Box & Trees Data Set


This is a complex scene with around eight objects. It has around five trees and some grass objects. These objects are ac3d objects which have been imported into the tool and placed to a complex scene. This is a data set which is ideal for testing alpha matte algorithms. The thin corners of the leaves of plants are difficult to seperate out. This data set provides a set of images rendered at various resolutions.


Box Trees Data

BoxTreesThis data set includes the following ::

  • Images of the scene in Images directory.
  • Depth-maps of the scene in DepthMaps directory.
  • Alpha-maps of the scene in AlphaMaps directory.
  • Object-maps of the scene in ObjMaps directory.
  • Scene file used for creating this data BoxTrees.scene.
  • POV-Ray scene description of the scene BoxTrees.pov.
  • Models used in the scene models directory.
  • Each directory includes different resolutions of the representations.

DGTk Project Page


Introduction

DGTk is a unique tool which provides the UI of a standard 3D authoring tool and at the same time enables the users to generate various representations like depth-maps, alpha-maps, object-maps, etc which are very precious for the CV and IBR researchers. Two years in the making, this tool has evolved from a simple command line based tool to a fully 3D visualization and rendering software. The user can with ease create dynamic scenes with complex animations. The major goal in development of this tool was to reduce the time spent by researchers in creating or finding data sets for testing their algorithms. Another major goal was to make sharing of data as easy as possible. We have developed a new high level scene representation format which enables users to exchange the data generation medium rather than the data itself.


Downloads

The idea behind creating this tool was to provide the CV and IBR research community with a tool which would provide a standard method for creating test data. This tool is hence provided for the community under GPL along with some of the data sets generated.

  • Download source code of DGTk [Click]. Contains::
    • Source files (.cpp and .h)
    • ReadMe.txt (a brief description about our tool).
    • INSTALL (process of getting started with the tool).
  • User manual for DGTk [Click].
  • Download the manual for the scene file description [Click].

Example Data Sets

 BoxTrees ComicScene   TerrainData

 


Associated People

  • V. Vamsi Krishna
  • Prof. P. J. Narayanan

 

Brain Image Analysis


Brain is one of the most complex and sophisticated organs in human body. It is the center of nervous system and responsible for motor actions, memory and intelligence in humans. Study of structure, function and disease in human brain is done by analyzing images obtained in different modalities like Magnetic Resonance Imaging (MRI) and Computed Tomography (CT).


Structural Analysis and Disease Detection in CT and MRI Brain Images

Stroke detection - Stroke is a disease which affects vessels that supply blood to the brain. A stroke occurs when a blood vessel either bursts or there is a blockage of the blood vessel. Due to lack of oxygen, nerve cells in the affected brain area are not able to perform basic functions and cause sudden death.

Strokes are mainly classified in two categories:

  1. Ischemic stroke or infarct (due to lack of blood supply)
  2. Hemorrhagic stroke (due to rupture of blood vessel)
 brainCT1  brainCT2

Computed tomographic (CT) images are widely used in the diagnosis of stroke. We are working on an automated method to detect and classify an abnormality into acute infarct, chronic infarct and hemorrhage at the slice level of non-contrast CT images. CT imaging is preferred over MRI due to wider availability, lower cost and lower scan time.

brainCT3 brainCT4

We have developed a unified method to detect both types of strokes from a given CT volume data. The proposed method is based on the observation that stroke presence disturbs the natural contra-lateral symmetry of a slice. Accordingly, we characterize stroke as a distortion between the two halves of the brain in terms of tissue density and texture distribution.

This work was conceived recently and is still under progress in association with CARE hospital.

Detection of Neurodegenerative diseases - Neurodegenerative diseases result in cognitive impairment that affects memory, attention, language and problem solving. It is caused due to head injury, infections or aging. Early detection of these diseases can be helpful in treatment and hence in reversing the impairment. MR images are recommended for detection of this class of diseases due to their high contrast property.

Structural imaging can detect and follow the time course of subtle brain atrophy as a surrogate marker for pathological processes. Our research is directed towards developing MR image analysis algorithms to detect such atrophies. Such detection tools will aid in studying the pathological processes and detect pre-demented conditions.


People Involved

  • Sushma
  • Rohit
  • Shashank
  • Mayank
  • Sandeep
  • Saurabh

 

Image Reconstruction


Improving resolution of tomographic images has been an active area of research in the past few years. This is of special interest in nuclear imaging where the image resolution is limited by the permissible dosage. Super resolution (SR) techniques based on combination of a set of low resolution images with spatial shifts have been examined for PET and CT images.

Our research is focused on obtaining high quality upsampled tomographic images. The technique we have developed for upsampling uses samples drawn from union of rotated lattices. Both hexagonal and square lattices have been studied. Such a technique has the benefit that the number of images required for deriving the synthetically zoomed output is minimal.

U12 1

 

hoffman H12 4 compliment hoffman H12 4 spectrum
  Reconstructed (upscaled by a factor of 4) RoI on union of rotated hexagonal lattice and its spectrum

 

hoffman struct SR4 compliment  hoffman SR 4 spectrum 
Reconstructed (upscaled by a factor of 4) RoI on union of shifted square lattice and its spectrum

 


People Involve

  • Neha
  • Kartheek

Histo Pathological Image Analysis


Automated analysis of histo-pathological images is attracting much interest in the recent past .Most of these images are largely characterised by colour, textural and morphological features and not gross anatomical structures found in radiology (neuroimages, lung,CT etc). A fundamental task in CAD tool development for histopathological images is detection and segmentation of structures such as lymphocytes, nuclei, stroma, etc.

In regards to histopathological image analysis, we are currently working on mitosis detection in H & E stained breast biopsy slides .Mitosis detection and quantification is a key task in grading of cancer. In designing a pipeline for the detection problem, identification of stroma in the tissue is important when comes to rejection of false candidates.

 

histo stained tissue histo stroma segementation

 


 

People Involved

  • Anisha