . . . , |N |} we denote the index

of s−j in {s∗i } as j∗.
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With the above notation, we describe some key observations regarding QS-suitable loss functions.

Their proofs are for most part straightforward generalizations of results that appeared in [105] in the

context of the AP loss. Using the interleaving-dependence property of QS-suitable loss functions and

structure of the discriminant function as defined in equation (3.1), we can make the following observa-

tion.

Observation 1. There exists an optimal solution R̄ of problem (3.6) that has positive samples appearing

in the descending order of their scores s+
i and also the negative samples appearing in descending order

of their scores s−i .

Proof. Let R be any optimal solution. We check that F (X,R; w) increases if we swap two samples

x, y ∈ P in R with ind(x) < ind(y) and φ(x; w) < φ(y; w) (it boils down to ac+ bd > ad+ bc for

a > b ≥ 0 and c > d ≥ 0). Since similar argument applies for negative samples, we can conclude that

R already has both negative and positive samples sorted decreasingly. Otherwise, one could perform

swaps in R that would increase the value of the objective, a contradiction with the optimality of R.

Now, in order to find the optimal ranking R̄, it would seem natural to sort the arrays {s+
i } and {s−i } in

descending order and then find the optimal interleaving ranks rank(x) for all x ∈ N . However, we are

aiming for complexity belowO(|N | log |N |), therefore we can not afford to sort the negative scores. On

the other hand, since |P| << |N |, we are allowed to sort the array of positive scores {s+
i }. Given the±-

pattern dependency of the QS-suitable loss functions and structure of the discriminant function as defined

in equation (3.1), it is actually possible to compute the optimal ranking by enforcing a weaker ordering

on {s−i } which ensures that for every pair of negative samples {xi,xj} with rank(xi) > rank(xj), xi

is ranked higher than xj.

As a result, solving Problem (3.6) reduces to computing the optimal interleaving ranks (or the optimal

vector r as defined in the previous subsection). Note that the value of the objective can be computed

efficiently given a vector r – for example by constructing any ranking R which respects r. The following

observations allow for an efficient computation of the interleaving rank vector r.

Observation 2. The entire objective function in problem (3.6) inherits properties (C1) and (C2) of

QS-suitable loss functions, that is the following holds:
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(a) There are functions fj : {1, . . . , |P|+ 1} → R for j = 1, . . . , |N | such that the objective function

in (6) can be written as
|N |∑
j=1

fj(rj),

where rj is the interleaving rank of the negative sample x with ind−(x) = j.

(b) The functions fj inherit property (C2). More precisely, for every 1 ≤ j < |N | and 1 ≤ i ≤ |P|

we have

fj+1(i+ 1)− fj+1(i) ≥ fj(i+ 1)− fj(i).

(c) We can compute argmaxl≤i≤r fj(i) in O(r− l) time if we are provided access to the sorted array

{s+
i } and to the score of the negative sample x with ind−(x) = j.

Proof. It can be verified with a short computation that the objective function F (X,R; w) decomposes

into contributions of negative and positive samples as follows:

F (X,R; w) =
1

|P| |N |
∑
x∈P

∑
y∈N

Rx,y(φ(x; w)− φ(y; w))

=
∑
x∈P

c(x)φ(x; w) +
∑
y∈N

c(y)φ(y; w),

where

c(x)=
|N |+ 2−2rank(x)

|P| |N |
, c(y)=

|P|+ 2−2rank(y)

|P| |N |
.

In particular, assuming already that {s+
i } is sorted, and that R is induced by a vector of interleaving

ranks r, one has

F (X,R; w) =

|P|∑
i=1

c+
i s

+
i +

|N |∑
j=1

c−j s
∗
j ,

where

c+
i =

|N |+ 2− 2r+
i

|P| |N |
, c−j =

|P|+ 2− 2rj
|P| |N |

.

Here, r+
i stands for the interleaving rank of the i-th positive sample, which can be computed as r+

i =

1 + |{j : rj ≤ i}|.
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We can slightly modify the above decomposition in order to incorporate the array {s+
i }:

F (X,R; w)

=
∑
y∈N

(
c(y)φ(y; w) +

∑
x∈P

Rx,yφ(x; w)

)

=
1

|N | |P|

|N |∑
j=1

(|P|+2−2rj)s
∗
j+2

rj−1∑
i=1

s+
i −

|P|∑
i=1

s+
i


This, in combination with (C1), defines the functions fj for j = 1, . . . , |N | as

fj =
1

|N | |P|

(|P|+2−2rj)s
∗
j+2

rj−1∑
i=1

s+
i −

|P|∑
i=1

s+
i

 . (3.10)

As for the condition (C2), we have

fj(i+ 1)− fj(i) =
2(s+

i − s∗j )
|N | |P|

+ δj(i+ 1)− δj(i),

where, let us be reminded, {s∗j} is the sorted array of scores of negative samples. After writing analogous

equality for j + 1 and using that (C2) holds for functions δj , we can check that the desired inequality

fj+1(i+ 1)− fj+1(i) ≥ fj(i+ 1)− fj(i)

follows from s∗j+1 ≤ s∗j .

Note that for computing the argmax fj(i) it is sufficient to compute all discrete derivatives (i.e. all

differences fj(i + 1) − fj(i)); the actual values of fj are in fact not needed. For δj we know that one

such evaluation is constant time and it is also the same for fj since we assumed to have access to s∗j .

Let opti be the optimal interleaving rank for the negative sample with the ith rank in the sorted list

{s∗i } and opt = {opti|j = 1, . . . , |N |} be the optimal interleaving rank vector. The above observation

gives us the opportunity to compute the interleaving rank for each negative sample independently. This

is however not obvious. One certainly can maximize each fj but the resulting vector r may not induce

any ranking – its entries may not be monotone. But as a matter of fact, this does not happen and the

following observation gives the precise guarantee.

Observation 3. If i < j, then opti ≤ optj .

Proof. Recall that optj is the highest rank with maximal value of the corresponding fj′ . It suffices

to prove that for ij+1 = max argmax fj+1 and ij = max argmax fj , we have ij+1 ≥ ij . Since by
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Observation 2 functions fj inherit property (C2), we can compare the discrete derivatives of fj and

fj+1, all left to do is to formalize the discrete analogue of what seems intuitive for continuous functions.

Assume ij+1 < ij . Then since

fj+1(ij)− fj+1(ij+1) =

ij−1∑
i=ij+1

fj+1(i+ 1)− fj+1(i)

≥
ij−1∑
i=ij+1

fj(i+ 1)− fj(i)

= fj(ij)− fj(ij+1) ≥ 0,

we obtain that ij ∈ argmax fj+1 and as ij > ij+1 = max argmax fj+1, we reach the expected

contradiction.

All in all, it suffices to compute the vector opt in which optj = max argmax fj (the maximum

ensures that ties are broken consistently). However, we actually need not do this computation for all

the |N | negative samples. This is because, since the interleaving rank for any negative sample can

only belong to [1, |P| + 1] and |P| << |N |, many of the negative samples would have the same

interleaving rank. This fact can be leveraged to improve the efficiency of the algorithm for finding opt

by making use of the above observation. Knowing that opti = optj for some i < j, we can conclude

that opti = optk = optj for each i < k < j. This provides a cheap way to compute some parts of the

vector opt if an appropriate sequence is followed for computing the interleaving ranks. Even without

access to the fully sorted set {s∗j}, we can still find s∗j , the j-highest element in {s−i }, for a fixed j, in

O(|N |) time. This would lead to an O(|P| |N |) algorithm but we may at each step modify {s−i } slowly

introducing the correct order. This will make the future searches for s∗j more efficient.

3.3.3 Divide and Conquer

Algorithm 4 describes the main steps of our approach. Briefly, we begin by detecting s∗|N |/2 that is

the median score among the negative samples. We use this to compute opt|N |/2. Given opt|N |/2, we

know that for all j < |N | /2, optj ∈ [1, opt|N |/2] and for all j > |N | /2, optj ∈ [opt|N |/2, |P| + 1].

This observation allows us to employ a divide-and-conquer recursive approach.

In more detail, we use two classical linear time array manipulating procedures MEDIAN and SELECT.

The first one outputs the index of the median element. The second one takes as its input an index of a
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particular element x. It rearranges the array such that x separates higher-ranked elements from lower-

ranked elements (in some total order). For example, if array s− contains six scores [a b 4.5 6 1 c] then

Median(3, 5) would return 3 (the index of score 4.5), while calling Select(3, 3, 5) would rearrange

the array to [a b 1 4.5 6 c] and return 4 (the new index of 4.5). The SELECT procedure is a subroutine

of the classical QUICKSORT algorithm.

Using the two aforementioned procedures in conjunction with the divide-and-conquer strategy allows

us to compute the entire interleaving rank vector opt and this in turn allows us to compute the semi-

gradient∇wJ(w), as in equation (3.5), efficiently.

Algorithm 4 Recursive procedure for finding all interleaving ranks.

Description: The function finds optimal interleaving rank for all neg[i] with i ∈ [`−, r−] given that,

(i) array s− is partially sorted, namely

MAX(s−[1 . . . `− − 1]) ≤ MIN(s−[`− . . . r−])

MAX(s−[`− . . . r−]) ≤ MIN(s−[r− + 1 . . . |N |])

(ii) optimal interleaving ranks for i ∈ [`−, r−] lie in the interval [`+, r+].

1: function OptRanks(int `−, int r−, int `+, int r+)

2: if `+ = r+ then

3: set opti = `+ for each i ∈ [`−, r−] and return

4: m = Median(`−, r−) . gives the index of the median score in a subarray of s−

5: m = Select(m, `−, r−) . splits the subarray by s = s−[m], returns the new index of s

6: Find optm by trying all options in [`+, r+]

7: if `− < m then OptRanks(`−, m−1, `+, optm)

8: if m < r− thenOptRanks(m+1, r−, optm, r+)

Figure 3.1 provides an illustrative example of our divide-and-conquer strategy. Here, |N | = 11

and |P| = 2. We assume that the optimal interleaving rank vector opt is [1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3].

