3D Shape Analysis: Reconstruction and Classification
Jinka Sai Sagar
Abstract
The reconstruction and analysis of 3D objects by computational systems has been an intensive and long-lasting research problem in the graphics and computer vision scientific communities. Traditional acquisition systems are largely restricted to studio environment setup which requires multiple synchronized and calibrated cameras. With the advent of active depth sensors like time-of-flight sensors, structured lighting sensors made 3D acquisition feasible. This advancement of technology has paved way to many research problems like 3D object localization, recognition, classification, reconstruction which demand innovating sophisticated/elegant solutions to match their ever growing applications. 3D human body reconstruction, in particular, has wider applications like virtual mirror, gait analysis, etc. Lately, with the advent of deep learning, 3D reconstruction from monocular images garnered significant interest among the research community as it can be applied to in-the-wild settings.
The reconstruction and analysis of 3D objects by computational systems has been an intensive and long-lasting research problem in the graphics and computer vision scientific communities. Traditional acquisition systems are largely restricted to studio environment setup which requires multiple synchronized and calibrated cameras. With the advent of active depth sensors like time-of-flight sensors, structured lighting sensors made 3D acquisition feasible. This advancement of technology has paved way to many research problems like 3D object localization, recognition, classification, reconstruction which demand innovating sophisticated/elegant solutions to match their ever growing applications. 3D human body reconstruction, in particular, has wider applications like virtual mirror, gait analysis, etc. Lately, with the advent of deep learning, 3D reconstruction from monocular images garnered significant interest among the research community as it can be applied to in-the-wild settings.
Secondly, we propose PeeledHuman - a novel shape representation of the human body that is robust to self-occlusions. PeeledHuman encodes the human body as a set of Peeled Depth and RGB maps in 2D, obtained by performing ray-tracing on the 3D body model and extending each ray beyond its first intersection. We learn these Peeled maps in an end-to-end generative adversarial fashion using our novel framework - PeelGAN. The PeelGAN enables us to predict shape and color of the 3D human in an end-to-end fashion at significantly low inference rates.
Year of completion: | May 2023 |
Advisor : | Dr. Avinash Sharma |