Improving the Efficiency of SfM and its Applications.


Siddharth Choudhary (homepage)

Large scale reconstructions of camera matrices and point clouds have been created using structure from motion from community photo collections. Such a dataset is rich in information; we can interpret it as a sampling of the geometry and appearance of the underlying space. In this dissertation, we encode the visibility information between and among points and cameras as visibility probabilities. The conditional visibility probability of a set of points on a point (or a set of cameras on a camera) can be used to select points (or cameras) based on their dependence or independence. We use it to efficiently solve the problems of image localization and feature triangulation. We show how the conditional probability can be combined with other measures to prioritize a set of points (or cameras) for matching and use it for fast guided search of points for the image localization problem. We define the problem of feature triangulation as the estimation of 3D coordinate of a given 2D feature using the SfM data. Our approach can guide the search to quickly identify a subset of cameras in which the feature is visible.

Other than image localization and feature triangulation, bundle adjustment is a key component of the reconstruction pipeline and often its slowest and the most computational resource intensive. It hasn't been parallelized effectively so far. We also a present a hybrid implementation of sparse bundle adjustment on the GPU using CUDA, with the CPU working in parallel. The algorithm is decomposed into smaller steps, each of which is scheduled on the GPU or the CPU. We develop efficient kernels for the steps and make use of existing libraries for several steps. Our implementation outperforms the CPU implementation significantly, achieving a speedup of 30-40 times over the standard CPU implementation for datasets with upto 500 images on an Nvidia Tesla C2050 GPU.

 

Year of completion:  2012
 Advisor : P. J. Narayanan

Related Publications

  • Siddharth Choudhary and P J Narayanan - Visibility Probability Structure from SfM Datasets and Applications Proceedings of 12th European Conference on Computer Vision, 7-13 Oct. 2012, Vol. ECCV 2012, Part-VI, LNCS 7577, Firenze, Italy. [PDF]

  • Siddharth Choudhary, Shubham Gupta and P. J. Narayanan - Practical Time Bundle Adjustment for 3D Reconstruction on GPU Proceedings of ECCV Workshop on Computer Vision on GPU (CVGPU'10),5-11 Sep. 2010, Crete, Greece. [PDF]


Downloads

thesis

ppt