Let us now go through the procedure in which Algorithm 4 computes this optimal interleaving rank

vector. Before starting the recursive procedure, we only sort the positive samples according to their

scores and do not sort the negative samples. To start with, we call OptRanks(1, 11, 1, 3). We find the

negative sample with the median score (6th highest in this case) and compute its optimal interleaving

rank opt6 to be 2. In the next step of the recursion, we make the following calls: OptRanks(1, 5, 1, 2)

and OptRanks(7, 11, 2, 3). These calls compute opt3 and opt9 to be 2. In the next set of recursion

56



[2]

[2] [2] [2]

[2] [2] 2 2 [2] 2 2 [2] [3]

[1] [2] [2] 2 2 [2] 2 2 [2] [3] 3

Figure 3.1: Example illustrating the path followed by the quick sort flavored recursive algorithm while

computing the interleaving rank vector opt. Row correspond to the status of opt at selected time steps.

calls however, the calls OptRanks(4, 5, 2, 2) and OptRanks(7, 8, 2, 2), get terminated in step 4 of

Algorithm 4 and optj for j = 4, 5, 7, 8 are assigned without any additional computation. We then

continue this procedure recursively for progressively smaller intervals as described in Algorithm 4.

Leveraging the fact stated in observation 3, our algorithm has to explicitly compute the interleaving

rank for only 6 (shown in square brackets) out of the 11 negative samples. In a typical real data set,

which is skewed more in favor of the negative samples, the expected number of negative samples for

which the interleaving rank has to be explicitly computed is far less than |N |. In contrast, the algorithm

proposed by Yue et al. in [105] first sorts the entire negative set in descending order of their scores and

explicitly computes the interleaving rank for each of the |N | negative samples.

3.3.4 Computational Complexity

The computational complexity of the divide-and-conquer strategy to estimate the output of prob-

lem (3.6), is given by the following theorem.

Theorem 7. If ∆ is QS-suitable, then the task (3.6) can be solved in time O(|N | log |P|+ |P| log |P|+

|P| log |N |), which in the most common case |N | > |P| reduces toO(|N | log |P|) and any comparison-

based algorithm would require Ω(|N | log |P|) operations.

Outside running Algorithm 1, the entire computation also consists of preprocessing (sorting positive

samples by their scores) and post processing (computing the output from vector opt). These subroutines

have only one non-linear complexity term – O(|P| log |P|) coming from the sorting. Therefore, it

remains to establish the complexity of Algorithm 1 as O(|N | log |P|+ |P| log |N |).
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To this end, let us denote n = r− − `− + 1 and p = r+ − `+ + 1, and set Tneg(n, p), Tpos(n, p) as

the total time spent traversing the arrays of negative and positive sample scores, respectively, including

recursive calls. The negative score array is traversed in the MEDIAN and SELECT procedures and the

positive scores are traversed when searching for optm. The latter has by complexity O(p), due to

Observation 2(c), whose assumption are always satisfied during the run of the algorithm.

Proposition 8. The runtimes Tneg(n, p) and Tpos(n, p) satisfy the following recursive inequalities

Tneg(n, p) ≤ Cn+ Tneg(n/2, p1) + Tneg(n/2, p2)

for some p1 + p2 = p+ 1,

Tpos(n, p) ≤ Cp+ Tpos(n/2, p1) + Tpos(n/2, p2)

for some p1 + p2 = p+ 1,

Tneg(n, 1) ≤ Cn, Tneg(1, p) = 0,

Tpos(n, 1) = 0, Tpos(1, p) ≤ Cp

for a suitable constant C. These inequalities imply Tneg(n, p) ≤ C ′n log(1 + p) and Tpos(n, p) ≤

C ′(p−1) log(1+n) for another constant C ′. Thus the running time of Algorithm 1, where p = |P|+1,

n = |N |, is O(|N | log |P|+ |P| log |N |).

Proof. The recursive inequalities follow from inspection of Algorithm 1. As for the “aggregated” in-

equalities, we proceed in both cases by induction. For the first inequality the base step is trivial for high

enough constant C ′ and for the inductive step we may write

Tneg(n, p) ≤ Cn+ Tneg(n/2, p1) + Tneg(n/2, p2)

≤ Cn+
1

2
C ′n log(1 + p1) +

1

2
C ′n log(1 + p2)

= C ′n

(
C

C ′
+ log

√
(1 + p1)(1 + p2)

)
≤ C ′n log(p1 + p2) = C ′n log(1 + p)

where in the last inequality we used that

1 + (1 + p1)(1 + p2) ≤ (p1 + p2)2
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for integers p1, p2 with p1 + p2 = p + 1 ≥ 3. That makes the last inequality true for sufficiently high

C ′ (not depending on n and p).

The proof of the second inequality is an easier variation on the previous technique.

3.3.5 Lower Bound on Complexity

In order to prove the matching lower bound (among comparison-based algorithms), we intend to

use the classical information theoretical argument: There are many possible outputs and from each

comparison we receive one bit of information, therefore we need “many” comparison to shatter all

output options.

Proposition 9. Let ∆ be a loss function. Then any comparison-based algorithm for Problem (6) requires

Ω(|N | log |P|) operations.

Proof. Since the negative samples are unsorted on the input and the scores are arbitrary, every possible

mapping from {1, . . . , |N |} to {1, . . . , |P| + 1} may induce the (unique) optimal assignment of inter-

leaving ranks. There are (|P|+ 1)|N | possibilities to be distinguished and each comparison has only

two possible outcomes. Therefore we need log2

(
(|P|+ 1)|N |

)
∈ Ω(|N | log |P|) operations.

Note that the above theorem not only establishes the superior runtime of our approach (O(|N | log |P|)

compared toO(|N | log |N |) of [105]), it also provides an asymptotic lower bound for comparison based

algorithms. However, it does not rule out the possibility of improving the constants hidden within the

asymptotic notation for a given loss function. In the next section we present a method that exploits the

additional structure of the AP loss to further speed-up our algorithm.

3.4 Efficient Optimization for AP loss

In this section, we propose a method for further speeding up the optimization procedure of AP loss.

In order to find the most violated ranking as denoted in problem 3.6, the quicksort flavoured algorithm

presented in 4 iteratively assigns the optimal interleaving rank optj ∈ {1, · · · , |P|+ 1} for all negative

samples xj’s without having to do explicit computation for each of them. The interleaving rank optj

specifies that the negative sample xj must be ranked between the (optj − 1)-th and the optj-th positive

sample. The computation of the optimal interleaving rank for a particular negative sample requires

us to maximize the discrete function fj(i) over the domain i ∈ {1, · · · , |P|}. Like Yue et al. [105],
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algorithm 4 uses a simple linear algorithm for this step, which takes O(|P|) time. In contrast, we

propose a more efficient algorithm to maximize fj(·), which exploits the special structure of this discrete

function.

Before we describe our efficient algorithm in detail, we require the definition of a unimodal function.

A discrete function f : {1, · · · , p} ← R is said to be unimodal if and only if there exists a k ∈

{1, · · · , p} such that

f(i) ≤ f(i+ 1),∀i ∈ {1, · · · , k − 1},

f(i− 1) ≥ f(i),∀i ∈ {k + 1, · · · , p}. (3.11)

In other words, a unimodal discrete function is monotonically non-decreasing in the interval [1, k] and

monotonically non-increasing in the interval [k, p]. The maximization of a unimodal discrete function

over its domain {1, · · · , p} simply requires us to find the index k that satisfies the above properties. The

maximization can be performed efficiently, in O(log(p)) time, using binary search.

We are now ready to state the main result that allows us to compute the optimal interleaving rank of

a negative sample efficiently.

Proposition 10. The discrete function δj(i), defined in equation (3.9), is unimodal in the domain

{1, · · · , p}, where p = min{|P|, j}.

We provide a proof for the above proposition. Before moving to the proposition, we first state the

following lemmas, which easily lead to the proposition. For the sake of clarity of discussion, we will

split the summand term in the summation δj(i) as follows:

δj (i) = f1 (j, i) + f2 (j, i) =

|P|∑
k=i

g1 (j, k) +

|P|∑
k=i

g2 (j, k) ,

g1 (j, k) =
1

|P|

(
j

j + k
− j − 1

j + k − 1

)
, g2 (j, k) = −

2
(
spk − s

n
j

)
|P||N |

.

Please note that the functions f1(j, i) and f2(j, i) are cumulative sums of g1(j, i) and g2(j, i) respec-

tively, in the decreasing direction of i. Therefore, for ease of reasoning, we shall analyse the trend of

these functions in the decreasing direction of i.

Lemma 11. For k < j, g1(j, k) monotonically decreases with decreasing k, that is ∀ k < j

g1(j, k − 1) ≤ g1(j, k).
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Proof. For j ≥ 1 and k ≥ 1, (j + k) > j ⇒ j(j + k)− (j + k) < j(j + k)− j ⇒ j
j+k >

j−1
j+k−1 .

So, term g1(j, k) > 0 for all k ≥ 1. It can also be verified that the function g1(j, k) is 0 at 0 and has a

single maxima for k ∈ <+, at k =
√
j(j − 1). From this we can conclude that for discrete k ∈ Z+,

g1(j, k) would have maximum value either at k = j or k = j − 1. Therefore, for k < j, g1(j, k) would

monotonically decrease with decreasing k.

Lemma 12. For k < j, g2(j, k) monotonically decreases with decreasing k, that is ∀ k < j

g2(j, k − 1) ≤ g2(j, k).

Proof. In g2(j, k), the negative score snj is a constant for a given j. Whereas, the positive scores spk

being sorted in descending order, monotonically increase as k decreases. Therefore, g2(j, k) which is

−spk + constant, monotonically decreases as k decreases.

Proposition 13. The discrete function δj(i), defined in equation-5 of the main text, is unimodal in the

domain {1, · · · , p}, where p = min{|P|, j}.

Proof. From lemmas 11 and 12, for k < j, g1(j, k) and g2(j, k) monotonically decreases with decreas-

ing k. As a result, g1(j, k) + g2(j, k) also monotonically decreases when k is decreased from right to

left of the number line. Here, there can be 3 scenarios,

(i) (g1(j, 1) + g2(j, 1)) ≥ 0. In this case, as the function is monotonic and decreases towards left,

(g1(j, i) + g2(j, i)) ≥ 0, for i ∈ {1, 2, ..., j}

⇒ δj(i)− δj(i+ 1) ≥ 0, for i ∈ {1, 2, ..., }

⇒ δj(i) ≥ δj(i+ 1), for i ∈ {1, 2, ..., }

Therefore, according to definition of unimodality, δj(i) would be unimodal with k = 1.

(ii) (g1(j, j − 1) + g2(j, j − 1)) ≤ 0. In this case, using similar reasoning as above,

(g1(j, i) + g2(j, i)) ≤ 0, for i ∈ {j − 1, ..., 1}

⇒ δj(i)− δj(i+ 1) ≤ 0, for i ∈ {j − 1, ..., 1}

⇒ δj(i) ≤ δj(i+ 1), for i ∈ {j − 1, ..., 1}
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Therefore, δj(i) would be unimodal with k = j − 1.

(iii) (g1(j, 1) + g2(j, 1)) ≤ 0 and (g1(j, j − 1) + g2(j, j − 1)) ≥ 0. In this case, there should exist a

point across which the function (g1 + g2) changes its sign from positive to negative when moving from

right to left. In other words, there should exist k ∈ 1, 2, . . . , j − 1, such that,

(g1(j, i) + g2(j, i)) ≥ 0, i ∈ {k + 1, ..., j}

(g1(j, i) + g2(j, i)) ≤ 0, i ∈ {1, ..., k}

⇒ δj(i)− δj(i+ 1) ≥ 0, for i ∈ {k, ..., j − 1}

δj(i)− δj(i+ 1) ≤ 0, for i ∈ {j − 1, ..., 1}

⇒ δj(i) ≥ δj(i+ 1), for i ∈ {k, ..., j − 1}

δj(i) ≤ δj(i+ 1), for i ∈ {j − 1, ..., 1}

Here too, δj(i) satisfies the conditions for unimodality with k being the maximum point.

In all the 3 of the exhaustive cases, δj(i) satisfies the conditions for unimodality. Hence, δj(i) is

unimodal in the region {1, 2, . . . , j − 1}. As a function which is unimodal in a certain region would

also be unimodal in a subset of the region, δj(i) is unimodal in the region {1, 2, . . . , p}, where, p =

min(|P|, j).

Algorithm 5 Efficient search for the optimal interleaving rank of a negative sample.

Input: {δj(i), i = 1, · · · , |P|}.

1: p = min{|P|, j}.

2: Compute an interleaving rank i1 as

ii = argmax
i∈{1,··· ,p}

δj(i). (3.12)

3: Compute an interleaving rank i2 as

i2 = argmax
i∈{p+1,··· ,|P|}

δj(i). (3.13)

4: Compute the optimal interleaving rank optj as

optj =

 i1 if δj(i1) ≥ δj(i2),

i2 otherwise.
(3.14)
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Using the above proposition, the discrete function δj(i) can be optimized over the domain {1, · · · , |P|}

efficiently as described in Algorithm 5. Briefly, our efficient search algorithm finds an interleaving rank-

ing i1 over the domain {1, · · · , p}, where p is set to min{|P|, j} in order to ensure that the function

δj(·) is unimodal (step 2 of Algorithm 5). Since i1 can be computed using binary search, the compu-

tational complexity of this step is O(log(p)). Furthermore, we find an interleaving ranking i2 over the

domain {p + 1, · · · , |P|} (step 3 of Algorithm 5). Since i2 needs to be computed using linear search,

the computational complexity of this step is O(|P| − p) when p < |P| and 0 otherwise. The optimal

interleaving ranking optj of the negative sample xj can then be computed by comparing the values of

δj(i1) and δj(i2) (step 4 of Algorithm 5).

Note that, in a typical training dataset, the negative samples significantly outnumber the positive

samples, that is, |N | � |P|. For all the negative samples xj where j ≥ |P|, p will be equal to |P|.

Hence, the maximization of δj(·) can be performed efficiently over the entire domain {1, · · · , |P|} using

binary search in O(log(|P|)) as opposed to the O(|P|) time suggested in [105].

3.5 Experiments

We demonstrate the efficacy of our approach on three vision tasks with increasing level of complex-

ity. First, we use the simple experimental setup of doing action classification on the PASCAL VOC 2011

data set using a shallow model. This experimental set up allows us to thoroughly analyze the perfor-

mance of our method as well as the baselines by varying the sample set sizes. Second, we apply our

method to a large scale experiment of doing object detection on the PASCAL VOC 2007 data set using

a shallow model. This demonstrates that our approach can be used in conjunction with a large data set

consisting of millions of samples. Finally, we demonstrate the effectiveness of our method for layer

wise training of a deep network on the task of image classification using the CIFAR-10 data set.

3.5.1 Action Classification

Data set. We use the PASCAL VOC 2011 [30] action classification data set for our experiments. This

data set consists of 4846 images, which include 10 different action classes. The data set is divided into

two parts: 3347 ‘trainval’ person bounding boxes and 3363 ‘test’ person bounding boxes. We use the

‘trainval’ bounding boxes for training since their ground-truth action classes are known. We evaluate

the accuracy of the different models on the ‘test’ bounding boxes using the PASCAL evaluation server.
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Figure 3.2: Total computation time for multiple calls to loss augmented inference during model training,

when the number of total, negative and positive samples are varied. Here, 0-1, AP and AP QS correspond

to loss augmented inference procedures for 0-1 loss, for AP loss using [105] and for AP loss using our

method respectively. It can be seen that our method scales really well with respect to sample set sizes

and takes computational time that is comparable to what is required for simpler 0-1 decomposable loss.

Model. We use structured SVM models as discriminant functions and use the standard poselet [63]

activation features to define the sample feature for each person bounding box. The feature vector consists

of 2400 action poselet activations and 4 object detection scores. We refer the reader to [63] for details

regarding the feature vector.

Methods. We show the effectiveness of our method in optimizing both AP loss and NDCG loss to learn

the model parameters. Specifically, we report the computational time for the loss-augmented inference

evaluations. For AP loss, we compare our method (referred to as AP QS) with the loss-augmented

inference procedure described in [105] (referred to as AP). We also report results with the additional

speedup provided by the method proposed in section 3.4 (referred to as AP QS ES). For NDCG loss, we

compare our method (referred to as NDCG QS) with the loss-augmented inference procedure described

in [14] (referred to as NDCG). We also report results for loss-augmented inference evaluations when

using the simple decomposable 0-1 loss function (referred to as 0-1). The hyperparameters involved are

fixed using 5-fold cross-validation on the ‘trainval’ set.

0-1 AP AP QS AP QS ES NDCG NDCG QS

0.0694 0.7154 0.0625 0.0609 6.8019 0.0473

Table 3.1: Total computation time (in seconds) when using the different methods, for multiple calls to

loss augmented inference during model training. The reported time is averaged over the training for all

the action classes.
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Figure 3.3: Total computation time for multiple calls to loss augmented inference during model training,

when the number of total, negative and positive samples are varied. Here, 0-1, NDCG and NDCG QS

correspond to loss augmented inference procedures for 0-1 loss, for NDCG loss using [14] and for NDCG

loss using our method respectively. As can be seen, our approach scales elegantly with respect to sample

set sizes and is comparable to the simpler 0-1 decomposable loss in terms of computation time.

Results. When we minimize AP loss on the training set to learn the model parameters, we get a mean

AP of 51.196 on the test set. In comparison, minimizing 0-1 loss to learn model parameters leads to a

mean AP value of 47.934 on the test set. Similarly, minimizing NDCG loss for parameter learning gives

a superior mean NDCG value of 85.521 on the test set, compared to that of 84.3823 when using 0-1

loss. The AP and NDCG values obtained on the test set for individual action classes can be found in the

appendix. This clearly demonstrates the usefulness of directly using rank based loss functions like AP

loss and NDCG loss for learning model parameters, instead of using simple decomposable loss functions

like 0-1 loss as surrogates.

The time required for the loss augmented inference evaluations, while optimizing the different loss

functions for learning model parameters, are shown in Table 3.1. It can be seen that using our method

(AP QS, NDCG QS) leads to reduction in computational time by a factor of more than 10, when compared

to the methods proposed in [105] and [14] for AP loss and NDCG loss respectively. It can also be

observed that although the computational time for each call to loss-augmented inference for 0-1 loss is

0-1 AP AP QS AP QS ES NDCG NDCG QS

0.48±0.03 16.29±0.18 1.48±0.39 1.41±0.22 71.07±1.57 0.55±0.11

Table 3.2: Mean computation time (in milliseconds) when using the different methods, for single call to

loss augmented inference. The reported time is averaged over all training iterations and over all the

action classes.
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slightly less than that for AP loss and NDCG loss (Table 3.2), in some cases we observe that we required

more calls to optimize the 0-1 loss. As a result, in those cases training using 0-1 loss is slower than

training using AP or NDCG loss with our proposed method. We also report results of further speedup for

AP loss, obtained with the method proposed in section 3.4 (AP QS ES). As can be seen in Table 3.1 and

Table 3.2, the proposed method does provide a significant empirical speedup.

In order to understand the effect of the size and composition of the data set on our approaches, we

perform 3 experiments with variable number of samples for the action class ’phoning’. First, we vary

the total number of samples while fixing the positive to negative ratio to 1 : 10. Second, we vary the

number of negative samples while fixing the number of positive samples to 227. Third, we vary the

number of positive samples while fixing the number of negative samples to 200. As can be seen in

Fig. 3.2 and Fig. 3.3, the time required for loss-augmented inference is significantly lower using our

approach for both AP and NDCG loss.

3.5.2 Object Detection

Data set. We use the PASCAL VOC 2007 [30] object detection data set, which consists of a total of

9963 images. The data set is divided into a ‘trainval’ set of 5011 images and a ‘test’ set of 4952 images.

All the images are labeled to indicate the presence or absence of the instances of 20 different object

categories. In addition, we are also provided with tight bounding boxes around the object instances,

which we ignore during training and testing. Instead, we treat the location of the objects as a latent

variable. In order to reduce the latent variable space, we use the selective-search algorithm [95] in its

fast mode, which generates an average of 2000 candidate windows per image. This results in a training

set size of approximately 10 million bounding boxes.

Model. For each candidate window, we use a feature representation that is extracted from a trained

Convolutional Neural Network (CNN). Specifically, we pass the image as input to the CNN and use

the activation vector of the penultimate layer of the CNN as the feature vector. Inspired by the R-CNN

pipeline of Girshick et al. [36], we use the CNN that is trained on the ImageNet data set [22], by

rescaling each candidate window to a fixed size of 224× 224. The length of the resulting feature vector

is 4096. However, in contrast to [36], we do not assume ground-truth bounding boxes to be available for

training images. We instead optimize AP loss in a weakly supervised framework to learn the parameters

of the SVM based object detectors for the 20 object categories.
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Methods. We use our approach to learn the parameters of latent AP-SVMs [4] for each object category.

In our experiments, we fix the hyperparameters using 5-fold cross-validation. During testing, we eval-

uate each candidate window generated by selective search and use non-maxima suppression to prune

highly overlapping detections.

Results. For this task of weakly supervised object detection, using AP loss for learning model param-

eters leads to a mean test AP of 36.616 which is significantly better than the 29.4995 obtained using 0-1

loss. The AP values obtained on the test set by the detectors for each object class can be found in the

appendix. These results establish the usefulness of optimizing AP loss for learning the object detectors.

On the other hand, optimizing AP loss for this task places high computational demands due to the size

of the data set (5011 ‘trainval’ images) as well as the latent space (2000 candidate windows per image)

amounting to around 10 million bounding boxes. We show that using our method for loss-augmented

inference (LAI) leads to significant saving in computational time. During training, the total time taken

for LAI, averaged over all the 20 classes, was 0.5214 sec for our method which is an order of magnitude

better than the 7.623 sec taken by the algorithm proposed in [105]. Thus, using our efficient quicksort

flavored algorithm can be critical when optimizing non-decomposable loss functions like AP loss for

large scale data sets.

3.5.3 Image Classification

Data set. We use the CIFAR-10 data set [57], which consists of a total of 60,000 images of size 32×32

pixels. Each image belongs to one of 10 specified classes. The data set is divided into a ‘trainval’ set of

50,000 images and a ‘test’ set of 10,000 images. From the 50,000 ‘trainval’ images, we use 45,000 for

training and 5,000 for validation. For our experiments, all the images are centered and normalized.

Model. We use a deep neural network as our classification model. Specifically, we use a piecewise

linear convolutional neural network (PL-CNN) as proposed in [8]. We follow the same framework as

[8] for experiments on the CIFAR-10 data set and use a PL-CNN architecture comprising 6 convolutional

layers and an SVM last layer. For all our experiments, we use a network that is pre-trained using softmax

and cross-entropy loss.

Methods. We learn the weights of the PL-CNN by optimizing AP loss and NDCG loss for the training

data set. For comparison, we also report results for parameter learning using the simple decomposable

0-1 loss. We use the layerwise optimization algorithm called LW-SVM, proposed in [8], for optimizing
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the different loss functions with respect to the network weights. Following the training regime used in

[8], we warm start the optimization with a few epochs of Adadelta [106] before running the layer wise

optimization. The LW-SVM algorithm involves solving a structured SVM problem for one layer at a time.

This requires tens of thousands of calls to loss augmented inference and having an efficient procedure is

therefore critical for scalability. We compare our method for loss-augmented inference with the methods

described in [105] and [14], for AP loss and NDCG loss respectively.

Results. We get a better mean AP of 85.28 on the test set when we directly optimize AP loss for

learning network weights compared to that of 84.22 for 0-1 loss. Similarly, directly optimizing NDCG

loss leads to a better mean NDCG of 96.14 on the test set compared to 95.31 for 0-1 loss. This establishes

the usefulness of optimizing non-decomposable loss functions like the AP loss and NDCG loss. The LW-

SVM algorithm involves very high number of calls to the loss augmented inference procedure. In light

of this, the efficient method for loss augmented inference proposed in this work leads to significant

reduction in total training time. When optimizing the AP loss, using our method leads to a total training

time of 1.589 hrs compared to that of 1.974 hrs for the algorithm proposed in [105]. Similarly, when

optimizing NDCG loss, our method leads to a total training time of 1.632 hrs, which is significantly

better than the 2.217 hrs taken for training when using the method proposed in [14]. This indicates that

using our method helps the layerwise training procedure scale much better.

3.6 Discussion

We provided a characterization of ranking based loss functions that are amenable to a quicksort based

optimization algorithm for the loss augmented inference problem. We proved that our algorithm pro-

vides a better computational complexity than the state of the art methods for AP and NDCG loss functions

and also established that the complexity of our algorithm cannot be improved upon asymptotically by

any comparison based method. On the other hand, we demonstrated that it is still possible to reduce the

constant factors of the complexity of AP loss by exploiting its special structure. We empirically demon-

strated the efficacy of our approach on challenging real world vision problems. In future, we would like

to explore extending our approach to other ranking based non-decomposable loss functions like those

based on the F-measure or the mean reciprocal rank.
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3.7 Appendix

3.7.1 Efficient Approximation of AP-SVM

In sections 3.3 and 3.4, we presented exact methods for efficient optimization of a class of rank-

based loss functions that includes AP loss and demonstrated their efficacy in faster training of AP-

SVMs. However, despite these improvements, AP-SVM might be slower to learn compared to simpler

frameworks such as the binary SVM, which optimizes the surrogate 0-1 loss. The disadvantage of using

the binary SVM is that, in general, the 0-1 loss is a poor approximation for the AP loss. However,

the quality of the approximation is not uniformly poor for all samples, but depends heavily on their

separability. Specifically, when the 0-1 loss of a set of samples is 0 (that is, they are linearly separable

by a binary SVM), their AP loss is also 0. This observation inspires us to approximate the AP loss over

the entire set of training samples using the AP loss over the subset of difficult samples. In this work, we

define the subset of difficult samples as those that are incorrectly classified by a simple binary SVM.

Formally, given the complete input X and the ground-truth ranking matrix R∗, we represent individ-

ual samples as xi and their class as yi. In other words, yi = 1 if i ∈ P and yi = −1 if i ∈ N . In order

to approximate the AP-SVM, we adopt a two stage strategy. In the first stage, we learn a binary SVM by

minimizing the regularized convex upper bound on the 0-1 loss over the entire training set. Since the

loss-augmented inference for 0-1 loss is very fast, the parameters w0 of the binary SVM can be estimated

efficiently. We use the binary SVM to define the set of easy samples as Xe = {xi|yiw>0 φ(xi) ≥ 1}. In

other words, a positive sample is easy if it is assigned a score that is greater than 1 by the binary SVM.

Similarly, a negative sample is easy if it is assigned a score that is less than -1 by the binary SVM. The

remaining difficult samples are denoted by Xd = X−Xe and the corresponding ground-truth ranking

matrix by R∗d. In the second stage, we approximate the AP loss over the entire set of samples X by the

AP loss over the difficult samples Xd while ensuring that the samples Xe are correctly classified. In

order to accomplish this, we solve the following optimization problem:

min
w

1

2
||w||2 + Cξ

s.t. w>Ψ(Xd,R
∗
d)−w>Ψ(Xd,Rd) ≥ ∆(R∗d,Rd)− ξ,∀Rd,

yi

(
w>φ(xi)

)
> 1, ∀xi ∈ Xe. (3.15)
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In practice, we can choose to retain only the top k% of Xe ranked in descending order of their score and

push the remaining samples into the difficult set Xd. This gives the AP-SVM more flexibility to update

the parameters at the cost of some additional computation.

We demonstrate the effectiveness of our idea using the PASCAL VOC 2011 [30] action classification

data set. We use structured SVM models as discriminant functions and use the standard poselet [63]

activation features to define the sample feature for each person bounding box. The feature vector consists

of 2400 action poselet activations and 4 object detection scores. We refer the reader to [63] for details

regarding the feature vector. Table 3.3 shows the AP for the rankings obtained by binary SVM, AP-SVM

and our approximate AP-SVM (AP-SVM-APPX) for ‘test’ set. The time required for computing the most

violated ranking when averaged over the training for all the action classes was 0.2341 second for AP-

SVM-APPX which is significantly less than the 0.566 second taken for AP-SVM. The same timing for

binary-SVM was 0.1068 second. Therefore, it can be observed that the proposed approximate AP-SVM

gives results that are comparable to that of AP-SVM while being significantly faster in training.

Object class Binary SVM AP-SVM AP-SVM-APPX

k=25% k=50% k=75%

Jumping 52.580 55.230 54.660 55.640 54.570

Phoning 32.090 32.630 31.380 30.660 29.610

Playing instrument 35.210 41.180 40.510 38.650 37.260

Reading 27.410 26.600 27.100 25.530 24.980

Riding bike 72.240 81.060 80.660 79.950 78.660

Running 73.090 76.850 75.720 74.670 72.550

Taking photo 21.880 25.980 25.360 23.680 22.860

Using computer 30.620 32.050 32.460 32.810 32.840

Walking 54.400 57.090 57.380 57.430 55.790

Riding horse 79.820 83.290 83.650 83.560 82.390

Table 3.3: Test AP for the different action classes of PASCAL VOC 2011 action dataset. For AP-SVM-

APPX, we report test results for 3 different values of k, which is the percentage of samples that are

included in the easy set among all the samples that the binary SVM had classified with margin > 1.
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3.7.2 Empirical comparison of rank-based loss functions and 0-1 loss

For the action classification experiments on the PASCAL VOC 2011 data set, we report the perfor-

mance of models trained by optimizing 0-1 loss as well as AP loss in Table 3.3. Specifically, we report

the AP on the test set for each of the 10 action classes. Similarly, we also report the performance of mod-

els trained by optimizing 0-1 loss as well as NDCG loss, in terms of NDCG on the test set in Table 3.4.

For our object detection experiments, we report the detection AP in Table 3.5 for all the 20 object

categories obtained by models trained using 0-1 loss as well as AP loss. For all object categories other

than ‘bottle’, AP loss based training does better than that with 0-1 loss. For 15 of the 20 object categories,

we get statistically significant improvement with AP loss trained models compared to those trained using

0-1 loss (using paired t-test with p-value less than 0.05). While optimizing AP loss for learning gives an

overall improvement of 7.12% compared to when using 0-1 loss, for 5 classes it gives an improvement

of more than 10%. The bottom 2 classes with the least improvement obtained by AP loss based training,

‘chair’ and ‘bottle’ seem to be difficult object categories to detect, with detectors registering very low

detection APs. In conjunction with the overall superior performance of AP loss for learning model

parameters, the efficient method proposed in this thesis makes a good case for optimizing AP loss rather

than 0-1 loss for tasks like object detection.
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Object class 0-1 loss NDCG loss

Jumping 86.409 87.895

Phoning 73.134 76.733

Playing instrument 81.533 83.666

Reading 74.528 75.588

Riding bike 94.928 95.958

Running 93.766 93.776

Taking photo 74.058 76.701

Using computer 79.518 78.276

Walking 89.789 89.742

Riding horse 96.160 96.875

Table 3.4: Performance of classification models trained by optimizing 0-1 loss and NDCG loss, in terms

of NDCG on the test set for the different action classes of PASCAL VOC 2011 action dataset. We conduct

5-fold cross-validation and report the mean NDCG over the five validation sets.

Object category 0-1 loss AP loss Object category 0-1 loss AP loss

Aeroplane 46.60 48.18 Dining-table 14.20 39.53

Bicycle 48.53 61.45 Dog 33.55 36.25

Bird 33.31 36.73 Horse 46.14 53.86

Boat 15.23 19.66 Motorbike 29.97 34.81

Bottle 6.10 1.01 Person 29.58 30.41

Bus 37.01 49.51 Potted-plant 21.27 23.03

Car 61.28 66.78 Sheep 11.65 32.20

Cat 38.12 40.77 Sofa 36.66 42.03

Chair 2.71 3.23 Train 29.71 37.10

Cow 21.06 38.52 TV-monitor 27.31 37.26

Table 3.5: Performance of detection models trained by optimizing 0-1 loss and AP loss, in terms of AP

on the test set for the different object categories of PASCAL VOC 2007 test set.
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Chapter 4

Learning to round for discrete labeling problems

4.1 Introduction

A discrete labeling problem is defined over a set of random variables, each of which needs to be

assigned a value from a discrete label set. An assignment of values to all the random variables is

referred to as a labeling. The large number of putative labelings (exponential in the number of random

variables) are quantitatively distinguished from each other by means of an energy function. The goal of

the discrete labeling problem is to compute the labeling with the minimum energy.

The discrete labeling problem plays a key role in many areas of computer science. For example, in

machine learning it is required for maximum a posteriori estimation in graphical models. In theoretical

computer science, several classical tasks such as vertex cover and graph partitioning can be viewed as

discrete labeling problems. While special cases of the problem can be solved exactly in polynomial

time [92], in general it is known to be NP-hard. A popular approach to obtain an approximate solution

is to formulate the discrete labeling problem as an integer program, which can then be relaxed to obtain

an easy-to-solve continuous optimization problem. While the continuous relaxation is closely related to

the original integer program, its optimal solution can be fractional (it often is). Thus, a key requirement

for using continuous relaxations is the availability of an accurate rounding procedure, that is, a method

that can convert the optimal fractional solution to a feasible integer solution with low energy value. The

most popular family of rounding procedures is based on randomized algorithms, which generally pose

rounding as sampling from a distribution parameterized by the fractional solution.

The design of sampling based rounding procedures generally involves highly sophisticated mathe-

matical analysis to establish the expected value of the energy of the rounded solution in the worst-case.

In special cases such as uniform metric labeling, a lot of simple procedures, backed by strong mathe-
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matical analysis, have been proposed. For example, Kleinberg and Tardos [55] proposed the interval

rounding procedure, which was later generalized by Chekuri et al. [15] for truncated linear and quadratic

labeling. While such an approach has important theoretical consequences (specifically, it establishes the

computational complexity of various instances of discrete labeling problems), from a practitioners point

of view it suffers from two major deficiencies. First, it is highly onerous and therefore cannot scale

well as each new class of problems would require expert knowledge to design an appropriate rounding

procedure. Second, it focuses on the worst-case scenario (for ease of analysis), which often does not

occur in practice.

Contributions. In order to alleviate the aforementioned deficiencies, we propose a novel machine

learning framework that learns to round the solutions of a continuous relaxation using a training data

set. The key observation of our approach is that many randomized rounding procedures can be viewed

as sampling from a joint distribution of two types of random variables: (i) variables whose marginal

probability is provided by the optimal fractional solution of the relaxation; and (ii) a set of appropriately

designed latent variables. Viewed in this way, the problem of rounding readily lends itself to machine

learning techniques. In this work, we employ a deep neural network that consists of two stages. In the

first stage, it projects a low-dimensional input (namely, the optimal fractional solution of a relaxation)

to a potentially high-dimensional space of the aforementioned latent random variables. In the second

stage, it projects the representation encoded by the latent random variables back to the original space

of feasible fractional solutions, to give the output of the neural network. The integer solution of the

problem is obtained by using the simplest rounding procedure on the output. The parameters of the

deep neural network are estimated by optimizing a differentiable learning objective that minimizes the

expected energy of the labeling for a given set of training samples. Our approach can be readily applied

to a large class of existing relaxations, including those based on linear programming [15, 56], quadratic

programming [80] and second-order cone programming [59, 71]. By learning the neural network for

a given set of samples that implicitly define the data distribution, we obtain more suitable rounding

procedures for real-world problems compared to the ones designed for the worst-case. We demonstrate

the efficacy of our approach on several instances of the discrete labeling problem, including uniform

metric labeling and truncated linear and quadratic labeling by comparing them to the hand-designed

rounding procedures proposed in the theoretical computer science literature.
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4.2 Related Work

As mentioned earlier, most of the literature on randomized rounding procedures focuses on hand-

designed algorithms for special instances of the discrete labeling problem. Examples include interval

rounding and hierarchical rounding for linear programming relaxations of metric labeling [15, 55], hy-

perplane rounding for semidefinite relaxations of graph partitioning [31], and contention resolution for

multilinear relaxations for submodular maximization [99]. While such an approach is of great theoret-

ical importance, the complexity of mathematical analysis and the focus on the worst-case makes it less

appealing in practice.

Our work exploits the close relationship between randomized rounding and sampling. Similar to

rounding, there have been several hand-designed sampling algorithms that have been proposed in ma-

chine learning [2, 10]. Furthermore, there has also been some effort in learning to sample using a

training data set [83, 107]. However, to the best of our knowledge, ours is the first approach to exploit

the connection between sampling and rounding for discrete labeling problems. Moreover, unlike sam-

pling in which the main objective is to maximize sample fidelity with the original distribution, our goal

is to minimize a task specific energy function by learning to round.

There is also a rich history in machine learning for learning latent spaces for a particular problem [6,

40, 42]. The one most closely related to our approach is the variational auto-encoder (VAE) [52], which

uses a deep neural network in order to obtain an expressive latent representation of the input space.

However, there are several key differences between our framework and the VAE. First, our training

objective is designed to maximize the accuracy of rounding instead of minimizing the reconstruction

error. Second, while the VAE aims to learn the parameters of a neural network that generalizes well

across the entire data distribution, our problem is concerned with learning the parameters for each

individual instance of the problem.

Finally, there has been work on using reinforcement learning for function optimization [5, 101].

Reinforcement learning also optimizes an entropy regularized expected energy. However, in our case,

a key difference is that we compute the expected energy and its exact gradient analytically instead of

relying on estimates of the policy gradient. This reduces the variance in the gradient, thereby enabling

efficient learning. Another key difference is that, unlike the reinforcement learning based methods, we

also condition our model with respect to a primal marginal solution which allows a trained model to

generalize to unseen energy functions.
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4.3 Preliminaries

Discrete Labeling Problem. A discrete labeling problem is defined over a set of random variables

X = {X1, X2, · · · , Xn}, each of which can take a value from the label set L = {l1, l2, · · · , lh}. An

assignment of values to all the random variables is called a labeling, and is denoted by x ∈ Ln. The

labelings are quantitatively distinguished from each other by the means of an energy functionEθ : Ln →

R, which consists of a sum of potential functions. For the sake of clarity, we will restrict ourselves to a

pairwise energy function. In other words, the energy of a labeling x is given by:

Eθ(x) =

∑
a∈[n]

θa(xa) +
∑

(a,b)∈[n]2

θab(xa, xb)

 . (4.1)

Here, [n] = {1, ..., n}, and θa(xa) and θab(xa, xb) are short hand for θa(Xa = xa) and θab(Xa =

xa, Xb = xb) respectively. While, θa(Xa = xa) denotes the unary potential of assigning the label xa

to the random variable Xa, θab(Xa = xa, Xb = xb) denotes the pairwise potential of assigning the

labels xa and xb to random variables Xa and Xb respectively. The discrete labeling problem is specified

as follows: x∗ = argminx∈Ln Eθ(x). The general discrete labeling problem allows for higher-order

potentials (that is, potentials that depend on the labels of an arbitrarily large subset of random variables).

Our approach can be trivially generalized to handle such potentials by suitably modifying the training

objective. We assume that the potentials are finite valued. In other words, all the labelings are valid,

and the task is to identify the one with the minimum energy. This assumption is mainly due to the

fact that we parameterize our framework via a neural network, which requires gradients for all possible

parameters in order to utilize the back-propagation algorithm during training.

Integer Programming Formulation. The discrete labeling problem can be reformulated as an integer

program using indicator variables ya(i) ∈ {0, 1} corresponding to all random variables Xa ∈ X and

labels li ∈ L. Each indicator variable ya(i) = 1, if Xa = li and 0 otherwise. Formally, the following

program provides the minimum energy labeling:

min
∑
a∈[n]

∑
li∈L

θa(i)ya(i) (4.2)

+
∑

(a,b)∈[n]2

∑
(li,lj)∈L2

θab(i, j)ya(i)yb(j),

s.t.
∑
li∈L

ya(i) = 1 ∀a ∈ [n],

ya(i) ∈ {0, 1} ∀a ∈ [n], ∀li ∈ L.
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Here, the objective function is just a reformulation of the energy function in equation 4.1 using the

binary indicator variables. The first constraint ensures that each random variable is assigned exactly one

label, while the second constraint ensures that the optimization variables are binary.

Continuous Relaxations. The above integer program can be relaxed to obtain a continuous opti-

mization problem. Several relaxations have been proposed in the literature, including linear program-

ming [15, 56], quadratic programming [80] and second-order cone programming [59, 71]. All the

aforementioned relaxations drop the integrality constraints, and instead enforce the variables ya to be-

long to a probability simplex, that is, ya(i) ≥ 0 and
∑

i ya(i) = 1. The resulting continuous problem is

then solved to obtain an optimal fractional solution y∗.

Randomized Rounding Procedures. Given a feasible fractional solution ȳ, a rounding procedure

treats ȳa(i) as the probability of assigning the label li to the random variable Xa. Several rounding

procedures that satisfy this property have been proposed in the literature. We refer the interested reader

to [97, 102] for examples. Although most often these algorithms are applied on optimal fractional

solutions, the analysis applies to all feasible solutions. In our work, we will use the simplest rounding

procedure to obtain integer solutions from the output of a deep neural network, which we refer to as

complete rounding. The main steps of the complete rounding procedure are described in Algorithm 6.

Complete rounding computes the cumulative distribution of ya for each Xa ∈ X (step 3). It then

samples from the cumulative distribution using the same real number r ∈ [0, 1] for all the random

variables (step 4). Note that the use of the same real number is important. Otherwise, the rounding

procedure can be shown to produce arbitrarily bad labelings (see [58] for examples).

Algorithm 6 The complete rounding algorithm.
Input: A fractional solution y of a relaxation.

1: Sample a real number r from uniform distribution over [0, 1].

2: for all Xa ∈ X do

3: Define, Ya(0) = 0, Ya(i) =
∑i

j=1 ya(j).

4: Assign label li to random variable Xa if Ya(i− 1) ≤ r < Ya(i).
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4.4 Trainable Latent Variable Model For Rounding

Given a feasible (or optimal) fractional solution y of a continuous relaxation, randomized rounding

procedures can be viewed as assigning a label to the set of discrete random variables X from the set L

such that Pr(Xa = li) = ya(i). There are several ways in which one can achieve this goal, including

the simple complete rounding procedure described above. What separates a good rounding procedure

from a bad one is the joint probability of the labeling of a subset of random variables. Since we have

restricted our description to pairwise energy functions, the key criterion for differentiating two rounding

procedures is the joint probability of assigning two random variables Xa and Xb to the labels li and lj

respectively.

To illustrate the weakness of complete rounding, consider the following simple example of a uniform

metric labeling problem (also referred to as the Potts model) defined over n random variables, each of

which can take 1 of n possible labels. The unary potential for the ath random variable Xa is defined as

follows:

θa(i) =

 ∞ if i = a,

0 otherwise.
(4.3)

Every pair of random variables Xa and Xb are assumed to be connected by an edge and the pairwise

potential between them is defined as follows: θab(i, j) = δ(i 6= j). Any labeling that assigns the same

label to all but one of the random variables would be optimal for this discrete labeling problem.

On the other hand, the optimal fractional solution y obtained for the LP relaxation of this discrete

problem can be defined as follows:

ya(i) =

 1/(n− 1) if i 6= a,

0 otherwise.
,∀a ∈ {1, . . . , n} (4.4)

It can be verified that, when performing complete rounding on this optimal fractional solution, if the

random number r is between (i− 1)/(n− 1) and i/(n− 1) for i = 1, 2, · · · , n− 1, the first i variables

take the label i+ 1, and the remaining ones take the label i. Specifically, it is impossible for it to do so

when the random number r ∈ [1/(n− 1), (n− 2)/(n− 1)]. Therefore, the probability of the complete

rounding procedure to output an optimal integral solution (that is assigning the same label to all but 1

of the random variables) is only 2/(n − 1). In order to overcome the deficiency of complete rounding,

Kleinberg and Tardos [55] proposed a more suitable rounding procedure for uniform metric labeling.

In what follows, we provide a novel interpretation of their procedure based on latent variable models,

which will motivate our general learning based framework.
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Consider an augmented label set L′ = {l0} ∪ L, where the auxiliary label l0 indicates that a random

variable has not yet been assigned a label. We define a latent variable Z, which can take a value from

the label set L. The probability Pr(Z = li) = 1/h for all li ∈ L. Furthermore, we define Pr(Xa|Z) as

Pr(Xa = li|Z = lj) =


ya(i) if i = j 6= 0,

1− ya(i) if i = 0,

0, otherwise.

(4.5)

In order to obtain a labeling, we use an iterative procedure. At each iteration, we first sample from

the distribution Pr(Z) to fix the value of the latent variable. Next, we use complete rounding on the

distributions Pr(Xa|Z) for all random variablesXa ∈ X . If a random variable is assigned a label li ∈ L

(that is, not the label l0), then we fix its label to li. For all the unassigned random variables (that is, those

with the label l0) we repeat the above process until a valid labeling has been obtained. The above

iterative procedure can be viewed as sampling from the joint distribution Pr(Z,Xa) =
∑

li∈L Pr(Z =

li) Pr(Xa|Z = li), and marginalizing out the latent variable. It can be verified that, in the case of the

illustrative example for uniform metric labeling, the above procedure always outputs an optimal integral

solution. It can do so because of the use of latent variables. This can thus result in an improved expected

energy of the output labeling compared to complete rounding.

At first sight, the choice of the latent variable Z, its distribution Pr(Z) and the conditional distri-

butions Pr(Xa|Z) may appear arbitrary. However, there are two factors that governed their design.

First, they have to exploit the structure of the pairwise potentials, which encourages a pair of random

variables to be assigned the same label. Second, the latent variable and the corresponding distributions

have to be simple enough to lend themselves to worst-case mathematical analysis. We now consider

each of the two aforementioned factors to motivate our methodology. The first factor implies that, for

every different family of the discrete labeling problems, we would need to design a new rounding pro-

cedure. Indeed, for truncated linear and quadratic labeling, the random variable represents an interval

of consecutive labels, instead of a single label [15]. Given the vast number of choices, it is clear that

the process of hand-designing a rounding procedure is too tedious and would not scale well to meet the

demands of an increasingly automated world. However, our novel interpretation of rounding procedures

as latent variable models opens the door to the use of powerful machine learning frameworks. The sec-

ond factor implies that the simple form of distributions is not a requirement in practice as we are not

interested in worst-case analysis. Thus, inspired by the recent success of deep latent variable models

such as VAE [52], we propose to parameterize rounding procedures for discrete labeling problems using
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Figure 4.1: Our deep latent variable model that includes an encoder, a latent layer and a decoder. The

encoder takes in a feasible fractional solution y as input and computes the parameters [µµµ,σσσ] of the

latent variable distribution Pr(Z). The decoder takes a sample from Pr(Z) and computes the output

fractional solution ȳ. Finally, approximate integral solution ŷ is obtained by performing complete

rounding on ȳ.

a deep neural network. This allows us to learn highly complex latent variables and the corresponding

distributions (which can depend on the fractional solution y) using a set of training samples that implic-

itly define the data distribution of interest. In what follows, we describe our model and its end-to-end

differentiable training objective in detail.

4.4.1 Prediction Using Deep Latent Variable Model

We use deep neural networks to model both the distribution Pr(Z) associated with the latent random

variables Z and the conditional distribution Pr(X|Z) that projects back into the space of feasible solu-

tions. Overall, our network is composed of an encoder (Eααα), a layer of latent variables (Z) and a decoder

(Dβββ). Here, ααα and βββ are the learnable parameters of the encoder and decoder respectively. Figure4.1

shows a representation of our deep latent variable model. While we have shown a fully convolutional

network here, any network architecture can be used for this purpose.

The detailed description for rounding using our deep latent variable model is outlined in Algorithm

7. First, the parameters φφφ of the latent variable distribution Pr(Z;φφφ) are computed as outputs by the

encoder Eααα, that is, φφφ(y) = Eα(y) (step 1). We then sample z from the distribution Pr(Z;φφφ) (step

2) and pass it through the decoder Dβββ to get an output fractional solution ȳ = Dβββ(z) (step 3). This

output fractional solution ȳ parameterizes the distribution Pr(X = ŷ|Z; ȳ), where ŷ is a feasible

integral solution. We perform complete rounding as described in Algorithm 6 on ȳ to get our output ŷ
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(step 4). In practice, we perform several iterations of complete rounding on ȳ and choose ŷ to be the

integral solution with the lowest energy Eθ(ŷ). In our experiments, we parameterize the latent variable

distribution Pr(Z;φφφ) as a diagonal Gaussian with mean µµµ and standard deviation σσσ, that is, φφφ = [µµµ,σσσ].

However, one can also assume other parameterized models like the Bernoulli distribution for the latent

variables.

4.4.2 Training Methodology

Our aim here is to learn the parameters ααα and βββ of the encoder and the decoder respectively using

training set which is assumed to contain independently sampled instances from the data distribution.

The training data set D can consist of several instances of any particular discrete labeling problem that

vary in terms of the values for the parameters of the energy function Eθ, while maintaining the same

underlying structure. For example, in case of the problem of semantic segmentation of images, we can

have different images as the samples of the training set while assuming the same structure for inter-pixel

dependencies for all the images. To be specific, each instance st in the training set D = {s1, . . . , sN}

should include the parameters θt of the energy function and a feasible fractional solution yt from a

continuous relaxation of the original discrete labeling problem.

Algorithm 7 Rounding using deep latent variable model.
Input: A feasible solution y of the continuous relaxation.

1: Compute parameters of the latent variable distribution by passing through the encoder:

φφφ(y) = Eα(y).

2: Sample z from the latent variable distribution P (Z;φφφ).

3: Compute output fractional solution by passing z through the decoder: ȳ = Dβββ(z).

4: Perform complete rounding as described in Algorithm 6 to obtain an integral solution ŷ correspond-

ing to ȳ.

Output: An approximate integral solution ŷ to the original discrete labeling problem.

As has been discussed elaborately in the previous sections, our objective is to find the integral so-

lution ŷ with the lowest possible energy Eθ(ŷ). Therefore, given the training data, we should try to

minimize the energy Eθ(ŷ) of the output integral solutions for all of the training examples. However,

since ours is a stochastic model, it is appropriate for us to minimize the expected energy with respect to

the distribution Pr(X; yt,ααα,βββ) for all training samples st ∈ D.
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Given a training sample st ∈ D and a value z from the latent variable distribution Pr(Z;φφφ(yt,ααα)),

we can sample several integral solutions using the complete rounding procedure. The expectation with

respect to the distribution induced by the complete rounding procedure can be evaluated exactly by

using the expression presented in Lemma 11 of [58]. To be specific, the expected pairwise energy can

be computed as,

E(θab(ŷa, ŷb)) =

h−1∑
i=1

Ya(i)Θ1(i) (4.6)

+
h−1∑
j=1

Yb(j)Θ1(j) +
h−1∑
i=1

h−1∑
j=1

|Ya(i)− Yb(j)|Θ2(i, j).

Here, Ya and Yb are the cumulative distributions with respect to ya and yb, and Θ1 and Θ2 are defined

as follows,

Θ1(i) = 1
2(θab(li, l1) + θab(li, lh)− θab(li+1, l1)

− θab(li+1, lh)),∀i ∈ {1, .., h− 1}, (4.7)

Θ2(i, j) = 1
2(θab(li, lj+1) + θab(li+1, lj)− θab(li, lj)

− θab(li+1, lj+1)),∀i, j ∈ {1, .., h− 1}. (4.8)

The overall expected energy of the output integral solution ŷ with respect to complete rounding then

can be computed as,

E
ŷ∼Pr(X|Z;βββ)

[Eθ(ŷ)] =
∑

Xa∈Xa 〈θa(ŷa),ya〉 (4.9)

+
∑

(Xa,Xb)∈X 2 E(θab(ŷa, ŷb)).

As discussed above, the expected energy of the output integral solution ŷ, with respect to the distri-

bution induced by the complete rounding procedure, has a closed form expression. This allows us to

analytically compute the gradient of this expected energy with respect to the output fractional solution

ȳ and thus have no variance in gradient estimation.

For our training objective, we further take expectation of the above computed expected energy with

respect to the latent variable distribution Pr(Z;φφφ) to obtain,

E
ŷ∼Pr(X;yt,ααα,βββ)

[Eθt(ŷ)]

= E
z∼Pr(Z;φφφ(yt,ααα))

[
E

ŷ∼Pr(X|Z=z;βββ)
[Eθt(ŷ)]

]
. (4.10)
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Since analytical computation of this expected energy is not feasible, we have to estimate it by using

k samples from the latent variable distribution. When the latent variable distribution is chosen to be a

Gaussian distribution, the gradient of this sampling based estimation of the expected energy with respect

to the parameters of the distribution can be computed using the reparameterization trick. This results in

very low variance for the gradient estimation. In the general case, the reinforce algorithm can be used

to estimate the gradient.

Finally, our training objective is obtained by taking expectation of the above computed expected

energy with respect to the data distribution D. As in case of all machine learning frameworks, we

estimate the expectation over the data distribution by using samples from the training data set D. Then

the training objective function can be written as

JE(ααα,βββ) = E
st∼D

[
E

ŷ∼Pr(X;yt,ααα,βββ)
[Eθt(ŷ)]

]
(4.11)

While optimizing the expected energy, the model might sometime get stuck in local minima corre-

sponding to integral ȳ’s that lead to bad approximate solutions. In order to avoid such bad local minima

during optimization, we regularize the output fractional solutions ȳ to bias them towards having higher

entropy. Specifically, we add the following entropy based regularization term to our objective function,

JR(ααα,βββ) = (4.12)

E
st∼D

 E
z∼Pr(Z;φφφ(yt,ααα))

∑
a∈[n]

ȳa(z,βββ) log ȳa(z,βββ)

 .
Overall, we optimize the objective function J = JE+λJR for learning the parametersααα andβββ of the

encoder and the decoder respectively. Here, λ is a hyper-parameter which we fix appropriately. Since,

this objective function is differentiable, we can use the standard back-propagation algorithm to train our

network parameters. In order to back-propagate through the sampling process at the latent layer, we use

the re-parameterization trick for Gaussian distribution as proposed in [52].

4.5 Experiments

We demonstrate the efficacy of our approach, described in the previous section, on discrete labeling

problems using both synthetic as well as real world data.
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Figure 4.2: Objective function Vs. iterations during optimization over the training set of the synthetic

data set. Here, ‘avg’ refers to expected energy (Eavg) and ‘best’ refers to minimum energy (Emin).

Labeling Metric Max Rounding Complete Rounding Interval Rounding Our method

Eavg=Emin Eavg Emin Eavg Emin Eavg Emin

Uniform 12.204 12.532 10.435 12.437 10.327 10.180 10.103

Truncated Linear 74.423 1887.213 19.427 1936.361 17.787 153.801 14.762

Truncated Quadratic 152.532 904.821 84.640 876.610 72.418 71.469 65.359

Table 4.1: Average (Eavg) and minimum (Emin) energy obtained by the different methods on the test set

for the discrete labeling problem on synthetic data.

4.5.1 Discrete Labeling Of Densely Connected Graphs

Problem. We consider the problem of labeling a set of 25 random variables from a discrete set of 21

labels. We assume that all the random variables are dependent on each other and these dependencies

are encoded by a densely connected graph. We consider three different types of distance metrics for

encoding label compatibility, namely, the uniform, truncated linear and truncated quadratic distances.

The uniform distance metric is also known as the Potts model and is defined as d(i, j) = δ(i 6= j).

Where as, the truncated linear and truncated quadratic distances are defined as d(i, j) = min(|i−j|,M)

and d(i, j) = min(|i − j|2,M) respectively. We use M = 10 for our experiments. We also assume

a spatial arrangement of the random variables in a 5 × 5 lattice such that each vertex va has a location

coordinate ca = (xa, ya). As such, the pairwise potential associated with the edge between vertices va

and vb is defined as θab(i, j) = wabd(i, j), where, wab = exp(−||ca − cb||22/σ2
s) is a spatial Gaussian

weight with scaling factor σs.

Dataset. We use a synthetically generated collection of 100 graphs for this experiment. For each

graph, we randomly generate the unary potential associated with each vertex from a uniform distribution
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Max Complete Interval Our method Our method

Rounding Rounding Rounding (with finetuning)

Eavg=Emin Eavg Emin Eavg Emin Eavg Emin Eavg Emin

803.417 742.596 696.452 744.249 691.179 658.936 653.255 655.547 652.836

Table 4.2: Average (Eavg) and minimum (Emin) energy obtained by the different methods on the test set

for the task of semantic segmentation on MSRC data set.

Max Complete Interval Our method Our method

Rounding Rounding Rounding (with finetuning)

Eavg=Emin Eavg Emin Eavg Emin Eavg Emin Eavg Emin

977.203 1131.940 977.242 1077.385 968.124 949.794 936.316 945.433 935.725

Table 4.3: Average (Eavg) and minimum (Emin) energy obtained by the different methods on the test set

for the task of semantic segmentation on MSRC data set when the input fractional solution corresponds

to the negative exponentiated min-marginal provided by TRW-S.

over [0, 1]. We also set the parameters σs and a weighing factor τ for the pairwise potentials, from a

uniform distribution over [−105, 105]. From our collection of 100 graphs, we use 50 for training and 50

for testing.

Methods. We train a deep latent variable model as described in Section 4.4.1 with both the encoder

and the decoder being modeled by neural networks composed of fully connected layers. We use the

efficient proximal LP solver proposed in [1] to obtain fractional solutions for training our model. The

scaling factor for the entropy regularization term in our training objective function is fixed to λ = 1

for all our experiments. We compare our method with other standard rounding procedures like max-

rounding, complete rounding and interval rounding[15, 55].

Results. Figure 4.2 shows the progression of the objective function when our model is being opti-

mized on the training data set. As can be seen, our model swiftly learns to do accurate rounding and

outperforms the hand designed rounding procedures like complete and interval rounding. Even though

this performance corresponds to the training set, it is significant because unlike training for tasks like

classification, we don’t use any kind of ground-truth information. However, it is not necessary to train

the model from scratch for each new sample. Instead, we only finetune the trained model for the new

sample by optimizing over it for a very few iterations (20 in this case). Such finetuning is possible
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because we do not need any kind of ground-truth information for it. To evaluate, for each test sample,

we use different randomized rounding methods, including ours, to sample 1000 integral solutions and

compute the expected energy Eavg and the minimum energy Emin over this set. We report the mean

values of Eavg and Emin computed over the entire test set. Table 4.1 shows the results for the uni-

form, truncated linear and truncated quadratic labeling distance metrics. As can be seen, our method

outperforms the other rounding procedures in all the 3 cases.

4.5.2 Semantic Segmentation of Images

Problem. We consider the problem of semantic segmentation of images which can be formulated as

a labeling task in which each pixel has to be assigned a label from the set of semantic classes. We

formulate this problem as a labeling problem over a grid graph in which each vertex va corresponds to

a particular pixel and is connected to its four immediate neighbors via edges. The pairwise potential

associated with an edge between vertices va and vb is defined as θab(i, j) = wabδ(i 6= j). Here,

wab = exp(−||fa− fb||22/σ2
c ) is a color based Gaussian weight with fa being the 3D color vector of the

pixel a and σc being a scaling factor.

Dataset. We use the MSRC data set [84] for this experiment. It consists of a total of 591 images with

ground-truth segmentation. We use the standard data set split of 276 training, 59 validation and 256 test

samples, as specified in [84]. We use the texton based features proposed in [84] for unary potentials in

our experiments.

Methods. For this task, the encoder and the decoder for our method are modeled as fully convolutional

networks, in order to allow for variable input image sizes. The hyper-parameters σc and a weighing

factor τ for the pairwise potentials is set by using the validation set. Here, we apply rounding to two dif-

ferent sets of fractional solutions: 1) Primal solutions obtained by solving a continuous relaxation [80]

of the original primal problem, 2) Primal feasible solutions computed using expected min-marginals

obtained from the TRW-S algorithm. Specifically, for each data set sample, we use fractional solutions

obtained using the efficient QP solver proposed in [23] and those corresponding to the negative ex-

ponentiated min-marginal provided by TRW-S. We compare rounding procedures like max-rounding,

complete rounding and interval rounding [15, 55].
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Results. Similar to the previous experiment, we report the expected energy Eavg and the minimum

energy Emin on the test set and compare our method with complete and interval rounding. For results

shown in the second last column of Table 4.2 and Table 4.3, we do not fine-tune our model for the

test samples and report results by simply forward passing through the network learned with the training

set. However, our model is still able to generalize well to the test samples and outperforms the other

rounding procedures for both types of fractional solutions. We also report results for the case when

we fine-tune our model for each of the test samples. As can be seen from Table 4.2 and Table 4.3,

fine-tuning slightly improves the results in both the cases.

4.6 Discussion

We proposed a novel framework for performing rounding for discrete labeling problems. Our ap-

proach views rounding as a method of sampling from a latent variable model and employs deep neural

networks for this purpose. We showed that our method can adapt to different problem structures and

outperforms hand designed rounding procedures on these tasks. Going ahead, we would like to explore

approaches for performing rounding in presence of constraints.
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Chapter 5

Conclusion and future work

In this thesis we investigated into some problems at the intersection between optimization and ma-

chine learning. In the following sections we discuss our contributions in this space and some interesting

problems that can be explored in future.

5.1 Contributions of the thesis

The learning problem in a machine learning framework can be formulated as an optimization prob-

lem, the difficulty of which critically depends on the complexity of the variable whose value we are

interesting in predicting, and the complexity of the criteria that is used for learning the model. When

the output variable is a complex object, it might be possible to represent the possible values it can take

using a very high dimensional continuous space or a very large structure-less discrete set. However,

doing so would require us to search through an exponentially large search space to solve the learning

optimization problem. So, it becomes critical to design representations for the output space and corre-

sponding optimization algorithms that can leverage the structure inherent to the task at hand and solve

the learning optimization problem efficiently. In a similar vein, using generic solvers to optimize com-

plex loss functions can be highly inefficient and sometimes even infeasible. In this context, designing

efficient optimization algorithms that can leverage the structure of specific types of loss functions is an

important problem.

In chapter 2, we note that within the margin-maximizing framework of SVM, problems of pro-

gressively complicated output spaces can be formulated in terms of binary-SVM, multi-class-SVM and

88



structured-SVM. We proposed a novel partial-linearization based approach for optimizing the multi-

class and structured SVM learning problems [66]. Our method was an intuitive generalization of the

Frank-Wolfe [44] and the exponentiated gradient [16] algorithms. In particular, it allowed us to combine

several of their desirable qualities like an expectation oracle, optimal step-size and a block coordinate

formulation, into one approach. This partial linearization based method allows one to solve large-scale

problems and can be potentially adapted to also train models based on neural networks using a margin

maximizing criterion similar to that of an SVM.

While complex output spaces certainly increase the complexity of the learning optimization problem,

the structure of the loss function that is used as a criterion for learning model parameters is also crucial.

This is particularly true for cases where the output is a structured object like a ranking and it is critical

to choose a sophisticated enough loss function that can effectively differentiate between subtly different

outputs. However, popular loss functions like AP loss and NDCG loss that have been extensively used as

evaluation measures for evaluating information retrieval systems, have not been as popularly used for

learning the model parameters of these systems. This is because of the difficulty in optimizing these

non-decomposable loss functions which is generally circumvented by either optimizing a structured

hinge-loss upper bound to the loss function [105] or by using asymptotic methods like the direct-loss

minimization framework [86]. Yet, the high computational complexity of loss-augmented inference,

which is necessary for both the frameworks, prohibits its use on large training data sets.

In chapter 3, we made a key observation that while popular non-decomposable loss functions can

not be additively decomposed onto individual samples, a wide class of such loss functions can be instead

additively decomposed onto the negative samples. Further, many of those rank-based loss functions do

not depend on the relative order of positive or negative samples among themselves. Rather, the loss for

a ranking, depends only on the interleaving rank of positive and negative samples corresponding to the

ranking. We showed that these key properties in a loss function allows for an efficient quicksort flavored

divide and conquer algorithm to solve the loss augmented problem. We formally define the class of loss

functions that allow for such a quicksort flavored algorithm as QS-suitable loss functions. The fact that

popular rank-based loss functions like AP and NDCG loss belong to this class establishes the usefulness

for such a characterization.

We developed a novel quicksort flavored algorithm for solving the loss-augmented inference problem

efficiently for this class of loss functions [69]. We showed that our approach has a superior runtime of

O(|N | log |P| + |P| log |N |) compared to O(|P| |N | + |N | log |N |) of [14, 105], where, P and N
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denote the sets of positive and negative samples respectively. Moreover, we also establish that any

comparison based algorithm would require Ω(|P| log |N | + |N | log |P|) operations. While it provides

an asymptotic lower bound for comparison based algorithms, it does not rule out the possibility of

improving the constants hidden within the asymptotic notation for a given loss function. We actually

exploit the additional structure of the AP loss to further speed-up our algorithm [68]. Rather surprisingly,

we show that in case of some models, parameter learning by optimizing complex non-decomposable

AP and NDCG loss functions can be carried out faster than by optimizing simple decomposable 0-1

loss. Specifically, while each loss-augmented inference call is more expensive for AP and NDCG loss

functions, it can take fewer calls in practice to estimate the parameters of the corresponding model.

In chapter 4, we explored the interesting reverse problem of learning optimization algorithms. In

this space we primarily focused on using machine leaning techniques for improving combinatorial op-

timization algorithms. Specifically, we considered the framework of relaxation+rounding for solving

discrete labeling problems. In such a framework, traditionally sampling based rounding methods have

been designed by human experts. However, this demands extensive expert knowledge of the specific

task and while the designed procedures might come with certain worst case theoretical guarantees, they

might not be that practically effective. In order to alleviate the aforementioned deficiencies, we pro-

posed a novel machine learning framework that learns to round the solutions of a continuous relaxation

using a training data set [67]. The key observation of our approach was that many randomized rounding

procedures can be viewed as sampling from a latent variable model. Viewed in this way, the problem

of rounding readily lends itself to machine learning techniques. Our approach can be readily applied to

a large class of existing relaxations, including those based on linear programming [15, 56], quadratic

programming [80] and second-order cone programming [59, 71].

5.2 Future work

5.2.1 Partial linearization based optimization

The partial linearization based algorithm we proposed in chapter 2 is for learning of Support Vector

Machines (SVM). It would be interesting to explore the plausible application of the partial linearization

based method towards learning of deep neural networks. Learning of deep neural networks is a com-

plex problem and traditionally the community has mainly relied on first order methods like stochastic

gradient descent (SGD). However, the performance of such gradient based methods depends on clever
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ways to modulate the learning-rate across iterations. Because of the highly non-convex nature of the

optimization problem associated with the learning of deep neural networks, it is challenging to come up

with a hyperparameter-free learning-rate schedule. There have been some good work in this direction

with a plethora of adaptive gradient based methods being proposed [24, 53, 106]. While they have be-

come the go-to methods for learning deep neural networks, it has been shown that such methods obtain

worse generalization than SGD [103]. Works like Deep Frank-Wolfe [9] try to bridge this gap between

SGD and the adaptive gradient methods by leveraging the structure of the problem and breaking down

the problem into linear-SVM sub-problems. In this context, considering that the partial linearization al-

gorithm proposed in chapter 2 is a generalization of the Frank-Wolfe algorithm, it would be interesting

to explore the application of the partial-linearization based optimization to train deep neural networks.

5.2.2 Efficient optimization of rank-based loss functions

In chapter 3, we presented an efficient quicksort flavored algorithm for a large class of non-decompos-

able rank-based loss functions. We also provided the complete characterization of the loss functions that

are amenable to the proposed algorithm. This class of loss functions that include AP loss and NDCG loss

have the crucial property of being decomposable onto negative samples which our algorithm takes ad-

vantage of for efficient optimization. Going ahead, it would be interesting to explore similar useful

structures for other loss functions like F1-score and mean reciprocal rank that can be leveraged for op-

timization. For example it might be possible to decompose loss functions in other useful ways where

each term depends on multiple samples but still has a structure that can practically aid in optimization.

In our work we focus on the loss augmented inference (LAI) problem associated with the different

non-decomposable rank-based loss functions. This makes sense as the LAI problem is the main compu-

tational bottleneck in optimizing the popular structured hinge-loss upperbound to these loss functions.

We optimize a surrogate to the loss function like the hinge-loss upperbound because the original loss

functions like AP loss and NDCG loss are piecewise constant and lack any useful local gradient infor-

mation that can be used for their direct optimization. While traditionally these surrogates have been

expert designed, it would be of interest to explore learning techniques to aid in constructing differen-

tiable surrogates to non-differentiable non-decomposable loss functions. There are some work in this

direction, for example, [28] tries to learn a differentiable substitute for the sorting procedure and as a

result construct differentiable surrogate of several rank-based loss functions. It would be of interest to

further explore this direction of work aided by recent developments in the area of learning-to-optimize.
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5.2.3 Learning to optimize for discrete labeling problems

In chapter 4, we presented a method for learning a stochastic rounding procedure by modelling it as

sampling from a learnable latent variable model. Such an approach allows for adapting the rounding

procedure to new domains without having to rely on expert effort to design domain specific procedures.

While in this work we focused on the rounding module of the overall relaxation+rounding optimization

pipeline, a good direction for future research would be to try and marry different ideas developed in con-

text of relaxation methods and rounding procedures with the aim of improving the overall performance.

It would also be interesting to explore approaches for performing rounding in presence of constraints.

5.2.4 Further explorations into optimization for and by machine learning

Traditionally machine learning as a field of research has always maintained a keen focus on leverag-

ing the structure of the problem at hand to design models that are accurate and efficient. In this context,

leveraging the structure involved going beyond the black box understanding of the problem and incor-

porating expert knowledge of the domain into the model itself. For example, if we consider the case

of semantic segmentation of images, the output consists of simultaneous class label predictions for all

pixels in the input image. Intuitively, the class label that a particular pixel is assigned is dependent on

the label assigned to other pixels in its neighbourhood. As such, there is a dependency structure among

the output variables. Over the years, many frameworks have been developed that try to encode this

dependency structure in the output space [32, 93]. A typical framework would include a module that

makes independent predictions for each individual variable and another module, most often in the form

of a probabilistic graphical model, that enforces the expert defined structure to make the final prediction.

Such models have traditionally been very successful by effectively combining knowledge learned from

data with prior domain knowledge.

In recent years, deep neural networks have taken a slightly different route to success. They have

significantly pushed the state-of-the-art in many machine learning tasks including those involving struc-

tured output spaces like semantic segmentation and machine translation [26, 104] primarily powered by

the availability of huge amounts of data and computational resources. However, most deep models that

have been popularly used for tasks like semantic segmentation or machine translation, do not explicitly

try to leverage the structure of the output space to guide the search for the optimal solution. Instead,

they make independent predictions for each output variable and rely on the representational power of
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a deep neural net to implicitly learn the structure of the output space from the data. Such an approach

demands access to huge amounts of data and computational resources. While this might be possible in

certain settings and tasks, there is an obvious case for more explicit graph based encoding of the domain

knowledge into the model, so that it does not have to be learned from data. There are two primary rea-

sons that discourages the use of graphical model based encoding of domain knowledge in deep learning

frameworks: (i) Limited flexibility in the types of prior knowledge that can be effectively encoded us-

ing graphs, (ii) Difficulty in end-to-end learning with pipelines that include graph inference algorithms.

Both these problems lie at the intersection of machine learning and optimization, and present interesting

directions for research.

The first problem discourages the use of graphical models for encoding prior knowledge because

with limited options for the types of distributions that the graphical model can be used to represent, it

becomes very difficult to accurately encode the prior knowledge. An inaccurate encoding of the prior

then generally hampers the performance of the overall pipeline. The class of distributions that a graph-

ical model can represent is generally restricted by the efficiency of the associated inference algorithms.

For example, it is desirable to have tree structured graphs and sub-modular dependency structures be-

cause it is easy to do inference on such graphs. While such graphs might be expressive enough for

certain tasks, they generally fall short in accurately modeling the prior knowledge for most real world

problems. As such, if efficient inference algorithms can be designed for more complicated graphs, then

it would drastically increase the scope of applicability of graphical models. Since most graph infer-

ence problems can be formulated as combinatorial optimization algorithms, it seems like a promising

problem for which learning techniques can be effectively used. It would be an interesting problem to

parameterize the space of inference algorithms, possibly as Markov decision processes and then try to

learn the model parameters, either by using some form of supervised learning or reinforcement learning.

While having efficient inference algorithms for a graphical model allows for easy predictions and can

be used as a post processing step in deep learning pipelines, it still does not necessarily allow for end-to-

end learning. This is because most of the optimization algorithms that are used for learning the model

parameters of a deep neural network, rely on being able to compute the gradient of the task specific loss

function with respect to the network parameters. This requires the different computational steps in a

deep learning pipeline to be piece-wise differentiable and restricts the types of computational modules

that can be included in the pipeline. Graph inference algorithms, which can often be formulated as

combinatorial optimization procedures, are a category of computational modules that can make learning
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intractable in deep models. It is important therefore to develop methods for estimating the gradient of

graph inference algorithms. In this context, the fact that graph inference procedures can be formulated as

combinatorial optimization algorithms, actually indicates a direction which seems promising. It would

be interesting to try and use the blackbox back-propagation framework that was recently developed

for combinatorial optimization algorithms [98]. It would help us to construct an interpolation on the

piecewise constant function that is characteristic of graph inference procedures and estimate an effective

gradient that can be back-propagated. Such an approach would allow back-propagation through the

graph inference algorithms and can make end-to-end learning possible in a deep learning framework

with graphical models.
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